1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates.
Copyright (c) 2009, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef MY_BIT_INCLUDED
#define MY_BIT_INCLUDED
/*
Some useful bit functions
*/
C_MODE_START
extern const uchar _my_bits_reverse_table[256];
/*
my_bit_log2_xxx()
In the given value, find the highest bit set,
which is the smallest X that satisfies the condition: (2^X >= value).
Can be used as a reverse operation for (1<<X), to find X.
Examples:
- returns 0 for (1<<0)
- returns 1 for (1<<1)
- returns 2 for (1<<2)
- returns 2 for 3, which has (1<<2) as the highest bit set.
Note, the behaviour of log2(0) is not defined.
Let's return 0 for the input 0, for the code simplicity.
See the 000x branch. It covers both (1<<0) and 0.
*/
static inline CONSTEXPR uint my_bit_log2_hex_digit(uint8 value)
{
return value & 0x0C ? /*1100*/ (value & 0x08 ? /*1000*/ 3 : /*0100*/ 2) :
/*0010*/ (value & 0x02 ? /*0010*/ 1 : /*000x*/ 0);
}
static inline CONSTEXPR uint my_bit_log2_uint8(uint8 value)
{
return value & 0xF0 ? my_bit_log2_hex_digit((uint8) (value >> 4)) + 4:
my_bit_log2_hex_digit(value);
}
static inline CONSTEXPR uint my_bit_log2_uint16(uint16 value)
{
return value & 0xFF00 ? my_bit_log2_uint8((uint8) (value >> 8)) + 8 :
my_bit_log2_uint8((uint8) value);
}
static inline CONSTEXPR uint my_bit_log2_uint32(uint32 value)
{
return value & 0xFFFF0000UL ?
my_bit_log2_uint16((uint16) (value >> 16)) + 16 :
my_bit_log2_uint16((uint16) value);
}
static inline CONSTEXPR uint my_bit_log2_uint64(ulonglong value)
{
return value & 0xFFFFFFFF00000000ULL ?
my_bit_log2_uint32((uint32) (value >> 32)) + 32 :
my_bit_log2_uint32((uint32) value);
}
static inline CONSTEXPR uint my_bit_log2_size_t(size_t value)
{
#ifdef __cplusplus
static_assert(sizeof(size_t) <= sizeof(ulonglong),
"size_t <= ulonglong is an assumption that needs to be fixed "
"for this architecture. Please create an issue on "
"https://jira.mariadb.org");
#endif
return my_bit_log2_uint64((ulonglong) value);
}
/*
Count bits in 32bit integer
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
under "Counting bits set, in parallel"
(Original code public domain).
*/
static inline uint my_count_bits_uint32(uint32 v)
{
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
static inline uint my_count_bits(ulonglong x)
{
return my_count_bits_uint32((uint32)x) + my_count_bits_uint32((uint32)(x >> 32));
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Original code public domain)
Comments shows how this works with 01100000000000000000000000001011
*/
static inline uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}
static inline uint32 my_clear_highest_bit(uint32 v)
{
uint32 w=v >> 1;
w|= w >> 1;
w|= w >> 2;
w|= w >> 4;
w|= w >> 8;
w|= w >> 16;
return v & w;
}
static inline uint32 my_reverse_bits(uint32 key)
{
return
((uint32)_my_bits_reverse_table[ key & 255] << 24) |
((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) |
((uint32)_my_bits_reverse_table[(key>>16) & 255] << 8) |
(uint32)_my_bits_reverse_table[(key>>24) ];
}
/*
a number with the n lowest bits set
an overflow-safe version of (1 << n) - 1
*/
static inline uint64 my_set_bits(int n)
{
return (((1ULL << (n - 1)) - 1) << 1) | 1;
}
/* Create a mask of the significant bits for the last byte (1,3,7,..255) */
static inline uchar last_byte_mask(uint bits)
{
/* Get the number of used bits-1 (0..7) in the last byte */
unsigned int const used = (bits - 1U) & 7U;
/* Return bitmask for the significant bits */
return (uchar) ((2U << used) - 1);
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
/*
Find the position of the first(least significant) bit set in
the argument. Returns 64 if the argument was 0.
*/
static inline uint my_find_first_bit(ulonglong n)
{
if(!n)
return 64;
#if defined(__GNUC__)
return __builtin_ctzll(n);
#elif defined(_MSC_VER)
#if defined(_M_IX86)
unsigned long bit;
if( _BitScanForward(&bit, (uint)n))
return bit;
_BitScanForward(&bit, (uint)(n>>32));
return bit + 32;
#else
unsigned long bit;
_BitScanForward64(&bit, n);
return bit;
#endif
#else
/* Generic case */
uint shift= 0;
static const uchar last_bit[16] = { 32, 0, 1, 0,
2, 0, 1, 0,
3, 0, 1, 0,
2, 0, 1, 0};
uint bit;
while ((bit = last_bit[(n >> shift) & 0xF]) == 32)
shift+= 4;
return shift+bit;
#endif
}
C_MODE_END
#endif /* MY_BIT_INCLUDED */
|