1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  
     | 
    
      SET SESSION DEFAULT_STORAGE_ENGINE='InnoDB';
set @innodb_stats_persistent_save= @@innodb_stats_persistent;
set @innodb_stats_persistent_sample_pages_save=
@@innodb_stats_persistent_sample_pages;
set global innodb_stats_persistent= 1;
set global innodb_stats_persistent_sample_pages=100;
DROP TABLE IF EXISTS t1,t2,t3,t4;
DROP DATABASE IF EXISTS world;
set names utf8;
CREATE DATABASE world;
use world;
CREATE TABLE Country (
Code char(3) NOT NULL default '',
Name char(52) NOT NULL default '',
SurfaceArea float(10,2) NOT NULL default '0.00',
Population int(11) NOT NULL default '0',
Capital int(11) default NULL,
PRIMARY KEY  (Code),
UNIQUE INDEX (Name)
);
CREATE TABLE City (
ID int(11) NOT NULL auto_increment,
Name char(35) NOT NULL default '',
Country char(3) NOT NULL default '',
Population int(11) NOT NULL default '0',
PRIMARY KEY  (ID),
INDEX (Population),
INDEX (Country) 
);
CREATE TABLE CountryLanguage (
Country char(3) NOT NULL default '',
Language char(30) NOT NULL default '',
Percentage float(3,1) NOT NULL default '0.0',
PRIMARY KEY  (Country, Language),
INDEX (Percentage)
);
SELECT COUNT(*) FROM Country;
COUNT(*)
239
SELECT COUNT(*) FROM City;
COUNT(*)
4079
SELECT COUNT(*) FROM CountryLanguage;
COUNT(*)
984
CREATE INDEX Name ON City(Name);
SET SESSION optimizer_switch='rowid_filter=off';
SET SESSION optimizer_switch='index_merge_sort_intersection=on';
SELECT COUNT(*) FROM City;
COUNT(*)
4079
SELECT COUNT(*) FROM City WHERE Name LIKE 'C%';
COUNT(*)
281
SELECT COUNT(*) FROM City WHERE Name LIKE 'M%';
COUNT(*)
301
SELECT COUNT(*) FROM City WHERE Population > 1000000;
COUNT(*)
237
SELECT COUNT(*) FROM City WHERE Population > 1500000;
COUNT(*)
129
SELECT COUNT(*) FROM City WHERE Population > 300000;
COUNT(*)
1062
SELECT COUNT(*) FROM City WHERE Population > 7000000;
COUNT(*)
14
EXPLAIN
SELECT * FROM City WHERE
Name LIKE 'C%' AND Population > 1000000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
EXPLAIN
SELECT * FROM City WHERE
Name LIKE 'M%' AND Population > 1500000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
EXPLAIN
SELECT * FROM City 
WHERE Name LIKE 'M%' AND Population > 300000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	range	Population,Name	Name	35	NULL	#	Using index condition; Using where
EXPLAIN
SELECT * FROM City
WHERE Name LIKE 'M%' AND Population > 7000000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
SELECT * FROM City USE INDEX ()
WHERE Name LIKE 'C%' AND Population > 1000000;
ID	Name	Country	Population
1026	Calcutta [Kolkata]	IND	4399819
1027	Chennai (Madras)	IND	3841396
151	Chittagong	BGD	1392860
1892	Chongqing	CHN	6351600
1898	Chengdu	CHN	3361500
1900	Changchun	CHN	2812000
1910	Changsha	CHN	1809800
212	Curitiba	BRA	1584232
2258	Cali	COL	2077386
2485	Casablanca	MAR	2940623
2515	Ciudad de México	MEX	8591309
3539	Caracas	VEN	1975294
3795	Chicago	USA	2896016
608	Cairo	EGY	6789479
71	Córdoba	ARG	1157507
712	Cape Town	ZAF	2352121
926	Conakry	GIN	1090610
SELECT * FROM City
WHERE Name LIKE 'C%' AND Population > 1000000;
ID	Name	Country	Population
1026	Calcutta [Kolkata]	IND	4399819
1027	Chennai (Madras)	IND	3841396
151	Chittagong	BGD	1392860
1892	Chongqing	CHN	6351600
1898	Chengdu	CHN	3361500
1900	Changchun	CHN	2812000
1910	Changsha	CHN	1809800
212	Curitiba	BRA	1584232
2258	Cali	COL	2077386
2485	Casablanca	MAR	2940623
2515	Ciudad de México	MEX	8591309
3539	Caracas	VEN	1975294
3795	Chicago	USA	2896016
608	Cairo	EGY	6789479
71	Córdoba	ARG	1157507
712	Cape Town	ZAF	2352121
926	Conakry	GIN	1090610
SELECT * FROM City USE INDEX ()
WHERE Name LIKE 'M%' AND Population > 1500000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
131	Melbourne	AUS	2865329
1381	Mashhad	IRN	1887405
2259	Medellín	COL	1861265
3520	Minsk	BLR	1674000
3580	Moscow	RUS	8389200
653	Madrid	ESP	2879052
766	Manila	PHL	1581082
942	Medan	IDN	1843919
SELECT * FROM City 
WHERE Name LIKE 'M%' AND Population > 1500000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
131	Melbourne	AUS	2865329
1381	Mashhad	IRN	1887405
2259	Medellín	COL	1861265
3520	Minsk	BLR	1674000
3580	Moscow	RUS	8389200
653	Madrid	ESP	2879052
766	Manila	PHL	1581082
942	Medan	IDN	1843919
SELECT * FROM City USE INDEX ()
WHERE Name LIKE 'M%' AND Population > 300000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
1042	Madurai	IND	977856
1051	Meerut	IND	753778
1074	Mysore	IND	480692
1081	Moradabad	IND	429214
1098	Malegaon	IND	342595
131	Melbourne	AUS	2865329
1366	Mosul	IRQ	879000
1381	Mashhad	IRN	1887405
1465	Milano	ITA	1300977
1559	Matsuyama	JPN	466133
1560	Matsudo	JPN	461126
1578	Machida	JPN	364197
1595	Miyazaki	JPN	303784
1810	Montréal	CAN	1016376
1816	Mississauga	CAN	608072
1882	Mombasa	KEN	461753
1945	Mudanjiang	CHN	570000
2005	Ma´anshan	CHN	305421
215	Manaus	BRA	1255049
223	Maceió	BRA	786288
2259	Medellín	COL	1861265
2267	Manizales	COL	337580
2300	Mbuji-Mayi	COD	806475
2348	Masan	KOR	441242
2440	Monrovia	LBR	850000
2454	Macao	MAC	437500
2487	Marrakech	MAR	621914
2491	Meknès	MAR	460000
250	Mauá	BRA	375055
2523	Monterrey	MEX	1108499
2526	Mexicali	MEX	764902
2530	Mérida	MEX	703324
2537	Morelia	MEX	619958
2554	Matamoros	MEX	416428
2557	Mazatlán	MEX	380265
256	Moji das Cruzes	BRA	339194
2698	Maputo	MOZ	1018938
2699	Matola	MOZ	424662
2711	Mandalay	MMR	885300
2712	Moulmein (Mawlamyine)	MMR	307900
2734	Managua	NIC	959000
2756	Mushin	NGA	333200
2757	Maiduguri	NGA	320000
2826	Multan	PAK	1182441
2975	Marseille	FRA	798430
3070	Munich [München]	DEU	1194560
3086	Mannheim	DEU	307730
3175	Mekka	SAU	965700
3176	Medina	SAU	608300
3214	Mogadishu	SOM	997000
3364	Mersin (Içel)	TUR	587212
3371	Malatya	TUR	330312
3434	Mykolajiv	UKR	508000
3435	Mariupol	UKR	490000
3438	Makijivka	UKR	384000
3492	Montevideo	URY	1236000
3520	Minsk	BLR	1674000
3522	Mogiljov	BLR	356000
3540	Maracaíbo	VEN	1304776
3545	Maracay	VEN	444443
3547	Maturín	VEN	319726
3580	Moscow	RUS	8389200
3622	Magnitogorsk	RUS	427900
3625	Murmansk	RUS	376300
3636	Mahat?kala	RUS	332800
3810	Memphis	USA	650100
3811	Milwaukee	USA	596974
3834	Mesa	USA	396375
3837	Minneapolis	USA	382618
3839	Miami	USA	362470
462	Manchester	GBR	430000
653	Madrid	ESP	2879052
658	Málaga	ESP	530553
661	Murcia	ESP	353504
766	Manila	PHL	1581082
77	Mar del Plata	ARG	512880
778	Makati	PHL	444867
781	Marikina	PHL	391170
783	Muntinlupa	PHL	379310
786	Malabon	PHL	338855
80	Merlo	ARG	463846
83	Moreno	ARG	356993
87	Morón	ARG	349246
942	Medan	IDN	1843919
947	Malang	IDN	716862
962	Manado	IDN	332288
963	Mataram	IDN	306600
SELECT * FROM City 
WHERE Name LIKE 'M%' AND Population > 300000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
1042	Madurai	IND	977856
1051	Meerut	IND	753778
1074	Mysore	IND	480692
1081	Moradabad	IND	429214
1098	Malegaon	IND	342595
131	Melbourne	AUS	2865329
1366	Mosul	IRQ	879000
1381	Mashhad	IRN	1887405
1465	Milano	ITA	1300977
1559	Matsuyama	JPN	466133
1560	Matsudo	JPN	461126
1578	Machida	JPN	364197
1595	Miyazaki	JPN	303784
1810	Montréal	CAN	1016376
1816	Mississauga	CAN	608072
1882	Mombasa	KEN	461753
1945	Mudanjiang	CHN	570000
2005	Ma´anshan	CHN	305421
215	Manaus	BRA	1255049
223	Maceió	BRA	786288
2259	Medellín	COL	1861265
2267	Manizales	COL	337580
2300	Mbuji-Mayi	COD	806475
2348	Masan	KOR	441242
2440	Monrovia	LBR	850000
2454	Macao	MAC	437500
2487	Marrakech	MAR	621914
2491	Meknès	MAR	460000
250	Mauá	BRA	375055
2523	Monterrey	MEX	1108499
2526	Mexicali	MEX	764902
2530	Mérida	MEX	703324
2537	Morelia	MEX	619958
2554	Matamoros	MEX	416428
2557	Mazatlán	MEX	380265
256	Moji das Cruzes	BRA	339194
2698	Maputo	MOZ	1018938
2699	Matola	MOZ	424662
2711	Mandalay	MMR	885300
2712	Moulmein (Mawlamyine)	MMR	307900
2734	Managua	NIC	959000
2756	Mushin	NGA	333200
2757	Maiduguri	NGA	320000
2826	Multan	PAK	1182441
2975	Marseille	FRA	798430
3070	Munich [München]	DEU	1194560
3086	Mannheim	DEU	307730
3175	Mekka	SAU	965700
3176	Medina	SAU	608300
3214	Mogadishu	SOM	997000
3364	Mersin (Içel)	TUR	587212
3371	Malatya	TUR	330312
3434	Mykolajiv	UKR	508000
3435	Mariupol	UKR	490000
3438	Makijivka	UKR	384000
3492	Montevideo	URY	1236000
3520	Minsk	BLR	1674000
3522	Mogiljov	BLR	356000
3540	Maracaíbo	VEN	1304776
3545	Maracay	VEN	444443
3547	Maturín	VEN	319726
3580	Moscow	RUS	8389200
3622	Magnitogorsk	RUS	427900
3625	Murmansk	RUS	376300
3636	Mahat?kala	RUS	332800
3810	Memphis	USA	650100
3811	Milwaukee	USA	596974
3834	Mesa	USA	396375
3837	Minneapolis	USA	382618
3839	Miami	USA	362470
462	Manchester	GBR	430000
653	Madrid	ESP	2879052
658	Málaga	ESP	530553
661	Murcia	ESP	353504
766	Manila	PHL	1581082
77	Mar del Plata	ARG	512880
778	Makati	PHL	444867
781	Marikina	PHL	391170
783	Muntinlupa	PHL	379310
786	Malabon	PHL	338855
80	Merlo	ARG	463846
83	Moreno	ARG	356993
87	Morón	ARG	349246
942	Medan	IDN	1843919
947	Malang	IDN	716862
962	Manado	IDN	332288
963	Mataram	IDN	306600
SELECT * FROM City USE INDEX ()
WHERE Name LIKE 'M%' AND Population > 7000000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
3580	Moscow	RUS	8389200
SELECT * FROM City
WHERE Name LIKE 'M%' AND Population > 7000000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
3580	Moscow	RUS	8389200
SELECT COUNT(*) FROM City WHERE Name BETWEEN 'M' AND 'N';
COUNT(*)
301
SELECT COUNT(*) FROM City WHERE Name BETWEEN 'G' AND 'J';
COUNT(*)
408
SELECT COUNT(*) FROM City WHERE Name BETWEEN 'G' AND 'K';
COUNT(*)
512
SELECT COUNT(*) FROM City WHERE Population > 1000000;
COUNT(*)
237
SELECT COUNT(*) FROM City WHERE Population > 500000;
COUNT(*)
539
SELECT COUNT(*) FROM City WHERE Country LIKE 'C%';
COUNT(*)
551
SELECT COUNT(*) FROM City WHERE Country LIKE 'B%';
COUNT(*)
339
SELECT COUNT(*) FROM City WHERE Country LIKE 'J%';
COUNT(*)
256
EXPLAIN
SELECT * FROM City
WHERE Name BETWEEN 'M' AND 'N' AND Population > 1000000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Country,Name	Population,Name,Country	4,35,3	NULL	#	Using sort_intersect(Population,Name,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE Name BETWEEN 'G' AND 'K' AND Population > 1000000 AND Country LIKE 'J%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Country,Name	Population,Country,Name	4,3,35	NULL	#	Using sort_intersect(Population,Country,Name); Using where
EXPLAIN
SELECT * FROM City 
WHERE Name BETWEEN 'G' AND 'K' AND Population > 500000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	range	Population,Name,Country	Name	#	NULL	#	Using index condition; Using where
SELECT * FROM City USE INDEX ()
WHERE Name BETWEEN 'M' AND 'N' AND Population > 1000000 AND Country LIKE 'C%';
ID	Name	Country	Population
1810	Montréal	CAN	1016376
2259	Medellín	COL	1861265
SELECT * FROM City
WHERE Name BETWEEN 'M' AND 'N' AND Population > 1000000 AND Country LIKE 'C%';
ID	Name	Country	Population
1810	Montréal	CAN	1016376
2259	Medellín	COL	1861265
SELECT * FROM City USE INDEX ()
WHERE Name BETWEEN 'G' AND 'K' AND Population > 1000000 AND Country LIKE 'J%';
ID	Name	Country	Population
1533	Jokohama [Yokohama]	JPN	3339594
1541	Hiroshima	JPN	1119117
SELECT * FROM City 
WHERE Name BETWEEN 'G' AND 'K' AND Population > 1000000 AND Country LIKE 'J%';
ID	Name	Country	Population
1533	Jokohama [Yokohama]	JPN	3339594
1541	Hiroshima	JPN	1119117
SELECT * FROM City USE INDEX ()
WHERE Name BETWEEN 'G' AND 'K' AND Population > 500000 AND Country LIKE 'C%';
ID	Name	Country	Population
1895	Harbin	CHN	4289800
1904	Jinan	CHN	2278100
1905	Hangzhou	CHN	2190500
1914	Guiyang	CHN	1465200
1916	Hefei	CHN	1369100
1923	Jilin	CHN	1040000
1927	Hohhot	CHN	916700
1928	Handan	CHN	840000
1937	Huainan	CHN	700000
1938	Jixi	CHN	683885
1944	Jinzhou	CHN	570000
1950	Hegang	CHN	520000
SELECT * FROM City 
WHERE Name BETWEEN 'G' AND 'K' AND Population > 500000 AND Country LIKE 'C%';
ID	Name	Country	Population
1895	Harbin	CHN	4289800
1904	Jinan	CHN	2278100
1905	Hangzhou	CHN	2190500
1914	Guiyang	CHN	1465200
1916	Hefei	CHN	1369100
1923	Jilin	CHN	1040000
1927	Hohhot	CHN	916700
1928	Handan	CHN	840000
1937	Huainan	CHN	700000
1938	Jixi	CHN	683885
1944	Jinzhou	CHN	570000
1950	Hegang	CHN	520000
SELECT COUNT(*) FROM City WHERE ID BETWEEN 501 AND 1000;
COUNT(*)
500
SELECT COUNT(*) FROM City WHERE ID BETWEEN 1 AND 500;
COUNT(*)
500
SELECT COUNT(*) FROM City WHERE ID BETWEEN 2001 AND 2500;
COUNT(*)
500
SELECT COUNT(*) FROM City WHERE ID BETWEEN 3701 AND 4000;
COUNT(*)
300
SELECT COUNT(*) FROM City WHERE Population > 700000;
COUNT(*)
358
SELECT COUNT(*) FROM City WHERE Population > 1000000;
COUNT(*)
237
SELECT COUNT(*) FROM City WHERE Population > 300000;
COUNT(*)
1062
SELECT COUNT(*) FROM City WHERE Population > 600000;
COUNT(*)
428
SELECT COUNT(*) FROM City WHERE Country LIKE 'C%';
COUNT(*)
551
SELECT COUNT(*) FROM City WHERE Country LIKE 'A%';
COUNT(*)
107
SELECT COUNT(*) FROM City WHERE Country LIKE 'H%';
COUNT(*)
22
SELECT COUNT(*) FROM City WHERE Country BETWEEN 'S' AND 'Z';
COUNT(*)
682
EXPLAIN
SELECT * FROM City
WHERE ID BETWEEN 501 AND 1000 AND Population > 700000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
EXPLAIN
SELECT * FROM City
WHERE ID BETWEEN 1 AND 500 AND Population > 700000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE ID BETWEEN 2001 AND 2500 AND Population > 300000 AND Country LIKE 'H%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE ID BETWEEN 3701 AND 4000 AND Population > 1000000
AND Country BETWEEN 'S' AND 'Z';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE ID BETWEEN 3001 AND 4000 AND Population > 600000
AND Country BETWEEN 'S' AND 'Z' ;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
SELECT * FROM City USE INDEX ()
WHERE ID BETWEEN 501 AND 1000 AND Population > 700000 AND Country LIKE 'C%';
ID	Name	Country	Population
554	Santiago de Chile	CHL	4703954
SELECT * FROM City
WHERE ID BETWEEN 501 AND 1000 AND Population > 700000 AND Country LIKE 'C%';
ID	Name	Country	Population
554	Santiago de Chile	CHL	4703954
SELECT * FROM City USE INDEX ()
WHERE ID BETWEEN 1 AND 500 AND Population > 700000 AND Country LIKE 'C%';
ID	Name	Country	Population
SELECT * FROM City
WHERE ID BETWEEN 1 AND 500 AND Population > 700000 AND Country LIKE 'C%';
ID	Name	Country	Population
SELECT * FROM City USE INDEX ()
WHERE ID BETWEEN 2001 AND 2500 AND Population > 300000 AND Country LIKE 'H%';
ID	Name	Country	Population
2409	Zagreb	HRV	706770
SELECT * FROM City 
WHERE ID BETWEEN 2001 AND 2500 AND Population > 300000 AND Country LIKE 'H%';
ID	Name	Country	Population
2409	Zagreb	HRV	706770
SELECT * FROM City USE INDEX ()
WHERE ID BETWEEN 3701 AND 4000 AND Population > 700000
AND Country BETWEEN 'S' AND 'Z';
ID	Name	Country	Population
3769	Ho Chi Minh City	VNM	3980000
3770	Hanoi	VNM	1410000
3771	Haiphong	VNM	783133
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
3802	Detroit	USA	951270
3803	San Jose	USA	894943
3804	Indianapolis	USA	791926
3805	San Francisco	USA	776733
3806	Jacksonville	USA	735167
3807	Columbus	USA	711470
SELECT * FROM City 
WHERE ID BETWEEN 3701 AND 4000 AND Population > 700000
AND Country BETWEEN 'S' AND 'Z';
ID	Name	Country	Population
3769	Ho Chi Minh City	VNM	3980000
3770	Hanoi	VNM	1410000
3771	Haiphong	VNM	783133
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
3802	Detroit	USA	951270
3803	San Jose	USA	894943
3804	Indianapolis	USA	791926
3805	San Francisco	USA	776733
3806	Jacksonville	USA	735167
3807	Columbus	USA	711470
SELECT * FROM City USE INDEX ()
WHERE ID BETWEEN 3001 AND 4000 AND Population > 600000
AND Country BETWEEN 'S' AND 'Z' ;
ID	Name	Country	Population
3048	Stockholm	SWE	750348
3173	Riyadh	SAU	3324000
3174	Jedda	SAU	2046300
3175	Mekka	SAU	965700
3176	Medina	SAU	608300
3197	Pikine	SEN	855287
3198	Dakar	SEN	785071
3207	Freetown	SLE	850000
3208	Singapore	SGP	4017733
3214	Mogadishu	SOM	997000
3224	Omdurman	SDN	1271403
3225	Khartum	SDN	947483
3226	Sharq al-Nil	SDN	700887
3250	Damascus	SYR	1347000
3251	Aleppo	SYR	1261983
3263	Taipei	TWN	2641312
3264	Kaohsiung	TWN	1475505
3265	Taichung	TWN	940589
3266	Tainan	TWN	728060
3305	Dar es Salaam	TZA	1747000
3320	Bangkok	THA	6320174
3349	Tunis	TUN	690600
3357	Istanbul	TUR	8787958
3358	Ankara	TUR	3038159
3359	Izmir	TUR	2130359
3360	Adana	TUR	1131198
3361	Bursa	TUR	1095842
3362	Gaziantep	TUR	789056
3363	Konya	TUR	628364
3425	Kampala	UGA	890800
3426	Kyiv	UKR	2624000
3427	Harkova [Harkiv]	UKR	1500000
3428	Dnipropetrovsk	UKR	1103000
3429	Donetsk	UKR	1050000
3430	Odesa	UKR	1011000
3431	Zaporizzja	UKR	848000
3432	Lviv	UKR	788000
3433	Kryvyi Rig	UKR	703000
3492	Montevideo	URY	1236000
3503	Toskent	UZB	2117500
3539	Caracas	VEN	1975294
3540	Maracaíbo	VEN	1304776
3541	Barquisimeto	VEN	877239
3542	Valencia	VEN	794246
3543	Ciudad Guayana	VEN	663713
3769	Ho Chi Minh City	VNM	3980000
3770	Hanoi	VNM	1410000
3771	Haiphong	VNM	783133
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
3802	Detroit	USA	951270
3803	San Jose	USA	894943
3804	Indianapolis	USA	791926
3805	San Francisco	USA	776733
3806	Jacksonville	USA	735167
3807	Columbus	USA	711470
3808	Austin	USA	656562
3809	Baltimore	USA	651154
3810	Memphis	USA	650100
SELECT * FROM City 
WHERE ID BETWEEN 3001 AND 4000 AND Population > 600000
AND Country BETWEEN 'S' AND 'Z' ;
ID	Name	Country	Population
3048	Stockholm	SWE	750348
3173	Riyadh	SAU	3324000
3174	Jedda	SAU	2046300
3175	Mekka	SAU	965700
3176	Medina	SAU	608300
3197	Pikine	SEN	855287
3198	Dakar	SEN	785071
3207	Freetown	SLE	850000
3208	Singapore	SGP	4017733
3214	Mogadishu	SOM	997000
3224	Omdurman	SDN	1271403
3225	Khartum	SDN	947483
3226	Sharq al-Nil	SDN	700887
3250	Damascus	SYR	1347000
3251	Aleppo	SYR	1261983
3263	Taipei	TWN	2641312
3264	Kaohsiung	TWN	1475505
3265	Taichung	TWN	940589
3266	Tainan	TWN	728060
3305	Dar es Salaam	TZA	1747000
3320	Bangkok	THA	6320174
3349	Tunis	TUN	690600
3357	Istanbul	TUR	8787958
3358	Ankara	TUR	3038159
3359	Izmir	TUR	2130359
3360	Adana	TUR	1131198
3361	Bursa	TUR	1095842
3362	Gaziantep	TUR	789056
3363	Konya	TUR	628364
3425	Kampala	UGA	890800
3426	Kyiv	UKR	2624000
3427	Harkova [Harkiv]	UKR	1500000
3428	Dnipropetrovsk	UKR	1103000
3429	Donetsk	UKR	1050000
3430	Odesa	UKR	1011000
3431	Zaporizzja	UKR	848000
3432	Lviv	UKR	788000
3433	Kryvyi Rig	UKR	703000
3492	Montevideo	URY	1236000
3503	Toskent	UZB	2117500
3539	Caracas	VEN	1975294
3540	Maracaíbo	VEN	1304776
3541	Barquisimeto	VEN	877239
3542	Valencia	VEN	794246
3543	Ciudad Guayana	VEN	663713
3769	Ho Chi Minh City	VNM	3980000
3770	Hanoi	VNM	1410000
3771	Haiphong	VNM	783133
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
3802	Detroit	USA	951270
3803	San Jose	USA	894943
3804	Indianapolis	USA	791926
3805	San Francisco	USA	776733
3806	Jacksonville	USA	735167
3807	Columbus	USA	711470
3808	Austin	USA	656562
3809	Baltimore	USA	651154
3810	Memphis	USA	650100
SET SESSION sort_buffer_size = IF(@@version_compile_machine like '%64%', 2048, 1536);
EXPLAIN
SELECT * FROM City WHERE
Name LIKE 'C%' AND Population > 1000000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
EXPLAIN
SELECT * FROM City WHERE
Name LIKE 'M%' AND Population > 1500000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
EXPLAIN
SELECT * FROM City 
WHERE  Name BETWEEN 'G' AND 'K' AND Population > 1000000 AND Country LIKE 'J%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Country,Name	Population,Country	4,3	NULL	#	Using sort_intersect(Population,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE  Name BETWEEN 'G' AND 'J' AND Population > 500000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	range	Population,Country,Name	Name	35	NULL	#	Using index condition; Using where
EXPLAIN
SELECT * FROM City
WHERE ID BETWEEN 1 AND 500 AND Population > 700000 AND Country LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	PRIMARY,Population,Country	PRIMARY,Population,Country	4,4,7	NULL	#	Using sort_intersect(PRIMARY,Population,Country); Using where
EXPLAIN
SELECT * FROM City 
WHERE ID BETWEEN 3001 AND 4000 AND Population > 600000
AND Country BETWEEN 'S' AND 'Z';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	range	PRIMARY,Population,Country	PRIMARY	4	NULL	#	Using where
SELECT * FROM City WHERE
Name LIKE 'C%' AND Population > 1000000;
ID	Name	Country	Population
1026	Calcutta [Kolkata]	IND	4399819
1027	Chennai (Madras)	IND	3841396
151	Chittagong	BGD	1392860
1892	Chongqing	CHN	6351600
1898	Chengdu	CHN	3361500
1900	Changchun	CHN	2812000
1910	Changsha	CHN	1809800
212	Curitiba	BRA	1584232
2258	Cali	COL	2077386
2485	Casablanca	MAR	2940623
2515	Ciudad de México	MEX	8591309
3539	Caracas	VEN	1975294
3795	Chicago	USA	2896016
608	Cairo	EGY	6789479
71	Córdoba	ARG	1157507
712	Cape Town	ZAF	2352121
926	Conakry	GIN	1090610
SELECT * FROM City WHERE
Name LIKE 'M%' AND Population > 1500000;
ID	Name	Country	Population
1024	Mumbai (Bombay)	IND	10500000
131	Melbourne	AUS	2865329
1381	Mashhad	IRN	1887405
2259	Medellín	COL	1861265
3520	Minsk	BLR	1674000
3580	Moscow	RUS	8389200
653	Madrid	ESP	2879052
766	Manila	PHL	1581082
942	Medan	IDN	1843919
SELECT * FROM City 
WHERE  Name BETWEEN 'G' AND 'J' AND Population > 700000 AND Country LIKE 'J%';
ID	Name	Country	Population
1541	Hiroshima	JPN	1119117
SELECT * FROM City 
WHERE  Name BETWEEN 'G' AND 'J' AND Population > 500000 AND Country LIKE 'C%';
ID	Name	Country	Population
1895	Harbin	CHN	4289800
1905	Hangzhou	CHN	2190500
1914	Guiyang	CHN	1465200
1916	Hefei	CHN	1369100
1927	Hohhot	CHN	916700
1928	Handan	CHN	840000
1937	Huainan	CHN	700000
1950	Hegang	CHN	520000
SELECT * FROM City
WHERE ID BETWEEN 1 AND 500 AND Population > 700000 AND Country LIKE 'C%';
ID	Name	Country	Population
SELECT * FROM City 
WHERE ID BETWEEN 3001 AND 4000 AND Population > 600000
AND Country BETWEEN 'S' AND 'Z';
ID	Name	Country	Population
3048	Stockholm	SWE	750348
3173	Riyadh	SAU	3324000
3174	Jedda	SAU	2046300
3175	Mekka	SAU	965700
3176	Medina	SAU	608300
3197	Pikine	SEN	855287
3198	Dakar	SEN	785071
3207	Freetown	SLE	850000
3208	Singapore	SGP	4017733
3214	Mogadishu	SOM	997000
3224	Omdurman	SDN	1271403
3225	Khartum	SDN	947483
3226	Sharq al-Nil	SDN	700887
3250	Damascus	SYR	1347000
3251	Aleppo	SYR	1261983
3263	Taipei	TWN	2641312
3264	Kaohsiung	TWN	1475505
3265	Taichung	TWN	940589
3266	Tainan	TWN	728060
3305	Dar es Salaam	TZA	1747000
3320	Bangkok	THA	6320174
3349	Tunis	TUN	690600
3357	Istanbul	TUR	8787958
3358	Ankara	TUR	3038159
3359	Izmir	TUR	2130359
3360	Adana	TUR	1131198
3361	Bursa	TUR	1095842
3362	Gaziantep	TUR	789056
3363	Konya	TUR	628364
3425	Kampala	UGA	890800
3426	Kyiv	UKR	2624000
3427	Harkova [Harkiv]	UKR	1500000
3428	Dnipropetrovsk	UKR	1103000
3429	Donetsk	UKR	1050000
3430	Odesa	UKR	1011000
3431	Zaporizzja	UKR	848000
3432	Lviv	UKR	788000
3433	Kryvyi Rig	UKR	703000
3492	Montevideo	URY	1236000
3503	Toskent	UZB	2117500
3539	Caracas	VEN	1975294
3540	Maracaíbo	VEN	1304776
3541	Barquisimeto	VEN	877239
3542	Valencia	VEN	794246
3543	Ciudad Guayana	VEN	663713
3769	Ho Chi Minh City	VNM	3980000
3770	Hanoi	VNM	1410000
3771	Haiphong	VNM	783133
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
3802	Detroit	USA	951270
3803	San Jose	USA	894943
3804	Indianapolis	USA	791926
3805	San Francisco	USA	776733
3806	Jacksonville	USA	735167
3807	Columbus	USA	711470
3808	Austin	USA	656562
3809	Baltimore	USA	651154
3810	Memphis	USA	650100
SET SESSION sort_buffer_size = default;
DROP INDEX Country ON City;
CREATE INDEX CountryID ON City(Country,ID);
CREATE INDEX CountryName ON City(Country,Name);
EXPLAIN
SELECT * FROM City 
WHERE Country LIKE 'M%' AND Population > 1000000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,CountryID,CountryName	Population,CountryID	4,3	NULL	#	Using sort_intersect(Population,CountryID); Using where
EXPLAIN
SELECT * FROM City 
WHERE Country='USA' AND Population > 1000000;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,CountryID,CountryName	Population,CountryID	4,3	NULL	#	Using sort_intersect(Population,CountryID); Using where
EXPLAIN
SELECT * FROM City 
WHERE Country='USA' AND Population > 1500000 AND Name LIKE 'C%';
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name,CountryID,CountryName	CountryName,Population	38,4	NULL	#	Using sort_intersect(CountryName,Population); Using where
SELECT * FROM City USE INDEX ()
WHERE Country LIKE 'M%' AND Population > 1000000;
ID	Name	Country	Population
2464	Kuala Lumpur	MYS	1297526
2485	Casablanca	MAR	2940623
2515	Ciudad de México	MEX	8591309
2516	Guadalajara	MEX	1647720
2517	Ecatepec de Morelos	MEX	1620303
2518	Puebla	MEX	1346176
2519	Nezahualcóyotl	MEX	1224924
2520	Juárez	MEX	1217818
2521	Tijuana	MEX	1212232
2522	León	MEX	1133576
2523	Monterrey	MEX	1108499
2524	Zapopan	MEX	1002239
2698	Maputo	MOZ	1018938
2710	Rangoon (Yangon)	MMR	3361700
SELECT * FROM City 
WHERE Country LIKE 'M%' AND Population > 1000000;
ID	Name	Country	Population
2464	Kuala Lumpur	MYS	1297526
2485	Casablanca	MAR	2940623
2515	Ciudad de México	MEX	8591309
2516	Guadalajara	MEX	1647720
2517	Ecatepec de Morelos	MEX	1620303
2518	Puebla	MEX	1346176
2519	Nezahualcóyotl	MEX	1224924
2520	Juárez	MEX	1217818
2521	Tijuana	MEX	1212232
2522	León	MEX	1133576
2523	Monterrey	MEX	1108499
2524	Zapopan	MEX	1002239
2698	Maputo	MOZ	1018938
2710	Rangoon (Yangon)	MMR	3361700
SELECT * FROM City USE INDEX ()
WHERE Country='USA' AND Population > 1000000;
ID	Name	Country	Population
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
SELECT * FROM City 
WHERE Country='USA' AND Population > 1000000;
ID	Name	Country	Population
3793	New York	USA	8008278
3794	Los Angeles	USA	3694820
3795	Chicago	USA	2896016
3796	Houston	USA	1953631
3797	Philadelphia	USA	1517550
3798	Phoenix	USA	1321045
3799	San Diego	USA	1223400
3800	Dallas	USA	1188580
3801	San Antonio	USA	1144646
SELECT * FROM City USE INDEX ()
WHERE Country='USA' AND Population > 1500000 AND Name LIKE 'C%';
ID	Name	Country	Population
3795	Chicago	USA	2896016
SELECT * FROM City 
WHERE Country='USA' AND Population > 1500000 AND Name LIKE 'C%';
ID	Name	Country	Population
3795	Chicago	USA	2896016
EXPLAIN 
SELECT * FROM City, Country 
WHERE City.Name LIKE 'C%' AND City.Population > 1000000 AND
Country.Code=City.Country;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	City	index_merge	Population,Name,CountryID,CountryName	Population,Name	4,35	NULL	#	Using sort_intersect(Population,Name); Using where
1	SIMPLE	Country	eq_ref	PRIMARY	PRIMARY	3	world.City.Country	#	
DROP DATABASE world;
use test;
CREATE TABLE t1 (
f1 int,
f4 varchar(32),
f5 int,
PRIMARY KEY (f1),
KEY (f4)
);
INSERT INTO t1 VALUES 
(5,'H',1), (9,'g',0), (527,'i',0), (528,'y',1), (529,'S',6),
(530,'m',7), (531,'b',2), (532,'N',1), (533,'V',NULL), (534,'l',1),
(535,'M',0), (536,'w',1), (537,'j',5), (538,'l',0), (539,'n',2),
(540,'m',2), (541,'r',2), (542,'l',2), (543,'h',3),(544,'o',0),
(956,'h',0), (957,'g',0), (958,'W',5), (959,'s',3), (960,'w',0),
(961,'q',0), (962,'e',NULL), (963,'u',7), (964,'q',1), (965,'N',NULL),
(966,'e',0), (967,'t',3), (968,'e',6), (969,'f',NULL), (970,'j',0),
(971,'s',3), (972,'I',0), (973,'h',4), (974,'g',1), (975,'s',0),
(976,'r',3), (977,'x',1), (978,'v',8), (979,'j',NULL), (980,'z',7),
(981,'t',9), (982,'j',5), (983,'u',NULL), (984,'g',6), (985,'w',1),
(986,'h',1), (987,'v',0), (988,'v',0), (989,'c',2), (990,'b',7),
(991,'z',0), (992,'M',1), (993,'u',2), (994,'r',2), (995,'b',4),
(996,'A',2), (997,'u',0), (998,'a',0), (999,'j',2), (1,'I',2);
EXPLAIN
SELECT * FROM t1
WHERE (f1 < 535  OR  f1 > 985) AND ( f4='r' OR f4 LIKE 'a%' ) ;
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
1	SIMPLE	t1	index_merge	PRIMARY,f4	PRIMARY,f4	4,39	NULL	#	Using sort_intersect(PRIMARY,f4); Using where
SELECT * FROM t1
WHERE (f1 < 535  OR  f1 > 985) AND ( f4='r' OR f4 LIKE 'a%' ) ;
f1	f4	f5
994	r	2
996	A	2
998	a	0
DROP TABLE t1;
SET SESSION optimizer_switch='index_merge_sort_intersection=on';
SET SESSION optimizer_switch='rowid_filter=default';
set global innodb_stats_persistent= @innodb_stats_persistent_save;
set global innodb_stats_persistent_sample_pages=
@innodb_stats_persistent_sample_pages_save;
SET SESSION DEFAULT_STORAGE_ENGINE=DEFAULT;
 
     |