1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
|
/* Copyright (c) 2005, 2017, Oracle and/or its affiliates.
Copyright (c) 2009, 2017, MariaDB Corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef RPL_RLI_H
#define RPL_RLI_H
#include "rpl_tblmap.h"
#include "rpl_reporting.h"
#include "rpl_utility.h"
#include "log.h" /* LOG_INFO, MYSQL_BIN_LOG */
#include "sql_class.h" /* THD */
#include "log_event.h"
#include "rpl_parallel.h"
struct RPL_TABLE_LIST;
class Master_info;
class Rpl_filter;
/****************************************************************************
Replication SQL Thread
Relay_log_info contains:
- the current relay log
- the current relay log offset
- master log name
- master log sequence corresponding to the last update
- misc information specific to the SQL thread
Relay_log_info is initialized from the slave.info file if such
exists. Otherwise, data members are intialized with defaults. The
initialization is done with Relay_log_info::init() call.
The format of slave.info file:
relay_log_name
relay_log_pos
master_log_name
master_log_pos
To clean up, call end_relay_log_info()
*****************************************************************************/
struct rpl_group_info;
struct inuse_relaylog;
class Relay_log_info : public Slave_reporting_capability
{
public:
/**
Flags for the state of reading the relay log. Note that these are
bit masks.
*/
enum enum_state_flag {
/** We are inside a group of events forming a statement */
IN_STMT=1,
/** We have inside a transaction */
IN_TRANSACTION=2
};
/*
The SQL thread owns one Relay_log_info, and each client that has
executed a BINLOG statement owns one Relay_log_info. This function
returns zero for the Relay_log_info object that belongs to the SQL
thread and nonzero for Relay_log_info objects that belong to
clients.
*/
inline bool belongs_to_client()
{
DBUG_ASSERT(sql_driver_thd);
return !sql_driver_thd->slave_thread;
}
/*
If true, events with the same server id should be replicated. This
field is set on creation of a relay log info structure by copying
the value of ::replicate_same_server_id and can be overridden if
necessary. For example of when this is done, check sql_binlog.cc,
where the BINLOG statement can be used to execute "raw" events.
*/
bool replicate_same_server_id;
/*** The following variables can only be read when protect by data lock ****/
/*
info_fd - file descriptor of the info file. set only during
initialization or clean up - safe to read anytime
cur_log_fd - file descriptor of the current read relay log
*/
File info_fd,cur_log_fd;
/*
Protected with internal locks.
Must get data_lock when resetting the logs.
*/
MYSQL_BIN_LOG relay_log;
LOG_INFO linfo;
/*
cur_log
Pointer that either points at relay_log.get_log_file() or
&rli->cache_buf, depending on whether the log is hot or there was
the need to open a cold relay_log.
cache_buf
IO_CACHE used when opening cold relay logs.
*/
IO_CACHE cache_buf,*cur_log;
/*
Keeps track of the number of transactions that commits
before fsyncing. The option --sync-relay-log-info determines
how many transactions should commit before fsyncing.
*/
uint sync_counter;
/*
Identifies when the recovery process is going on.
See sql/slave.cc:init_recovery for further details.
*/
bool is_relay_log_recovery;
/* The following variables are safe to read any time */
/* IO_CACHE of the info file - set only during init or end */
IO_CACHE info_file;
/*
List of temporary tables used by this connection.
This is updated when a temporary table is created or dropped by
a replication thread.
Not reset when replication ends, to allow one to access the tables
when replication restarts.
Protected by data_lock.
*/
All_tmp_tables_list *save_temporary_tables;
/*
standard lock acquisition order to avoid deadlocks:
run_lock, data_lock, relay_log.LOCK_log, relay_log.LOCK_index
*/
mysql_mutex_t data_lock, run_lock;
/*
start_cond is broadcast when SQL thread is started
stop_cond - when stopped
data_cond - when data protected by data_lock changes
*/
mysql_cond_t start_cond, stop_cond, data_cond;
/* parent Master_info structure */
Master_info *mi;
/*
List of active relay log files.
(This can be more than one in case of parallel replication).
*/
inuse_relaylog *inuse_relaylog_list;
inuse_relaylog *last_inuse_relaylog;
/*
Needed to deal properly with cur_log getting closed and re-opened with
a different log under our feet
*/
uint32 cur_log_old_open_count;
/*
If on init_info() call error_on_rli_init_info is true that means
that previous call to init_info() terminated with an error, RESET
SLAVE must be executed and the problem fixed manually.
*/
bool error_on_rli_init_info;
/*
Let's call a group (of events) :
- a transaction
or
- an autocommiting query + its associated events (INSERT_ID,
TIMESTAMP...)
We need these rli coordinates :
- relay log name and position of the beginning of the group we currently
are executing. Needed to know where we have to restart when replication has
stopped in the middle of a group (which has been rolled back by the slave).
- relay log name and position just after the event we have just
executed. This event is part of the current group.
Formerly we only had the immediately above coordinates, plus a 'pending'
variable, but this dealt wrong with the case of a transaction starting on a
relay log and finishing (commiting) on another relay log. Case which can
happen when, for example, the relay log gets rotated because of
max_binlog_size.
Note: group_relay_log_name, group_relay_log_pos must only be
written from the thread owning the Relay_log_info (SQL thread if
!belongs_to_client(); client thread executing BINLOG statement if
belongs_to_client()).
*/
char group_relay_log_name[FN_REFLEN];
ulonglong group_relay_log_pos;
char event_relay_log_name[FN_REFLEN];
ulonglong event_relay_log_pos;
ulonglong future_event_relay_log_pos;
/*
The master log name for current event. Only used in parallel replication.
*/
char future_event_master_log_name[FN_REFLEN];
/*
Original log name and position of the group we're currently executing
(whose coordinates are group_relay_log_name/pos in the relay log)
in the master's binlog. These concern the *group*, because in the master's
binlog the log_pos that comes with each event is the position of the
beginning of the group.
Note: group_master_log_name, group_master_log_pos must only be
written from the thread owning the Relay_log_info (SQL thread if
!belongs_to_client(); client thread executing BINLOG statement if
belongs_to_client()).
*/
char group_master_log_name[FN_REFLEN];
volatile my_off_t group_master_log_pos;
/*
Handling of the relay_log_space_limit optional constraint.
ignore_log_space_limit is used to resolve a deadlock between I/O and SQL
threads, the SQL thread sets it to unblock the I/O thread and make it
temporarily forget about the constraint.
*/
ulonglong log_space_limit;
Atomic_counter<uint64> log_space_total;
bool ignore_log_space_limit;
/*
Used by the SQL thread to instructs the IO thread to rotate
the logs when the SQL thread needs to purge to release some
disk space.
*/
bool sql_force_rotate_relay;
/*
The SQL driver thread sets this true while it is waiting at the end of the
relay log for more events to arrive. SHOW SLAVE STATUS uses this to report
Seconds_Behind_Master as zero while the SQL thread is so waiting.
*/
bool sql_thread_caught_up;
/**
Simple setter for @ref worker_threads_caught_up;
sets it `false` to to indicate new user events in queue
@pre @ref data_lock held to prevent race with is_threads_caught_up()
*/
inline void unset_worker_threads_caught_up()
{
mysql_mutex_assert_owner(&data_lock);
worker_threads_caught_up= false;
}
/**
@return
`true` if both @ref sql_thread_caught_up and (refresh according to
@ref last_inuse_relaylog as needed) @ref worker_threads_caught_up
@pre Only meaningful if `mi->using_parallel()`
@pre @ref data_lock held to prevent race condition
@note
Parallel replication requires the idleness of the main SQL thread as well,
because after the thread sets its state to "busy" with `data_lock` held,
it enqueues events *without this lock*. Not to mention any event the main
thread processes itself without distribution, e.g., ignored ones.
*/
bool are_sql_threads_caught_up();
/* Last executed timestamp */
my_time_t last_master_timestamp;
/*
Latest when + exec_time read from the master (by io_thread).
0 if there has been no new update events since the slave started.
*/
time_t newest_master_timestamp;
/*
When + exec_time of the last committed event on the slave.
In case of delayed slave and slave_timestamp is not set
then set to when + exec_time -1 of the first seen event.
*/
time_t slave_timestamp;
void clear_until_condition();
/**
Reset the delay.
This is used by RESET SLAVE to clear the delay.
*/
void clear_sql_delay()
{
sql_delay= 0;
}
/*
Needed for problems when slave stops and we want to restart it
skipping one or more events in the master log that have caused
errors, and have been manually applied by DBA already.
Must be ulong as it's referred to from set_var.cc
*/
volatile ulonglong slave_skip_counter;
ulonglong max_relay_log_size;
volatile ulong abort_pos_wait; /* Incremented on change master */
volatile ulong slave_run_id; /* Incremented on slave start */
mysql_mutex_t log_space_lock;
mysql_cond_t log_space_cond;
/*
THD for the main sql thread, the one that starts threads to process
slave requests. If there is only one thread, then this THD is also
used for SQL processing.
A kill sent to this THD will kill the replication.
*/
THD *sql_driver_thd;
#ifndef DBUG_OFF
int events_till_abort;
#endif
enum_gtid_skip_type gtid_skip_flag;
/*
inited changes its value within LOCK_active_mi-guarded critical
sections at times of start_slave_threads() (0->1) and end_slave() (1->0).
Readers may not acquire the mutex while they realize potential concurrency
issue.
If not set, the value of other members of the structure are undefined.
*/
volatile bool inited;
volatile bool abort_slave;
volatile bool stop_for_until;
volatile uint slave_running;
/*
Condition and its parameters from START SLAVE UNTIL clause.
UNTIL condition is tested with is_until_satisfied() method that is
called by exec_relay_log_event(). is_until_satisfied() caches the result
of the comparison of log names because log names don't change very often;
this cache is invalidated by parts of code which change log names with
notify_*_log_name_updated() methods. (They need to be called only if SQL
thread is running).
*/
enum {
UNTIL_NONE= 0, UNTIL_MASTER_POS, UNTIL_RELAY_POS, UNTIL_GTID
} until_condition;
char until_log_name[FN_REFLEN];
ulonglong until_log_pos;
/* extension extracted from log_name and converted to int */
ulong until_log_name_extension;
/*
Cached result of comparison of until_log_name and current log name
-2 means unitialised, -1,0,1 are comarison results
*/
enum
{
UNTIL_LOG_NAMES_CMP_UNKNOWN= -2, UNTIL_LOG_NAMES_CMP_LESS= -1,
UNTIL_LOG_NAMES_CMP_EQUAL= 0, UNTIL_LOG_NAMES_CMP_GREATER= 1
} until_log_names_cmp_result;
/* Condition for UNTIL master_gtid_pos. */
slave_connection_state until_gtid_pos;
bool is_until_before_gtids;
/*
retried_trans is a cumulative counter: how many times the slave
has retried a transaction (any) since slave started.
Protected by data_lock.
*/
ulong retried_trans;
/*
Number of executed events for SLAVE STATUS.
Protected by slave_executed_entries_lock
*/
Atomic_counter<uint32_t> executed_entries;
/*
If the end of the hot relay log is made of master's events ignored by the
slave I/O thread, these two keep track of the coords (in the master's
binlog) of the last of these events seen by the slave I/O thread. If not,
ign_master_log_name_end[0] == 0.
As they are like a Rotate event read/written from/to the relay log, they
are both protected by rli->relay_log.LOCK_log.
*/
char ign_master_log_name_end[FN_REFLEN];
ulonglong ign_master_log_pos_end;
/* Similar for ignored GTID events. */
slave_connection_state ign_gtids;
/*
Indentifies where the SQL Thread should create temporary files for the
LOAD DATA INFILE. This is used for security reasons.
*/
char slave_patternload_file[FN_REFLEN];
size_t slave_patternload_file_size;
rpl_parallel parallel;
/*
The relay_log_state keeps track of the current binlog state of the
execution of the relay log. This is used to know where to resume
current GTID position if the slave thread is stopped and
restarted. It is only accessed from the SQL thread, so it does
not need any locking.
*/
rpl_binlog_state relay_log_state;
/*
The restart_gtid_state is used when the SQL thread restarts on a relay log
in GTID mode. In multi-domain parallel replication, each domain may have a
separat position, so some events in more progressed domains may need to be
skipped. This keeps track of the domains that have not yet reached their
starting event.
*/
slave_connection_state restart_gtid_pos;
Relay_log_info(bool is_slave_recovery, const char* thread_name= "SQL");
~Relay_log_info();
/*
Invalidate cached until_log_name and group_relay_log_name comparison
result. Should be called after any update of group_relay_log_name if
there chances that sql_thread is running.
*/
inline void notify_group_relay_log_name_update()
{
if (until_condition==UNTIL_RELAY_POS)
until_log_names_cmp_result= UNTIL_LOG_NAMES_CMP_UNKNOWN;
}
/*
The same as previous but for group_master_log_name.
*/
inline void notify_group_master_log_name_update()
{
if (until_condition==UNTIL_MASTER_POS)
until_log_names_cmp_result= UNTIL_LOG_NAMES_CMP_UNKNOWN;
}
void inc_group_relay_log_pos(ulonglong log_pos,
rpl_group_info *rgi,
bool skip_lock=0);
int wait_for_pos(THD* thd, String* log_name, longlong log_pos,
longlong timeout);
void close_temporary_tables();
/* Check if UNTIL condition is satisfied. See slave.cc for more. */
bool is_until_satisfied(Log_event *ev);
inline ulonglong until_pos()
{
DBUG_ASSERT(until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS);
return ((until_condition == UNTIL_MASTER_POS) ? group_master_log_pos :
group_relay_log_pos);
}
inline char *until_name()
{
DBUG_ASSERT(until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS);
return ((until_condition == UNTIL_MASTER_POS) ? group_master_log_name :
group_relay_log_name);
}
/**
Helper function to do after statement completion.
This function is called from an event to complete the group by
either stepping the group position, if the "statement" is not
inside a transaction; or increase the event position, if the
"statement" is inside a transaction.
@param event_log_pos
Master log position of the event. The position is recorded in the
relay log info and used to produce information for <code>SHOW
SLAVE STATUS</code>.
*/
bool stmt_done(my_off_t event_log_pos, THD *thd, rpl_group_info *rgi);
int alloc_inuse_relaylog(const char *name);
void free_inuse_relaylog(inuse_relaylog *ir);
void reset_inuse_relaylog();
int update_relay_log_state(rpl_gtid *gtid_list, uint32 count);
/**
Is the replication inside a group?
The reader of the relay log is inside a group if either:
- The IN_TRANSACTION flag is set, meaning we're inside a transaction
- The IN_STMT flag is set, meaning we have read at least one row from
a multi-event entry.
This flag reflects the state of the log 'just now', ie after the last
read event would be executed.
This allow us to test if we can stop replication before reading
the next entry.
@retval true Replication thread is currently inside a group
@retval false Replication thread is currently not inside a group
*/
bool is_in_group() const {
return (m_flags & (IN_STMT | IN_TRANSACTION));
}
/**
Set the value of a replication state flag.
@param flag Flag to set
*/
void set_flag(enum_state_flag flag)
{
m_flags|= flag;
}
/**
Get the value of a replication state flag.
@param flag Flag to get value of
@return @c true if the flag was set, @c false otherwise.
*/
bool get_flag(enum_state_flag flag)
{
return m_flags & flag;
}
/**
Clear the value of a replication state flag.
@param flag Flag to clear
*/
void clear_flag(enum_state_flag flag)
{
m_flags&= ~flag;
}
bool flush();
/**
Reads the relay_log.info file.
*/
int init(const char* info_filename);
/**
Indicate that a delay starts.
This does not actually sleep; it only sets the state of this
Relay_log_info object to delaying so that the correct state can be
reported by SHOW SLAVE STATUS and SHOW PROCESSLIST.
Requires rli->data_lock.
@param delay_end The time when the delay shall end.
*/
void start_sql_delay(time_t delay_end)
{
mysql_mutex_assert_owner(&data_lock);
sql_delay_end= delay_end;
THD_STAGE_INFO(sql_driver_thd, stage_sql_thd_waiting_until_delay);
}
int32 get_sql_delay() { return sql_delay; }
void set_sql_delay(int32 _sql_delay) { sql_delay= _sql_delay; }
time_t get_sql_delay_end() { return sql_delay_end; }
rpl_gtid last_seen_gtid;
ulong last_trans_retry_count;
private:
/**
Delay slave SQL thread by this amount, compared to master (in
seconds). This is set with CHANGE MASTER TO MASTER_DELAY=X.
Guarded by data_lock. Initialized by the client thread executing
START SLAVE. Written by client threads executing CHANGE MASTER TO
MASTER_DELAY=X. Read by SQL thread and by client threads
executing SHOW SLAVE STATUS. Note: must not be written while the
slave SQL thread is running, since the SQL thread reads it without
a lock when executing Relay_log_info::flush().
*/
int sql_delay;
/**
During a delay, specifies the point in time when the delay ends.
This is used for the SQL_Remaining_Delay column in SHOW SLAVE STATUS.
Guarded by data_lock. Written by the sql thread. Read by client
threads executing SHOW SLAVE STATUS.
This is calculated as:
clock_time_for_event_on_master + clock_difference_between_master_and_slave +
SQL_DELAY.
*/
time_t sql_delay_end;
/*
Before the MASTER_DELAY parameter was added (WL#344),
relay_log.info had 4 lines. Now it has 5 lines.
*/
static const int LINES_IN_RELAY_LOG_INFO_WITH_DELAY= 5;
/*
Hint for when to stop event distribution by sql driver thread.
The flag is set ON by a non-group event when this event is in the middle
of a group (e.g a transaction group) so it's too early
to refresh the current-relay-log vs until-log cached comparison result.
And it is checked and to decide whether it's a right time to do so
when the being processed group has been fully scheduled.
*/
bool until_relay_log_names_defer;
/*
Holds the state of the data in the relay log.
We need this to ensure that we are not in the middle of a
statement or inside BEGIN ... COMMIT when should rotate the
relay log.
*/
uint32 m_flags;
/**
When `true`, this worker threads' copy of @ref sql_thread_caught_up
represents that __every__ worker thread is waiting for new events.
* The SQL driver thread sets this to `false` through
unset_worker_threads_caught_up() as it prepares an event
(either to enqueue a worker or, e.g., ignored events, process itself)
* For the main driver or any worker thread to refresh this state immediately
when it finishes, the procedure would have to be a critical section.
To avoid depending on a mutex, this state instead only returns to `true`
as part of its reader, are_worker_threads_caught_up().
`Seconds_Behind_Master` of SHOW SLAVE STATUS uses this method (which also
reads `sql_thread_caught_up`) to know when all SQL threads are waiting.
@pre Only meaningful if `mi->using_parallel()`
*/
bool worker_threads_caught_up= true;
};
/*
In parallel replication, if we need to re-try a transaction due to a
deadlock or other temporary error, we may need to go back and re-read events
out of an earlier relay log.
This structure keeps track of the relaylogs that are potentially in use.
Each rpl_group_info has a pointer to one of those, corresponding to the
first GTID event.
A pair of reference count keeps track of how long a relay log is potentially
in use. When the `completed' flag is set, all events have been read out of
the relay log, but the log might still be needed for retry in worker
threads. As worker threads complete an event group, they increment
atomically the `dequeued_count' with number of events queued. Thus, when
completed is set and dequeued_count equals queued_count, the relay log file
is finally done with and can be purged.
By separating the queued and dequeued count, only the dequeued_count needs
multi-thread synchronisation; the completed flag and queued_count fields
are only accessed by the SQL driver thread and need no synchronisation.
*/
struct inuse_relaylog {
inuse_relaylog *next;
Relay_log_info *rli;
/*
relay_log_state holds the binlog state corresponding to the start of this
relay log file. It is an array with relay_log_state_count elements.
*/
rpl_gtid *relay_log_state;
uint32 relay_log_state_count;
/* Number of events in this relay log queued for worker threads. */
Atomic_counter<int64> queued_count;
/* Number of events completed by worker threads. */
Atomic_counter<int64> dequeued_count;
/* Set when all events have been read from a relaylog. */
bool completed;
char name[FN_REFLEN];
inuse_relaylog(Relay_log_info *rli_arg, rpl_gtid *relay_log_state_arg,
uint32 relay_log_state_count_arg,
const char *name_arg):
next(0), rli(rli_arg), relay_log_state(relay_log_state_arg),
relay_log_state_count(relay_log_state_count_arg), queued_count(0),
dequeued_count(0), completed(false)
{
strmake_buf(name, name_arg);
}
};
enum start_alter_state
{
INVALID= 0,
REGISTERED, // Start Alter exist, Default state
COMMIT_ALTER, // COMMIT the alter
ROLLBACK_ALTER, // Rollback the alter
COMPLETED // COMMIT/ROLLBACK Alter written in binlog
};
struct start_alter_info
{
/*
ALTER id is defined as a pair of GTID's seq_no and domain_id.
*/
decltype(rpl_gtid::seq_no) sa_seq_no; // key for searching (SA's id)
uint32 domain_id;
bool direct_commit_alter; // when true CA thread executes the whole query
/*
0 prepared and not error from commit and rollback
>0 error expected in commit/rollback
Rollback can be logged with 0 error if master is killed
*/
uint error;
enum start_alter_state state;
/* We are not using mysql_cond_t because we do not need PSI */
mysql_cond_t start_alter_cond;
};
struct Rpl_table_data
{
const table_def *tabledef;
TABLE *conv_table;
const Copy_field *copy_fields;
const Copy_field *copy_fields_end;
Rpl_table_data(const RPL_TABLE_LIST &rpl_table_list)
{
tabledef= &rpl_table_list.m_tabledef;
conv_table= rpl_table_list.m_conv_table;
copy_fields= rpl_table_list.m_online_alter_copy_fields;
copy_fields_end= rpl_table_list.m_online_alter_copy_fields_end;
}
bool is_online_alter() const { return copy_fields != NULL; }
};
/*
This is data for various state needed to be kept for the processing of
one event group (transaction) during replication.
In single-threaded replication, there will be one global rpl_group_info and
one global Relay_log_info per master connection. They will be linked
together.
In parallel replication, there will be one rpl_group_info object for
each running sql thread, each having their own thd.
All rpl_group_info will share the same Relay_log_info.
*/
struct rpl_group_info
{
rpl_group_info *next; /* For free list in rpl_parallel_thread */
Relay_log_info *rli;
THD *thd;
/*
Current GTID being processed.
The sub_id gives the binlog order within one domain_id. A zero sub_id
means that there is no active GTID.
*/
uint64 gtid_sub_id;
rpl_gtid current_gtid;
/* Currently applied event or NULL */
Log_event *current_event;
uint64 commit_id;
/*
This is used to keep transaction commit order.
We will signal this when we commit, and can register it to wait for the
commit_orderer of the previous commit to signal us.
*/
wait_for_commit commit_orderer;
/*
If non-zero, the sub_id of a prior event group whose commit we have to wait
for before committing ourselves. Then wait_commit_group_info points to the
event group to wait for.
Before using this, rpl_parallel_entry::last_committed_sub_id should be
compared against wait_commit_sub_id. Only if last_committed_sub_id is
smaller than wait_commit_sub_id must the wait be done (otherwise the
waited-for transaction is already committed, so we would otherwise wait
for the wrong commit).
*/
uint64 wait_commit_sub_id;
rpl_group_info *wait_commit_group_info;
/*
This holds a pointer to a struct that keeps track of the need to wait
for the previous batch of event groups to reach the commit stage, before
this batch can start to execute.
(When we execute in parallel the transactions that group committed
together on the master, we still need to wait for any prior transactions
to have reached the commit stage).
The pointed-to gco is only valid for as long as
gtid_sub_id < parallel_entry->last_committed_sub_id. After that, it can
be freed by another thread.
*/
group_commit_orderer *gco;
struct rpl_parallel_entry *parallel_entry;
/*
A container to hold on Intvar-, Rand-, Uservar- log-events in case
the slave is configured with table filtering rules.
The withhold events are executed when their parent Query destiny is
determined for execution as well.
*/
Deferred_log_events *deferred_events;
/*
State of the container: true stands for IRU events gathering,
false does for execution, either deferred or direct.
*/
bool deferred_events_collecting;
Annotate_rows_log_event *m_annotate_event;
RPL_TABLE_LIST *tables_to_lock; /* RBR: Tables to lock */
uint tables_to_lock_count; /* RBR: Count of tables to lock */
table_mapping m_table_map; /* RBR: Mapping table-id to table */
mysql_mutex_t sleep_lock;
mysql_cond_t sleep_cond;
/*
trans_retries varies between 0 to slave_transaction_retries and counts how
many times the slave has retried the present transaction; gets reset to 0
when the transaction finally succeeds.
*/
ulong trans_retries;
/*
Used to defer stopping the SQL thread to give it a chance
to finish up the current group of events.
The timestamp is set and reset in @c sql_slave_killed().
*/
time_t last_event_start_time;
char *event_relay_log_name;
char event_relay_log_name_buf[FN_REFLEN];
ulonglong event_relay_log_pos;
ulonglong future_event_relay_log_pos;
/*
The master log name for current event. Only used in parallel replication.
*/
char future_event_master_log_name[FN_REFLEN];
bool is_parallel_exec;
/* When gtid_pending is true, we have not yet done record_gtid(). */
bool gtid_pending;
int worker_error;
/*
Set true when we signalled that we reach the commit phase. Used to avoid
counting one event group twice.
*/
bool did_mark_start_commit;
/* Copy of flags2 from GTID event. */
uchar gtid_ev_flags2;
/* Copy of flags3 from GTID event. */
uint16 gtid_ev_flags_extra;
uint64 gtid_ev_sa_seq_no;
enum {
GTID_DUPLICATE_NULL=0,
GTID_DUPLICATE_IGNORE=1,
GTID_DUPLICATE_OWNER=2
};
/*
When --gtid-ignore-duplicates, this is set to one of the above three
values:
GTID_DUPLICATE_NULL - Not using --gtid-ignore-duplicates.
GTID_DUPLICATE_IGNORE - This gtid already applied, skip the event group.
GTID_DUPLICATE_OWNER - We are the current owner of the domain, and must
apply the event group and then release the domain.
*/
uint8 gtid_ignore_duplicate_state;
/*
Runtime state for printing a note when slave is taking
too long while processing a row event.
*/
longlong row_stmt_start_timestamp;
bool long_find_row_note_printed;
/* Needs room for "Gtid D-S-N\x00". */
mutable char gtid_info_buf[5+10+1+10+1+20+1];
/*
The timestamp, from the master, of the commit event.
Used to do delayed update of rli->last_master_timestamp, for getting
reasonable values out of Seconds_Behind_Master in SHOW SLAVE STATUS.
*/
my_time_t last_master_timestamp;
/*
The exec_time of the transaction from the master's binlog. It is used with
log_slave_updates to preserve execution time value from the master when
re-binlogging on the slave.
*/
my_time_t orig_exec_time;
/*
Information to be able to re-try an event group in case of a deadlock or
other temporary error.
*/
inuse_relaylog *relay_log;
uint64 retry_start_offset;
uint64 retry_event_count;
/*
If `speculation' is != SPECULATE_NO, then we are optimistically running
this transaction in parallel, even though it might not be safe (there may
be a conflict with a prior event group).
In this case, a conflict can cause other errors than deadlocks (like
duplicate key for example). So in case of _any_ error, we need to roll
back and retry the event group.
*/
enum enum_speculation {
/*
This transaction was group-committed together on the master with the
other transactions with which it is replicated in parallel.
*/
SPECULATE_NO,
/*
We will optimistically try to run this transaction in parallel with
other transactions, even though it is not known to be conflict free.
If we get a conflict, we will detect it as a deadlock, roll back and
retry.
*/
SPECULATE_OPTIMISTIC,
/*
This transaction got a conflict during speculative parallel apply, or
it was marked on the master as likely to cause a conflict or unsafe to
speculate. So it will wait for the prior transaction to commit before
starting to replicate.
*/
SPECULATE_WAIT
} speculation;
enum enum_retry_killed {
RETRY_KILL_NONE = 0,
RETRY_KILL_PENDING,
RETRY_KILL_KILLED
};
uchar killed_for_retry;
bool reserved_start_alter_thread;
bool finish_event_group_called;
/*
Used for two phase alter table
*/
rpl_parallel_thread *rpt;
Query_log_event *start_alter_ev;
bool direct_commit_alter;
start_alter_info *sa_info;
rpl_group_info(Relay_log_info *rli_);
~rpl_group_info();
void reinit(Relay_log_info *rli);
/*
Returns true if the argument event resides in the containter;
more specifically, the checking is done against the last added event.
*/
bool is_deferred_event(Log_event * ev)
{
return deferred_events_collecting ? deferred_events->is_last(ev) : false;
};
/* The general cleanup that slave applier may need at the end of query. */
inline void cleanup_after_query()
{
if (deferred_events)
deferred_events->rewind();
};
/* The general cleanup that slave applier may need at the end of session. */
void cleanup_after_session()
{
if (deferred_events)
{
delete deferred_events;
deferred_events= NULL;
}
};
/**
Save pointer to Annotate_rows event and switch on the
binlog_annotate_row_events for this sql thread.
To be called when sql thread receives an Annotate_rows event.
*/
inline void set_annotate_event(Annotate_rows_log_event *event)
{
DBUG_ASSERT(m_annotate_event == NULL);
m_annotate_event= event;
this->thd->variables.binlog_annotate_row_events= 1;
}
/**
Returns pointer to the saved Annotate_rows event or NULL if there is
no saved event.
*/
inline Annotate_rows_log_event* get_annotate_event()
{
return m_annotate_event;
}
/**
Delete saved Annotate_rows event (if any) and switch off the
binlog_annotate_row_events for this sql thread.
To be called when sql thread has applied the last (i.e. with
STMT_END_F flag) rbr event.
*/
inline void free_annotate_event()
{
if (m_annotate_event)
{
this->thd->variables.binlog_annotate_row_events= 0;
delete m_annotate_event;
m_annotate_event= 0;
}
}
void clear_tables_to_lock();
void cleanup_context(THD *, bool, bool keep_domain_owner= false);
void slave_close_thread_tables(THD *);
void mark_start_commit_no_lock();
void mark_start_commit();
char *gtid_info() const;
void unmark_start_commit();
longlong get_row_stmt_start_timestamp()
{
return row_stmt_start_timestamp;
}
void set_row_stmt_start_timestamp()
{
if (row_stmt_start_timestamp == 0)
row_stmt_start_timestamp= microsecond_interval_timer();
}
void reset_row_stmt_start_timestamp()
{
row_stmt_start_timestamp= 0;
}
void set_long_find_row_note_printed()
{
long_find_row_note_printed= true;
}
void unset_long_find_row_note_printed()
{
long_find_row_note_printed= false;
}
bool is_long_find_row_note_printed()
{
return long_find_row_note_printed;
}
inline void inc_event_relay_log_pos()
{
if (!is_parallel_exec)
rli->event_relay_log_pos= future_event_relay_log_pos;
}
void finish_start_alter_event_group();
bool get_finish_event_group_called()
{
return finish_event_group_called;
}
void set_finish_event_group_called(bool value)
{
finish_event_group_called= value;
}
};
/*
The class rpl_sql_thread_info is the THD::system_thread_info for an SQL
thread; this is either the driver SQL thread or a worker thread for parallel
replication.
*/
class rpl_sql_thread_info
{
public:
char cached_charset[6];
Rpl_filter* rpl_filter;
rpl_sql_thread_info(Rpl_filter *filter);
/*
Last charset (6 bytes) seen by slave SQL thread is cached here; it helps
the thread save 3 get_charset() per Query_log_event if the charset is not
changing from event to event (common situation).
When the 6 bytes are equal to 0 is used to mean "cache is invalidated".
*/
void cached_charset_invalidate();
bool cached_charset_compare(char *charset) const;
};
extern struct rpl_slave_state *rpl_global_gtid_slave_state;
extern gtid_waiting rpl_global_gtid_waiting;
int rpl_load_gtid_slave_state(THD *thd);
int find_gtid_slave_pos_tables(THD *thd);
int event_group_new_gtid(rpl_group_info *rgi, Gtid_log_event *gev);
void delete_or_keep_event_post_apply(rpl_group_info *rgi,
Log_event_type typ, Log_event *ev);
#endif /* RPL_RLI_H */
|