File: test-inc-split.cc

package info (click to toggle)
mariadb-10.0 10.0.32-0%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 476,064 kB
  • sloc: cpp: 1,400,131; ansic: 832,140; perl: 54,391; sh: 41,304; pascal: 32,365; yacc: 14,921; xml: 5,257; sql: 4,667; cs: 4,647; makefile: 4,555; ruby: 4,465; python: 2,292; lex: 1,427; java: 941; asm: 295; awk: 54; php: 22; sed: 16
file content (185 lines) | stat: -rw-r--r-- 5,957 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

/* The goal of this test:  Make sure that when we aggressively promote 
 * that we don't get a fencepost error on the size.  (#399, I think)

 * 
 * For various values of I do the following:
 *
 *   Make a tree of height 3 (that is, the root is of height 2)
 *   use small nodes (say 4KB)
 *   you have this tree:
 *                   A
 *                     B
 *                      C0 C1 C2 .. C15
 *   A has only one child.  B has as many children as it can get.
 *   Fill the C nodes (the leaves) all almost full.
 *   Fill B's buffer up with a big message X for C15, and a slightly smaller message Y for C1.
 *   Put into A's buffer a little message Z aimed at C0.
 *   Now when insert a message of size I aimed at C0.  I and Z together are too big to fit in A.
 *   First: X will be pushed into C15, resulting in this split
 *    A
 *     B0
 *       C0 C1 ... C8
 *     B1
 *       C9 C10 ... C15 C16
 *   At this point C0 through C14 are full, Y is in B0's buffer, and A's buffer contains I and Z.
 *   So we try to push Z if it fits.  Which it does.
 *   So then we try to I if it fits.  If we calculated wrong, everything  breaks now.
 *  
 */

#include "test.h"


static TOKUTXN const null_txn = 0;

enum { NODESIZE = 1024, KSIZE=NODESIZE-100, TOKU_PSIZE=20 };

CACHETABLE ct;
FT_HANDLE t;
const char *fname = TOKU_TEST_FILENAME;

static void
doit (int ksize __attribute__((__unused__))) {
    BLOCKNUM cnodes[16], bnode, anode;

    char *keys[16-1];
    int keylens[16-1];
    int i;
    int r;
    
    toku_cachetable_create(&ct, 16*1024, ZERO_LSN, nullptr);
    unlink(fname);
    r = toku_open_ft_handle(fname, 1, &t, NODESIZE, NODESIZE, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun);
    assert(r==0);

    toku_testsetup_initialize();  // must precede any other toku_testsetup calls

    for (i=0; i<16; i++) {
	r=toku_testsetup_leaf(t, &cnodes[i], 1, NULL, NULL);
	assert(r==0);
	char key[KSIZE+10];
	int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", i*10000+1, KSIZE-9, 0);
	char val[1];
	char vallen=0;
	r=toku_testsetup_insert_to_leaf(t, cnodes[i], key, keylen, val, vallen);
	assert(r==0);
    }

    // Now we have a bunch of leaves, all of which are with 100 bytes of full.
    for (i=0; i+1<16; i++) {
	char key[TOKU_PSIZE];
	keylens[i]=1+snprintf(key, TOKU_PSIZE, "%08d", (i+1)*10000);
	keys[i]=toku_strdup(key);
    }

    r = toku_testsetup_nonleaf(t, 1, &bnode, 16, cnodes, keys, keylens);
    assert(r==0);

    for (i=0; i+1<16; i++) {
	toku_free(keys[i]);
    }

    {
	const int magic_size = (NODESIZE-toku_testsetup_get_sersize(t, bnode))/2-25;
	//printf("magic_size=%d\n", magic_size);
	char key [KSIZE];
	int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 150002, magic_size, 0);
	char val[1];
	char vallen=0;
	r=toku_testsetup_insert_to_nonleaf(t, bnode, FT_INSERT, key, keylen, val, vallen);

	keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 2, magic_size-1, 0);
	r=toku_testsetup_insert_to_nonleaf(t, bnode, FT_INSERT, key, keylen, val, vallen);
    }
    //printf("%lld sersize=%d\n", bnode, toku_testsetup_get_sersize(t, bnode));
    // Now we have an internal node which has full children and the buffers are nearly full

    r = toku_testsetup_nonleaf(t, 2, &anode, 1,          &bnode, 0, 0);
    assert(r==0);
    {
	char key[20];
	int keylen = 1+snprintf(key, 20, "%08d", 3);
	char val[1];
	char vallen=0;
	r=toku_testsetup_insert_to_nonleaf(t, anode, FT_INSERT, key, keylen, val, vallen);
    }
    if (0)
    {
	const int magic_size = 1; //NODESIZE-toku_testsetup_get_sersize(t, anode)-100;
	DBT k,v;
	char key[20];
	char data[magic_size];
	int keylen=1+snprintf(key, sizeof(key), "%08d", 4);
	int vallen=magic_size;
	snprintf(data, magic_size, "%*s", magic_size-1, " ");
	toku_ft_insert(t,
                      toku_fill_dbt(&k, key, keylen),
                      toku_fill_dbt(&v, data, vallen),
                      null_txn);
    }

    r = toku_testsetup_root(t, anode);
    assert(r==0);

    r = toku_close_ft_handle_nolsn(t, 0);    assert(r==0);
    toku_cachetable_close(&ct);

    //printf("ksize=%d, unused\n", ksize);

}

int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
    doit(53);
#if 0
    //Skip remaining tests. 
{
    int i;

    for (i=1; i<NODESIZE/2; i++) {
	printf("extrasize=%d\n", i);
	doit(i);
    }
}
#endif
    
    return 0;
}