1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/*
Copyright (c) 2018, 2019 MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "mariadb.h"
#include "table.h"
#include "sql_class.h"
#include "opt_range.h"
#include "rowid_filter.h"
#include "optimizer_defaults.h"
#include "sql_select.h"
#include "opt_trace.h"
/*
key_next_find_cost below is the cost of finding the next possible key
and calling handler_rowid_filter_check() to check it against the filter
*/
double Range_rowid_filter_cost_info::
lookup_cost(Rowid_filter_container_type cont_type)
{
switch (cont_type) {
case SORTED_ARRAY_CONTAINER:
return log2(est_elements) * rowid_compare_cost + base_lookup_cost;
default:
DBUG_ASSERT(0);
return 0;
}
}
/**
@brief
The average gain in cost per row to use the range filter with this cost
info
*/
inline
double Range_rowid_filter_cost_info::
avg_access_and_eval_gain_per_row(Rowid_filter_container_type cont_type,
double cost_of_row_fetch)
{
return (cost_of_row_fetch + where_cost) * (1 - selectivity) -
lookup_cost(cont_type);
}
/**
@brief
The average adjusted gain in cost per row of using the filter
@param access_cost_factor the adjusted cost of access a row
@details
The current code to estimate the cost of a ref access is quite
inconsistent:
In some cases the effect of page buffers is taken into account, for others
just the engine dependent read_time() is employed. That's why the average
cost of one random seek might differ from 1.
The parameter access_cost_factor can be considered as the cost of a random
seek that is used for the given ref access. Changing the cost of a random
seek we have to change the first coefficient in the linear formula by which
we calculate the gain of usage the given filter for a_adj. This function
calculates the value of a_adj.
@note
Currently we require that access_cost_factor should be a number between
0.0 and 1.0
*/
inline
double Range_rowid_filter_cost_info::
avg_adjusted_gain_per_row(double access_cost_factor)
{
DBUG_ASSERT(access_cost_factor >= 0.0 && access_cost_factor <= 1.0);
return gain - (1 - access_cost_factor) * (1 - selectivity);
}
/**
@brief
Set the parameters used to choose the filter with the best adjusted gain
@note
This function must be called before the call of get_adjusted_gain()
for the given filter.
*/
inline void
Range_rowid_filter_cost_info::
set_adjusted_gain_param(double access_cost_factor)
{
gain_adj= avg_adjusted_gain_per_row(access_cost_factor);
cross_x_adj= cost_of_building_range_filter / gain_adj;
}
/**
@brief
Initialize the cost info structure for a range filter
@param cont_type The type of the container of the range filter
@param tab The table for which the range filter is evaluated
@param idx The index used to create this range filter
*/
void Range_rowid_filter_cost_info::init(Rowid_filter_container_type cont_type,
TABLE *tab, uint idx)
{
DBUG_ASSERT(tab->opt_range_keys.is_set(idx));
container_type= cont_type;
table= tab;
key_no= idx;
est_elements= (ulonglong) table->opt_range[key_no].rows;
cost_of_building_range_filter= build_cost(container_type);
where_cost= tab->in_use->variables.optimizer_where_cost;
base_lookup_cost= (ROWID_FILTER_PER_CHECK_MODIFIER *
tab->file->KEY_COPY_COST);
rowid_compare_cost= (ROWID_FILTER_PER_ELEMENT_MODIFIER *
tab->file->ROWID_COMPARE_COST);
selectivity= est_elements/((double) table->stat_records());
gain= avg_access_and_eval_gain_per_row(container_type,
tab->file->ROW_LOOKUP_COST);
if (gain > 0)
cross_x= cost_of_building_range_filter/gain;
else
cross_x= cost_of_building_range_filter+1;
abs_independent.clear_all();
}
/**
@brief
Return the cost of building a range filter of a certain type
*/
double
Range_rowid_filter_cost_info::build_cost(Rowid_filter_container_type cont_type)
{
double cost;
OPTIMIZER_COSTS *costs= &table->s->optimizer_costs;
DBUG_ASSERT(table->opt_range_keys.is_set(key_no));
/* Cost of fetching keys */
cost= table->opt_range[key_no].index_only_fetch_cost(table);
switch (cont_type) {
case SORTED_ARRAY_CONTAINER:
/* Add cost of filling container and cost of sorting */
cost+= (est_elements *
(costs->rowid_copy_cost + // Copying rowid
costs->rowid_cmp_cost * log2(est_elements))); // Sort
break;
default:
DBUG_ASSERT(0);
}
return cost;
}
Rowid_filter_container *Range_rowid_filter_cost_info::create_container()
{
THD *thd= table->in_use;
uint elem_sz= table->file->ref_length;
Rowid_filter_container *res= 0;
switch (container_type) {
case SORTED_ARRAY_CONTAINER:
res= new (thd->mem_root) Rowid_filter_sorted_array((uint) est_elements,
elem_sz);
break;
default:
DBUG_ASSERT(0);
}
return res;
}
static int compare_range_rowid_filter_cost_info_by_a(const void *p1_,
const void *p2_)
{
auto p1= static_cast<const Range_rowid_filter_cost_info *const *>(p1_);
auto p2= static_cast<const Range_rowid_filter_cost_info *const *>(p2_);
double diff= (*p2)->get_gain() - (*p1)->get_gain();
return (diff < 0 ? -1 : (diff > 0 ? 1 : 0));
}
/**
@brief
Prepare the array with cost info on range filters to be used by optimizer
@details
The function removes the array of cost info on range filters the elements
for those range filters that won't be ever chosen as the best filter, no
matter what index will be used to access the table and at what step the
table will be joined.
*/
void TABLE::prune_range_rowid_filters()
{
/*
For the elements of the array with cost info on range filters
build a bit matrix of absolutely independent elements.
Two elements are absolutely independent if they such indexes that
there is no other index that overlaps both of them or is constraint
correlated with both of them. Use abs_independent key maps to store
the elements if this bit matrix.
*/
Range_rowid_filter_cost_info **filter_ptr_1=
range_rowid_filter_cost_info_ptr;
for (uint i= 0;
i < range_rowid_filter_cost_info_elems;
i++, filter_ptr_1++)
{
uint key_no= (*filter_ptr_1)->key_no;
Range_rowid_filter_cost_info **filter_ptr_2= filter_ptr_1 + 1;
for (uint j= i+1;
j < range_rowid_filter_cost_info_elems;
j++, filter_ptr_2++)
{
key_map map_1= key_info[key_no].overlapped;
map_1.merge(key_info[key_no].constraint_correlated);
key_map map_2= key_info[(*filter_ptr_2)->key_no].overlapped;
map_2.merge(key_info[(*filter_ptr_2)->key_no].constraint_correlated);
map_1.intersect(map_2);
if (map_1.is_clear_all())
{
(*filter_ptr_1)->abs_independent.set_bit((*filter_ptr_2)->key_no);
(*filter_ptr_2)->abs_independent.set_bit(key_no);
}
}
}
/* Sort the array range_filter_cost_info by 'a' in descending order */
my_qsort(range_rowid_filter_cost_info_ptr,
range_rowid_filter_cost_info_elems,
sizeof(Range_rowid_filter_cost_info *),
(qsort_cmp) compare_range_rowid_filter_cost_info_by_a);
/*
For each element check whether it is created for the filter that
can be ever chosen as the best one. If it's not the case remove
from the array. Otherwise put it in the array in such a place
that all already checked elements left the array are ordered by
cross_x.
*/
Range_rowid_filter_cost_info **cand_filter_ptr=
range_rowid_filter_cost_info_ptr;
for (uint i= 0;
i < range_rowid_filter_cost_info_elems;
i++, cand_filter_ptr++)
{
bool is_pruned= false;
Range_rowid_filter_cost_info **usable_filter_ptr=
range_rowid_filter_cost_info_ptr;
key_map abs_indep;
abs_indep.clear_all();
for (uint j= 0; j < i; j++, usable_filter_ptr++)
{
if ((*cand_filter_ptr)->cross_x >= (*usable_filter_ptr)->cross_x)
{
if (abs_indep.is_set((*usable_filter_ptr)->key_no))
{
/*
The following is true here for the element e being checked:
There are at 2 elements e1 and e2 among already selected such that
e1.cross_x < e.cross_x and e1.a > e.a
and
e2.cross_x < e_cross_x and e2.a > e.a,
i.e. the range filters f1, f2 of both e1 and e2 always promise
better gains then the range filter of e.
As e1 and e2 are absolutely independent one of the range filters
f1, f2 will be always a better choice than f1 no matter what index
is chosen to access the table. Because of this the element e
can be safely removed from the array.
*/
is_pruned= true;
break;
}
abs_indep.merge((*usable_filter_ptr)->abs_independent);
}
else
{
/*
Move the element being checked to the proper position to have all
elements that have been already checked to be sorted by cross_x
*/
Range_rowid_filter_cost_info *moved= *cand_filter_ptr;
memmove(usable_filter_ptr+1, usable_filter_ptr,
sizeof(Range_rowid_filter_cost_info *) * (i-j-1));
*usable_filter_ptr= moved;
}
}
if (is_pruned)
{
/* Remove the checked element from the array */
memmove(cand_filter_ptr, cand_filter_ptr+1,
sizeof(Range_rowid_filter_cost_info *) *
(range_rowid_filter_cost_info_elems - 1 - i));
range_rowid_filter_cost_info_elems--;
}
}
}
/**
@brief
Return maximum number of elements that a container allowed to have
*/
static ulonglong
get_max_range_rowid_filter_elems_for_table(
THD *thd, TABLE *tab,
Rowid_filter_container_type cont_type)
{
switch (cont_type) {
case SORTED_ARRAY_CONTAINER :
return thd->variables.max_rowid_filter_size/tab->file->ref_length;
default :
DBUG_ASSERT(0);
return 0;
}
}
/**
@brief
Prepare info on possible range filters used by optimizer
@param table The thread handler
@details
The function first selects the indexes of the table that potentially
can be used for range filters and allocates an array of the objects
of the Range_rowid_filter_cost_info type to store cost info on
possible range filters and an array of pointers to these objects.
The latter is created for easy sorting of the objects with cost info
by different sort criteria. Then the function initializes the allocated
array with cost info for each possible range filter. After this
the function calls the method TABLE::prune_range_rowid_filters().
The method removes the elements of the array for the filters that
promise less gain then others remaining in the array in any situation
and optimizes the order of the elements for faster choice of the best
range filter.
*/
void TABLE::init_cost_info_for_usable_range_rowid_filters(THD *thd)
{
uint key_no;
key_map usable_range_filter_keys;
usable_range_filter_keys.clear_all();
key_map::Iterator it(opt_range_keys);
if (file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
return; // Cannot create filtering
/*
From all indexes that can be used for range accesses select only such that
- range filter pushdown is supported by the engine for them (1)
- they are not clustered primary (2)
- the range filter containers for them are not too large (3)
*/
while ((key_no= it++) != key_map::Iterator::BITMAP_END)
{
if (!can_use_rowid_filter(key_no)) // 1 & 2
continue;
if (opt_range[key_no].rows >
get_max_range_rowid_filter_elems_for_table(thd, this,
SORTED_ARRAY_CONTAINER)) // !3
continue;
usable_range_filter_keys.set_bit(key_no);
}
/*
Allocate an array of objects to store cost info for the selected filters
and allocate an array of pointers to these objects
*/
range_rowid_filter_cost_info_elems= usable_range_filter_keys.bits_set();
if (!range_rowid_filter_cost_info_elems)
return;
range_rowid_filter_cost_info_ptr= thd->calloc<Range_rowid_filter_cost_info*>
(range_rowid_filter_cost_info_elems);
range_rowid_filter_cost_info=
new (thd->mem_root)
Range_rowid_filter_cost_info[range_rowid_filter_cost_info_elems];
if (!range_rowid_filter_cost_info_ptr || !range_rowid_filter_cost_info)
{
range_rowid_filter_cost_info_elems= 0;
return;
}
/* Fill the allocated array with cost info on the selected range filters */
Range_rowid_filter_cost_info **curr_ptr= range_rowid_filter_cost_info_ptr;
Range_rowid_filter_cost_info *curr_filter_cost_info=
range_rowid_filter_cost_info;
key_map::Iterator li(usable_range_filter_keys);
while ((key_no= li++) != key_map::Iterator::BITMAP_END)
{
*curr_ptr= curr_filter_cost_info;
curr_filter_cost_info->init(SORTED_ARRAY_CONTAINER, this, key_no);
curr_ptr++;
curr_filter_cost_info++;
}
prune_range_rowid_filters();
if (unlikely(thd->trace_started()))
trace_range_rowid_filters(thd);
}
void TABLE::trace_range_rowid_filters(THD *thd) const
{
DBUG_ASSERT(thd->trace_started());
if (!range_rowid_filter_cost_info_elems)
return;
Range_rowid_filter_cost_info **p= range_rowid_filter_cost_info_ptr;
Range_rowid_filter_cost_info **end= p + range_rowid_filter_cost_info_elems;
Json_writer_object js_obj(thd);
js_obj.add_table_name(this);
Json_writer_array js_arr(thd, "rowid_filters");
for (; p < end; p++)
(*p)->trace_info(thd);
}
void Range_rowid_filter_cost_info::trace_info(THD *thd)
{
DBUG_ASSERT(thd->trace_started());
Json_writer_object js_obj(thd);
js_obj.
add("key", table->key_info[key_no].name).
add("build_cost", cost_of_building_range_filter).
add("rows", est_elements);
}
/**
@brief
Choose the best range filter for the given access of the table
@param access_key_no The index by which the table is accessed
@param records The estimated total number of key tuples with
this access
@param fetch_cost_factor The cost of fetching 'records' rows
@param index_only_cost The cost of fetching 'records' rows with
index only reads
@param prev_records How many index_read_calls() we expect to make
@parma records_out Will be updated to the minimum result rows for any
usable filter.
@details
The function looks through the array of cost info for range filters
and chooses the element for the range filter that promise the greatest
gain with the the ref or range access of the table by access_key_no.
The function assumes that caller has checked that the key is not a clustered
key. See best_access_path().
@retval Pointer to the cost info for the range filter that promises
the greatest gain, NULL if there is no such range filter
*/
Range_rowid_filter_cost_info *
TABLE::best_range_rowid_filter(uint access_key_no, double records,
double fetch_cost, double index_only_cost,
double prev_records, double *records_out)
{
if (range_rowid_filter_cost_info_elems == 0 ||
covering_keys.is_set(access_key_no))
return 0;
/*
Currently we do not support usage of range filters if the table
is accessed by the clustered primary key. It does not make sense
if a full key is used. If the table is accessed by a partial
clustered primary key it would, but the current InnoDB code does not
allow it. Later this limitation may be lifted.
*/
DBUG_ASSERT(!file->is_clustering_key(access_key_no));
// Disallow use of range filter if the key contains partially-covered
// columns.
for (uint i= 0; i < key_info[access_key_no].usable_key_parts; i++)
{
if (key_info[access_key_no].key_part[i].field->type() == MYSQL_TYPE_BLOB)
return 0;
}
Range_rowid_filter_cost_info *best_filter= 0;
double best_filter_gain= DBL_MAX;
key_map no_filter_usage= key_info[access_key_no].overlapped;
no_filter_usage.merge(key_info[access_key_no].constraint_correlated);
no_filter_usage.set_bit(access_key_no);
for (uint i= 0; i < range_rowid_filter_cost_info_elems ; i++)
{
double new_cost, new_total_cost, new_records;
double cost_of_accepted_rows, cost_of_rejected_rows;
Range_rowid_filter_cost_info *filter= range_rowid_filter_cost_info_ptr[i];
/*
Do not use a range filter that uses an in index correlated with
the index by which the table is accessed
*/
if (no_filter_usage.is_set(filter->key_no))
continue;
new_records= records * filter->selectivity;
set_if_smaller(*records_out, new_records);
cost_of_accepted_rows= fetch_cost * filter->selectivity;
cost_of_rejected_rows= index_only_cost * (1 - filter->selectivity);
new_cost= (cost_of_accepted_rows + cost_of_rejected_rows +
records * filter->lookup_cost());
new_total_cost= ((new_cost + new_records *
in_use->variables.optimizer_where_cost) *
prev_records + filter->get_setup_cost());
if (best_filter_gain > new_total_cost)
{
best_filter_gain= new_total_cost;
best_filter= filter;
}
}
return best_filter;
}
/**
@brief
Fill the range rowid filter performing the associated range index scan
@details
This function performs the range index scan associated with this
range filter and place into the filter the rowids / primary keys
read from key tuples when doing this scan.
@retval
Rowid_filter::SUCCESS on success
Rowid_filter::NON_FATAL_ERROR the error which does not require transaction
rollback
Rowid_filter::FATAL_ERROR the error which does require transaction
rollback
@note
The function assumes that the quick select object to perform
the index range scan has been already created.
@note
Currently the same table handler is used to access the joined table
and to perform range index scan filling the filter.
In the future two different handlers will be used for this
purposes to facilitate a lazy building of the filter.
*/
Rowid_filter::build_return_code Range_rowid_filter::build()
{
build_return_code rc= SUCCESS;
handler *file= table->file;
THD *thd= table->in_use;
QUICK_RANGE_SELECT* quick= (QUICK_RANGE_SELECT*) select->quick;
uint table_status_save= table->status;
Item *pushed_idx_cond_save= file->pushed_idx_cond;
uint pushed_idx_cond_keyno_save= file->pushed_idx_cond_keyno;
bool in_range_check_pushed_down_save= file->in_range_check_pushed_down;
int org_keyread;
table->status= 0;
file->pushed_idx_cond= 0;
file->pushed_idx_cond_keyno= MAX_KEY;
file->in_range_check_pushed_down= false;
/* We're going to just read rowids / clustered primary keys */
table->prepare_for_position();
org_keyread= file->ha_end_active_keyread();
file->ha_start_keyread(quick->index);
if (quick->init() || quick->reset())
rc= FATAL_ERROR;
else
{
for (;;)
{
int quick_get_next_result= quick->get_next();
if (thd->check_killed())
{
rc= FATAL_ERROR;
break;
}
if (quick_get_next_result != 0)
{
rc= (quick_get_next_result == HA_ERR_END_OF_FILE ? SUCCESS
: FATAL_ERROR);
/*
The error state has been set by file->print_error(res, MYF(0)) call
inside quick->get_next() call, in Mrr_simple_index_reader::get_next()
*/
DBUG_ASSERT(rc == SUCCESS || thd->is_error());
break;
}
file->position(quick->record);
if (container->add(NULL, (char *) file->ref))
{
rc= NON_FATAL_ERROR;
break;
}
}
}
quick->range_end();
file->ha_end_keyread();
file->ha_restart_keyread(org_keyread);
table->status= table_status_save;
file->pushed_idx_cond= pushed_idx_cond_save;
file->pushed_idx_cond_keyno= pushed_idx_cond_keyno_save;
file->in_range_check_pushed_down= in_range_check_pushed_down_save;
tracker->set_container_elements_count(container->elements());
tracker->report_container_buff_size(file->ref_length);
if (rc != SUCCESS)
return rc;
container->sort(refpos_order_cmp, (void *) file);
table->file->rowid_filter_is_active= true;
return rc;
}
/**
@brief
Binary search in the sorted array of a rowid filter
@param ctxt context of the search
@parab elem rowid / primary key to look for
@details
The function looks for the rowid / primary key ' elem' in this container
assuming that ctxt contains a pointer to the TABLE structure created
for the table to whose row elem refers to.
@retval
true elem is found in the container
false otherwise
*/
bool Rowid_filter_sorted_array::check(void *ctxt, char *elem)
{
handler *file= ((TABLE *) ctxt)->file;
int l= 0;
int r= refpos_container.elements()-1;
while (l <= r)
{
int m= (l + r) / 2;
int cmp= refpos_order_cmp((void *) file,
refpos_container.get_pos(m), elem);
if (cmp == 0)
return true;
if (cmp < 0)
l= m + 1;
else
r= m-1;
}
return false;
}
Range_rowid_filter::~Range_rowid_filter()
{
delete container;
container= 0;
delete select;
select= 0;
}
|