1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#include "concurrent_tree_unit_test.h"
namespace toku {
// "random" (derived from the digits of PI) but deterministic keys
const uint64_t keys[] = {
141, 592, 653, 589, 793, 238, 462, 643, 383, 327, 950, 288, 419,
716, 939, 937, 510, 582, 97, 494, 459, 230, 781, 640, 628, 620, 899,
862, 803, 482, 534, 211, 706, 798, 214, 808, 651, 328, 239, 664, 709,
384, 460, 955, 58, 223, 172, 535, 940, 812, 848,
};
const uint64_t num_keys = sizeof(keys) / sizeof(keys[0]);
static const DBT *get_ith_key_from_set(uint64_t i) {
return get_dbt(keys[i]);
}
static void verify_unique_keys(void) {
for (uint64_t i = 0; i < num_keys; i++) {
for (uint64_t j = 0; j < num_keys; j++) {
if (i != j) {
invariant(keys[i] != keys[j]);
}
}
}
}
static uint64_t check_for_range_and_count(concurrent_tree::locked_keyrange *lkr,
const comparator &cmp, const keyrange &range, bool range_should_exist) {
struct check_fn_obj {
const comparator *cmp;
uint64_t count;
keyrange target_range;
bool target_range_found;
bool fn(const keyrange &query_range, TXNID txnid) {
(void) txnid;
if (query_range.compare(*cmp, target_range) == keyrange::comparison::EQUALS) {
invariant(!target_range_found);
target_range_found = true;
}
count++;
return true;
}
} check_fn;
check_fn.cmp = &cmp;
check_fn.count = 0;
check_fn.target_range = range;
check_fn.target_range_found = false;
lkr->iterate<check_fn_obj>(&check_fn);
if (range_should_exist) {
invariant(check_fn.target_range_found);
} else {
invariant(!check_fn.target_range_found);
}
return check_fn.count;
}
// test that insert/remove work properly together, confirming
// whether keys exist using iterate()
void concurrent_tree_unit_test::test_lkr_insert_remove(void) {
verify_unique_keys();
comparator cmp;
cmp.create(compare_dbts, nullptr);
concurrent_tree tree;
tree.create(&cmp);
// prepare and acquire the infinte range
concurrent_tree::locked_keyrange lkr;
lkr.prepare(&tree);
lkr.acquire(keyrange::get_infinite_range());
// populate the tree with all the keys
uint64_t n;
const uint64_t cap = 15;
for (uint64_t i = 0; i < num_keys; i++) {
keyrange range;
range.create(get_ith_key_from_set(i), get_ith_key_from_set(i));
// insert an element. it should exist and the
// count should be correct.
lkr.insert(range, i);
n = check_for_range_and_count(&lkr, cmp, range, true);
if (i >= cap) {
invariant(n == cap + 1);
// remove an element previously inserted. it should
// no longer exist and the count should be correct.
range.create(get_ith_key_from_set(i - cap), get_ith_key_from_set(i - cap));
lkr.remove(range);
n = check_for_range_and_count(&lkr, cmp, range, false);
invariant(n == cap);
} else {
invariant(n == i + 1);
}
}
// clean up the rest of the keys
for (uint64_t i = 0; i < cap; i++) {
keyrange range;
range.create(get_ith_key_from_set(num_keys - i - 1), get_ith_key_from_set(num_keys - i - 1));
lkr.remove(range);
n = check_for_range_and_count(&lkr, cmp, range, false);
invariant(n == (cap - i - 1));
}
lkr.release();
tree.destroy();
cmp.destroy();
}
} /* namespace toku */
int main(void) {
toku::concurrent_tree_unit_test test;
test.test_lkr_insert_remove();
return 0;
}
|