| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 
 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.
    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.
    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.
    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#include <my_global.h>
#include <toku_portability.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <toku_assert.h>
#include <string.h>
#include <fcntl.h>
#include "ft/ft.h"
#include "ft/ft-internal.h"
#include "ft/leafentry.h"
#include "ft/loader/loader-internal.h"
#include "ft/loader/pqueue.h"
#include "ft/loader/dbufio.h"
#include "ft/logger/log-internal.h"
#include "ft/node.h"
#include "ft/serialize/block_table.h"
#include "ft/serialize/ft-serialize.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/serialize/sub_block.h"
#include "util/x1764.h"
toku_instr_key *loader_bl_mutex_key;
toku_instr_key *loader_fi_lock_mutex_key;
toku_instr_key *loader_out_mutex_key;
toku_instr_key *extractor_thread_key;
toku_instr_key *fractal_thread_key;
toku_instr_key *tokudb_file_tmp_key;
toku_instr_key *tokudb_file_load_key;
// 1024 is the right size_factor for production.
// Different values for these sizes may be used for testing.
static uint32_t size_factor = 1024;
static uint32_t default_loader_nodesize = FT_DEFAULT_NODE_SIZE;
static uint32_t default_loader_basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE;
void
toku_ft_loader_set_size_factor(uint32_t factor) {
// For test purposes only
    size_factor = factor;
    default_loader_nodesize = (size_factor==1) ? (1<<15) : FT_DEFAULT_NODE_SIZE;
}
uint64_t
toku_ft_loader_get_rowset_budget_for_testing (void)
// For test purposes only.  In production, the rowset size is determined by negotiation with the cachetable for some memory.  (See #2613).
{
    return 16ULL*size_factor*1024ULL;
}
void ft_loader_lock_init(FTLOADER bl) {
    invariant(!bl->mutex_init);
    toku_mutex_init(*loader_bl_mutex_key, &bl->mutex, nullptr);
    bl->mutex_init = true;
}
void ft_loader_lock_destroy(FTLOADER bl) {
    if (bl->mutex_init) {
        toku_mutex_destroy(&bl->mutex);
        bl->mutex_init = false;
    }
}
static void ft_loader_lock(FTLOADER bl) {
    invariant(bl->mutex_init);
    toku_mutex_lock(&bl->mutex);
}
static void ft_loader_unlock(FTLOADER bl) {
    invariant(bl->mutex_init);
    toku_mutex_unlock(&bl->mutex);
}
static int add_big_buffer(struct file_info *file) {
    int result = 0;
    bool newbuffer = false;
    if (file->buffer == NULL) {
        file->buffer = toku_malloc(file->buffer_size);
        if (file->buffer == NULL)
            result = get_error_errno();
        else
            newbuffer = true;
    }
    if (result == 0) {
        int r = setvbuf(file->file->file,
                        static_cast<char *>(file->buffer),
                        _IOFBF,
                        file->buffer_size);
        if (r != 0) {
            result = get_error_errno();
            if (newbuffer) {
                toku_free(file->buffer);
                file->buffer = NULL;
            }
        }
    } 
    return result;
}
static void cleanup_big_buffer(struct file_info *file) {
    if (file->buffer) {
        toku_free(file->buffer);
        file->buffer = NULL;
    }
}
int ft_loader_init_file_infos(struct file_infos *fi) {
    int result = 0;
    toku_mutex_init(*loader_fi_lock_mutex_key, &fi->lock, nullptr);
    fi->n_files = 0;
    fi->n_files_limit = 1;
    fi->n_files_open = 0;
    fi->n_files_extant = 0;
    MALLOC_N(fi->n_files_limit, fi->file_infos);
    if (fi->file_infos == NULL)
        result = get_error_errno();
    return result;
}
void ft_loader_fi_destroy (struct file_infos *fi, bool is_error)
// Effect: Free the resources in the fi.
// If is_error then we close and unlink all the temp files.
// If !is_error then requires that all the temp files have been closed and destroyed
// No error codes are returned.  If anything goes wrong with closing and unlinking then it's only in an is_error case, so we don't care.
{
    if (fi->file_infos == NULL) {
        // ft_loader_init_file_infos guarantees this isn't null, so if it is, we know it hasn't been inited yet and we don't need to destroy it.
        return;
    }
    toku_mutex_destroy(&fi->lock);
    if (!is_error) {
        invariant(fi->n_files_open==0);
        invariant(fi->n_files_extant==0);
    }
    for (int i=0; i<fi->n_files; i++) {
        if (fi->file_infos[i].is_open) {
            invariant(is_error);
            toku_os_fclose(fi->file_infos[i].file); // don't check for errors, since we are in an error case.
        }
        if (fi->file_infos[i].is_extant) {
            invariant(is_error);
            unlink(fi->file_infos[i].fname);
            toku_free(fi->file_infos[i].fname);
        }
        cleanup_big_buffer(&fi->file_infos[i]);
    }
    toku_free(fi->file_infos);
    fi->n_files=0;
    fi->n_files_limit=0;
    fi->file_infos = NULL;
}
static int open_file_add(struct file_infos *fi,
                         TOKU_FILE *file,
                         char *fname,
                         /* out */ FIDX *idx) {
    int result = 0;
    toku_mutex_lock(&fi->lock);
    if (fi->n_files >= fi->n_files_limit) {
        fi->n_files_limit *=2;
        XREALLOC_N(fi->n_files_limit, fi->file_infos);
    }
    invariant(fi->n_files < fi->n_files_limit);
    fi->file_infos[fi->n_files].is_open   = true;
    fi->file_infos[fi->n_files].is_extant = true;
    fi->file_infos[fi->n_files].fname     = fname;
    fi->file_infos[fi->n_files].file      = file;
    fi->file_infos[fi->n_files].n_rows    = 0;
    fi->file_infos[fi->n_files].buffer_size = FILE_BUFFER_SIZE;
    fi->file_infos[fi->n_files].buffer    = NULL;
    result = add_big_buffer(&fi->file_infos[fi->n_files]);
    if (result == 0) {
        idx->idx = fi->n_files;
        fi->n_files++;
        fi->n_files_extant++;
        fi->n_files_open++;
    }
   toku_mutex_unlock(&fi->lock);
    return result;
}
int ft_loader_fi_reopen (struct file_infos *fi, FIDX idx, const char *mode) {
    int result = 0;
    toku_mutex_lock(&fi->lock);
    int i = idx.idx;
    invariant(i >= 0 && i < fi->n_files);
    invariant(!fi->file_infos[i].is_open);
    invariant(fi->file_infos[i].is_extant);
    fi->file_infos[i].file =
        toku_os_fopen(fi->file_infos[i].fname, mode, *tokudb_file_load_key);
    if (fi->file_infos[i].file == NULL) {
        result = get_error_errno();
    } else {
        fi->file_infos[i].is_open = true;
        // No longer need the big buffer for reopened files.  Don't allocate the space, we need it elsewhere.
        //add_big_buffer(&fi->file_infos[i]);
        fi->n_files_open++;
    }
    toku_mutex_unlock(&fi->lock);
    return result;
}
int ft_loader_fi_close (struct file_infos *fi, FIDX idx, bool require_open)
{
    int result = 0;
    toku_mutex_lock(&fi->lock); 
    invariant(idx.idx >=0 && idx.idx < fi->n_files);
    if (fi->file_infos[idx.idx].is_open) {
        invariant(fi->n_files_open>0);   // loader-cleanup-test failure
        fi->n_files_open--;
        fi->file_infos[idx.idx].is_open = false;
        int r = toku_os_fclose(fi->file_infos[idx.idx].file);
        if (r)
            result = get_error_errno();
        cleanup_big_buffer(&fi->file_infos[idx.idx]);
    } else if (require_open)
        result = EINVAL;
    toku_mutex_unlock(&fi->lock); 
    return result;
}
int ft_loader_fi_unlink (struct file_infos *fi, FIDX idx) {
    int result = 0;
    toku_mutex_lock(&fi->lock);
    int id = idx.idx;
    invariant(id >=0 && id < fi->n_files);
    if (fi->file_infos[id].is_extant) { // must still exist
        invariant(fi->n_files_extant>0);
        fi->n_files_extant--;
        invariant(!fi->file_infos[id].is_open); // must be closed before we unlink
        fi->file_infos[id].is_extant = false;
        int r = unlink(fi->file_infos[id].fname);  
        if (r != 0) 
            result = get_error_errno();
        toku_free(fi->file_infos[id].fname);
        fi->file_infos[id].fname = NULL;
    } else
        result = EINVAL;
    toku_mutex_unlock(&fi->lock);
    return result;
}
int
ft_loader_fi_close_all(struct file_infos *fi) {
    int rval = 0;
    for (int i = 0; i < fi->n_files; i++) {
        int r;
        FIDX idx = { i };
        r = ft_loader_fi_close(fi, idx, false);  // ignore files that are already closed
        if (rval == 0 && r)
            rval = r;  // capture first error
    }
    return rval;
}
int ft_loader_open_temp_file (FTLOADER bl, FIDX *file_idx)
/* Effect: Open a temporary file in read-write mode.  Save enough information to close and delete the file later.
 * Return value: 0 on success, an error number otherwise.
 *  On error, *file_idx and *fnamep will be unmodified.
 *  The open file will be saved in bl->file_infos so that even if errors happen we can free them all.
 */
{
    int result = 0;
    if (result)  // debug hack
        return result;
    TOKU_FILE *f = NULL;
    int fd = -1;
    char *fname = toku_strdup(bl->temp_file_template);
    if (fname == NULL)
        result = get_error_errno();
    else {
        fd = mkstemp(fname);
        if (fd < 0) {
            result = get_error_errno();
        } else {
            f = toku_os_fdopen(fd, "r+", fname, *tokudb_file_tmp_key);
            if (f->file == nullptr)
                result = get_error_errno();
            else
                result = open_file_add(&bl->file_infos, f, fname, file_idx);
        }
    }
    if (result != 0) {
        if (fd >= 0) {
            toku_os_close(fd);
            unlink(fname);
        }
        if (f != NULL)
            toku_os_fclose(f);  // don't check for error because we're already in an error case
        if (fname != NULL)
            toku_free(fname);
    }
    return result;
}
void toku_ft_loader_internal_destroy(FTLOADER bl, bool is_error) {
    ft_loader_lock_destroy(bl);
    // These frees rely on the fact that if you free a NULL pointer then nothing bad happens.
    toku_free(bl->dbs);
    toku_free(bl->descriptors);
    toku_free(bl->root_xids_that_created);
    if (bl->new_fnames_in_env) {
        for (int i = 0; i < bl->N; i++)
            toku_free((char*)bl->new_fnames_in_env[i]);
        toku_free(bl->new_fnames_in_env);
    }
    toku_free(bl->extracted_datasizes);
    toku_free(bl->bt_compare_funs);
    toku_free((char*)bl->temp_file_template);
    ft_loader_fi_destroy(&bl->file_infos, is_error);
    for (int i = 0; i < bl->N; i++) 
        destroy_rowset(&bl->rows[i]);
    toku_free(bl->rows);
    for (int i = 0; i < bl->N; i++)
        destroy_merge_fileset(&bl->fs[i]);
    toku_free(bl->fs);
    if (bl->last_key) {
        for (int i=0; i < bl->N; i++) {
            toku_free(bl->last_key[i].data);
        }
        toku_free(bl->last_key);
        bl->last_key = NULL;
    }
    destroy_rowset(&bl->primary_rowset);
    if (bl->primary_rowset_queue) {
        toku_queue_destroy(bl->primary_rowset_queue);
        bl->primary_rowset_queue = nullptr;
    }
    for (int i=0; i<bl->N; i++) {
        if ( bl->fractal_queues ) {
            invariant(bl->fractal_queues[i]==NULL);
        }
    }
    toku_free(bl->fractal_threads);
    toku_free(bl->fractal_queues);
    toku_free(bl->fractal_threads_live);
    if (bl->did_reserve_memory) {
        invariant(bl->cachetable);
        toku_cachetable_release_reserved_memory(bl->cachetable, bl->reserved_memory);
    }
    ft_loader_destroy_error_callback(&bl->error_callback);
    ft_loader_destroy_poll_callback(&bl->poll_callback);
    //printf("Progress=%d/%d\n", bl->progress, PROGRESS_MAX);
    toku_free(bl);
}
static void *extractor_thread (void*);
#define MAX(a,b) (((a)<(b)) ? (b) : (a))
static uint64_t memory_per_rowset_during_extract (FTLOADER bl)
// Return how much memory can be allocated for each rowset.
{
    if (size_factor==1) {
        return 16*1024;
    } else {
        // There is a primary rowset being maintained by the foreground thread.
        // There could be two more in the queue.
        // There is one rowset for each index (bl->N) being filled in.
        // Later we may have sort_and_write operations spawning in parallel, and will need to account for that.
        int n_copies = (1 // primary rowset
                        +EXTRACTOR_QUEUE_DEPTH  // the number of primaries in the queue
                        +bl->N // the N rowsets being constructed by the extractor thread.
                        +bl->N // the N sort buffers
                        +1     // Give the extractor thread one more so that it can have temporary space for sorting.  This is overkill.
                        );
        int64_t extra_reserved_memory = bl->N * FILE_BUFFER_SIZE;  // for each index we are writing to a file at any given time.
        int64_t tentative_rowset_size = ((int64_t)(bl->reserved_memory - extra_reserved_memory))/(n_copies);
        return MAX(tentative_rowset_size, (int64_t)MIN_ROWSET_MEMORY);
    }
}
static unsigned ft_loader_get_fractal_workers_count(FTLOADER bl) {
    unsigned w = 0;
    while (1) {
        ft_loader_lock(bl);
        w = bl->fractal_workers;
        ft_loader_unlock(bl);
        if (w != 0)
            break;
        toku_pthread_yield();  // maybe use a cond var instead
    }
    return w;
}
static void ft_loader_set_fractal_workers_count(FTLOADER bl) {
    ft_loader_lock(bl);
    if (bl->fractal_workers == 0)
        bl->fractal_workers = 1;
    ft_loader_unlock(bl);
}
// To compute a merge, we have a certain amount of memory to work with.
// We perform only one fanin at a time.
// If the fanout is F then we are using
//   F merges.  Each merge uses
//   DBUFIO_DEPTH buffers for double buffering.  Each buffer is of size at least MERGE_BUF_SIZE
// so the memory is
//   F*MERGE_BUF_SIZE*DBUFIO_DEPTH storage.
// We use some additional space to buffer the outputs. 
//  That's FILE_BUFFER_SIZE for writing to a merge file if we are writing to a mergefile.
//  And we have FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE per queue
//  And if we are doing a fractal, each worker could have have a fractal tree that it's working on.
//
// DBUFIO_DEPTH*F*MERGE_BUF_SIZE + FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE + WORKERS*NODESIZE*2 <= RESERVED_MEMORY
static int64_t memory_avail_during_merge(FTLOADER bl, bool is_fractal_node) {
    // avail memory = reserved memory - WORKERS*NODESIZE*2 for the last merge stage only
    int64_t avail_memory = bl->reserved_memory;
    if (is_fractal_node) {
        // reserve space for the fractal writer thread buffers
        avail_memory -= (int64_t)ft_loader_get_fractal_workers_count(bl) * (int64_t)default_loader_nodesize * 2; // compressed and uncompressed buffers
    }
    return avail_memory;
}
static int merge_fanin (FTLOADER bl, bool is_fractal_node) {
    // return number of temp files to read in this pass
    int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
    int64_t nbuffers = memory_avail / (int64_t)TARGET_MERGE_BUF_SIZE;
    if (is_fractal_node)
        nbuffers -= FRACTAL_WRITER_ROWSETS;
    return MAX(nbuffers / (int64_t)DBUFIO_DEPTH, (int)MIN_MERGE_FANIN);
}
static uint64_t memory_per_rowset_during_merge (FTLOADER bl, int merge_factor, bool is_fractal_node // if it is being sent to a q
                                                ) {
    int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
    int64_t nbuffers = DBUFIO_DEPTH * merge_factor;
    if (is_fractal_node)
        nbuffers += FRACTAL_WRITER_ROWSETS;
    return MAX(memory_avail / nbuffers, (int64_t)MIN_MERGE_BUF_SIZE);
}
int toku_ft_loader_internal_init (/* out */ FTLOADER *blp,
                                   CACHETABLE cachetable,
                                   generate_row_for_put_func g,
                                   DB *src_db,
                                   int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
                                   const char *new_fnames_in_env[/*N*/],
                                   ft_compare_func bt_compare_functions[/*N*/],
                                   const char *temp_file_template,
                                   LSN load_lsn,
                                   TOKUTXN txn,
                                   bool reserve_memory,
                                   uint64_t reserve_memory_size,
                                   bool compress_intermediates,
                                   bool allow_puts)
// Effect: Allocate and initialize a FTLOADER, but do not create the extractor thread.
{
    FTLOADER CALLOC(bl); // initialized to all zeros (hence CALLOC)
    if (!bl) return get_error_errno();
    bl->generate_row_for_put = g;
    bl->cachetable = cachetable;
    if (reserve_memory && bl->cachetable) {
        bl->did_reserve_memory = true;
        bl->reserved_memory = toku_cachetable_reserve_memory(bl->cachetable, 2.0/3.0, reserve_memory_size); // allocate 2/3 of the unreserved part (which is 3/4 of the memory to start with).
    }
    else {
        bl->did_reserve_memory = false;
        bl->reserved_memory = 512*1024*1024; // if no cache table use 512MB.
    }
    bl->compress_intermediates = compress_intermediates;
    bl->allow_puts = allow_puts;
    bl->src_db = src_db;
    bl->N = N;
    bl->load_lsn = load_lsn;
    if (txn) {
        bl->load_root_xid = txn->txnid.parent_id64;
    }
    else {
        bl->load_root_xid = TXNID_NONE;
    }
    
    ft_loader_init_error_callback(&bl->error_callback);
    ft_loader_init_poll_callback(&bl->poll_callback);
#define MY_CALLOC_N(n,v) CALLOC_N(n,v); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; }
#define SET_TO_MY_STRDUP(lval, s) do { char *v = toku_strdup(s); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } lval = v; } while (0)
    MY_CALLOC_N(N, bl->root_xids_that_created);
    for (int i=0; i<N; i++) if (fts[i]) bl->root_xids_that_created[i]=fts[i]->ft->h->root_xid_that_created;
    MY_CALLOC_N(N, bl->dbs);
    for (int i=0; i<N; i++) if (fts[i]) bl->dbs[i]=dbs[i];
    MY_CALLOC_N(N, bl->descriptors);
    for (int i=0; i<N; i++) if (fts[i]) bl->descriptors[i]=&fts[i]->ft->descriptor;
    MY_CALLOC_N(N, bl->new_fnames_in_env);
    for (int i=0; i<N; i++) SET_TO_MY_STRDUP(bl->new_fnames_in_env[i], new_fnames_in_env[i]);
    MY_CALLOC_N(N, bl->extracted_datasizes); // the calloc_n zeroed everything, which is what we want
    MY_CALLOC_N(N, bl->bt_compare_funs);
    for (int i=0; i<N; i++) bl->bt_compare_funs[i] = bt_compare_functions[i];
    MY_CALLOC_N(N, bl->fractal_queues);
    for (int i=0; i<N; i++) bl->fractal_queues[i]=NULL;
    MY_CALLOC_N(N, bl->fractal_threads);
    MY_CALLOC_N(N, bl->fractal_threads_live);
    for (int i=0; i<N; i++) bl->fractal_threads_live[i] = false;
    {
        int r = ft_loader_init_file_infos(&bl->file_infos); 
        if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
    }
    SET_TO_MY_STRDUP(bl->temp_file_template, temp_file_template);
    bl->n_rows   = 0; 
    bl->progress = 0;
    bl->progress_callback_result = 0;
    MY_CALLOC_N(N, bl->rows);
    MY_CALLOC_N(N, bl->fs);
    MY_CALLOC_N(N, bl->last_key);
    for(int i=0;i<N;i++) {
        { 
            int r = init_rowset(&bl->rows[i], memory_per_rowset_during_extract(bl)); 
            if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } 
        }
        init_merge_fileset(&bl->fs[i]);
        bl->last_key[i].flags = DB_DBT_REALLOC; // don't really need this, but it's nice to maintain it.  We use ulen to keep track of the realloced space.
    }
    { 
        int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); 
        if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
    }
    {   int r = toku_queue_create(&bl->primary_rowset_queue, EXTRACTOR_QUEUE_DEPTH); 
        if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
    }
    {
        ft_loader_lock_init(bl);
    }
    *blp = bl;
    return 0;
}
int toku_ft_loader_open (FTLOADER *blp, /* out */
                          CACHETABLE cachetable,
                          generate_row_for_put_func g,
                          DB *src_db,
                          int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
                          const char *new_fnames_in_env[/*N*/],
                          ft_compare_func bt_compare_functions[/*N*/],
                          const char *temp_file_template,
                          LSN load_lsn,
                          TOKUTXN txn,
                          bool reserve_memory,
                          uint64_t reserve_memory_size,
                          bool compress_intermediates,
                          bool allow_puts) {
// Effect: called by DB_ENV->create_loader to create an ft loader.
// Arguments:
//   blp                  Return a ft loader ("bulk loader") here.
//   g                    The function for generating a row
//   src_db               The source database.  Needed by g.  May be NULL if that's ok with g.
//   N                    The number of dbs to create.
//   dbs                  An array of open databases.  Used by g.  The data will be put in these database.
//   new_fnames           The file names (these strings are owned by the caller: we make a copy for our own purposes).
//   temp_file_template   A template suitable for mkstemp()
//   reserve_memory       Cause the loader to reserve memory for its use from the cache table.
//   compress_intermediates  Cause the loader to compress intermediate loader files.
//   allow_puts           Prepare the loader for rows to insert.  When puts are disabled, the loader does not run the
//                        extractor or the fractal tree writer threads.
// Return value: 0 on success, an error number otherwise.
    int result = 0;
    {
        int r = toku_ft_loader_internal_init(blp, cachetable, g, src_db,
                                              N, fts, dbs,
                                              new_fnames_in_env,
                                              bt_compare_functions,
                                              temp_file_template,
                                              load_lsn,
                                              txn,
                                              reserve_memory,
                                              reserve_memory_size,
                                              compress_intermediates,
                                              allow_puts);
        if (r!=0) result = r;
    }
    if (result == 0 && allow_puts) {
        FTLOADER bl = *blp;
        int r = toku_pthread_create(*extractor_thread_key,
                                    &bl->extractor_thread,
                                    nullptr,
                                    extractor_thread,
                                    static_cast<void *>(bl));
        if (r == 0) {
            bl->extractor_live = true;
        } else {
            result = r;
            (void) toku_ft_loader_internal_destroy(bl, true);
        }
    }
    return result;
}
static void ft_loader_set_panic(FTLOADER bl, int error, bool callback, int which_db, DBT *key, DBT *val) {
    DB *db = nullptr;
    if (bl && bl->dbs && which_db >= 0 && which_db < bl->N) {
        db = bl->dbs[which_db];
    }
    int r = ft_loader_set_error(&bl->error_callback, error, db, which_db, key, val);
    if (r == 0 && callback)
        ft_loader_call_error_function(&bl->error_callback);
}
// One of the tests uses this.
TOKU_FILE *toku_bl_fidx2file(FTLOADER bl, FIDX i) {
    toku_mutex_lock(&bl->file_infos.lock);
    invariant(i.idx >= 0 && i.idx < bl->file_infos.n_files);
    invariant(bl->file_infos.file_infos[i.idx].is_open);
    TOKU_FILE *result = bl->file_infos.file_infos[i.idx].file;
    toku_mutex_unlock(&bl->file_infos.lock);
    return result;
}
static int bl_finish_compressed_write(TOKU_FILE *stream, struct wbuf *wb) {
    int r = 0;
    char *compressed_buf = NULL;
    const size_t data_size = wb->ndone;
    invariant(data_size > 0);
    invariant(data_size <= MAX_UNCOMPRESSED_BUF);
    int n_sub_blocks = 0;
    int sub_block_size = 0;
    r = choose_sub_block_size(wb->ndone, max_sub_blocks, &sub_block_size, &n_sub_blocks);
    invariant(r==0);
    invariant(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks);
    invariant(sub_block_size > 0);
    struct sub_block sub_block[max_sub_blocks];
    // set the initial sub block size for all of the sub blocks
    for (int i = 0; i < n_sub_blocks; i++) {
        sub_block_init(&sub_block[i]);
    }
    set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block);
    size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, TOKU_DEFAULT_COMPRESSION_METHOD);
    const size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
    const size_t other_overhead = sizeof(uint32_t); //total_size
    const size_t header_len = sub_block_header_len + other_overhead;
    MALLOC_N(header_len + compressed_len, compressed_buf);
    if (compressed_buf == nullptr) {
        return ENOMEM;
    }
    // compress all of the sub blocks
    char *uncompressed_ptr = (char*)wb->buf;
    char *compressed_ptr = compressed_buf + header_len;
    compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr,
                                             get_num_cores(), get_ft_pool(), TOKU_DEFAULT_COMPRESSION_METHOD);
    //total_size does NOT include itself
    uint32_t total_size = compressed_len + sub_block_header_len;
    // serialize the sub block header
    uint32_t *ptr = (uint32_t *)(compressed_buf);
    *ptr++ = toku_htod32(total_size);
    *ptr++ = toku_htod32(n_sub_blocks);
    for (int i=0; i<n_sub_blocks; i++) {
        ptr[0] = toku_htod32(sub_block[i].compressed_size);
        ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
        ptr[2] = toku_htod32(sub_block[i].xsum);
        ptr += 3;
    }
    // Mark as written
    wb->ndone = 0;
    size_t size_to_write = total_size + 4;  // Includes writing total_size
    r = toku_os_fwrite(compressed_buf, 1, size_to_write, stream);
    if (compressed_buf) {
        toku_free(compressed_buf);
    }
    return r;
}
static int bl_compressed_write(void *ptr,
                               size_t nbytes,
                               TOKU_FILE *stream,
                               struct wbuf *wb) {
    invariant(wb->size <= MAX_UNCOMPRESSED_BUF);
    size_t bytes_left = nbytes;
    char *buf = (char *)ptr;
    while (bytes_left > 0) {
        size_t bytes_to_copy = bytes_left;
        if (wb->ndone + bytes_to_copy > wb->size) {
            bytes_to_copy = wb->size - wb->ndone;
        }
        wbuf_nocrc_literal_bytes(wb, buf, bytes_to_copy);
        if (wb->ndone == wb->size) {
            //Compress, write to disk, and empty out wb
            int r = bl_finish_compressed_write(stream, wb);
            if (r != 0) {
                errno = r;
                return -1;
            }
            wb->ndone = 0;
        }
        bytes_left -= bytes_to_copy;
        buf += bytes_to_copy;
    }
    return 0;
}
static int bl_fwrite(void *ptr,
                     size_t size,
                     size_t nmemb,
                     TOKU_FILE *stream,
                     struct wbuf *wb,
                     FTLOADER bl)
/* Effect: this is a wrapper for fwrite that returns 0 on success, otherwise
 * returns an error number.
 * Arguments:
 *   ptr    the data to be writen.
 *   size   the amount of data to be written.
 *   nmemb  the number of units of size to be written.
 *   stream write the data here.
 *   wb     where to write uncompressed data (if we're compressing) or ignore if
 * NULL
 *   bl     passed so we can panic the ft_loader if something goes wrong
 * (recording the error number).
 * Return value: 0 on success, an error number otherwise.
 */
{
    if (!bl->compress_intermediates || !wb) {
        return toku_os_fwrite(ptr, size, nmemb, stream);
    } else {
        size_t num_bytes = size * nmemb;
        int r = bl_compressed_write(ptr, num_bytes, stream, wb);
        if (r != 0) {
            return r;
        }
    }
    return 0;
}
static int bl_fread(void *ptr, size_t size, size_t nmemb, TOKU_FILE *stream)
/* Effect: this is a wrapper for fread that returns 0 on success, otherwise
 * returns an error number.
 * Arguments:
 *  ptr      read data into here.
 *  size     size of data element to be read.
 *  nmemb    number of data elements to be read.
 *  stream   where to read the data from.
 * Return value: 0 on success, an error number otherwise.
 */
{
    return toku_os_fread(ptr, size, nmemb, stream);
}
static int bl_write_dbt(DBT *dbt,
                        TOKU_FILE *datafile,
                        uint64_t *dataoff,
                        struct wbuf *wb,
                        FTLOADER bl) {
    int r;
    int dlen = dbt->size;
    if ((r=bl_fwrite(&dlen,     sizeof(dlen), 1,    datafile, wb, bl))) return r;
    if ((r=bl_fwrite(dbt->data, 1,            dlen, datafile, wb, bl))) return r;
    if (dataoff)
        *dataoff += dlen + sizeof(dlen);
    return 0;
}
static int bl_read_dbt(/*in*/ DBT *dbt, TOKU_FILE *stream) {
    int len;
    {
        int r;
        if ((r = bl_fread(&len, sizeof(len), 1, stream))) return r;
        invariant(len>=0);
    }
    if ((int)dbt->ulen<len) { dbt->ulen=len; dbt->data=toku_xrealloc(dbt->data, len); }
    {
        int r;
        if ((r = bl_fread(dbt->data, 1, len, stream)))     return r;
    }
    dbt->size = len;
    return 0;
}
static int bl_read_dbt_from_dbufio (/*in*/DBT *dbt, DBUFIO_FILESET bfs, int filenum)
{
    int result = 0;
    uint32_t len;
    {
        size_t n_read;
        int r = dbufio_fileset_read(bfs, filenum, &len, sizeof(len), &n_read);
        if (r!=0) {
            result = r;
        } else if (n_read<sizeof(len)) {
            result = TOKUDB_NO_DATA; // must have run out of data prematurely.  This is not EOF, it's a real error.
        }
    }
    if (result==0) {
        if (dbt->ulen<len) {
            void * data = toku_realloc(dbt->data, len);
            if (data==NULL) {
                result = get_error_errno();
            } else {
                dbt->ulen=len;
                dbt->data=data;
            }
        }
    }
    if (result==0) {
        size_t n_read;
        int r = dbufio_fileset_read(bfs, filenum, dbt->data, len, &n_read);
        if (r!=0) {
            result = r;
        } else if (n_read<len) {
            result = TOKUDB_NO_DATA; // must have run out of data prematurely.  This is not EOF, it's a real error.
        } else {
            dbt->size = len;
        }
    }
    return result;
}
int loader_write_row(DBT *key,
                     DBT *val,
                     FIDX data,
                     TOKU_FILE *dataf,
                     uint64_t *dataoff,
                     struct wbuf *wb,
                     FTLOADER bl)
/* Effect: Given a key and a val (both DBTs), write them to a file.  Increment
 * *dataoff so that it's up to date.
 * Arguments:
 *   key, val   write these.
 *   data       the file to write them to
 *   dataoff    a pointer to a counter that keeps track of the amount of data
 * written so far.
 *   wb         a pointer (possibly NULL) to buffer uncompressed output
 *   bl         the ft_loader (passed so we can panic if needed).
 * Return value: 0 on success, an error number otherwise.
 */
{
    //int klen = key->size;
    //int vlen = val->size;
    int r;
    // we have a chance to handle the errors because when we close we can delete all the files.
    if ((r=bl_write_dbt(key, dataf, dataoff, wb, bl))) return r;
    if ((r=bl_write_dbt(val, dataf, dataoff, wb, bl))) return r;
    toku_mutex_lock(&bl->file_infos.lock);
    bl->file_infos.file_infos[data.idx].n_rows++;
    toku_mutex_unlock(&bl->file_infos.lock);
    return 0;
}
int loader_read_row(TOKU_FILE *f, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file.  The DBTs must have DB_DBT_REALLOC
 * set.
 * Arguments:
 *    f         where to read it from.
 *    key, val  read it into these.
 *    bl        passed so we can panic if needed.
 * Return value: 0 on success, an error number otherwise.
 * Requires:   The DBTs must have DB_DBT_REALLOC
 */
{
    {
        int r = bl_read_dbt(key, f);
        if (r!=0) return r;
    }
    {
        int r = bl_read_dbt(val, f);
        if (r!=0) return r;
    }
    return 0;
}
static int loader_read_row_from_dbufio (DBUFIO_FILESET bfs, int filenum, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file.  The DBTs must have DB_DBT_REALLOC set.
 * Arguments:
 *    f         where to read it from.
 *    key, val  read it into these.
 *    bl        passed so we can panic if needed.
 * Return value: 0 on success, an error number otherwise.
 * Requires:   The DBTs must have DB_DBT_REALLOC
 */
{
    {
        int r = bl_read_dbt_from_dbufio(key, bfs, filenum);
        if (r!=0) return r;
    }
    {
        int r = bl_read_dbt_from_dbufio(val, bfs, filenum);
        if (r!=0) return r;
    }
    return 0;
}
int init_rowset (struct rowset *rows, uint64_t memory_budget) 
/* Effect: Initialize a collection of rows to be empty. */
{
    int result = 0;
    rows->memory_budget = memory_budget;
    rows->rows = NULL;
    rows->data = NULL;
    rows->n_rows = 0;
    rows->n_rows_limit = 100;
    MALLOC_N(rows->n_rows_limit, rows->rows);
    if (rows->rows == NULL)
        result = get_error_errno();
    rows->n_bytes = 0;
    rows->n_bytes_limit = (size_factor==1) ? 1024*size_factor*16 : memory_budget;
    //printf("%s:%d n_bytes_limit=%ld (size_factor based limit=%d)\n", __FILE__, __LINE__, rows->n_bytes_limit, 1024*size_factor*16);
    rows->data = (char *) toku_malloc(rows->n_bytes_limit);
    if (rows->rows==NULL || rows->data==NULL) {
        if (result == 0)
            result = get_error_errno();
        toku_free(rows->rows);
        toku_free(rows->data);
        rows->rows = NULL;
        rows->data = NULL;
    }
    return result;
}
static void zero_rowset (struct rowset *rows) {
    memset(rows, 0, sizeof(*rows));
}
void destroy_rowset (struct rowset *rows) {
    if ( rows ) {
        toku_free(rows->data);
        toku_free(rows->rows);
        zero_rowset(rows);
    }
}
static int row_wont_fit (struct rowset *rows, size_t size)
/* Effect: Return nonzero if adding a row of size SIZE would be too big (bigger than the buffer limit) */ 
{
    // Account for the memory used by the data and also the row structures.
    size_t memory_in_use = (rows->n_rows*sizeof(struct row)
                            + rows->n_bytes);
    return (rows->memory_budget <  memory_in_use + size);
}
int add_row (struct rowset *rows, DBT *key, DBT *val)
/* Effect: add a row to a collection. */
{
    int result = 0;
    if (rows->n_rows >= rows->n_rows_limit) {
        struct row *old_rows = rows->rows;
        size_t old_n_rows_limit = rows->n_rows_limit;
        rows->n_rows_limit *= 2;
        REALLOC_N(rows->n_rows_limit, rows->rows);
        if (rows->rows == NULL) {
            result = get_error_errno();
            rows->rows = old_rows;
            rows->n_rows_limit = old_n_rows_limit;
            return result;
        }
    }
    size_t off      = rows->n_bytes;
    size_t next_off = off + key->size + val->size;
    struct row newrow; 
    memset(&newrow, 0, sizeof newrow); newrow.off = off; newrow.klen = key->size; newrow.vlen = val->size;
    rows->rows[rows->n_rows++] = newrow;
    if (next_off > rows->n_bytes_limit) {
        size_t old_n_bytes_limit = rows->n_bytes_limit;
        while (next_off > rows->n_bytes_limit) {
            rows->n_bytes_limit = rows->n_bytes_limit*2; 
        }
        invariant(next_off <= rows->n_bytes_limit);
        char *old_data = rows->data;
        REALLOC_N(rows->n_bytes_limit, rows->data);
        if (rows->data == NULL) {
            result = get_error_errno();
            rows->data = old_data;
            rows->n_bytes_limit = old_n_bytes_limit;
            return result;
        }
    }
    memcpy(rows->data+off,           key->data, key->size);
    memcpy(rows->data+off+key->size, val->data, val->size);
    rows->n_bytes = next_off;
    return result;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset);
static int finish_primary_rows_internal (FTLOADER bl)
// now we have been asked to finish up.
// Be sure to destroy the rowsets.
{
    int *MALLOC_N(bl->N, ra);
    if (ra==NULL) return get_error_errno();
    for (int i = 0; i < bl->N; i++) {
        //printf("%s:%d extractor finishing index %d with %ld rows\n", __FILE__, __LINE__, i, rows->n_rows);
        ra[i] = sort_and_write_rows(bl->rows[i], &(bl->fs[i]), bl, i, bl->dbs[i], bl->bt_compare_funs[i]);
        zero_rowset(&bl->rows[i]);
    }
    // accept any of the error codes (in this case, the last one).
    int r = 0;
    for (int i = 0; i < bl->N; i++)
        if (ra[i] != 0)
            r = ra[i];
    toku_free(ra);
    return r;
}
static int finish_primary_rows (FTLOADER bl) {
    return           finish_primary_rows_internal (bl);
}
static void* extractor_thread (void *blv) {
    FTLOADER bl = (FTLOADER)blv;
    int r = 0;
    while (1) {
        void *item = nullptr;
        {
            int rq = toku_queue_deq(bl->primary_rowset_queue, &item, NULL, NULL);
            if (rq==EOF) break;
            invariant(rq==0); // other errors are arbitrarily bad.
        }
        struct rowset *primary_rowset = (struct rowset *)item;
        //printf("%s:%d extractor got %ld rows\n", __FILE__, __LINE__, primary_rowset.n_rows);
        // Now we have some rows to output
        {
            r = process_primary_rows(bl, primary_rowset);
            if (r)
                ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
        }
    }
    //printf("%s:%d extractor finishing\n", __FILE__, __LINE__);
    if (r == 0) {
        r = finish_primary_rows(bl); 
        if (r)
            ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
    }
    toku_instr_delete_current_thread();
    return nullptr;
}
static void enqueue_for_extraction(FTLOADER bl) {
    //printf("%s:%d enqueing %ld items\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
    struct rowset *XMALLOC(enqueue_me);
    *enqueue_me = bl->primary_rowset;
    zero_rowset(&bl->primary_rowset);
    int r = toku_queue_enq(bl->primary_rowset_queue, (void*)enqueue_me, 1, NULL);
    resource_assert_zero(r); 
}
static int loader_do_put(FTLOADER bl,
                         DBT *pkey,
                         DBT *pval)
{
    int result;
    result = add_row(&bl->primary_rowset, pkey, pval);
    if (result == 0 && row_wont_fit(&bl->primary_rowset, 0)) {
        // queue the rows for further processing by the extractor thread.
        //printf("%s:%d please extract %ld\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
        enqueue_for_extraction(bl);
        {
            int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); 
            // bl->primary_rowset will get destroyed by toku_ft_loader_abort
            if (r != 0) 
                result = r;
        }
    }
    return result;
}
static int 
finish_extractor (FTLOADER bl) {
    //printf("%s:%d now finishing extraction\n", __FILE__, __LINE__);
    int rval;
    if (bl->primary_rowset.n_rows>0) {
        enqueue_for_extraction(bl);
    } else {
        destroy_rowset(&bl->primary_rowset);
    }
    //printf("%s:%d please finish extraction\n", __FILE__, __LINE__);
    {
        int r = toku_queue_eof(bl->primary_rowset_queue);
        invariant(r==0);
    }
    //printf("%s:%d joining\n", __FILE__, __LINE__);
    {
        void *toku_pthread_retval;
        int r = toku_pthread_join(bl->extractor_thread, &toku_pthread_retval);
        resource_assert_zero(r); 
        invariant(toku_pthread_retval == NULL);
        bl->extractor_live = false;
    }
    {
        int r = toku_queue_destroy(bl->primary_rowset_queue);
        invariant(r==0);
        bl->primary_rowset_queue = nullptr;
    }
    rval = ft_loader_fi_close_all(&bl->file_infos);
   //printf("%s:%d joined\n", __FILE__, __LINE__);
    return rval;
}
static const DBT zero_dbt = {0,0,0,0};
static DBT make_dbt (void *data, uint32_t size) {
    DBT result = zero_dbt;
    result.data = data;
    result.size = size;
    return result;
}
#define inc_error_count() error_count++
static TXNID leafentry_xid(FTLOADER bl, int which_db) {
    TXNID le_xid = TXNID_NONE;
    if (bl->root_xids_that_created && bl->load_root_xid != bl->root_xids_that_created[which_db])
        le_xid = bl->load_root_xid;
    return le_xid;
}
size_t ft_loader_leafentry_size(size_t key_size, size_t val_size, TXNID xid) {
    size_t s = 0;
    if (xid == TXNID_NONE)
        s = LE_CLEAN_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
    else
        s = LE_MVCC_COMMITTED_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
    return s;
}
static int process_primary_rows_internal (FTLOADER bl, struct rowset *primary_rowset)
// process the rows in primary_rowset, and then destroy the rowset.
// if FLUSH is true then write all the buffered rows out.
// if primary_rowset is NULL then treat it as empty.
{
    int error_count = 0;
    int *XMALLOC_N(bl->N, error_codes);
    // If we parallelize the first for loop, dest_keys/dest_vals init&cleanup need to move inside
    DBT_ARRAY dest_keys;
    DBT_ARRAY dest_vals;
    toku_dbt_array_init(&dest_keys, 1);
    toku_dbt_array_init(&dest_vals, 1);
    for (int i = 0; i < bl->N; i++) {
        unsigned int klimit,vlimit; // maximum row sizes.
        toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit);
        error_codes[i] = 0;
        struct rowset *rows = &(bl->rows[i]);
        struct merge_fileset *fs = &(bl->fs[i]);
        ft_compare_func compare = bl->bt_compare_funs[i];
        // Don't parallelize this loop, or we have to lock access to add_row() which would be a lot of overehad.
        // Also this way we can reuse the DB_DBT_REALLOC'd values inside dest_keys/dest_vals without a race.
        for (size_t prownum=0; prownum<primary_rowset->n_rows; prownum++) {
            if (error_count) break;
            struct row *prow = &primary_rowset->rows[prownum];
            DBT pkey = zero_dbt;
            DBT pval = zero_dbt;
            pkey.data = primary_rowset->data + prow->off;
            pkey.size = prow->klen;
            pval.data = primary_rowset->data + prow->off + prow->klen;
            pval.size = prow->vlen;
            DBT_ARRAY key_array;
            DBT_ARRAY val_array;
            if (bl->dbs[i] != bl->src_db) {
                int r = bl->generate_row_for_put(bl->dbs[i], bl->src_db, &dest_keys, &dest_vals, &pkey, &pval);
                if (r != 0) {
                    error_codes[i] = r;
                    inc_error_count();
                    break;
                }
                paranoid_invariant(dest_keys.size <= dest_keys.capacity);
                paranoid_invariant(dest_vals.size <= dest_vals.capacity);
                paranoid_invariant(dest_keys.size == dest_vals.size);
                key_array = dest_keys;
                val_array = dest_vals;
            } else {
                key_array.size = key_array.capacity = 1;
                key_array.dbts = &pkey;
                val_array.size = val_array.capacity = 1;
                val_array.dbts = &pval;
            }
            for (uint32_t row = 0; row < key_array.size; row++) {
                DBT *dest_key = &key_array.dbts[row];
                DBT *dest_val = &val_array.dbts[row];
                if (dest_key->size > klimit) {
                    error_codes[i] = EINVAL;
                    fprintf(stderr, "Key too big (keysize=%d bytes, limit=%d bytes)\n", dest_key->size, klimit);
                    inc_error_count();
                    break;
                }
                if (dest_val->size > vlimit) {
                    error_codes[i] = EINVAL;
                    fprintf(stderr, "Row too big (rowsize=%d bytes, limit=%d bytes)\n", dest_val->size, vlimit);
                    inc_error_count();
                    break;
                }
                bl->extracted_datasizes[i] += ft_loader_leafentry_size(dest_key->size, dest_val->size, leafentry_xid(bl, i));
                if (row_wont_fit(rows, dest_key->size + dest_val->size)) {
                    //printf("%s:%d rows.n_rows=%ld rows.n_bytes=%ld\n", __FILE__, __LINE__, rows->n_rows, rows->n_bytes);
                    int r = sort_and_write_rows(*rows, fs, bl, i, bl->dbs[i], compare); // cannot spawn this because of the race on rows.  If we were to create a new rows, and if sort_and_write_rows were to destroy the rows it is passed, we could spawn it, however.
                    // If we do spawn this, then we must account for the additional storage in the memory_per_rowset() function.
                    init_rowset(rows, memory_per_rowset_during_extract(bl)); // we passed the contents of rows to sort_and_write_rows.
                    if (r != 0) {
                        error_codes[i] = r;
                        inc_error_count();
                        break;
                    }
                }
                int r = add_row(rows, dest_key, dest_val);
                if (r != 0) {
                    error_codes[i] = r;
                    inc_error_count();
                    break;
                }
            }
        }
    }
    toku_dbt_array_destroy(&dest_keys);
    toku_dbt_array_destroy(&dest_vals);
    
    destroy_rowset(primary_rowset);
    toku_free(primary_rowset);
    int r = 0;
    if (error_count > 0) {
        for (int i=0; i<bl->N; i++) {
            if (error_codes[i]) {
                r = error_codes[i];
                ft_loader_set_panic(bl, r, false, i, nullptr, nullptr);
            }
        }
        invariant(r); // found the error 
    }
    toku_free(error_codes);
    return r;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset) {
    int r = process_primary_rows_internal (bl, primary_rowset);
    return r;
}
 
int toku_ft_loader_put (FTLOADER bl, DBT *key, DBT *val)
/* Effect: Put a key-value pair into the ft loader.  Called by DB_LOADER->put().
 * Return value: 0 on success, an error number otherwise.
 */
{
    if (!bl->allow_puts || ft_loader_get_error(&bl->error_callback)) 
        return EINVAL; // previous panic
    bl->n_rows++;
    return loader_do_put(bl, key, val);
}
void toku_ft_loader_set_n_rows(FTLOADER bl, uint64_t n_rows) {
    bl->n_rows = n_rows;
}
uint64_t toku_ft_loader_get_n_rows(FTLOADER bl) {
    return bl->n_rows;
}
int merge_row_arrays_base (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
                           int which_db, DB *dest_db, ft_compare_func compare,
                           
                           FTLOADER bl,
                           struct rowset *rowset)
/* Effect: Given two arrays of rows, a and b, merge them using the comparison function, and write them into dest.
 *   This function is suitable for use in a mergesort.
 *   If a pair of duplicate keys is ever noticed, then call the error_callback function (if it exists), and return DB_KEYEXIST.
 * Arguments:
 *   dest    write the rows here
 *   a,b     the rows being merged
 *   an,bn   the length of a and b respectively.
 *   dest_db We need the dest_db to run the comparison function.
 *   compare We need the compare function for the dest_db.
 */
{
    while (an>0 && bn>0) {
        DBT akey; memset(&akey, 0, sizeof akey); akey.data=rowset->data+a->off; akey.size=a->klen;
        DBT bkey; memset(&bkey, 0, sizeof bkey); bkey.data=rowset->data+b->off; bkey.size=b->klen;
        int compare_result = compare(dest_db, &akey, &bkey);
        if (compare_result==0) {
            if (bl->error_callback.error_callback) {
                DBT aval; memset(&aval, 0, sizeof aval); aval.data=rowset->data + a->off + a->klen; aval.size = a->vlen;
                ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
            }
            return DB_KEYEXIST;
        } else if (compare_result<0) {
            // a is smaller
            *dest = *a;
            dest++; a++; an--;
        } else {
            *dest = *b;
            dest++; b++; bn--;
        }
    }
    while (an>0) {
        *dest = *a;
        dest++; a++; an--;
    }
    while (bn>0) {
        *dest = *b;
        dest++; b++; bn--;
    }
    return 0;
}
static int binary_search (int *location,
                          const DBT *key,
                          struct row a[/*an*/], int an,
                          int abefore,
                          int which_db, DB *dest_db, ft_compare_func compare,
                          FTLOADER bl,
                          struct rowset *rowset)
// Given a sorted array of rows a, and a dbt key, find the first row in a that is > key.
// If no such row exists, then consider the result to be equal to an.
// On success store abefore+the index into *location
// Return 0 on success.
// Return DB_KEYEXIST if we find a row that is equal to key.
{
    if (an==0) {
        *location = abefore;
        return 0;
    } else {
        int a2 = an/2;
        DBT akey = make_dbt(rowset->data+a[a2].off,  a[a2].klen);
        int compare_result = compare(dest_db, key, &akey);
        if (compare_result==0) {
            if (bl->error_callback.error_callback) {
                DBT aval = make_dbt(rowset->data + a[a2].off + a[a2].klen,  a[a2].vlen);
                ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
            }
            return DB_KEYEXIST;
        } else if (compare_result<0) {
            // key is before a2
            if (an==1) {
                *location = abefore;
                return 0;
            } else {
                return binary_search(location, key,
                                     a,    a2,
                                     abefore,
                                     which_db, dest_db, compare, bl, rowset);
            }
        } else {
            // key is after a2
            if (an==1) {
                *location = abefore + 1;
                return 0;
            } else {
                return binary_search(location, key,
                                     a+a2, an-a2,
                                     abefore+a2,
                                     which_db, dest_db, compare, bl, rowset);
            }
        }
    }
}
                   
#define SWAP(typ,x,y) { typ tmp = x; x=y; y=tmp; }
static int merge_row_arrays (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
                             int which_db, DB *dest_db, ft_compare_func compare,
                             FTLOADER bl,
                             struct rowset *rowset)
/* Effect: Given two sorted arrays of rows, a and b, merge them using the comparison function, and write them into dest.
 * Arguments:
 *   dest    write the rows here
 *   a,b     the rows being merged
 *   an,bn   the length of a and b respectively.
 *   dest_db We need the dest_db to run the comparison function.
 *   compare We need the compare function for the dest_db.
 */
{
    if (an + bn < 10000) {
        return merge_row_arrays_base(dest, a, an, b, bn, which_db, dest_db, compare, bl, rowset);
    }
    if (an < bn) {
        SWAP(struct row *,a, b)
        SWAP(int         ,an,bn)
    }
    // an >= bn
    int a2 = an/2;
    DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen);
    int b2 = 0; // initialize to zero so we can add the answer in.
    {
        int r = binary_search(&b2, &akey, b, bn, 0, which_db, dest_db, compare, bl, rowset);
        if (r!=0) return r; // for example if we found a duplicate, called the error_callback, and now we return an error code.
    }
    int ra, rb;
    ra = merge_row_arrays(dest,       a,    a2,    b,    b2,    which_db, dest_db, compare, bl, rowset);
    rb = merge_row_arrays(dest+a2+b2, a+a2, an-a2, b+b2, bn-b2, which_db, dest_db, compare, bl, rowset);
    if (ra!=0) return ra;
    else       return rb;
}
int mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset)
/* Sort an array of rows (using mergesort).
 * Arguments:
 *   rows   sort this array of rows.
 *   n      the length of the array.
 *   dest_db  used by the comparison function.
 *   compare  the compare function
 */
{
    if (n<=1) return 0; // base case is sorted
    int mid = n/2;
    int r1, r2;
    r1 = mergesort_row_array (rows,     mid,   which_db, dest_db, compare, bl, rowset);
    // Don't spawn this one explicitly
    r2 =            mergesort_row_array (rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
    if (r1!=0) return r1;
    if (r2!=0) return r2;
    struct row *MALLOC_N(n, tmp); 
    if (tmp == NULL) return get_error_errno();
    {
        int r = merge_row_arrays(tmp, rows, mid, rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
        if (r!=0) {
            toku_free(tmp);
            return r;
        }
    }
    memcpy(rows, tmp, sizeof(*tmp)*n);
    toku_free(tmp);
    return 0;
}
// C function for testing mergesort_row_array 
int ft_loader_mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) {
    return mergesort_row_array (rows, n, which_db, dest_db, compare, bl, rowset);
}
static int sort_rows (struct rowset *rows, int which_db, DB *dest_db, ft_compare_func compare,
                      FTLOADER bl)
/* Effect: Sort a collection of rows.
 * If any duplicates are found, then call the error_callback function and return non zero.
 * Otherwise return 0.
 * Arguments:
 *   rowset    the */
{
    return mergesort_row_array(rows->rows, rows->n_rows, which_db, dest_db, compare, bl, rows);
}
/* filesets Maintain a collection of files.  Typically these files are each individually sorted, and we will merge them.
 * These files have two parts, one is for the data rows, and the other is a collection of offsets so we an more easily parallelize the manipulation (e.g., by allowing us to find the offset of the ith row quickly). */
void init_merge_fileset (struct merge_fileset *fs)
/* Effect: Initialize a fileset */ 
{
    fs->have_sorted_output = false;
    fs->sorted_output      = FIDX_NULL;
    fs->prev_key           = zero_dbt;
    fs->prev_key.flags     = DB_DBT_REALLOC;
    fs->n_temp_files = 0;
    fs->n_temp_files_limit = 0;
    fs->data_fidxs = NULL;
}
void destroy_merge_fileset (struct merge_fileset *fs)
/* Effect: Destroy a fileset. */
{
    if ( fs ) {
        toku_destroy_dbt(&fs->prev_key);
        fs->n_temp_files = 0;
        fs->n_temp_files_limit = 0;
        toku_free(fs->data_fidxs);
        fs->data_fidxs = NULL;
    }
}
static int extend_fileset (FTLOADER bl, struct merge_fileset *fs, FIDX*ffile)
/* Effect: Add two files (one for data and one for idx) to the fileset.
 * Arguments:
 *   bl   the ft_loader (needed to panic if anything goes wrong, and also to get the temp_file_template.
 *   fs   the fileset
 *   ffile  the data file (which will be open)
 *   fidx   the index file (which will be open)
 */
{
    FIDX sfile;
    int r;
    r = ft_loader_open_temp_file(bl, &sfile); if (r!=0) return r;
    if (fs->n_temp_files+1 > fs->n_temp_files_limit) {
        fs->n_temp_files_limit = (fs->n_temp_files+1)*2;
        XREALLOC_N(fs->n_temp_files_limit, fs->data_fidxs);
    }
    fs->data_fidxs[fs->n_temp_files] = sfile;
    fs->n_temp_files++;
    *ffile = sfile;
    return 0;
}
// RFP maybe this should be buried in the ft_loader struct
static toku_mutex_t update_progress_lock = TOKU_MUTEX_INITIALIZER;
static int update_progress (int N,
                            FTLOADER bl,
                            const char *UU(message))
{
    // Must protect the increment and the call to the poll_function.
    toku_mutex_lock(&update_progress_lock);
    bl->progress+=N;
    int result;
    if (bl->progress_callback_result == 0) {
        //printf(" %20s: %d ", message, bl->progress);
        result = ft_loader_call_poll_function(&bl->poll_callback, (float)bl->progress/(float)PROGRESS_MAX);
        if (result!=0) {
            bl->progress_callback_result = result;
        }
    } else {
        result = bl->progress_callback_result;
    }
    toku_mutex_unlock(&update_progress_lock);
    return result;
}
static int write_rowset_to_file (FTLOADER bl, FIDX sfile, const struct rowset rows) {
    int r = 0;
    // Allocate a buffer if we're compressing intermediates.
    char *uncompressed_buffer = nullptr;
    if (bl->compress_intermediates) {
        MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
        if (uncompressed_buffer == nullptr) {
            return ENOMEM;
        }
    }
    struct wbuf wb;
    wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
    TOKU_FILE *sstream = toku_bl_fidx2file(bl, sfile);
    for (size_t i = 0; i < rows.n_rows; i++) {
        DBT skey = make_dbt(rows.data + rows.rows[i].off, rows.rows[i].klen);
        DBT sval = make_dbt(rows.data + rows.rows[i].off + rows.rows[i].klen,
                            rows.rows[i].vlen);
        uint64_t soffset=0; // don't really need this.
        r = loader_write_row(&skey, &sval, sfile, sstream, &soffset, &wb, bl);
        if (r != 0) {
            goto exit;
        }
    }
    if (bl->compress_intermediates && wb.ndone > 0) {
        r = bl_finish_compressed_write(sstream, &wb);
        if (r != 0) {
            goto exit;
        }
    }
    r = 0;
exit:
    if (uncompressed_buffer) {
        toku_free(uncompressed_buffer);
    }
    return r;
}
int sort_and_write_rows (struct rowset rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare)
/* Effect: Given a rowset, sort it and write it to a temporary file.
 * Note:  The loader maintains for each index the most recently written-to file, as well as the DBT for the last key written into that file.
 *   If this rowset is sorted and all greater than that dbt, then we append to the file (skipping the sort, and reducing the number of temporary files).
 * Arguments:
 *   rows    the rowset
 *   fs      the fileset into which the sorted data will be added
 *   bl      the ft_loader
 *   dest_db the DB, needed for the comparison function.
 *   compare The comparison function.
 * Returns 0 on success, otherwise an error number.
 * Destroy the rowset after finishing it.
 * Note: There is no sense in trying to calculate progress by this function since it's done concurrently with the loader->put operation.
 * Note first time called: invariant: fs->have_sorted_output == false
 */
{
    //printf(" sort_and_write use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
    // TODO: erase the files, and deal with all the cleanup on error paths
    //printf("%s:%d sort_rows n_rows=%ld\n", __FILE__, __LINE__, rows->n_rows);
    //bl_time_t before_sort = bl_time_now();
    int result;
    if (rows.n_rows == 0) {
        result = 0;
    } else {
        result = sort_rows(&rows, which_db, dest_db, compare, bl);
        //bl_time_t after_sort = bl_time_now();
        if (result == 0) {
            DBT min_rowset_key = make_dbt(rows.data+rows.rows[0].off, rows.rows[0].klen);
            if (fs->have_sorted_output && compare(dest_db, &fs->prev_key, &min_rowset_key) < 0) {
                // write everything to the same output if the max key in the temp file (prev_key) is < min of the sorted rowset
                result = write_rowset_to_file(bl, fs->sorted_output, rows);
                if (result == 0) {
                    // set the max key in the temp file to the max key in the sorted rowset
                    result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
                }
            } else {
                // write the sorted rowset into a new temp file
                if (fs->have_sorted_output) {
                    fs->have_sorted_output = false;
                    result = ft_loader_fi_close(&bl->file_infos, fs->sorted_output, true);
                }
                if (result == 0) {
                    FIDX sfile = FIDX_NULL;
                    result = extend_fileset(bl, fs, &sfile);
                    if (result == 0) {
                        result = write_rowset_to_file(bl, sfile, rows);
                        if (result == 0) {
                            fs->have_sorted_output = true; fs->sorted_output = sfile;
                            // set the max key in the temp file to the max key in the sorted rowset
                            result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
                        }
                    }
                }
                // Note: if result == 0 then invariant fs->have_sorted_output == true
            }
        }
    }
    destroy_rowset(&rows);
    //bl_time_t after_write = bl_time_now();
    
    return result;
}
// C function for testing sort_and_write_rows
int ft_loader_sort_and_write_rows (struct rowset *rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) {
    return sort_and_write_rows (*rows, fs, bl, which_db, dest_db, compare);
}
int toku_merge_some_files_using_dbufio(const bool to_q,
                                       FIDX dest_data,
                                       QUEUE q,
                                       int n_sources,
                                       DBUFIO_FILESET bfs,
                                       FIDX srcs_fidxs[/*n_sources*/],
                                       FTLOADER bl,
                                       int which_db,
                                       DB *dest_db,
                                       ft_compare_func compare,
                                       int progress_allocation)
/* Effect: Given an array of FILE*'s each containing sorted, merge the data and
 * write it to an output.  All the files remain open after the merge.
 *   This merge is performed in one pass, so don't pass too many files in.  If
 * you need a tree of merges do it elsewhere.
 *   If TO_Q is true then we write rowsets into queue Q.  Otherwise we write
 * into dest_data.
 * Modifies:  May modify the arrays of files (but if modified, it must be a
 * permutation so the caller can use that array to close everything.)
 * Requires: The number of sources is at least one, and each of the input files
 * must have at least one row in it.
 * Arguments:
 *   to_q         boolean indicating that output is queue (true) or a file
 * (false)
 *   dest_data    where to write the sorted data
 *   q            where to write the sorted data
 *   n_sources    how many source files.
 *   srcs_data    the array of source data files.
 *   bl           the ft_loader.
 *   dest_db      the destination DB (used in the comparison function).
 * Return value: 0 on success, otherwise an error number.
 * The fidxs are not closed by this function.
 */
{
    int result = 0;
    TOKU_FILE *dest_stream = to_q ? nullptr : toku_bl_fidx2file(bl, dest_data);
    // printf(" merge_some_files progress=%d fin at %d\n", bl->progress,
    // bl->progress+progress_allocation);
    DBT keys[n_sources];
    DBT vals[n_sources];
    uint64_t dataoff[n_sources];
    DBT zero = zero_dbt;  zero.flags=DB_DBT_REALLOC;
    for (int i=0; i<n_sources; i++) {
        keys[i] = vals[i] = zero; // fill these all in with zero so we can delete stuff more reliably.
    }
    pqueue_t      *pq = NULL;
    pqueue_node_t *MALLOC_N(n_sources, pq_nodes); // freed in cleanup
    if (pq_nodes == NULL) { result = get_error_errno(); }
    if (result==0) {
        int r = pqueue_init(&pq, n_sources, which_db, dest_db, compare, &bl->error_callback);
        if (r!=0) result = r; 
    }
    uint64_t n_rows = 0;
    if (result==0) {
        // load pqueue with first value from each source
        for (int i=0; i<n_sources; i++) {
            int r = loader_read_row_from_dbufio(bfs, i, &keys[i], &vals[i]);
            if (r==EOF) continue; // if the file is empty, don't initialize the pqueue.
            if (r!=0) {
                result = r;
                break;
            }
            pq_nodes[i].key = &keys[i];
            pq_nodes[i].val = &vals[i];
            pq_nodes[i].i   = i;
            r = pqueue_insert(pq, &pq_nodes[i]);
            if (r!=0) {
                result = r;
                // path tested by loader-dup-test5.tdbrun
                // printf("%s:%d returning\n", __FILE__, __LINE__);
                break;
            }
            dataoff[i] = 0;
            toku_mutex_lock(&bl->file_infos.lock);
            n_rows += bl->file_infos.file_infos[srcs_fidxs[i].idx].n_rows;
            toku_mutex_unlock(&bl->file_infos.lock);
        }
    }
    uint64_t n_rows_done = 0;
    struct rowset *output_rowset = NULL;
    if (result==0 && to_q) {
        XMALLOC(output_rowset); // freed in cleanup
        int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
        if (r!=0) result = r;
    }
    // Allocate a buffer if we're compressing intermediates.
    char *uncompressed_buffer = nullptr;
    struct wbuf wb;
    if (bl->compress_intermediates && !to_q) {
        MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
        if (uncompressed_buffer == nullptr) {
            result = ENOMEM;
        }
    }
    wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
    
    //printf(" n_rows=%ld\n", n_rows);
    while (result==0 && pqueue_size(pq)>0) {
        int mini;
        {
            // get the minimum 
            pqueue_node_t *node;
            int r = pqueue_pop(pq, &node);
            if (r!=0) {
                result = r;
                invariant(0);
                break;
            }
            mini = node->i;
        }
        if (to_q) {
            if (row_wont_fit(output_rowset, keys[mini].size + vals[mini].size)) {
                {
                    int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
                    if (r!=0) {
                        result = r;
                        break;
                    }
                }
                XMALLOC(output_rowset); // freed in cleanup
                {
                    int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
                    if (r!=0) {        
                        result = r;
                        break;
                    }
                }
            }
            {
                int r = add_row(output_rowset, &keys[mini], &vals[mini]);
                if (r!=0) {
                    result = r;
                    break;
                }
            }
        } else {
            // write it to the dest file
            int r = loader_write_row(&keys[mini], &vals[mini], dest_data, dest_stream, &dataoff[mini], &wb, bl);
            if (r!=0) {
                result = r;
                break;
            }
        }
        
        {
            // read next row from file that just sourced min value 
            int r = loader_read_row_from_dbufio(bfs, mini, &keys[mini], &vals[mini]);
            if (r!=0) {
                if (r==EOF) {
                    // on feof, queue size permanently smaller
                    toku_free(keys[mini].data);  keys[mini].data = NULL;
                    toku_free(vals[mini].data);  vals[mini].data = NULL;
                } else {
                    fprintf(stderr, "%s:%d r=%d errno=%d bfs=%p mini=%d\n", __FILE__, __LINE__, r, get_maybe_error_errno(), bfs, mini);
                    dbufio_print(bfs);
                    result = r;
                    break;
                }
            } else {
                // insert value into queue (re-populate queue)
                pq_nodes[mini].key = &keys[mini];
                r = pqueue_insert(pq, &pq_nodes[mini]);
                if (r!=0) {
                    // Note: This error path tested by loader-dup-test1.tdbrun (and by loader-dup-test4)
                    result = r;
                    // printf("%s:%d returning\n", __FILE__, __LINE__);
                    break;
                }
            }
        }
 
        n_rows_done++;
        const uint64_t rows_per_report = size_factor*1024;
        if (n_rows_done%rows_per_report==0) {
            // need to update the progress.
            double fraction_of_remaining_we_just_did = (double)rows_per_report / (double)(n_rows - n_rows_done + rows_per_report);
            invariant(0<= fraction_of_remaining_we_just_did && fraction_of_remaining_we_just_did<=1);
            int progress_just_done = fraction_of_remaining_we_just_did * progress_allocation;
            progress_allocation -= progress_just_done;
            // ignore the result from update_progress here, we'll call update_progress again below, which will give us the nonzero result.
            int r = update_progress(progress_just_done, bl, "in file merge");
            if (0) printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
        }
    }
    if (result == 0 && uncompressed_buffer != nullptr && wb.ndone > 0) {
        result = bl_finish_compressed_write(dest_stream, &wb);
    }
    if (result==0 && to_q) {
        int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
        if (r!=0) 
            result = r;
        else 
            output_rowset = NULL;
    }
    // cleanup
    if (uncompressed_buffer) {
        toku_free(uncompressed_buffer);
    }
    for (int i=0; i<n_sources; i++) {
        toku_free(keys[i].data);  keys[i].data = NULL;
        toku_free(vals[i].data);  vals[i].data = NULL;
    }
    if (output_rowset) {
        destroy_rowset(output_rowset);
        toku_free(output_rowset);
    }
    if (pq) { pqueue_free(pq); pq=NULL; }
    toku_free(pq_nodes);
    {
        int r = update_progress(progress_allocation, bl, "end of merge_some_files");
        //printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
        if (r!=0 && result==0) result = r;
    }
    return result;
}
static int merge_some_files (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation)
{
    int result = 0;
    DBUFIO_FILESET bfs = NULL;
    int *MALLOC_N(n_sources, fds);
    if (fds == NULL)
        result = get_error_errno();
    if (result == 0) {
        for (int i = 0; i < n_sources; i++) {
            int r = fileno(
                toku_bl_fidx2file(bl, srcs_fidxs[i])->file);  // we rely on the
                                                              // fact that when
                                                              // the files are
                                                              // closed, the fd
                                                              // is also closed.
            if (r == -1) {
                result = get_error_errno();
                break;
            }
            fds[i] = r;
        }
    }
    if (result==0) {
        int r = create_dbufio_fileset(&bfs, n_sources, fds,
                memory_per_rowset_during_merge(bl, n_sources, to_q), bl->compress_intermediates);
        if (r!=0) { result = r; }
    }
        
    if (result==0) {
        int r = toku_merge_some_files_using_dbufio (to_q, dest_data, q, n_sources, bfs, srcs_fidxs, bl, which_db, dest_db, compare, progress_allocation);
        if (r!=0) { result = r; }
    }
    if (bfs!=NULL) {
        if (result != 0)
            (void) panic_dbufio_fileset(bfs, result);
        int r = destroy_dbufio_fileset(bfs);
        if (r!=0 && result==0) result=r;
        bfs = NULL;
    }
    if (fds!=NULL) {
        toku_free(fds);
        fds = NULL;
    }
    return result;
}
static int int_min (int a, int b)
{
    if (a<b) return a;
    else return b;
}
static int n_passes (int N, int B) {
    int result = 0;
    while (N>1) {
        N = (N+B-1)/B;
        result++;
    }
    return result;
}
int merge_files (struct merge_fileset *fs,
                 FTLOADER bl,
                 // These are needed for the comparison function and error callback.
                 int which_db, DB *dest_db, ft_compare_func compare,
                 int progress_allocation,
                 // Write rowsets into this queue.
                 QUEUE output_q
                 )
/* Effect:  Given a fileset, merge all the files writing all the answers into a queue.
 *   All the files in fs, and any temporary files will be closed and unlinked (and the fileset will be empty)
 * Return value: 0 on success, otherwise an error number.
 *   On error *fs will contain no open files.  All the files (including any temporary files) will be closed and unlinked.
 *    (however the fs will still need to be deallocated.)
 */
{
    //printf(" merge_files %d files\n", fs->n_temp_files);
    //printf(" merge_files use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
    const int final_mergelimit   = (size_factor == 1) ? 4 : merge_fanin(bl, true); // try for a merge to the leaf level
    const int earlier_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, false); // try for a merge at nonleaf.
    int n_passes_left  = (fs->n_temp_files<=final_mergelimit)
        ? 1
        : 1+n_passes((fs->n_temp_files+final_mergelimit-1)/final_mergelimit, earlier_mergelimit);
    // printf("%d files, %d on last pass, %d on earlier passes, %d passes\n", fs->n_temp_files, final_mergelimit, earlier_mergelimit, n_passes_left);
    int result = 0;
    while (fs->n_temp_files > 0) {
        int progress_allocation_for_this_pass = progress_allocation/n_passes_left;
        progress_allocation -= progress_allocation_for_this_pass;
        //printf("%s:%d n_passes_left=%d progress_allocation_for_this_pass=%d\n", __FILE__, __LINE__, n_passes_left, progress_allocation_for_this_pass);
        invariant(fs->n_temp_files>0);
        struct merge_fileset next_file_set;
        bool to_queue = (bool)(fs->n_temp_files <= final_mergelimit);
        init_merge_fileset(&next_file_set);
        while (fs->n_temp_files>0) {
            // grab some files and merge them.
            int n_to_merge = int_min(to_queue?final_mergelimit:earlier_mergelimit, fs->n_temp_files);
            // We are about to do n_to_merge/n_temp_files of the remaining for this pass.
            int progress_allocation_for_this_subpass = progress_allocation_for_this_pass * (double)n_to_merge / (double)fs->n_temp_files;
            // printf("%s:%d progress_allocation_for_this_subpass=%d n_temp_files=%d b=%llu\n", __FILE__, __LINE__, progress_allocation_for_this_subpass, fs->n_temp_files, (long long unsigned) memory_per_rowset_during_merge(bl, n_to_merge, to_queue));
            progress_allocation_for_this_pass -= progress_allocation_for_this_subpass;
            //printf("%s:%d merging\n", __FILE__, __LINE__);
            FIDX merged_data = FIDX_NULL;
            FIDX *XMALLOC_N(n_to_merge, data_fidxs);
            for (int i=0; i<n_to_merge; i++) {
                data_fidxs[i] = FIDX_NULL;
            }
            for (int i=0; i<n_to_merge; i++) {
                int idx = fs->n_temp_files -1 -i;
                FIDX fidx = fs->data_fidxs[idx];
                result = ft_loader_fi_reopen(&bl->file_infos, fidx, "r");
                if (result) break;
                data_fidxs[i] = fidx;
            }
            if (result==0 && !to_queue) {
                result = extend_fileset(bl, &next_file_set,  &merged_data);
            }
            if (result==0) {
                result = merge_some_files(to_queue, merged_data, output_q, n_to_merge, data_fidxs, bl, which_db, dest_db, compare, progress_allocation_for_this_subpass);
                // if result!=0, fall through
                if (result==0) {
                    /*nothing*/;// this is gratuitous, but we need something to give code coverage tools to help us know that it's important to distinguish between result==0 and result!=0
                }
            }
            //printf("%s:%d merged\n", __FILE__, __LINE__);
            for (int i=0; i<n_to_merge; i++) {
                if (!fidx_is_null(data_fidxs[i])) {
                    {
                        int r = ft_loader_fi_close(&bl->file_infos, data_fidxs[i], true);
                        if (r!=0 && result==0) result = r;
                    }
                    {
                        int r = ft_loader_fi_unlink(&bl->file_infos, data_fidxs[i]);
                        if (r!=0 && result==0) result = r;
                    }
                    data_fidxs[i] = FIDX_NULL;
                }
            }
            fs->n_temp_files -= n_to_merge;
            if (!to_queue && !fidx_is_null(merged_data)) {
                int r = ft_loader_fi_close(&bl->file_infos, merged_data, true);
                if (r!=0 && result==0) result = r;
            }
            toku_free(data_fidxs);
            if (result!=0) break;
        }
        destroy_merge_fileset(fs);
        *fs = next_file_set;
        // Update the progress
        n_passes_left--;
        if (result==0) { invariant(progress_allocation_for_this_pass==0); }
        if (result!=0) break;
    }
    if (result) ft_loader_set_panic(bl, result, true, which_db, nullptr, nullptr);
    {
        int r = toku_queue_eof(output_q);
        if (r!=0 && result==0) result = r;
    }
    // It's conceivable that the progress_allocation could be nonzero (for example if bl->N==0)
    {
        int r = update_progress(progress_allocation, bl, "did merge_files");
        if (r!=0 && result==0) result = r;
    }
    return result;
}
struct subtree_info {
    int64_t block;
};
struct subtrees_info {
    int64_t next_free_block;
    int64_t n_subtrees;       // was n_blocks
    int64_t n_subtrees_limit;
    struct subtree_info *subtrees;
};
static void subtrees_info_init(struct subtrees_info *p) {
    p->next_free_block = p->n_subtrees = p->n_subtrees_limit = 0;
    p->subtrees = NULL;
}
static void subtrees_info_destroy(struct subtrees_info *p) {
    toku_free(p->subtrees);
    p->subtrees = NULL;
}
static void allocate_node (struct subtrees_info *sts, int64_t b) {
    if (sts->n_subtrees >= sts->n_subtrees_limit) {
        sts->n_subtrees_limit *= 2;
        XREALLOC_N(sts->n_subtrees_limit, sts->subtrees);
    }
    sts->subtrees[sts->n_subtrees].block = b;
    sts->n_subtrees++;
}
// dbuf will always contained 512-byte aligned buffer, but the length might not be a multiple of 512 bytes.  If that's what you want, then pad it.
struct dbuf {
    unsigned char *buf;
    int buflen;
    int off;
    int error;
};
struct leaf_buf {
    BLOCKNUM blocknum;
    TXNID xid;
    uint64_t nkeys, ndata, dsize;
    FTNODE node;
    XIDS xids;
    uint64_t off;
};
struct translation {
    int64_t off, size;
};
struct dbout {
    int fd;
    toku_off_t current_off;
    int64_t n_translations;
    int64_t n_translations_limit;
    struct translation *translation;
    toku_mutex_t mutex;
    FT ft;
};
static inline void dbout_init(struct dbout *out, FT ft) {
    out->fd = -1;
    out->current_off = 0;
    out->n_translations = out->n_translations_limit = 0;
    out->translation = NULL;
    toku_mutex_init(*loader_out_mutex_key, &out->mutex, nullptr);
    out->ft = ft;
}
static inline void dbout_destroy(struct dbout *out) {
    if (out->fd >= 0) {
        toku_os_close(out->fd);
        out->fd = -1;
    }
    toku_free(out->translation);
    out->translation = NULL;
    toku_mutex_destroy(&out->mutex);
}
static inline void dbout_lock(struct dbout *out) {
    toku_mutex_lock(&out->mutex);
}
static inline void dbout_unlock(struct dbout *out) {
    toku_mutex_unlock(&out->mutex);
}
static void seek_align_locked(struct dbout *out) {
    toku_off_t old_current_off = out->current_off;
    int alignment = 4096;
    out->current_off += alignment-1;
    out->current_off &= ~(alignment-1);
    toku_off_t r = lseek(out->fd, out->current_off, SEEK_SET);
    invariant(r==out->current_off);
    invariant(out->current_off >= old_current_off);
    invariant(out->current_off < old_current_off+alignment);
    invariant(out->current_off % alignment == 0);
}
static void seek_align(struct dbout *out) {
    dbout_lock(out);
    seek_align_locked(out);
    dbout_unlock(out);
}
static void dbuf_init (struct dbuf *dbuf) {
    dbuf->buf = 0;
    dbuf->buflen = 0;
    dbuf->off = 0;
    dbuf->error = 0;
}
static void dbuf_destroy (struct dbuf *dbuf) {
    toku_free(dbuf->buf); dbuf->buf = NULL;
}
static int allocate_block (struct dbout *out, int64_t *ret_block_number)
// Return the new block number
{
    int result = 0;
    dbout_lock(out);
    int64_t block_number = out->n_translations;
    if (block_number >= out->n_translations_limit) {
        int64_t old_n_translations_limit = out->n_translations_limit;
        struct translation *old_translation = out->translation;
        if (out->n_translations_limit==0) {
            out->n_translations_limit = 1;
        } else {
            out->n_translations_limit *= 2;
        }
        REALLOC_N(out->n_translations_limit, out->translation);
        if (out->translation == NULL) {
            result = get_error_errno();
            invariant(result);
            out->n_translations_limit = old_n_translations_limit;
            out->translation = old_translation;
            goto cleanup;
        }
    }
    out->n_translations++;
    *ret_block_number = block_number;
cleanup:
    dbout_unlock(out);
    return result;
}
static void putbuf_bytes (struct dbuf *dbuf, const void *bytes, int nbytes) {
    if (!dbuf->error && dbuf->off + nbytes > dbuf->buflen) {
        unsigned char *oldbuf = dbuf->buf;
        int oldbuflen = dbuf->buflen;
        dbuf->buflen += dbuf->off + nbytes;
        dbuf->buflen *= 2;
        REALLOC_N_ALIGNED(512, dbuf->buflen, dbuf->buf);
        if (dbuf->buf == NULL) {
            dbuf->error = get_error_errno();
            dbuf->buf = oldbuf;
            dbuf->buflen = oldbuflen;
        }
    }
    if (!dbuf->error) {
        memcpy(dbuf->buf + dbuf->off, bytes, nbytes);
        dbuf->off += nbytes;
    }
}
static void putbuf_int32 (struct dbuf *dbuf, int v) {
    putbuf_bytes(dbuf, &v, 4);
}
static void putbuf_int64 (struct dbuf *dbuf, long long v) {
    putbuf_int32(dbuf, v>>32);
    putbuf_int32(dbuf, v&0xFFFFFFFF);
}
static struct leaf_buf *start_leaf (struct dbout *out, const DESCRIPTOR UU(desc), int64_t lblocknum, TXNID xid, uint32_t UU(target_nodesize)) {
    invariant(lblocknum < out->n_translations_limit);
    struct leaf_buf *XMALLOC(lbuf);
    lbuf->blocknum.b = lblocknum;
    lbuf->xid = xid;
    lbuf->nkeys = lbuf->ndata = lbuf->dsize = 0;
    lbuf->off = 0;
    lbuf->xids = toku_xids_get_root_xids();
    if (xid != TXNID_NONE) {
        XIDS new_xids = NULL;
        int r = toku_xids_create_child(lbuf->xids, &new_xids, xid); 
        assert(r == 0 && new_xids);
        toku_xids_destroy(&lbuf->xids);
        lbuf->xids = new_xids;
    }
    FTNODE XMALLOC(node);
    toku_initialize_empty_ftnode(node, lbuf->blocknum, 0 /*height*/, 1 /*basement nodes*/, FT_LAYOUT_VERSION, 0);
    BP_STATE(node, 0) = PT_AVAIL;
    lbuf->node = node;
    return lbuf;
}
static void finish_leafnode(
    struct dbout* out,
    struct leaf_buf* lbuf,
    int progress_allocation,
    FTLOADER bl,
    uint32_t target_basementnodesize,
    enum toku_compression_method target_compression_method);
static int write_nonleaves(
    FTLOADER bl,
    FIDX pivots_fidx,
    struct dbout* out,
    struct subtrees_info* sts,
    const DESCRIPTOR descriptor,
    uint32_t target_nodesize,
    uint32_t target_basementnodesize,
    enum toku_compression_method target_compression_method);
static void add_pair_to_leafnode(
    struct leaf_buf* lbuf,
    unsigned char* key,
    int keylen,
    unsigned char* val,
    int vallen,
    int this_leafentry_size,
    STAT64INFO stats_to_update,
    int64_t* logical_rows_delta);
static int write_translation_table(
    struct dbout* out,
    long long* off_of_translation_p);
static int write_header(
    struct dbout* out,
    long long translation_location_on_disk,
    long long translation_size_on_disk);
static void drain_writer_q(QUEUE q) {
    void *item;
    while (1) {
        int r = toku_queue_deq(q, &item, NULL, NULL);
        if (r == EOF)
            break;
        invariant(r == 0);
        struct rowset *rowset = (struct rowset *) item;
        destroy_rowset(rowset);
        toku_free(rowset);
    }
}
static void cleanup_maxkey(DBT *maxkey) {
    if (maxkey->flags == DB_DBT_REALLOC) {
        toku_free(maxkey->data);
        maxkey->data = NULL;
        maxkey->flags = 0;
    }
}
static void update_maxkey(DBT *maxkey, DBT *key) {
    cleanup_maxkey(maxkey);
    *maxkey = *key;
}
static int copy_maxkey(DBT *maxkey) {
    DBT newkey;
    toku_init_dbt_flags(&newkey, DB_DBT_REALLOC);
    int r = toku_dbt_set(maxkey->size, maxkey->data, &newkey, NULL);
    if (r == 0)
        update_maxkey(maxkey, &newkey);
    return r;
}
static int toku_loader_write_ft_from_q (FTLOADER bl,
                                         const DESCRIPTOR descriptor,
                                         int fd, // write to here
                                         int progress_allocation,
                                         QUEUE q,
                                         uint64_t total_disksize_estimate,
                                         int which_db,
                                         uint32_t target_nodesize,
                                         uint32_t target_basementnodesize,
                                         enum toku_compression_method target_compression_method,
                                         uint32_t target_fanout)
// Effect: Consume a sequence of rowsets work from a queue, creating a fractal tree.  Closes fd.
{
    // set the number of fractal tree writer threads so that we can partition memory in the merger
    ft_loader_set_fractal_workers_count(bl);
    int result = 0;
    int r;
    // The pivots file will contain all the pivot strings (in the form <size(32bits)> <data>)
    // The pivots_fname is the name of the pivots file.
    // Note that the pivots file will have one extra pivot in it (the last key in the dictionary) which will not appear in the tree.
    FIDX pivots_file;  // the file
    r = ft_loader_open_temp_file (bl, &pivots_file);
    if (r) {
        result = r; 
        drain_writer_q(q); 
        r = toku_os_close(fd);
        assert_zero(r);
        return result;
    }
    TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
    TXNID root_xid_that_created = TXNID_NONE;
    if (bl->root_xids_that_created)
        root_xid_that_created = bl->root_xids_that_created[which_db];
    // TODO: (Zardosht/Yoni/Leif), do this code properly
    struct ft ft;
    toku_ft_init(&ft, (BLOCKNUM){0}, bl->load_lsn, root_xid_that_created, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
    struct dbout out;
    ZERO_STRUCT(out);
    dbout_init(&out, &ft);
    out.fd = fd;
    out.current_off = 8192; // leave 8K reserved at beginning
    out.n_translations = 3; // 3 translations reserved at the beginning
    out.n_translations_limit = 4;
    MALLOC_N(out.n_translations_limit, out.translation);
    if (out.translation == NULL) {
        result = get_error_errno();
        dbout_destroy(&out);
        drain_writer_q(q);
        toku_free(ft.h);
        return result;
    }
    // The blocks_array will contain all the block numbers that correspond to the pivots.  Generally there should be one more block than pivot.
    struct subtrees_info sts; 
    subtrees_info_init(&sts);
    sts.next_free_block  = 3;
    sts.n_subtrees       = 0;
    sts.n_subtrees_limit = 1;
    MALLOC_N(sts.n_subtrees_limit, sts.subtrees);
    if (sts.subtrees == NULL) {
        result = get_error_errno();
        subtrees_info_destroy(&sts);
        dbout_destroy(&out);
        drain_writer_q(q);
        toku_free(ft.h);
        return result;
    }
    out.translation[0].off = -2LL; out.translation[0].size = 0; // block 0 is NULL
    invariant(1==RESERVED_BLOCKNUM_TRANSLATION);
    invariant(2==RESERVED_BLOCKNUM_DESCRIPTOR);
    out.translation[1].off = -1;                                // block 1 is the block translation, filled in later
    out.translation[2].off = -1;                                // block 2 is the descriptor
    seek_align(&out);
    int64_t lblock = 0;  // make gcc --happy
    result = allocate_block(&out, &lblock);
    invariant(result == 0); // can not fail since translations reserved above
    TXNID le_xid = leafentry_xid(bl, which_db);
    struct leaf_buf *lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
    uint64_t n_rows_remaining = bl->n_rows;
    uint64_t old_n_rows_remaining = bl->n_rows;
    uint64_t  used_estimate = 0;  // how much diskspace have we used up?
    DBT maxkey = make_dbt(0, 0); // keep track of the max key of the current node
    STAT64INFO_S deltas = ZEROSTATS;
    // This is just a placeholder and not used in the loader, the real/accurate
    // stats will come out of 'deltas' because this loader is not pushing
    // messages down into the top of a fractal tree where the logical row count
    // is done, it is directly creating leaf entries so it must also take on
    // performing the logical row counting on its own
    int64_t logical_rows_delta = 0;
    while (result == 0) {
        void *item;
        {
            int rr = toku_queue_deq(q, &item, NULL, NULL);
            if (rr == EOF) break;
            if (rr != 0) {
                ft_loader_set_panic(bl, rr, true, which_db, nullptr, nullptr);
                break;
            }
        }
        struct rowset *output_rowset = (struct rowset *)item;
        for (unsigned int i = 0; i < output_rowset->n_rows; i++) {
            DBT key = make_dbt(output_rowset->data+output_rowset->rows[i].off,                               output_rowset->rows[i].klen);
            DBT val = make_dbt(output_rowset->data+output_rowset->rows[i].off + output_rowset->rows[i].klen, output_rowset->rows[i].vlen);
            size_t this_leafentry_size = ft_loader_leafentry_size(key.size, val.size, le_xid);
            used_estimate += this_leafentry_size;
            // Spawn off a node if
            //   a) there is at least one row in it, and
            //   b) this item would make the nodesize too big, or
            //   c) the remaining amount won't fit in the current node and the current node's data is more than the remaining amount
            uint64_t remaining_amount = total_disksize_estimate - used_estimate;
            uint64_t used_here = lbuf->off + 1000;             // leave 1000 for various overheads.
            uint64_t target_size = (target_nodesize*7L)/8;     // use only 7/8 of the node.
            uint64_t used_here_with_next_key = used_here + this_leafentry_size;
            if (lbuf->nkeys > 0 &&
                ((used_here_with_next_key >= target_size) || (used_here + remaining_amount >= target_size && lbuf->off > remaining_amount))) {
                int progress_this_node = progress_allocation * (double)(old_n_rows_remaining - n_rows_remaining)/(double)old_n_rows_remaining;
                progress_allocation -= progress_this_node;
                old_n_rows_remaining = n_rows_remaining;
                allocate_node(&sts, lblock);
                invariant(maxkey.data != NULL);
                if ((r = bl_write_dbt(&maxkey, pivots_stream, NULL, nullptr, bl))) {
                    ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
                    if (result == 0) result = r;
                    break;
                }
                finish_leafnode(&out, lbuf, progress_this_node, bl, target_basementnodesize, target_compression_method);
                lbuf = NULL;
                r = allocate_block(&out, &lblock);
                if (r != 0) {
                    ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
                    if (result == 0) result = r;
                    break;
                }
                lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
            }
            add_pair_to_leafnode(
                lbuf,
                (unsigned char*)key.data,
                key.size,
                (unsigned char*)val.data,
                val.size,
                this_leafentry_size,
                &deltas,
                &logical_rows_delta);
            n_rows_remaining--;
            update_maxkey(&maxkey, &key); // set the new maxkey to the current key
        }
        r = copy_maxkey(&maxkey); // make a copy of maxkey before the rowset is destroyed
        if (result == 0)
            result = r;
        destroy_rowset(output_rowset);
        toku_free(output_rowset);
        if (result == 0)
            result = ft_loader_get_error(&bl->error_callback); // check if an error was posted and terminate this quickly
    }
    if (deltas.numrows || deltas.numbytes) {
        toku_ft_update_stats(&ft.in_memory_stats, deltas);
    }
    // As noted above, the loader directly creates a tree structure without
    // going through the higher level ft API and tus bypasses the logical row
    // counting performed at that level. So, we must manually update the logical
    // row count with the info we have from the physical delta that comes out of
    // add_pair_to_leafnode.
    toku_ft_adjust_logical_row_count(&ft, deltas.numrows);
    cleanup_maxkey(&maxkey);
    if (lbuf) {
        allocate_node(&sts, lblock);
        {
            int p = progress_allocation/2;
            finish_leafnode(&out, lbuf, p, bl, target_basementnodesize, target_compression_method);
            progress_allocation -= p;
        }
    }
    if (result == 0) {
        result = ft_loader_get_error(&bl->error_callback); // if there were any prior errors then exit
    }
    if (result != 0) goto error;
    // We haven't paniced, so the sum should add up.
    invariant(used_estimate == total_disksize_estimate);
    {
        DBT key = make_dbt(0,0); // must write an extra DBT into the pivots file.
        r = bl_write_dbt(&key, pivots_stream, NULL, nullptr, bl);
        if (r) { 
            result = r; goto error;
        }
    }
    r = write_nonleaves(bl, pivots_file, &out, &sts, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
    if (r) {
        result = r; goto error;
    }
    {
        invariant(sts.n_subtrees==1);
        out.ft->h->root_blocknum = make_blocknum(sts.subtrees[0].block);
        toku_free(sts.subtrees); sts.subtrees = NULL;
        // write the descriptor
        {
            seek_align(&out);
            invariant(out.n_translations >= RESERVED_BLOCKNUM_DESCRIPTOR);
            invariant(out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off == -1);
            out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off = out.current_off;
            size_t desc_size = 4+toku_serialize_descriptor_size(descriptor);
            invariant(desc_size>0);
            out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].size = desc_size;
            struct wbuf wbuf;
            char *XMALLOC_N(desc_size, buf);
            wbuf_init(&wbuf, buf, desc_size);
            toku_serialize_descriptor_contents_to_wbuf(&wbuf, descriptor);
            uint32_t checksum = toku_x1764_finish(&wbuf.checksum);
            wbuf_int(&wbuf, checksum);
            invariant(wbuf.ndone==desc_size);
            r = toku_os_write(out.fd, wbuf.buf, wbuf.ndone);
            out.current_off += desc_size;
            toku_free(buf);    // wbuf_destroy
            if (r) {
                result = r; goto error;
            }
        }
        long long off_of_translation;
        r = write_translation_table(&out, &off_of_translation);
        if (r) {
            result = r; goto error;
        }
        r = write_header(&out, off_of_translation, (out.n_translations+1)*16+4);
        if (r) {
            result = r; goto error;
        }
        r = update_progress(progress_allocation, bl, "wrote tdb file");
        if (r) {
            result = r; goto error;
        }
    }
    r = fsync(out.fd);
    if (r) {
        result = get_error_errno(); goto error;
    }
    // Do we need to pay attention to user_said_stop?  Or should the guy at the other end of the queue pay attention and send in an EOF.
 error:
    {
        int rr = toku_os_close(fd);
        if (rr)
            result = get_error_errno();
    }
    out.fd = -1;
    subtrees_info_destroy(&sts);
    dbout_destroy(&out);
    drain_writer_q(q);
    toku_free(ft.h);
    return result;
}
int toku_loader_write_ft_from_q_in_C (FTLOADER                bl,
                                      const DESCRIPTOR descriptor,
                                      int                      fd, // write to here
                                      int                      progress_allocation,
                                      QUEUE                    q,
                                      uint64_t                 total_disksize_estimate,
                                      int                      which_db,
                                      uint32_t                 target_nodesize,
                                      uint32_t                 target_basementnodesize,
                                      enum toku_compression_method target_compression_method,
                                      uint32_t                 target_fanout)
// This is probably only for testing.
{
    target_nodesize = target_nodesize == 0 ? default_loader_nodesize : target_nodesize;
    target_basementnodesize = target_basementnodesize == 0 ? default_loader_basementnodesize : target_basementnodesize;
    return toku_loader_write_ft_from_q (bl, descriptor, fd, progress_allocation, q, total_disksize_estimate, which_db, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
}
static void* fractal_thread (void *ftav) {
    struct fractal_thread_args *fta = (struct fractal_thread_args *)ftav;
    int r = toku_loader_write_ft_from_q(fta->bl,
                                        fta->descriptor,
                                        fta->fd,
                                        fta->progress_allocation,
                                        fta->q,
                                        fta->total_disksize_estimate,
                                        fta->which_db,
                                        fta->target_nodesize,
                                        fta->target_basementnodesize,
                                        fta->target_compression_method,
                                        fta->target_fanout);
    fta->errno_result = r;
    toku_instr_delete_current_thread();
    return toku_pthread_done(nullptr);
}
static int loader_do_i(FTLOADER bl,
                       int which_db,
                       DB *dest_db,
                       ft_compare_func compare,
                       const DESCRIPTOR descriptor,
                       const char *new_fname,
                       int progress_allocation  // how much progress do I need
                                                // to add into bl->progress by
                                                // the end..
                       )
/* Effect: Handle the file creating for one particular DB in the bulk loader. */
/* Requires: The data is fully extracted, so we can do merges out of files and
   write the ft file. */
{
    //printf("doing i use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
    struct merge_fileset *fs = &(bl->fs[which_db]);
    struct rowset *rows = &(bl->rows[which_db]);
    invariant(rows->data==NULL); // the rows should be all cleaned up already
    int r = toku_queue_create(&bl->fractal_queues[which_db], FRACTAL_WRITER_QUEUE_DEPTH);
    if (r) goto error;
    {
        mode_t mode = S_IRUSR + S_IWUSR + S_IRGRP + S_IWGRP;
        int fd = toku_os_open(new_fname,
                              O_RDWR | O_CREAT | O_BINARY,
                              mode,
                              *tokudb_file_load_key);  // #2621
        if (fd < 0) {
            r = get_error_errno();
            goto error;
        }
        uint32_t target_nodesize, target_basementnodesize, target_fanout;
        enum toku_compression_method target_compression_method;
        r = dest_db->get_pagesize(dest_db, &target_nodesize);
        invariant_zero(r);
        r = dest_db->get_readpagesize(dest_db, &target_basementnodesize);
        invariant_zero(r);
        r = dest_db->get_compression_method(dest_db, &target_compression_method);
        invariant_zero(r);
        r = dest_db->get_fanout(dest_db, &target_fanout);
        invariant_zero(r);
        if (bl->allow_puts) {
            // a better allocation would be to figure out roughly how many merge passes we'll need.
            int allocation_for_merge = (2*progress_allocation)/3;
            progress_allocation -= allocation_for_merge;
            
            // This structure must stay live until the join below.
            struct fractal_thread_args fta = {bl,
                                              descriptor,
                                              fd,
                                              progress_allocation,
                                              bl->fractal_queues[which_db],
                                              bl->extracted_datasizes[which_db],
                                              0,
                                              which_db,
                                              target_nodesize,
                                              target_basementnodesize,
                                              target_compression_method,
                                              target_fanout};
            r = toku_pthread_create(*fractal_thread_key,
                                    bl->fractal_threads + which_db,
                                    nullptr,
                                    fractal_thread,
                                    static_cast<void *>(&fta));
            if (r) {
                int r2 __attribute__((__unused__)) =
                    toku_queue_destroy(bl->fractal_queues[which_db]);
                // ignore r2, since we already have an error
                bl->fractal_queues[which_db] = nullptr;
                goto error;
            }
            invariant(bl->fractal_threads_live[which_db]==false);
            bl->fractal_threads_live[which_db] = true;
            r = merge_files(fs, bl, which_db, dest_db, compare, allocation_for_merge, bl->fractal_queues[which_db]);
            {
                void *toku_pthread_retval;
                int r2 = toku_pthread_join(bl->fractal_threads[which_db], &toku_pthread_retval);
                invariant(fta.bl==bl); // this is a gratuitous assertion to make sure that the fta struct is still live here.  A previous bug put that struct into a C block statement.
                resource_assert_zero(r2);
                invariant(toku_pthread_retval==NULL);
                invariant(bl->fractal_threads_live[which_db]);
                bl->fractal_threads_live[which_db] = false;
                if (r == 0) r = fta.errno_result;
            }
        } else {
            toku_queue_eof(bl->fractal_queues[which_db]);
            r = toku_loader_write_ft_from_q(bl, descriptor, fd, progress_allocation, 
                                            bl->fractal_queues[which_db], bl->extracted_datasizes[which_db], which_db, 
                                            target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
        }
    }
 error: // this is the cleanup code.  Even if r==0 (no error) we fall through to here.
    if (bl->fractal_queues[which_db]) {
        int r2 = toku_queue_destroy(bl->fractal_queues[which_db]);
        invariant(r2==0);
        bl->fractal_queues[which_db] = nullptr;
    }
    // if we get here we need to free up the merge_fileset and the rowset, as well as the keys
    toku_free(rows->data); rows->data = NULL;
    toku_free(rows->rows); rows->rows = NULL;
    toku_free(fs->data_fidxs); fs->data_fidxs = NULL;
    return r;
}
static int toku_ft_loader_close_internal (FTLOADER bl)
/* Effect: Close the bulk loader.
 * Return all the file descriptors in the array fds. */
{
    int result = 0;
    if (bl->N == 0)
        result = update_progress(PROGRESS_MAX, bl, "done");
    else {
        int remaining_progress = PROGRESS_MAX;
        for (int i = 0; i < bl->N; i++) {
            // Take the unallocated progress and divide it among the unfinished jobs.
            // This calculation allocates all of the PROGRESS_MAX bits of progress to some job.
            int allocate_here = remaining_progress/(bl->N - i);
            remaining_progress -= allocate_here;
            char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[i]);
            result = loader_do_i(bl, i, bl->dbs[i], bl->bt_compare_funs[i], bl->descriptors[i], fname_in_cwd, allocate_here);
            toku_free(fname_in_cwd);
            if (result != 0) 
                goto error;
            invariant(0 <= bl->progress && bl->progress <= PROGRESS_MAX);
        }
        if (result==0) invariant(remaining_progress==0);
        // fsync the directory containing the new tokudb files.
        char *fname0 = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[0]);
        int r = toku_fsync_directory(fname0);
        toku_free(fname0);
        if (r != 0) {
            result = r; goto error;
        }
    }
    invariant(bl->file_infos.n_files_open   == 0);
    invariant(bl->file_infos.n_files_extant == 0);
    invariant(bl->progress == PROGRESS_MAX);
 error:
    toku_ft_loader_internal_destroy(bl, (bool)(result!=0));
    return result;
}
int toku_ft_loader_close (FTLOADER bl,
                           ft_loader_error_func error_function, void *error_extra,
                           ft_loader_poll_func  poll_function,  void *poll_extra
                           )
{
    int result = 0;
    int r;
    //printf("Closing\n");
    ft_loader_set_error_function(&bl->error_callback, error_function, error_extra);
    ft_loader_set_poll_function(&bl->poll_callback, poll_function, poll_extra);
    if (bl->extractor_live) {
        r = finish_extractor(bl);
        if (r)
            result = r;
        invariant(!bl->extractor_live);
    } else {
        r = finish_primary_rows(bl);
        if (r)
            result = r;
    }
    // check for an error during extraction
    if (result == 0) {
        r = ft_loader_call_error_function(&bl->error_callback);
        if (r)
            result = r;
    }
    if (result == 0) {
        r = toku_ft_loader_close_internal(bl);
        if (r && result == 0)
            result = r;
    } else
        toku_ft_loader_internal_destroy(bl, true);
    return result;
}
int toku_ft_loader_finish_extractor(FTLOADER bl) {
    int result = 0;
    if (bl->extractor_live) {
        int r = finish_extractor(bl);
        if (r)
            result = r;
        invariant(!bl->extractor_live);
    } else
        result = EINVAL;
    return result;
}
int toku_ft_loader_abort(FTLOADER bl, bool is_error) 
/* Effect : Abort the bulk loader, free ft_loader resources */
{
    int result = 0;
    // cleanup the extractor thread
    if (bl->extractor_live) {
        int r = finish_extractor(bl);
        if (r)
            result = r;
        invariant(!bl->extractor_live);
    }
    for (int i = 0; i < bl->N; i++)
        invariant(!bl->fractal_threads_live[i]);
    toku_ft_loader_internal_destroy(bl, is_error);
    return result;
}
int toku_ft_loader_get_error(FTLOADER bl, int *error) {
    *error = ft_loader_get_error(&bl->error_callback);
    return 0;
}
static void add_pair_to_leafnode(
    struct leaf_buf* lbuf,
    unsigned char* key,
    int keylen,
    unsigned char* val,
    int vallen,
    int this_leafentry_size,
    STAT64INFO stats_to_update,
    int64_t* logical_rows_delta) {
    lbuf->nkeys++;
    lbuf->ndata++;
    lbuf->dsize += keylen + vallen;
    lbuf->off += this_leafentry_size;
    // append this key val pair to the leafnode 
    // #3588 TODO just make a clean ule and append it to the omt
    // #3588 TODO can do the rebalancing here and avoid a lot of work later
    FTNODE leafnode = lbuf->node;
    uint32_t idx = BLB_DATA(leafnode, 0)->num_klpairs();
    DBT kdbt, vdbt;
    ft_msg msg(
        toku_fill_dbt(&kdbt, key, keylen),
        toku_fill_dbt(&vdbt, val, vallen),
        FT_INSERT,
        ZERO_MSN,
        lbuf->xids);
    uint64_t workdone = 0;
    // there's no mvcc garbage in a bulk-loaded FT, so there's no need to pass useful gc info
    txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true);
    toku_ft_bn_apply_msg_once(
        BLB(leafnode, 0),
        msg,
        idx,
        keylen,
        NULL,
        &gc_info,
        &workdone,
        stats_to_update,
        logical_rows_delta);
}
static int write_literal(struct dbout *out, void*data,  size_t len) {
    invariant(out->current_off%4096==0);
    int result = toku_os_write(out->fd, data, len);
    if (result == 0)
        out->current_off+=len;
    return result;
}
static void finish_leafnode(
    struct dbout* out,
    struct leaf_buf* lbuf,
    int progress_allocation,
    FTLOADER bl,
    uint32_t target_basementnodesize,
    enum toku_compression_method target_compression_method) {
    int result = 0;
    // serialize leaf to buffer
    size_t serialized_leaf_size = 0;
    size_t uncompressed_serialized_leaf_size = 0;
    char *serialized_leaf = NULL;
    FTNODE_DISK_DATA ndd = NULL;
    result = toku_serialize_ftnode_to_memory(
        lbuf->node,
        &ndd,
        target_basementnodesize,
        target_compression_method,
        true,
        true,
        &serialized_leaf_size,
        &uncompressed_serialized_leaf_size,
        &serialized_leaf);
    // write it out
    if (result == 0) {
        dbout_lock(out);
        long long off_of_leaf = out->current_off;
        result = write_literal(out, serialized_leaf, serialized_leaf_size);
        if (result == 0) {
            out->translation[lbuf->blocknum.b].off  = off_of_leaf;
            out->translation[lbuf->blocknum.b].size = serialized_leaf_size;
            seek_align_locked(out);
        }
        dbout_unlock(out);
    }
    // free the node
    if (serialized_leaf) {
        toku_free(ndd);
        toku_free(serialized_leaf);
    }
    toku_ftnode_free(&lbuf->node);
    toku_xids_destroy(&lbuf->xids);
    toku_free(lbuf);
    //printf("Nodewrite %d (%.1f%%):", progress_allocation, 100.0*progress_allocation/PROGRESS_MAX);
    if (result == 0)
        result = update_progress(progress_allocation, bl, "wrote node");
    if (result)
        ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_translation_table (struct dbout *out, long long *off_of_translation_p) {
    seek_align(out);
    struct dbuf ttable;
    dbuf_init(&ttable);
    long long off_of_translation = out->current_off;
    long long bt_size_on_disk = out->n_translations * 16 + 20;
    putbuf_int64(&ttable, out->n_translations);    // number of records
    putbuf_int64(&ttable, -1LL); // the linked list
    out->translation[1].off = off_of_translation;
    out->translation[1].size = bt_size_on_disk;
    for (int i=0; i<out->n_translations; i++) {
        putbuf_int64(&ttable, out->translation[i].off);
        putbuf_int64(&ttable, out->translation[i].size);
    }
    unsigned int checksum = toku_x1764_memory(ttable.buf, ttable.off);
    putbuf_int32(&ttable, checksum);
    // pad it to 512 zeros
    long long encoded_length = ttable.off;
    {
        int nbytes_to_add = roundup_to_multiple(512, ttable.off) - encoded_length;
        char zeros[nbytes_to_add];
        for (int i=0; i<nbytes_to_add; i++) zeros[i]=0;
        putbuf_bytes(&ttable, zeros, nbytes_to_add);
    }
    int result = ttable.error;
    if (result == 0) {
        invariant(bt_size_on_disk==encoded_length);
        result = toku_os_pwrite(out->fd, ttable.buf, ttable.off, off_of_translation);
    }
    dbuf_destroy(&ttable);
    *off_of_translation_p = off_of_translation;
    return result;
}
static int write_header(
    struct dbout* out,
    long long translation_location_on_disk,
    long long translation_size_on_disk) {
    int result = 0;
    size_t size = toku_serialize_ft_size(out->ft->h);
    size_t alloced_size = roundup_to_multiple(512, size);
    struct wbuf wbuf;
    char *MALLOC_N_ALIGNED(512, alloced_size, buf);
    if (buf == NULL) {
        result = get_error_errno();
    } else {
        wbuf_init(&wbuf, buf, size);
        out->ft->h->on_disk_stats = out->ft->in_memory_stats;
        out->ft->h->on_disk_logical_rows = out->ft->in_memory_logical_rows;
        toku_serialize_ft_to_wbuf(&wbuf, out->ft->h, translation_location_on_disk, translation_size_on_disk);
        for (size_t i=size; i<alloced_size; i++) buf[i]=0; // initialize all those unused spots to zero
        if (wbuf.ndone != size)
            result = EINVAL;
        else {
            assert(wbuf.ndone <= alloced_size);
            result = toku_os_pwrite(out->fd, wbuf.buf, alloced_size, 0);
        }
        toku_free(buf);
    }
    return result;
}
static int read_some_pivots (FIDX pivots_file, int n_to_read, FTLOADER bl,
                      /*out*/ DBT pivots[/*n_to_read*/])
// pivots is an array to be filled in.  The pivots array is uninitialized.
{
    for (int i = 0; i < n_to_read; i++)
        pivots[i] = zero_dbt;
    TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
    int result = 0;
    for (int i = 0; i < n_to_read; i++) {
        int r = bl_read_dbt(&pivots[i], pivots_stream);
        if (r != 0) {
            result = r;
            break;
        }
    }
    return result;
}
static void delete_pivots(DBT pivots[], int n) {
    for (int i = 0; i < n; i++) 
        toku_free(pivots[i].data);
    toku_free(pivots);
}
static int setup_nonleaf_block (int n_children,
                                struct subtrees_info *subtrees,         FIDX pivots_file,        int64_t first_child_offset_in_subtrees,
                                struct subtrees_info *next_subtrees,    FIDX next_pivots_file,
                                struct dbout *out, FTLOADER bl,
                                /*out*/int64_t *blocknum,
                                /*out*/struct subtree_info **subtrees_info_p,
                                /*out*/DBT **pivots_p)
// Do the serial part of setting up a non leaf block.
//   Read the pivots out of the file, and store them in a newly allocated array of DBTs (returned in *pivots_p)  There are (n_blocks_to_use-1) of these.
//   Copy the final pivot into the next_pivots file instead of returning it.
//   Copy the subtree_info from the subtrees structure, and store them in a newly allocated array of subtree_infos (return in *subtrees_info_p).  There are n_blocks_to_use of these.
//   Allocate a block number and return it in *blocknum.
//   Store the blocknum in the next_blocks structure, so it can be combined with the pivots at the next level of the tree.
//   Update n_blocks_used and n_translations.
// This code cannot be called in parallel because of all the race conditions.
// The actual creation of the node can be called in parallel after this work is done.
{
    //printf("Nonleaf has children :"); for(int i=0; i<n_children; i++) printf(" %ld", subtrees->subtrees[i].block); printf("\n");
    int result = 0;
    
    DBT *MALLOC_N(n_children, pivots);
    if (pivots == NULL) {
        result = get_error_errno();
    }
    if (result == 0) {
        int r = read_some_pivots(pivots_file, n_children, bl, pivots);
        if (r)
            result = r;
    }
    if (result == 0) {
        TOKU_FILE *next_pivots_stream = toku_bl_fidx2file(bl, next_pivots_file);
        int r = bl_write_dbt(
            &pivots[n_children - 1], next_pivots_stream, NULL, nullptr, bl);
        if (r)
            result = r;
    }
    if (result == 0) {
        // The last pivot was written to the next_pivots file, so we free it now instead of returning it.
        toku_free(pivots[n_children-1].data);
        pivots[n_children-1] = zero_dbt;
        struct subtree_info *XMALLOC_N(n_children, subtrees_array);
        for (int i = 0; i < n_children; i++) {
            int64_t from_blocknum = first_child_offset_in_subtrees + i;
            subtrees_array[i] = subtrees->subtrees[from_blocknum];
        }
        int r = allocate_block(out, blocknum);
        if (r) {
            toku_free(subtrees_array);
            result = r;
        } else {
            allocate_node(next_subtrees, *blocknum);
            
            *pivots_p = pivots;
            *subtrees_info_p = subtrees_array;
        }
    }
    if (result != 0) {
        if (pivots) {
            delete_pivots(pivots, n_children); pivots = NULL;
        }
    }
    return result;
}
static void write_nonleaf_node (FTLOADER bl, struct dbout *out, int64_t blocknum_of_new_node, int n_children,
                                DBT *pivots, /* must free this array, as well as the things it points t */
                                struct subtree_info *subtree_info, int height, const DESCRIPTOR UU(desc), uint32_t UU(target_nodesize), uint32_t target_basementnodesize, enum toku_compression_method target_compression_method)
{
    //Nodes do not currently touch descriptors
    invariant(height > 0);
    int result = 0;
    FTNODE XMALLOC(node);
    toku_initialize_empty_ftnode(node, make_blocknum(blocknum_of_new_node), height, n_children,
                                  FT_LAYOUT_VERSION, 0);
    node->pivotkeys.create_from_dbts(pivots, n_children - 1);
    assert(node->bp);
    for (int i=0; i<n_children; i++) {
        BP_BLOCKNUM(node,i)  = make_blocknum(subtree_info[i].block); 
        BP_STATE(node,i) = PT_AVAIL;
    }
    FTNODE_DISK_DATA ndd = NULL;
    if (result == 0) {
        size_t n_bytes;
        size_t n_uncompressed_bytes;
        char *bytes;
        int r;
        r = toku_serialize_ftnode_to_memory(node, &ndd, target_basementnodesize, target_compression_method, true, true, &n_bytes, &n_uncompressed_bytes, &bytes);
        if (r) {
            result = r;
        } else {
            dbout_lock(out);
            out->translation[blocknum_of_new_node].off = out->current_off;
            out->translation[blocknum_of_new_node].size = n_bytes;
            //fprintf(stderr, "Wrote internal node at %ld (%ld bytes)\n", out->current_off, n_bytes);
            //for (uint32_t i=0; i<n_bytes; i++) { unsigned char b = bytes[i]; printf("%d:%02x (%d) ('%c')\n", i, b, b, (b>=' ' && b<128) ? b : '*'); }
            r = write_literal(out, bytes, n_bytes); 
            if (r)
                result = r;
            else
                seek_align_locked(out);
            dbout_unlock(out);
            toku_free(bytes);
        }
    }
    for (int i=0; i<n_children-1; i++) {
        toku_free(pivots[i].data);
    }
    for (int i=0; i<n_children; i++) {
        destroy_nonleaf_childinfo(BNC(node,i));
    }
    toku_free(pivots);
    // TODO: Should be using toku_destroy_ftnode_internals, which should be renamed to toku_ftnode_destroy
    toku_free(node->bp);
    node->pivotkeys.destroy();
    toku_free(node);
    toku_free(ndd);
    toku_free(subtree_info);
    if (result != 0)
        ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) {
    int result = 0;
    int height = 1;
    // Watch out for the case where we saved the last pivot but didn't write any more nodes out.
    // The trick is to look at blocks.n_blocks
    while (sts->n_subtrees > 1) {
        // If there is more than one block in blocks, then we must build another level of the tree.
        // we need to create a pivots file for the pivots of the next level.
        // and a blocks_array
        // So for example.
        //  1) we grab 16 pivots and 16 blocks.
        //  2) We put the 15 pivots and 16 blocks into an non-leaf node.
        //  3) We put the 16th pivot into the next pivots file.
        {
            int r =
                fseek(toku_bl_fidx2file(bl, pivots_fidx)->file, 0, SEEK_SET);
            if (r != 0) {
                return get_error_errno();
            }
        }
        FIDX next_pivots_file;
        { 
            int r = ft_loader_open_temp_file (bl, &next_pivots_file); 
            if (r != 0) { result = r; break; } 
        }
        struct subtrees_info next_sts; 
        subtrees_info_init(&next_sts);
        next_sts.n_subtrees = 0;
        next_sts.n_subtrees_limit = 1;
        XMALLOC_N(next_sts.n_subtrees_limit, next_sts.subtrees);
        const int n_per_block = 15;
        int64_t n_subtrees_used = 0;
        while (sts->n_subtrees - n_subtrees_used >= n_per_block*2) {
            // grab the first N_PER_BLOCK and build a node.
            DBT *pivots;
            int64_t blocknum_of_new_node = 0;
            struct subtree_info *subtree_info;
            int r = setup_nonleaf_block (n_per_block,
                                         sts, pivots_fidx, n_subtrees_used,
                                         &next_sts, next_pivots_file,
                                         out, bl,
                                         &blocknum_of_new_node, &subtree_info, &pivots);
            if (r) {
                result = r;
                break;
            } else {
                write_nonleaf_node(bl, out, blocknum_of_new_node, n_per_block, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); // frees all the data structures that go into making the node.
                n_subtrees_used += n_per_block;
            }
        }
        int64_t n_blocks_left = sts->n_subtrees - n_subtrees_used;
        if (result == 0) {
            // Now we have a one or two blocks at the end to handle.
            invariant(n_blocks_left>=2);
            if (n_blocks_left > n_per_block) {
                // Write half the remaining blocks
                int64_t n_first = n_blocks_left/2;
                DBT *pivots;
                int64_t blocknum_of_new_node;
                struct subtree_info *subtree_info;
                int r = setup_nonleaf_block(n_first,
                                            sts, pivots_fidx, n_subtrees_used,
                                            &next_sts, next_pivots_file,
                                            out, bl,
                                            &blocknum_of_new_node, &subtree_info, &pivots);
                if (r) {
                    result = r;
                } else {
                    write_nonleaf_node(bl, out, blocknum_of_new_node, n_first, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
                    n_blocks_left -= n_first;
                    n_subtrees_used += n_first;
                }
            }
        }
        if (result == 0) {
            // Write the last block. 
            DBT *pivots;
            int64_t blocknum_of_new_node;
            struct subtree_info *subtree_info;
            int r = setup_nonleaf_block(n_blocks_left,
                                        sts, pivots_fidx, n_subtrees_used,
                                        &next_sts, next_pivots_file,
                                        out, bl,
                                        &blocknum_of_new_node, &subtree_info, &pivots);
            if (r) {
                result = r;
            } else {
                write_nonleaf_node(bl, out, blocknum_of_new_node, n_blocks_left, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
                n_subtrees_used += n_blocks_left;
            }
        }
        if (result == 0)
            invariant(n_subtrees_used == sts->n_subtrees);
        if (result == 0) // pick up write_nonleaf_node errors
            result = ft_loader_get_error(&bl->error_callback);
        // Now set things up for the next iteration.
        int r = ft_loader_fi_close(&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r;
        r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx);    if (r != 0 && result == 0) result = r;
        pivots_fidx = next_pivots_file;
        toku_free(sts->subtrees); sts->subtrees = NULL;
        *sts = next_sts;
        height++;
        if (result)
            break;
    }
    { int r = ft_loader_fi_close (&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; }
    { int r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; }
    return result;
}
void ft_loader_set_fractal_workers_count_from_c(FTLOADER bl) {
    ft_loader_set_fractal_workers_count (bl);
}
 |