1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2012, 2020, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "filesort_utils.h"
#include "sql_const.h"
#include "sql_sort.h"
#include "table.h"
PSI_memory_key key_memory_Filesort_buffer_sort_keys;
namespace {
/**
A local helper function. See comments for get_merge_buffers_cost().
*/
double get_merge_cost(ha_rows num_elements, ha_rows num_buffers, uint elem_size)
{
return
2.0 * ((double) num_elements * elem_size) / IO_SIZE
+ (double) num_elements * log((double) num_buffers) /
(TIME_FOR_COMPARE_ROWID * M_LN2);
}
}
/**
This is a simplified, and faster version of @see get_merge_many_buffs_cost().
We calculate the cost of merging buffers, by simulating the actions
of @see merge_many_buff. For explanations of formulas below,
see comments for get_merge_buffers_cost().
TODO: Use this function for Unique::get_use_cost().
*/
double get_merge_many_buffs_cost_fast(ha_rows num_rows,
ha_rows num_keys_per_buffer,
uint elem_size)
{
ha_rows num_buffers= num_rows / num_keys_per_buffer;
ha_rows last_n_elems= num_rows % num_keys_per_buffer;
double total_cost;
// Calculate CPU cost of sorting buffers.
total_cost=
((num_buffers * num_keys_per_buffer * log(1.0 + num_keys_per_buffer) +
last_n_elems * log(1.0 + last_n_elems)) /
TIME_FOR_COMPARE_ROWID);
// Simulate behavior of merge_many_buff().
while (num_buffers >= MERGEBUFF2)
{
// Calculate # of calls to merge_buffers().
const ha_rows loop_limit= num_buffers - MERGEBUFF*3/2;
const ha_rows num_merge_calls= 1 + loop_limit/MERGEBUFF;
const ha_rows num_remaining_buffs=
num_buffers - num_merge_calls * MERGEBUFF;
// Cost of merge sort 'num_merge_calls'.
total_cost+=
num_merge_calls *
get_merge_cost(num_keys_per_buffer * MERGEBUFF, MERGEBUFF, elem_size);
// # of records in remaining buffers.
last_n_elems+= num_remaining_buffs * num_keys_per_buffer;
// Cost of merge sort of remaining buffers.
total_cost+=
get_merge_cost(last_n_elems, 1 + num_remaining_buffs, elem_size);
num_buffers= num_merge_calls;
num_keys_per_buffer*= MERGEBUFF;
}
// Simulate final merge_buff call.
last_n_elems+= num_keys_per_buffer * num_buffers;
total_cost+= get_merge_cost(last_n_elems, 1 + num_buffers, elem_size);
return total_cost;
}
/*
alloc_sort_buffer()
Allocate buffer for sorting keys.
Try to reuse old buffer if possible.
@return
0 Error
# Pointer to allocated buffer
*/
uchar *Filesort_buffer::alloc_sort_buffer(uint num_records,
uint record_length)
{
size_t buff_size;
DBUG_ENTER("alloc_sort_buffer");
DBUG_EXECUTE_IF("alloc_sort_buffer_fail",
DBUG_SET("+d,simulate_out_of_memory"););
buff_size= ALIGN_SIZE(num_records * (record_length + sizeof(uchar*)));
if (m_rawmem)
{
/*
Reuse old buffer if exists and is large enough
Note that we don't make the buffer smaller, as we want to be
prepared for next subquery iteration.
*/
if (buff_size > m_size_in_bytes)
{
/*
Better to free and alloc than realloc as we don't have to remember
the old values
*/
my_free(m_rawmem);
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
buff_size, MYF(MY_THREAD_SPECIFIC))))
{
m_size_in_bytes= 0;
DBUG_RETURN(0);
}
}
}
else
{
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
buff_size, MYF(MY_THREAD_SPECIFIC))))
{
m_size_in_bytes= 0;
DBUG_RETURN(0);
}
}
m_size_in_bytes= buff_size;
m_record_pointers= reinterpret_cast<uchar**>(m_rawmem) +
((m_size_in_bytes / sizeof(uchar*)) - 1);
m_num_records= num_records;
m_record_length= record_length;
m_idx= 0;
DBUG_RETURN(m_rawmem);
}
void Filesort_buffer::free_sort_buffer()
{
my_free(m_rawmem);
*this= Filesort_buffer();
}
void Filesort_buffer::sort_buffer(const Sort_param *param, uint count)
{
size_t size= param->sort_length;
m_sort_keys= get_sort_keys();
if (count <= 1 || size == 0)
return;
// don't reverse for PQ, it is already done
if (!param->using_pq)
reverse_record_pointers();
uchar **buffer= NULL;
if (!param->using_packed_sortkeys() &&
radixsort_is_appliccable(count, param->sort_length) &&
(buffer= (uchar**) my_malloc(PSI_INSTRUMENT_ME, count*sizeof(char*),
MYF(MY_THREAD_SPECIFIC))))
{
radixsort_for_str_ptr(m_sort_keys, count, param->sort_length, buffer);
my_free(buffer);
return;
}
my_qsort2(m_sort_keys, count, sizeof(uchar*),
param->get_compare_function(),
param->get_compare_argument(&size));
}
|