1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
/* The goal of this test: Make sure that when we aggressively promote
* that we don't get a fencepost error on the size. (#399, I think)
*
* For various values of I do the following:
*
* Make a tree of height 3 (that is, the root is of height 2)
* use small nodes (say 4KB)
* you have this tree:
* A
* B
* C0 C1 C2 .. C15
* A has only one child. B has as many children as it can get.
* Fill the C nodes (the leaves) all almost full.
* Fill B's buffer up with a big message X for C15, and a slightly smaller message Y for C1.
* Put into A's buffer a little message Z aimed at C0.
* Now when insert a message of size I aimed at C0. I and Z together are too big to fit in A.
* First: X will be pushed into C15, resulting in this split
* A
* B0
* C0 C1 ... C8
* B1
* C9 C10 ... C15 C16
* At this point C0 through C14 are full, Y is in B0's buffer, and A's buffer contains I and Z.
* So we try to push Z if it fits. Which it does.
* So then we try to I if it fits. If we calculated wrong, everything breaks now.
*
*/
#include "test.h"
static TOKUTXN const null_txn = 0;
enum { NODESIZE = 1024, KSIZE=NODESIZE-100, TOKU_PSIZE=20 };
CACHETABLE ct;
FT_HANDLE t;
const char *fname = TOKU_TEST_FILENAME;
static void
doit (int ksize __attribute__((__unused__))) {
BLOCKNUM cnodes[16], bnode, anode;
char *keys[16-1];
int keylens[16-1];
int i;
int r;
toku_cachetable_create(&ct, 16*1024, ZERO_LSN, nullptr);
unlink(fname);
r = toku_open_ft_handle(fname, 1, &t, NODESIZE, NODESIZE, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun);
assert(r==0);
toku_testsetup_initialize(); // must precede any other toku_testsetup calls
for (i=0; i<16; i++) {
r=toku_testsetup_leaf(t, &cnodes[i], 1, NULL, NULL);
assert(r==0);
char key[KSIZE+10];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", i*10000+1, KSIZE-9, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_leaf(t, cnodes[i], key, keylen, val, vallen);
assert(r==0);
}
// Now we have a bunch of leaves, all of which are with 100 bytes of full.
for (i=0; i+1<16; i++) {
char key[TOKU_PSIZE];
keylens[i]=1+snprintf(key, TOKU_PSIZE, "%08d", (i+1)*10000);
keys[i]=toku_strdup(key);
}
r = toku_testsetup_nonleaf(t, 1, &bnode, 16, cnodes, keys, keylens);
assert(r==0);
for (i=0; i+1<16; i++) {
toku_free(keys[i]);
}
{
const int magic_size = (NODESIZE-toku_testsetup_get_sersize(t, bnode))/2-25;
//printf("magic_size=%d\n", magic_size);
char key [KSIZE];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 150002, magic_size, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, bnode, FT_INSERT, key, keylen, val, vallen);
keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 2, magic_size-1, 0);
r=toku_testsetup_insert_to_nonleaf(t, bnode, FT_INSERT, key, keylen, val, vallen);
}
//printf("%lld sersize=%d\n", bnode, toku_testsetup_get_sersize(t, bnode));
// Now we have an internal node which has full children and the buffers are nearly full
r = toku_testsetup_nonleaf(t, 2, &anode, 1, &bnode, 0, 0);
assert(r==0);
{
char key[20];
int keylen = 1+snprintf(key, 20, "%08d", 3);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, anode, FT_INSERT, key, keylen, val, vallen);
}
if (0)
{
const int magic_size = 1; //NODESIZE-toku_testsetup_get_sersize(t, anode)-100;
DBT k,v;
char key[20];
char data[magic_size];
int keylen=1+snprintf(key, sizeof(key), "%08d", 4);
int vallen=magic_size;
snprintf(data, magic_size, "%*s", magic_size-1, " ");
toku_ft_insert(t,
toku_fill_dbt(&k, key, keylen),
toku_fill_dbt(&v, data, vallen),
null_txn);
}
r = toku_testsetup_root(t, anode);
assert(r==0);
r = toku_close_ft_handle_nolsn(t, 0); assert(r==0);
toku_cachetable_close(&ct);
//printf("ksize=%d, unused\n", ksize);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
doit(53);
#if 0
//Skip remaining tests.
{
int i;
for (i=1; i<NODESIZE/2; i++) {
printf("extrasize=%d\n", i);
doit(i);
}
}
#endif
return 0;
}
|