1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
/*
MIT License
Copyright (c) 2023 Sasha Krassovsky
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// https://save-buffer.github.io/bloom_filter.html
#pragma once
#include <cmath>
#include <vector>
#include <algorithm>
/*
Use gcc function multiversioning to optimize for a specific CPU with run-time
detection. Works only for x86, for other architectures we provide only one
implementation for now.
*/
#define DEFAULT_IMPLEMENTATION
#if __GNUC__ > 7 && defined(__GLIBC__)
#ifdef __x86_64__
#ifdef HAVE_IMMINTRIN_H
#include <immintrin.h>
#undef DEFAULT_IMPLEMENTATION
#define DEFAULT_IMPLEMENTATION __attribute__ ((target ("default")))
#define AVX2_IMPLEMENTATION __attribute__ ((target ("avx2,avx,fma")))
#if __GNUC__ > 9
#define AVX512_IMPLEMENTATION __attribute__ ((target ("avx512f,avx512bw")))
#endif
#endif
#endif
#ifdef __aarch64__
#include <arm_neon.h>
#undef DEFAULT_IMPLEMENTATION
#define NEON_IMPLEMENTATION
#endif
#endif
#if defined __powerpc64__ && defined __VSX__
#include <altivec.h>
#define POWER_IMPLEMENTATION
#endif
template <typename T>
struct PatternedSimdBloomFilter
{
PatternedSimdBloomFilter(int n, float eps) : n(n), epsilon(eps)
{
m = ComputeNumBits();
int log_num_blocks = my_bit_log2_uint32(m) + 1 - rotate_bits;
num_blocks = (1ULL << log_num_blocks);
bv.resize(num_blocks);
}
uint32_t ComputeNumBits()
{
double bits_per_val = -1.44 * std::log2(epsilon);
return std::max<uint32_t>(512, static_cast<uint32_t>(bits_per_val * n + 0.5));
}
#ifdef AVX2_IMPLEMENTATION
AVX2_IMPLEMENTATION
__m256i CalcHash(__m256i vecData)
{
// (almost) xxHash parallel version, 64bit input, 64bit output, seed=0
static constexpr __m256i rotl48={
0x0504030201000706ULL, 0x0D0C0B0A09080F0EULL,
0x1514131211101716ULL, 0x1D1C1B1A19181F1EULL
};
static constexpr __m256i rotl24={
0x0201000706050403ULL, 0x0A09080F0E0D0C0BULL,
0x1211101716151413ULL, 0x1A19181F1E1D1C1BULL,
};
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
__m256i step1= _mm256_xor_si256(vecData, _mm256_set1_epi64x(bitflip));
__m256i step2= _mm256_shuffle_epi8(step1, rotl48);
__m256i step3= _mm256_shuffle_epi8(step1, rotl24);
__m256i step4= _mm256_xor_si256(step1, _mm256_xor_si256(step2, step3));
__m256i step5= _mm256_mul_epi32(step4, _mm256_set1_epi64x(prime_mx2));
__m256i step6= _mm256_srli_epi64(step5, 35);
__m256i step7= _mm256_add_epi64(step6, _mm256_set1_epi64x(8));
__m256i step8= _mm256_xor_si256(step5, step7);
__m256i step9= _mm256_mul_epi32(step8, _mm256_set1_epi64x(prime_mx2));
return _mm256_xor_si256(step9, _mm256_srli_epi64(step9, 28));
}
AVX2_IMPLEMENTATION
__m256i GetBlockIdx(__m256i vecHash)
{
__m256i vecNumBlocksMask = _mm256_set1_epi64x(num_blocks - 1);
__m256i vecBlockIdx = _mm256_srli_epi64(vecHash, mask_idx_bits + rotate_bits);
return _mm256_and_si256(vecBlockIdx, vecNumBlocksMask);
}
AVX2_IMPLEMENTATION
__m256i ConstructMask(__m256i vecHash)
{
__m256i vecMaskIdxMask = _mm256_set1_epi64x((1 << mask_idx_bits) - 1);
__m256i vecMaskMask = _mm256_set1_epi64x((1ull << bits_per_mask) - 1);
__m256i vec64 = _mm256_set1_epi64x(64);
__m256i vecMaskIdx = _mm256_and_si256(vecHash, vecMaskIdxMask);
__m256i vecMaskByteIdx = _mm256_srli_epi64(vecMaskIdx, 3);
__m256i vecMaskBitIdx = _mm256_and_si256(vecMaskIdx, _mm256_set1_epi64x(0x7));
__m256i vecRawMasks = _mm256_i64gather_epi64((const longlong *)masks, vecMaskByteIdx, 1);
__m256i vecUnrotated = _mm256_and_si256(_mm256_srlv_epi64(vecRawMasks, vecMaskBitIdx), vecMaskMask);
__m256i vecRotation = _mm256_and_si256(_mm256_srli_epi64(vecHash, mask_idx_bits), _mm256_set1_epi64x((1 << rotate_bits) - 1));
__m256i vecShiftUp = _mm256_sllv_epi64(vecUnrotated, vecRotation);
__m256i vecShiftDown = _mm256_srlv_epi64(vecUnrotated, _mm256_sub_epi64(vec64, vecRotation));
return _mm256_or_si256(vecShiftDown, vecShiftUp);
}
AVX2_IMPLEMENTATION
void Insert(const T **data)
{
__m256i vecDataA = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 0));
__m256i vecDataB = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 4));
__m256i vecHashA= CalcHash(vecDataA);
__m256i vecHashB= CalcHash(vecDataB);
__m256i vecMaskA = ConstructMask(vecHashA);
__m256i vecMaskB = ConstructMask(vecHashB);
__m256i vecBlockIdxA = GetBlockIdx(vecHashA);
__m256i vecBlockIdxB = GetBlockIdx(vecHashB);
uint64_t block0 = _mm256_extract_epi64(vecBlockIdxA, 0);
uint64_t block1 = _mm256_extract_epi64(vecBlockIdxA, 1);
uint64_t block2 = _mm256_extract_epi64(vecBlockIdxA, 2);
uint64_t block3 = _mm256_extract_epi64(vecBlockIdxA, 3);
uint64_t block4 = _mm256_extract_epi64(vecBlockIdxB, 0);
uint64_t block5 = _mm256_extract_epi64(vecBlockIdxB, 1);
uint64_t block6 = _mm256_extract_epi64(vecBlockIdxB, 2);
uint64_t block7 = _mm256_extract_epi64(vecBlockIdxB, 3);
bv[block0] |= _mm256_extract_epi64(vecMaskA, 0);
bv[block1] |= _mm256_extract_epi64(vecMaskA, 1);
bv[block2] |= _mm256_extract_epi64(vecMaskA, 2);
bv[block3] |= _mm256_extract_epi64(vecMaskA, 3);
bv[block4] |= _mm256_extract_epi64(vecMaskB, 0);
bv[block5] |= _mm256_extract_epi64(vecMaskB, 1);
bv[block6] |= _mm256_extract_epi64(vecMaskB, 2);
bv[block7] |= _mm256_extract_epi64(vecMaskB, 3);
}
AVX2_IMPLEMENTATION
uint8_t Query(T **data)
{
__m256i vecDataA = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 0));
__m256i vecDataB = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 4));
__m256i vecHashA= CalcHash(vecDataA);
__m256i vecHashB= CalcHash(vecDataB);
__m256i vecMaskA = ConstructMask(vecHashA);
__m256i vecMaskB = ConstructMask(vecHashB);
__m256i vecBlockIdxA = GetBlockIdx(vecHashA);
__m256i vecBlockIdxB = GetBlockIdx(vecHashB);
__m256i vecBloomA = _mm256_i64gather_epi64(bv.data(), vecBlockIdxA, sizeof(longlong));
__m256i vecBloomB = _mm256_i64gather_epi64(bv.data(), vecBlockIdxB, sizeof(longlong));
__m256i vecCmpA = _mm256_cmpeq_epi64(_mm256_and_si256(vecMaskA, vecBloomA), vecMaskA);
__m256i vecCmpB = _mm256_cmpeq_epi64(_mm256_and_si256(vecMaskB, vecBloomB), vecMaskB);
uint32_t res_a = static_cast<uint32_t>(_mm256_movemask_epi8(vecCmpA));
uint32_t res_b = static_cast<uint32_t>(_mm256_movemask_epi8(vecCmpB));
uint64_t res_bytes = res_a | (static_cast<uint64_t>(res_b) << 32);
uint8_t res_bits = static_cast<uint8_t>(_mm256_movemask_epi8(_mm256_set1_epi64x(res_bytes)) & 0xff);
return res_bits;
}
/* AVX-512 version can be (and was) implemented, but the speedup is,
basically, unnoticeable, well below the noise level */
#endif
#ifdef NEON_IMPLEMENTATION
uint64x2_t CalcHash(uint64x2_t vecData)
{
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
uint64x2_t step1= veorq_u64(vecData, vdupq_n_u64(bitflip));
uint64x2_t step2= veorq_u64(vshrq_n_u64(step1, 48), vshlq_n_u64(step1, 16));
uint64x2_t step3= veorq_u64(vshrq_n_u64(step1, 24), vshlq_n_u64(step1, 40));
uint64x2_t step4= veorq_u64(step1, veorq_u64(step2, step3));
uint64x2_t step5;
step5= vsetq_lane_u64(vgetq_lane_u64(step4, 0) * prime_mx2, step4, 0);
step5= vsetq_lane_u64(vgetq_lane_u64(step4, 1) * prime_mx2, step5, 1);
uint64x2_t step6= vshrq_n_u64(step5, 35);
uint64x2_t step7= vaddq_u64(step6, vdupq_n_u64(8));
uint64x2_t step8= veorq_u64(step5, step7);
uint64x2_t step9;
step9= vsetq_lane_u64(vgetq_lane_u64(step8, 0) * prime_mx2, step8, 0);
step9= vsetq_lane_u64(vgetq_lane_u64(step8, 1) * prime_mx2, step9, 1);
return veorq_u64(step9, vshrq_n_u64(step9, 28));
}
uint64x2_t GetBlockIdx(uint64x2_t vecHash)
{
uint64x2_t vecNumBlocksMask= vdupq_n_u64(num_blocks - 1);
uint64x2_t vecBlockIdx= vshrq_n_u64(vecHash, mask_idx_bits + rotate_bits);
return vandq_u64(vecBlockIdx, vecNumBlocksMask);
}
uint64x2_t ConstructMask(uint64x2_t vecHash)
{
uint64x2_t vecMaskIdxMask= vdupq_n_u64((1 << mask_idx_bits) - 1);
uint64x2_t vecMaskMask= vdupq_n_u64((1ull << bits_per_mask) - 1);
uint64x2_t vecMaskIdx= vandq_u64(vecHash, vecMaskIdxMask);
uint64x2_t vecMaskByteIdx= vshrq_n_u64(vecMaskIdx, 3);
/*
Shift right in NEON is implemented as shift left by a negative value.
Do the negation here.
*/
int64x2_t vecMaskBitIdx=
vsubq_s64(vdupq_n_s64(0),
vreinterpretq_s64_u64(vandq_u64(vecMaskIdx, vdupq_n_u64(0x7))));
uint64x2_t vecRawMasks= vdupq_n_u64(*reinterpret_cast<const uint64_t*>
(masks + vgetq_lane_u64(vecMaskByteIdx, 0)));
vecRawMasks= vsetq_lane_u64(*reinterpret_cast<const uint64_t*>
(masks + vgetq_lane_u64(vecMaskByteIdx, 1)), vecRawMasks, 1);
uint64x2_t vecUnrotated=
vandq_u64(vshlq_u64(vecRawMasks, vecMaskBitIdx), vecMaskMask);
int64x2_t vecRotation=
vreinterpretq_s64_u64(vandq_u64(vshrq_n_u64(vecHash, mask_idx_bits),
vdupq_n_u64((1 << rotate_bits) - 1)));
uint64x2_t vecShiftUp= vshlq_u64(vecUnrotated, vecRotation);
uint64x2_t vecShiftDown=
vshlq_u64(vecUnrotated, vsubq_s64(vecRotation, vdupq_n_s64(64)));
return vorrq_u64(vecShiftDown, vecShiftUp);
}
void Insert(const T **data)
{
uint64x2_t vecDataA= vld1q_u64(reinterpret_cast<uint64_t *>(data + 0));
uint64x2_t vecDataB= vld1q_u64(reinterpret_cast<uint64_t *>(data + 2));
uint64x2_t vecDataC= vld1q_u64(reinterpret_cast<uint64_t *>(data + 4));
uint64x2_t vecDataD= vld1q_u64(reinterpret_cast<uint64_t *>(data + 6));
uint64x2_t vecHashA= CalcHash(vecDataA);
uint64x2_t vecHashB= CalcHash(vecDataB);
uint64x2_t vecHashC= CalcHash(vecDataC);
uint64x2_t vecHashD= CalcHash(vecDataD);
uint64x2_t vecMaskA= ConstructMask(vecHashA);
uint64x2_t vecMaskB= ConstructMask(vecHashB);
uint64x2_t vecMaskC= ConstructMask(vecHashC);
uint64x2_t vecMaskD= ConstructMask(vecHashD);
uint64x2_t vecBlockIdxA= GetBlockIdx(vecHashA);
uint64x2_t vecBlockIdxB= GetBlockIdx(vecHashB);
uint64x2_t vecBlockIdxC= GetBlockIdx(vecHashC);
uint64x2_t vecBlockIdxD= GetBlockIdx(vecHashD);
uint64_t block0= vgetq_lane_u64(vecBlockIdxA, 0);
uint64_t block1= vgetq_lane_u64(vecBlockIdxA, 1);
uint64_t block2= vgetq_lane_u64(vecBlockIdxB, 0);
uint64_t block3= vgetq_lane_u64(vecBlockIdxB, 1);
uint64_t block4= vgetq_lane_u64(vecBlockIdxC, 0);
uint64_t block5= vgetq_lane_u64(vecBlockIdxC, 1);
uint64_t block6= vgetq_lane_u64(vecBlockIdxD, 0);
uint64_t block7= vgetq_lane_u64(vecBlockIdxD, 1);
bv[block0]|= vgetq_lane_u64(vecMaskA, 0);
bv[block1]|= vgetq_lane_u64(vecMaskA, 1);
bv[block2]|= vgetq_lane_u64(vecMaskB, 0);
bv[block3]|= vgetq_lane_u64(vecMaskB, 1);
bv[block4]|= vgetq_lane_u64(vecMaskC, 0);
bv[block5]|= vgetq_lane_u64(vecMaskC, 1);
bv[block6]|= vgetq_lane_u64(vecMaskD, 0);
bv[block7]|= vgetq_lane_u64(vecMaskD, 1);
}
uint8_t Query(T **data)
{
uint64x2_t vecDataA= vld1q_u64(reinterpret_cast<uint64_t *>(data + 0));
uint64x2_t vecDataB= vld1q_u64(reinterpret_cast<uint64_t *>(data + 2));
uint64x2_t vecDataC= vld1q_u64(reinterpret_cast<uint64_t *>(data + 4));
uint64x2_t vecDataD= vld1q_u64(reinterpret_cast<uint64_t *>(data + 6));
uint64x2_t vecHashA= CalcHash(vecDataA);
uint64x2_t vecHashB= CalcHash(vecDataB);
uint64x2_t vecHashC= CalcHash(vecDataC);
uint64x2_t vecHashD= CalcHash(vecDataD);
uint64x2_t vecMaskA= ConstructMask(vecHashA);
uint64x2_t vecMaskB= ConstructMask(vecHashB);
uint64x2_t vecMaskC= ConstructMask(vecHashC);
uint64x2_t vecMaskD= ConstructMask(vecHashD);
uint64x2_t vecBlockIdxA= GetBlockIdx(vecHashA);
uint64x2_t vecBlockIdxB= GetBlockIdx(vecHashB);
uint64x2_t vecBlockIdxC= GetBlockIdx(vecHashC);
uint64x2_t vecBlockIdxD= GetBlockIdx(vecHashD);
uint64x2_t vecBloomA= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxA, 0)]);
vecBloomA= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxA, 1)], vecBloomA, 1);
uint64x2_t vecBloomB= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxB, 0)]);
vecBloomB= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxB, 1)], vecBloomB, 1);
uint64x2_t vecBloomC= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxC, 0)]);
vecBloomC= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxC, 1)], vecBloomC, 1);
uint64x2_t vecBloomD= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxD, 0)]);
vecBloomD= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxD, 1)], vecBloomD, 1);
uint64x2_t vecCmpA= vceqq_u64(vandq_u64(vecMaskA, vecBloomA), vecMaskA);
uint64x2_t vecCmpB= vceqq_u64(vandq_u64(vecMaskB, vecBloomB), vecMaskB);
uint64x2_t vecCmpC= vceqq_u64(vandq_u64(vecMaskC, vecBloomC), vecMaskC);
uint64x2_t vecCmpD= vceqq_u64(vandq_u64(vecMaskD, vecBloomD), vecMaskD);
return
(vgetq_lane_u64(vecCmpA, 0) & 0x01) |
(vgetq_lane_u64(vecCmpA, 1) & 0x02) |
(vgetq_lane_u64(vecCmpB, 0) & 0x04) |
(vgetq_lane_u64(vecCmpB, 1) & 0x08) |
(vgetq_lane_u64(vecCmpC, 0) & 0x10) |
(vgetq_lane_u64(vecCmpC, 1) & 0x20) |
(vgetq_lane_u64(vecCmpD, 0) & 0x40) |
(vgetq_lane_u64(vecCmpD, 1) & 0x80);
}
#endif
/********************************************************
********* non-SIMD fallback version ********************/
#ifdef DEFAULT_IMPLEMENTATION
uint64_t CalcHash_1(const T* data)
{
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
uint64_t step1= ((intptr)data) ^ bitflip;
uint64_t step2= (step1 >> 48) ^ (step1 << 16);
uint64_t step3= (step1 >> 24) ^ (step1 << 40);
uint64_t step4= step1 ^ step2 ^ step3;
uint64_t step5= step4 * prime_mx2;
uint64_t step6= step5 >> 35;
uint64_t step7= step6 + 8;
uint64_t step8= step5 ^ step7;
uint64_t step9= step8 * prime_mx2;
return step9 ^ (step9 >> 28);
}
uint64_t GetBlockIdx_1(uint64_t hash)
{
uint64_t blockIdx = hash >> (mask_idx_bits + rotate_bits);
return blockIdx & (num_blocks - 1);
}
uint64_t ConstructMask_1(uint64_t hash)
{
uint64_t maskIdxMask = (1 << mask_idx_bits) - 1;
uint64_t maskMask = (1ULL << bits_per_mask) - 1;
uint64_t maskIdx = hash & maskIdxMask;
uint64_t maskByteIdx = maskIdx >> 3;
uint64_t maskBitIdx = maskIdx & 7;
uint64_t rawMask = *(uint64_t *)(masks + maskByteIdx);
uint64_t unrotated = (rawMask >> maskBitIdx) & maskMask;
uint64_t rotation = (hash >> mask_idx_bits) & ((1 << rotate_bits) - 1);
return rotation ? (unrotated << rotation) | (unrotated >> (64 - rotation))
: unrotated;
}
DEFAULT_IMPLEMENTATION
void Insert(const T **data)
{
for (size_t i = 0; i < 8; i++)
{
uint64_t hash = CalcHash_1(data[i]);
uint64_t mask = ConstructMask_1(hash);
bv[GetBlockIdx_1(hash)] |= mask;
}
}
DEFAULT_IMPLEMENTATION
uint8_t Query(T **data)
{
uint8_t res_bits = 0;
for (size_t i = 0; i < 8; i++)
{
uint64_t hash = CalcHash_1(data[i]);
uint64_t mask = ConstructMask_1(hash);
if ((bv[GetBlockIdx_1(hash)] & mask) == mask)
res_bits |= 1 << i;
}
return res_bits;
}
#endif
int n;
float epsilon;
uint64_t num_blocks;
uint32_t m;
// calculated from the upstream MaskTable and hard-coded
static constexpr int log_num_masks = 10;
static constexpr int bits_per_mask = 57;
const uint8_t masks[136]= {0x00, 0x04, 0x01, 0x04, 0x00, 0x20, 0x01, 0x00,
0x00, 0x02, 0x08, 0x00, 0x02, 0x42, 0x00, 0x00, 0x04, 0x00, 0x00, 0x84,
0x80, 0x00, 0x04, 0x00, 0x02, 0x00, 0x00, 0x21, 0x00, 0x08, 0x00, 0x14,
0x00, 0x00, 0x40, 0x00, 0x10, 0x00, 0xa8, 0x00, 0x00, 0x00, 0x00, 0x10,
0x04, 0x40, 0x01, 0x00, 0x40, 0x00, 0x00, 0x08, 0x01, 0x02, 0x80, 0x00,
0x00, 0x01, 0x00, 0x06, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x0c, 0x10,
0x00, 0x10, 0x00, 0x00, 0x10, 0x08, 0x01, 0x10, 0x00, 0x00, 0x10, 0x20,
0x00, 0x01, 0x20, 0x00, 0x02, 0x40, 0x00, 0x00, 0x02, 0x40, 0x01, 0x00,
0x40, 0x00, 0x00, 0x0a, 0x00, 0x02, 0x01, 0x80, 0x00, 0x00, 0x10, 0x08,
0x00, 0x06, 0x00, 0x04, 0x00, 0x00, 0x50, 0x00, 0x08, 0x10, 0x20, 0x00,
0x00, 0x80, 0x00, 0x10, 0x10, 0x04, 0x04, 0x00, 0x00, 0x00, 0x20, 0x20,
0x08, 0x08, 0x02, 0x00, 0x00, 0x00, 0x40, 0x00};
std::vector<longlong> bv;
static constexpr int mask_idx_bits = log_num_masks;
static constexpr int rotate_bits = 6;
};
|