1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
/* The goal of this test. Make sure that inserts stay behind deletes. */
#include "test.h"
#include <ft-cachetable-wrappers.h>
#include "ft-flusher.h"
#include "ft-flusher-internal.h"
#include "cachetable/checkpoint.h"
static TOKUTXN const null_txn = 0;
enum { NODESIZE = 1024, KSIZE=NODESIZE-100, TOKU_PSIZE=20 };
CACHETABLE ct;
FT_HANDLE t;
bool checkpoint_called;
bool checkpoint_callback_called;
toku_pthread_t checkpoint_tid;
// callback functions for toku_ft_flush_some_child
static bool
dont_destroy_bn(void* UU(extra))
{
return false;
}
static bool recursively_flush_should_not_happen(FTNODE UU(child), void* UU(extra)) {
assert(false);
}
static int child_to_flush(FT UU(h), FTNODE parent, void* UU(extra)) {
assert(parent->height == 1);
assert(parent->n_children == 2);
return 0;
}
static void dummy_update_status(FTNODE UU(child), int UU(dirtied), void* UU(extra)) {
}
static void checkpoint_callback(void* UU(extra)) {
usleep(1*1024*1024);
checkpoint_callback_called = true;
}
static void *do_checkpoint(void *arg) {
// first verify that checkpointed_data is correct;
if (verbose) printf("starting a checkpoint\n");
CHECKPOINTER cp = toku_cachetable_get_checkpointer(ct);
int r = toku_checkpoint(cp, NULL, checkpoint_callback, NULL, NULL, NULL, CLIENT_CHECKPOINT);
assert_zero(r);
if (verbose) printf("completed a checkpoint\n");
return arg;
}
static void flusher_callback(int state, void* extra) {
int desired_state = *(int *)extra;
if (verbose) {
printf("state %d\n", state);
}
if (state == desired_state) {
checkpoint_called = true;
int r = toku_pthread_create(&checkpoint_tid, NULL, do_checkpoint, NULL);
assert_zero(r);
while (!checkpoint_callback_called) {
usleep(1*1024*1024);
}
}
}
static void
doit (int state) {
BLOCKNUM node_root;
BLOCKNUM node_leaves[2];
int r;
checkpoint_called = false;
checkpoint_callback_called = false;
toku_flusher_thread_set_callback(flusher_callback, &state);
toku_cachetable_create(&ct, 500*1024*1024, ZERO_LSN, nullptr);
unlink("foo2.ft_handle");
unlink("bar2.ft_handle");
// note the basement node size is 5 times the node size
// this is done to avoid rebalancing when writing a leaf
// node to disk
r = toku_open_ft_handle("foo2.ft_handle", 1, &t, NODESIZE, 5*NODESIZE, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun);
assert(r==0);
toku_testsetup_initialize(); // must precede any other toku_testsetup calls
r = toku_testsetup_leaf(t, &node_leaves[0], 1, NULL, NULL);
assert(r==0);
r = toku_testsetup_leaf(t, &node_leaves[1], 1, NULL, NULL);
assert(r==0);
char* pivots[1];
pivots[0] = toku_strdup("kkkkk");
int pivot_len = 6;
r = toku_testsetup_nonleaf(t, 1, &node_root, 2, node_leaves, pivots, &pivot_len);
assert(r==0);
r = toku_testsetup_root(t, node_root);
assert(r==0);
r = toku_testsetup_insert_to_leaf(
t,
node_leaves[0],
"a",
2,
NULL,
0
);
assert_zero(r);
r = toku_testsetup_insert_to_leaf(
t,
node_leaves[1],
"z",
2,
NULL,
0
);
assert_zero(r);
// at this point, we have inserted two leafentries,
// one in each leaf node. A flush should invoke a merge
struct flusher_advice fa;
flusher_advice_init(
&fa,
child_to_flush,
dont_destroy_bn,
recursively_flush_should_not_happen,
default_merge_child,
dummy_update_status,
default_pick_child_after_split,
NULL
);
// hack to get merge going
FTNODE node = NULL;
toku_pin_node_with_min_bfe(&node, node_leaves[0], t);
BLB_SEQINSERT(node, node->n_children-1) = false;
toku_unpin_ftnode(t->ft, node);
toku_pin_node_with_min_bfe(&node, node_leaves[1], t);
BLB_SEQINSERT(node, node->n_children-1) = false;
toku_unpin_ftnode(t->ft, node);
ftnode_fetch_extra bfe;
bfe.create_for_min_read(t->ft);
toku_pin_ftnode_with_dep_nodes(
t->ft,
node_root,
toku_cachetable_hash(t->ft->cf, node_root),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 1);
assert(node->n_children == 2);
// do the flush
toku_ft_flush_some_child(t->ft, node, &fa);
assert(checkpoint_callback_called);
// now let's pin the root again and make sure it is has merged
toku_pin_ftnode_with_dep_nodes(
t->ft,
node_root,
toku_cachetable_hash(t->ft->cf, node_root),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 1);
assert(node->n_children == 1);
toku_unpin_ftnode(t->ft, node);
void *ret;
r = toku_pthread_join(checkpoint_tid, &ret);
assert_zero(r);
//
// now the dictionary has been checkpointed
// copy the file to something with a new name,
// open it, and verify that the state of what is
// checkpointed is what we expect
//
r = system("cp foo2.ft_handle bar2.ft_handle ");
assert_zero(r);
FT_HANDLE c_ft;
// note the basement node size is 5 times the node size
// this is done to avoid rebalancing when writing a leaf
// node to disk
r = toku_open_ft_handle("bar2.ft_handle", 0, &c_ft, NODESIZE, 5*NODESIZE, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun);
assert(r==0);
//
// now pin the root, verify that the state is what we expect
//
bfe.create_for_full_read(c_ft->ft);
toku_pin_ftnode_with_dep_nodes(
c_ft->ft,
node_root,
toku_cachetable_hash(c_ft->ft->cf, node_root),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 1);
assert(!node->dirty);
BLOCKNUM left_child, right_child;
// cases where we expect the checkpoint to contain the merge
if (state == ft_flush_aflter_merge || state == flt_flush_before_unpin_remove) {
assert(node->n_children == 1);
left_child = BP_BLOCKNUM(node,0);
}
else if (state == flt_flush_before_merge || state == flt_flush_before_pin_second_node_for_merge) {
assert(node->n_children == 2);
left_child = BP_BLOCKNUM(node,0);
right_child = BP_BLOCKNUM(node,1);
}
else {
assert(false);
}
toku_unpin_ftnode(c_ft->ft, node);
// now let's verify the leaves are what we expect
if (state == flt_flush_before_merge || state == flt_flush_before_pin_second_node_for_merge) {
toku_pin_ftnode_with_dep_nodes(
c_ft->ft,
left_child,
toku_cachetable_hash(c_ft->ft->cf, left_child),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 0);
assert(!node->dirty);
assert(node->n_children == 1);
assert(BLB_DATA(node, 0)->num_klpairs() == 1);
toku_unpin_ftnode(c_ft->ft, node);
toku_pin_ftnode_with_dep_nodes(
c_ft->ft,
right_child,
toku_cachetable_hash(c_ft->ft->cf, right_child),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 0);
assert(!node->dirty);
assert(node->n_children == 1);
assert(BLB_DATA(node, 0)->num_klpairs() == 1);
toku_unpin_ftnode(c_ft->ft, node);
}
else if (state == ft_flush_aflter_merge || state == flt_flush_before_unpin_remove) {
toku_pin_ftnode_with_dep_nodes(
c_ft->ft,
left_child,
toku_cachetable_hash(c_ft->ft->cf, left_child),
&bfe,
PL_WRITE_EXPENSIVE,
0,
NULL,
&node,
true
);
assert(node->height == 0);
assert(!node->dirty);
assert(node->n_children == 1);
assert(BLB_DATA(node, 0)->num_klpairs() == 2);
toku_unpin_ftnode(c_ft->ft, node);
}
else {
assert(false);
}
DBT k;
struct check_pair pair1 = {2, "a", 0, NULL, 0};
r = toku_ft_lookup(c_ft, toku_fill_dbt(&k, "a", 2), lookup_checkf, &pair1);
assert(r==0);
struct check_pair pair2 = {2, "z", 0, NULL, 0};
r = toku_ft_lookup(c_ft, toku_fill_dbt(&k, "z", 2), lookup_checkf, &pair2);
assert(r==0);
r = toku_close_ft_handle_nolsn(t, 0); assert(r==0);
r = toku_close_ft_handle_nolsn(c_ft, 0); assert(r==0);
toku_cachetable_close(&ct);
toku_free(pivots[0]);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
default_parse_args(argc, argv);
doit(flt_flush_before_merge);
doit(flt_flush_before_pin_second_node_for_merge);
doit(flt_flush_before_unpin_remove);
doit(ft_flush_aflter_merge);
return 0;
}
|