1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#include "mysql_version.h"
#include "my_global.h"
#ifdef HAVE_RESPONSE_TIME_DISTRIBUTION
#include "mysql_com.h"
#include "rpl_tblmap.h"
#include "table.h"
#include "field.h"
#include "sql_show.h"
#include "query_response_time.h"
#define TIME_STRING_POSITIVE_POWER_LENGTH QRT_TIME_STRING_POSITIVE_POWER_LENGTH
#define TIME_STRING_NEGATIVE_POWER_LENGTH 6
#define TOTAL_STRING_POSITIVE_POWER_LENGTH QRT_TOTAL_STRING_POSITIVE_POWER_LENGTH
#define TOTAL_STRING_NEGATIVE_POWER_LENGTH 6
#define MINIMUM_BASE 2
#define MAXIMUM_BASE QRT_MAXIMUM_BASE
#define POSITIVE_POWER_FILLER QRT_POSITIVE_POWER_FILLER
#define NEGATIVE_POWER_FILLER QRT_NEGATIVE_POWER_FILLER
#define TIME_OVERFLOW QRT_TIME_OVERFLOW
#define DEFAULT_BASE QRT_DEFAULT_BASE
#define do_xstr(s) do_str(s)
#define do_str(s) #s
#define do_format(filler,width) "%" filler width "lld"
/*
Format strings for snprintf. Generate from:
POSITIVE_POWER_FILLER and TIME_STRING_POSITIVE_POWER_LENGTH
NEFATIVE_POWER_FILLER and TIME_STRING_NEGATIVE_POWER_LENGTH
*/
#define TIME_STRING_POSITIVE_POWER_FORMAT do_format(POSITIVE_POWER_FILLER,do_xstr(TIME_STRING_POSITIVE_POWER_LENGTH))
#define TIME_STRING_NEGATIVE_POWER_FORMAT do_format(NEGATIVE_POWER_FILLER,do_xstr(TIME_STRING_NEGATIVE_POWER_LENGTH))
#define TIME_STRING_FORMAT TIME_STRING_POSITIVE_POWER_FORMAT "." TIME_STRING_NEGATIVE_POWER_FORMAT
#define TOTAL_STRING_POSITIVE_POWER_FORMAT do_format(POSITIVE_POWER_FILLER,do_xstr(TOTAL_STRING_POSITIVE_POWER_LENGTH))
#define TOTAL_STRING_NEGATIVE_POWER_FORMAT do_format(NEGATIVE_POWER_FILLER,do_xstr(TOTAL_STRING_NEGATIVE_POWER_LENGTH))
#define TOTAL_STRING_FORMAT TOTAL_STRING_POSITIVE_POWER_FORMAT "." TOTAL_STRING_NEGATIVE_POWER_FORMAT
#define TIME_STRING_LENGTH QRT_TIME_STRING_LENGTH
#define TIME_STRING_BUFFER_LENGTH (TIME_STRING_LENGTH + 1 /* '\0' */)
#define TOTAL_STRING_LENGTH QRT_TOTAL_STRING_LENGTH
#define TOTAL_STRING_BUFFER_LENGTH (TOTAL_STRING_LENGTH + 1 /* '\0' */)
/*
Calculate length of "log linear"
1)
(MINIMUM_BASE ^ result) <= (10 ^ STRING_POWER_LENGTH) < (MINIMUM_BASE ^ (result + 1))
2)
(MINIMUM_BASE ^ result) <= (10 ^ STRING_POWER_LENGTH)
and
(MINIMUM_BASE ^ (result + 1)) > (10 ^ STRING_POWER_LENGTH)
3)
result <= LOG(MINIMUM_BASE, 10 ^ STRING_POWER_LENGTH)= STRING_POWER_LENGTH * LOG(MINIMUM_BASE,10)
result + 1 > LOG(MINIMUM_BASE, 10 ^ STRING_POWER_LENGTH)= STRING_POWER_LENGTH * LOG(MINIMUM_BASE,10)
4) STRING_POWER_LENGTH * LOG(MINIMUM_BASE,10) - 1 < result <= STRING_POWER_LENGTH * LOG(MINIMUM_BASE,10)
MINIMUM_BASE= 2 always, LOG(MINIMUM_BASE,10)= 3.3219280948873626, result= (int)3.3219280948873626 * STRING_POWER_LENGTH
Last counter always use for time overflow
*/
#define POSITIVE_POWER_COUNT ((int)(3.32192809 * TIME_STRING_POSITIVE_POWER_LENGTH))
#define NEGATIVE_POWER_COUNT ((int)(3.32192809 * TIME_STRING_NEGATIVE_POWER_LENGTH))
#define OVERALL_POWER_COUNT (NEGATIVE_POWER_COUNT + 1 + POSITIVE_POWER_COUNT)
#define MILLION ((unsigned long)1000 * 1000)
namespace query_response_time
{
class utility
{
public:
utility() : m_base(0)
{
m_max_dec_value= MILLION;
for(int i= 0; TIME_STRING_POSITIVE_POWER_LENGTH > i; ++i)
m_max_dec_value *= 10;
setup(DEFAULT_BASE);
}
public:
uint base() const { return m_base; }
uint negative_count() const { return m_negative_count; }
uint positive_count() const { return m_positive_count; }
uint bound_count() const { return m_bound_count; }
ulonglong max_dec_value() const { return m_max_dec_value; }
ulonglong bound(uint index) const { return m_bound[ index ]; }
public:
void setup(uint base)
{
if(base != m_base)
{
m_base= base;
const ulonglong million= 1000 * 1000;
ulonglong value= million;
m_negative_count= 0;
while(value > 0)
{
m_negative_count += 1;
value /= m_base;
}
m_negative_count -= 1;
value= million;
m_positive_count= 0;
while(value < m_max_dec_value)
{
m_positive_count += 1;
value *= m_base;
}
m_bound_count= m_negative_count + m_positive_count;
value= million;
for(uint i= 0; i < m_negative_count; ++i)
{
value /= m_base;
m_bound[m_negative_count - i - 1]= value;
}
value= million;
for(uint i= 0; i < m_positive_count; ++i)
{
m_bound[m_negative_count + i]= value;
value *= m_base;
}
}
}
private:
uint m_base;
uint m_negative_count;
uint m_positive_count;
uint m_bound_count;
ulonglong m_max_dec_value; /* for TIME_STRING_POSITIVE_POWER_LENGTH=7 is 10000000 */
ulonglong m_bound[OVERALL_POWER_COUNT];
};
ATTRIBUTE_FORMAT(printf, 3, 0) static
size_t print_time(char* buffer, std::size_t buffer_size, const char* format,
uint64 value)
{
ulonglong second= (value / MILLION);
ulonglong microsecond= (value % MILLION);
return my_snprintf(buffer, buffer_size, format, second, microsecond);
}
class time_collector
{
utility *m_utility;
/*
Counters for each query type. See QUERY_TYPE
*/
Atomic_counter<uint32_t> m_count[QUERY_TYPES][OVERALL_POWER_COUNT + 1];
Atomic_counter<uint64_t> m_total[QUERY_TYPES][OVERALL_POWER_COUNT + 1];
public:
time_collector(utility& u): m_utility(&u) { flush_all(); }
~time_collector() = default;
uint32_t count(QUERY_TYPE type, uint index) { return m_count[type][index]; }
uint64_t total(QUERY_TYPE type, uint index) { return m_total[type][index]; }
void flush(QUERY_TYPE type)
{
switch (type) {
case ANY: flush_all(); break;
case READ: flush_read(); break;
case WRITE: flush_write(); break;
}
}
void flush_all()
{
memset((void*)&m_count,0,sizeof(m_count));
memset((void*)&m_total,0,sizeof(m_total));
}
void flush_read()
{
memset((void*)&m_count[READ],0,sizeof(m_count[READ]));
memset((void*)&m_total[READ],0,sizeof(m_total[READ]));
update_total();
}
void flush_write()
{
memset((void*)&m_count[WRITE],0,sizeof(m_count[WRITE]));
memset((void*)&m_total[WRITE],0,sizeof(m_total[WRITE]));
update_total();
}
void update_total()
{
int count, i;
for (i=0, count= m_utility->bound_count(); i < count; ++i)
{
m_count[0][i]= m_count[1][i]+m_count[2][i];
m_total[0][i]= m_total[1][i]+m_total[2][i];
}
}
void collect(QUERY_TYPE type, uint64_t time)
{
DBUG_ASSERT(type != ANY);
int i= 0;
for(int count= m_utility->bound_count(); count > i; ++i)
{
if (m_utility->bound(i) > time)
{
m_count[0][i]++;
m_total[0][i]+= time;
m_count[type][i]++;
m_total[type][i]+= time;
return;
}
}
}
};
class collector
{
public:
collector() : m_time(m_utility)
{
m_utility.setup(DEFAULT_BASE);
m_time.flush_all();
}
public:
void flush(QUERY_TYPE type)
{
if (opt_query_response_time_range_base != m_utility.base())
{
/* We have to flush everything if base changes */
type= ANY;
m_utility.setup(opt_query_response_time_range_base);
}
m_time.flush(type);
}
int fill(QUERY_TYPE type, THD* thd, TABLE_LIST *tables, COND *cond,
bool extra_fields)
{
DBUG_ENTER("fill_schema_query_response_time");
TABLE *table= static_cast<TABLE*>(tables->table);
Field **fields= table->field;
for(uint i= 0, count= bound_count() + 1 /* with overflow */; count > i; ++i)
{
char time[TIME_STRING_BUFFER_LENGTH];
char total[TOTAL_STRING_BUFFER_LENGTH];
size_t time_length, total_length;
if(i == bound_count())
{
assert(sizeof(TIME_OVERFLOW) <= TIME_STRING_BUFFER_LENGTH);
assert(sizeof(TIME_OVERFLOW) <= TOTAL_STRING_BUFFER_LENGTH);
memcpy(time,TIME_OVERFLOW,sizeof(TIME_OVERFLOW));
memcpy(total,TIME_OVERFLOW,sizeof(TIME_OVERFLOW));
time_length= total_length= sizeof(TIME_OVERFLOW)-1;
}
else
{
time_length= print_time(time, sizeof(time), TIME_STRING_FORMAT,
this->bound(i));
total_length= print_time(total, sizeof(total), TOTAL_STRING_FORMAT,
this->total(type, i));
}
fields[0]->store(time, time_length, system_charset_info);
fields[1]->store((longlong) this->count(type, i), true);
fields[2]->store(total, total_length, system_charset_info);
if (extra_fields)
{
fields[3]->store((longlong) this->count(WRITE, i), true);
total_length= print_time(total, sizeof(total), TOTAL_STRING_FORMAT,
this->total(WRITE, i));
fields[4]->store(total, total_length, system_charset_info);
}
if (schema_table_store_record(thd, table))
{
DBUG_RETURN(1);
}
}
DBUG_RETURN(0);
}
void collect(QUERY_TYPE type, ulonglong time)
{
m_time.collect(type, time);
}
uint bound_count() const
{
return m_utility.bound_count();
}
ulonglong bound(uint index)
{
return m_utility.bound(index);
}
ulonglong count(QUERY_TYPE type, uint index)
{
return m_time.count(type, index);
}
ulonglong total(QUERY_TYPE type, uint index)
{
return m_time.total(type, index);
}
private:
utility m_utility;
time_collector m_time;
};
static collector g_collector;
} // namespace query_response_time
void query_response_time_init()
{
query_response_time_flush_all();
}
void query_response_time_free()
{
query_response_time::g_collector.flush(ANY);
}
int query_response_time_flush_all()
{
query_response_time::g_collector.flush(ANY);
return 0;
}
int query_response_time_flush_read()
{
query_response_time::g_collector.flush(READ);
return 0;
}
int query_response_time_flush_write()
{
query_response_time::g_collector.flush(WRITE);
return 0;
}
void query_response_time_collect(QUERY_TYPE type, ulonglong query_time)
{
query_response_time::g_collector.collect(type, query_time);
}
int query_response_time_fill(THD *thd, TABLE_LIST *tables, COND *cond)
{
return query_response_time::g_collector.fill(ANY, thd,tables, cond, 0);
}
int query_response_time_fill_read(THD *thd, TABLE_LIST *tables, COND *cond)
{
return query_response_time::g_collector.fill(READ, thd, tables, cond, 0);
}
int query_response_time_fill_write(THD *thd, TABLE_LIST *tables, COND *cond)
{
return query_response_time::g_collector.fill(WRITE, thd, tables, cond, 0);
}
int query_response_time_fill_read_write(THD *thd, TABLE_LIST *tables,
COND *cond)
{
/* write will also be filled as extra fields is 1 */
return query_response_time::g_collector.fill(READ, thd, tables, cond, 1);
}
#endif // HAVE_RESPONSE_TIME_DISTRIBUTION
|