1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607
|
/* Copyright (c) 2000, 2016, Oracle and/or its affiliates.
Copyright (c) 2009, 2024, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/**
@file
@brief
mysql_select and join optimization
@defgroup Query_Optimizer Query Optimizer
@{
*/
#include "mariadb.h"
#include "sql_priv.h"
#include "unireg.h"
#include "sql_select.h"
#include "sql_cache.h" // query_cache_*
#include "sql_table.h" // primary_key_name
#include "probes_mysql.h"
#include "key.h" // key_copy, key_cmp, key_cmp_if_same
#include "lock.h" // mysql_unlock_some_tables,
// mysql_unlock_read_tables
#include "sql_show.h" // append_identifier
#include "sql_base.h" // setup_wild, setup_fields, fill_record
#include "sql_parse.h" // check_stack_overrun
#include "sql_partition.h" // make_used_partitions_str
#include "sql_test.h" // print_where, print_keyuse_array,
// print_sjm, print_plan, TEST_join
#include "records.h" // init_read_record, end_read_record
#include "filesort.h" // filesort_free_buffers
#include "filesort_utils.h" // get_qsort_sort_cost
#include "sql_union.h" // mysql_union
#include "opt_subselect.h"
#include "sql_derived.h"
#include "sql_statistics.h"
#include "sql_cte.h"
#include "sql_window.h"
#include "tztime.h"
#include "debug_sync.h" // DEBUG_SYNC
#include <m_ctype.h>
#include <my_bit.h>
#include <hash.h>
#include <ft_global.h>
#include "sys_vars_shared.h"
#include "sp_head.h"
#include "sp_rcontext.h"
#include "rowid_filter.h"
#include "select_handler.h"
#include "my_json_writer.h"
#include "opt_trace.h"
#include "derived_handler.h"
#include "create_tmp_table.h"
#include "optimizer_defaults.h"
#include "derived_handler.h"
/*
A key part number that means we're using a fulltext scan.
In order not to confuse it with regular equalities, we need to pick
a number that's greater than MAX_REF_PARTS.
Hash Join code stores field->field_index in KEYUSE::keypart, so the
number needs to be bigger than MAX_FIELDS, also.
CAUTION: sql_test.cc has its own definition of FT_KEYPART.
*/
#define FT_KEYPART (MAX_FIELDS+10)
/*
We assume that when we do hash join, only 10 % rows in the hash will
match the current found row.
*/
#define HASH_FANOUT 0.1
/*
The following is used to check that A <= B, but with some margin as the
calculation is done slightly differently (mathematically correct, but
double calculations are not exact).
This is only used when comparing read rows and output rows, which
means that we can assume that both values are >= 0 and B cannot be notable
smaller than A.
*/
#define crash_if_first_double_is_bigger(A,B) DBUG_ASSERT(((A) == 0.0 && (B) == 0.0) || (A)/(B) < 1.0000001)
#define double_to_rows(A) ((A) >= ((double)HA_ROWS_MAX) ? HA_ROWS_MAX : (ha_rows) (A))
#define double_to_ulonglong(A) ((A) >= ((double)ULONGLONG_MAX) ? ULONGLONG_MAX : (ulonglong) (A))
/* Used to ensure that costs are calculate the same way */
inline bool compare_cost(double a, double b)
{
DBUG_ASSERT(a >= 0.0 && b >= 0.0);
return (a >= b - b/10000000.0 && a <= b+b/10000000.0);
}
inline double safe_filtered(double a, double b)
{
return b != 0 ? a/b*100.0 : 0.0;
}
const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref",
"MAYBE_REF","ALL","range","index","fulltext",
"ref_or_null","unique_subquery","index_subquery",
"index_merge", "hash_ALL", "hash_range",
"hash_index", "hash_index_merge" };
static const Lex_ident_column group_key= "group_key"_Lex_ident_column;
static const Lex_ident_column distinct_key= "distinct_key"_Lex_ident_column;
struct st_sargable_param;
static bool make_join_statistics(JOIN *join, List<TABLE_LIST> &leaves,
DYNAMIC_ARRAY *keyuse);
static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,
JOIN_TAB *join_tab,
uint tables, COND *conds,
table_map table_map, SELECT_LEX *select_lex,
SARGABLE_PARAM **sargables);
static int sort_keyuse(const void *a, const void *b);
static bool are_tables_local(JOIN_TAB *jtab, table_map used_tables);
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
bool allow_full_scan, table_map used_tables);
static bool get_quick_record_count(THD *thd, SQL_SELECT *select,
TABLE *table,
const key_map *keys,ha_rows limit,
ha_rows *quick_count);
static void optimize_straight_join(JOIN *join, table_map join_tables);
static bool greedy_search(JOIN *join, table_map remaining_tables,
uint depth, uint use_cond_selectivity);
enum enum_best_search {
SEARCH_ABORT= -2,
SEARCH_ERROR= -1,
SEARCH_OK= 0,
SEARCH_FOUND_EDGE=1
};
static enum_best_search
best_extension_by_limited_search(JOIN *join,
table_map remaining_tables,
uint idx, double record_count,
double read_time, uint depth,
uint use_cond_selectivity,
table_map *processed_eq_ref_tables);
static uint determine_search_depth(JOIN* join);
C_MODE_START
static int join_tab_cmp(void *dummy, const void* ptr1, const void* ptr2);
static int join_tab_cmp_straight(void *dummy, const void* ptr1, const void* ptr2);
static int join_tab_cmp_embedded_first(void *emb, const void* ptr1, const void *ptr2);
C_MODE_END
static uint cache_record_length(JOIN *join,uint index);
static store_key *get_store_key(THD *thd,
KEYUSE *keyuse, table_map used_tables,
KEY_PART_INFO *key_part, uchar *key_buff,
uint maybe_null);
static bool make_outerjoin_info(JOIN *join);
static Item*
make_cond_after_sjm(THD *thd, Item *root_cond, Item *cond, table_map tables,
table_map sjm_tables, bool inside_or_clause);
static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *item);
static void revise_cache_usage(JOIN_TAB *join_tab);
static bool make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after);
static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables);
static void update_depend_map(JOIN *join);
static void update_depend_map_for_order(JOIN *join, ORDER *order);
static ORDER *remove_const(JOIN *join,ORDER *first_order,COND *cond,
bool change_list, bool *simple_order);
static int return_zero_rows(JOIN *join, select_result *res,
List<TABLE_LIST> *tables,
List<Item> *fields, bool send_row,
ulonglong select_options, const char *info,
Item *having, List<Item> *all_fields);
static COND *build_equal_items(JOIN *join, COND *cond,
COND_EQUAL *inherited,
List<TABLE_LIST> *join_list,
bool ignore_on_conds,
COND_EQUAL **cond_equal_ref,
bool link_equal_fields= FALSE);
static COND* substitute_for_best_equal_field(THD *thd, JOIN_TAB *context_tab,
COND *cond,
COND_EQUAL *cond_equal,
void *table_join_idx,
bool do_substitution);
static COND *simplify_joins(JOIN *join, List<TABLE_LIST> *join_list,
COND *conds, bool top, bool in_sj);
static bool check_interleaving_with_nj(JOIN_TAB *next);
static void restore_prev_nj_state(JOIN_TAB *last);
static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list);
static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list,
uint first_unused);
static COND *optimize_cond(JOIN *join, COND *conds,
List<TABLE_LIST> *join_list,
bool ignore_on_conds,
Item::cond_result *cond_value,
COND_EQUAL **cond_equal,
int flags= 0);
bool const_expression_in_where(COND *conds,Item *item, Item **comp_item);
static int do_select(JOIN *join, Procedure *procedure);
static enum_nested_loop_state evaluate_join_record(JOIN *, JOIN_TAB *, int);
static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab);
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static int join_read_const_table(THD *thd, JOIN_TAB *tab, POSITION *pos);
static int join_read_system(JOIN_TAB *tab);
static int join_read_const(JOIN_TAB *tab);
static int join_read_key(JOIN_TAB *tab);
static void join_read_key_unlock_row(st_join_table *tab);
static void join_const_unlock_row(JOIN_TAB *tab);
static int join_read_always_key(JOIN_TAB *tab);
static int join_read_last_key(JOIN_TAB *tab);
static int join_no_more_records(READ_RECORD *info);
static int join_read_next(READ_RECORD *info);
static int join_hlindex_read_next(READ_RECORD *info);
static int join_init_quick_read_record(JOIN_TAB *tab);
static quick_select_return test_if_quick_select(JOIN_TAB *tab);
static int test_if_use_dynamic_range_scan(JOIN_TAB *join_tab);
static int join_read_first(JOIN_TAB *tab);
static int join_read_next_same(READ_RECORD *info);
static int join_read_last(JOIN_TAB *tab);
static int join_read_prev_same(READ_RECORD *info);
static int join_read_prev(READ_RECORD *info);
static int join_ft_read_first(JOIN_TAB *tab);
static int join_ft_read_next(READ_RECORD *info);
int join_read_always_key_or_null(JOIN_TAB *tab);
int join_read_next_same_or_null(READ_RECORD *info);
static COND *make_cond_for_table(THD *thd, Item *cond,table_map table,
table_map used_table,
int join_tab_idx_arg,
bool exclude_expensive_cond,
bool retain_ref_cond);
static COND *make_cond_for_table_from_pred(THD *thd, Item *root_cond,
Item *cond,
table_map tables,
table_map used_table,
int join_tab_idx_arg,
bool exclude_expensive_cond,
bool retain_ref_cond,
bool is_top_and_level);
static Item* part_of_refkey(TABLE *form,Field *field);
static bool test_if_cheaper_ordering(bool in_join_optimizer,
const JOIN_TAB *tab,
ORDER *order, TABLE *table,
key_map usable_keys, int key,
ha_rows select_limit,
int *new_key, int *new_key_direction,
ha_rows *new_select_limit,
double *new_read_time,
uint *new_used_key_parts= NULL,
uint *saved_best_key_parts= NULL);
static int test_if_order_by_key(JOIN *, ORDER *, TABLE *, uint, uint *);
static bool test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,
ha_rows select_limit, bool no_changes,
const key_map *map,
bool *fatal_error);
static bool list_contains_unique_index(TABLE *table,
bool (*find_func) (Field *, void *), void *data);
static bool find_field_in_item_list (Field *field, void *data);
static bool find_field_in_order_list (Field *field, void *data);
int create_sort_index(THD *thd, JOIN *join, JOIN_TAB *tab, Filesort *fsort);
static int remove_dup_with_compare(THD *thd, TABLE *entry, Field **field,
SORT_FIELD *sortorder, ulong keylength,
Item *having);
static int remove_dup_with_hash_index(THD *thd,TABLE *table,
uint field_count, Field **first_field,
SORT_FIELD *sortorder,
ulong key_length,Item *having);
static bool cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref);
static bool setup_new_fields(THD *thd, List<Item> &fields,
List<Item> &all_fields, ORDER *new_order);
static ORDER *create_distinct_group(THD *thd, Ref_ptr_array ref_pointer_array,
ORDER *order, List<Item> &fields,
List<Item> &all_fields,
bool *all_order_by_fields_used);
static bool test_if_subpart(ORDER *group_by, ORDER *order_by);
static TABLE *get_sort_by_table(ORDER *a,ORDER *b,List<TABLE_LIST> &tables,
table_map const_tables);
static void calc_group_buffer(JOIN *join, ORDER *group);
static bool make_group_fields(JOIN *main_join, JOIN *curr_join);
static bool alloc_group_fields(JOIN *join, ORDER *group);
static bool alloc_order_fields(JOIN *join, ORDER *group,
uint max_number_of_elements);
// Create list for using with tempory table
static bool change_to_use_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &new_list1,
List<Item> &new_list2,
uint elements, List<Item> &items);
// Create list for using with tempory table
static bool change_refs_to_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &new_list1,
List<Item> &new_list2,
uint elements, List<Item> &items);
static void init_tmptable_sum_functions(Item_sum **func);
static void update_tmptable_sum_func(Item_sum **func,TABLE *tmp_table);
static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end);
static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab);
static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr);
static bool init_sum_functions(Item_sum **func, Item_sum **end);
static bool update_sum_func(Item_sum **func);
static void select_describe(JOIN *join, bool need_tmp_table,bool need_order,
bool distinct, const char *message=NullS);
static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab);
static uint make_join_orderinfo(JOIN *join);
static bool generate_derived_keys(DYNAMIC_ARRAY *keyuse_array);
Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
bool *inherited_fl);
JOIN_TAB *first_depth_first_tab(JOIN* join);
JOIN_TAB *next_depth_first_tab(JOIN* join, JOIN_TAB* tab);
static JOIN_TAB *next_breadth_first_tab(JOIN_TAB *first_top_tab,
uint n_top_tabs_count, JOIN_TAB *tab);
static bool find_order_in_list(THD *, Ref_ptr_array, TABLE_LIST *, ORDER *,
List<Item> &, List<Item> &, bool, bool, bool);
static double table_after_join_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
table_map rem_tables,
double *records_out);
void set_postjoin_aggr_write_func(JOIN_TAB *tab);
static Item **get_sargable_cond(JOIN *join, TABLE *table);
bool is_eq_cond_injected_for_split_opt(Item_func_eq *eq_item);
void print_list_item(String *str, List_item *list,
enum_query_type query_type);
static
bool build_notnull_conds_for_range_scans(JOIN *join, COND *cond,
table_map allowed);
static
void build_notnull_conds_for_inner_nest_of_outer_join(JOIN *join,
TABLE_LIST *nest_tbl);
static void fix_items_after_optimize(THD *thd, SELECT_LEX *select_lex);
static void optimize_rownum(THD *thd, SELECT_LEX_UNIT *unit, Item *cond);
static bool process_direct_rownum_comparison(THD *thd, SELECT_LEX_UNIT *unit,
Item *cond);
static double prev_record_reads(const POSITION *positions, uint idx,
table_map found_ref, double record_count,
double *same_keys);
static
bool join_limit_shortcut_is_applicable(const JOIN *join);
POSITION *join_limit_shortcut_finalize_plan(JOIN *join, double *cost);
static bool find_indexes_matching_order(JOIN *, TABLE *, ORDER *, key_map *);
#ifndef DBUG_OFF
/*
SHOW EXPLAIN testing: wait for, and serve n_calls APC requests.
*/
void dbug_serve_apcs(THD *thd, int n_calls)
{
const char *save_proc_info= thd->proc_info;
/* Busy-wait for n_calls APC requests to arrive and be processed */
int n_apcs= thd->apc_target.n_calls_processed + n_calls;
while (thd->apc_target.n_calls_processed < n_apcs)
{
/* This is so that mysqltest knows we're ready to serve requests: */
thd_proc_info(thd, "show_explain_trap");
my_sleep(30000);
thd_proc_info(thd, save_proc_info);
if (unlikely(thd->check_killed(1)))
break;
}
}
/*
Debugging: check if @name=value, comparing as integer
Intended usage:
DBUG_EXECUTE_IF("show_explain_probe_2",
if (dbug_user_var_equals_int(thd, "select_id", select_id))
dbug_serve_apcs(thd, 1);
);
*/
bool dbug_user_var_equals_int(THD *thd, const char *name, int value)
{
user_var_entry *var;
LEX_CSTRING varname= { name, strlen(name)};
if ((var= get_variable(&thd->user_vars, &varname, FALSE)))
{
bool null_value;
longlong var_value= var->val_int(&null_value);
if (!null_value && var_value == value)
return TRUE;
}
return FALSE;
}
/*
Debugging : check if @name= value, comparing as string
Intended usage :
DBUG_EXECUTE_IF("log_slow_statement_end",
if (dbug_user_var_equals_str(thd, "show_explain_probe_query",
thd->query()))
dbug_serve_apcs(thd, 1);
);
*/
bool dbug_user_var_equals_str(THD *thd, const char *name, const char* value)
{
user_var_entry *var;
LEX_CSTRING varname= {name, strlen(name)};
if ((var= get_variable(&thd->user_vars, &varname, FALSE)))
{
bool null_value;
String str;
auto var_value= var->val_str(&null_value, &str, 10)->ptr();
if (!null_value && !strncmp(var_value, value, strlen(value)))
return TRUE;
}
return FALSE;
}
#endif /* DBUG_OFF */
/*
Intialize POSITION structure.
*/
POSITION::POSITION()
{
table= 0;
records_read= cond_selectivity= read_time= records_out= records_init= 0.0;
prefix_record_count= 0.0;
key= 0;
forced_index= 0;
use_join_buffer= 0;
firstmatch_with_join_buf= false;
sj_strategy= SJ_OPT_NONE;
n_sj_tables= 0;
spl_plan= 0;
range_rowid_filter_info= 0;
ref_depend_map= dups_producing_tables= 0;
inner_tables_handled_with_other_sjs= 0;
type= JT_UNKNOWN;
key_dependent= 0;
dups_weedout_picker.set_empty();
firstmatch_picker.set_empty();
loosescan_picker.set_empty();
sjmat_picker.set_empty();
}
void JOIN::init(THD *thd_arg, List<Item> &fields_arg,
ulonglong select_options_arg, select_result *result_arg)
{
join_tab= 0;
table= 0;
table_count= 0;
top_join_tab_count= 0;
const_tables= 0;
const_table_map= found_const_table_map= not_usable_rowid_map= 0;
aggr_tables= 0;
eliminated_tables= 0;
join_list= 0;
implicit_grouping= FALSE;
sort_and_group= 0;
first_record= 0;
do_send_rows= 1;
duplicate_rows= send_records= 0;
found_records= accepted_rows= 0;
fetch_limit= HA_POS_ERROR;
thd= thd_arg;
sum_funcs= sum_funcs2= 0;
procedure= 0;
having= tmp_having= having_history= 0;
having_is_correlated= false;
group_list_for_estimates= 0;
select_options= select_options_arg;
result= result_arg;
lock= thd_arg->lock;
select_lex= 0; //for safety
select_distinct= MY_TEST(select_options & SELECT_DISTINCT);
no_order= 0;
simple_order= 0;
simple_group= 0;
ordered_index_usage= ordered_index_void;
need_distinct= 0;
skip_sort_order= 0;
with_two_phase_optimization= 0;
save_qep= 0;
spl_opt_info= 0;
ext_keyuses_for_splitting= 0;
spl_opt_info= 0;
need_tmp= 0;
hidden_group_fields= 0; /*safety*/
error= 0;
select= 0;
return_tab= 0;
ref_ptrs.reset();
items0.reset();
items1.reset();
items2.reset();
items3.reset();
zero_result_cause= 0;
optimization_state= JOIN::NOT_OPTIMIZED;
have_query_plan= QEP_NOT_PRESENT_YET;
initialized= 0;
cleaned= 0;
cond_equal= 0;
having_equal= 0;
exec_const_cond= 0;
group_optimized_away= 0;
no_rows_in_result_called= 0;
positions= best_positions= 0;
pushdown_query= 0;
original_join_tab= 0;
explain= NULL;
tmp_table_keep_current_rowid= 0;
allowed_top_level_tables= 0;
all_fields= fields_arg;
if (&fields_list != &fields_arg) /* Avoid valgrind-warning */
fields_list= fields_arg;
non_agg_fields.empty();
bzero((char*) &keyuse,sizeof(keyuse));
having_value= Item::COND_UNDEF;
tmp_table_param.init();
tmp_table_param.end_write_records= HA_POS_ERROR;
rollup.state= ROLLUP::STATE_NONE;
no_const_tables= FALSE;
first_select= sub_select;
group_sent= 0;
outer_ref_cond= pseudo_bits_cond= NULL;
in_to_exists_where= NULL;
in_to_exists_having= NULL;
emb_sjm_nest= NULL;
sjm_lookup_tables= 0;
sjm_scan_tables= 0;
is_orig_degenerated= false;
with_ties_order_count= 0;
prepared= false;
sql_cmd_dml= NULL;
};
static void trace_table_dependencies(THD *thd,
JOIN_TAB *join_tabs, uint table_count)
{
DBUG_ASSERT(thd->trace_started());
Json_writer_object trace_wrapper(thd);
Json_writer_array trace_dep(thd, "table_dependencies");
for (uint i= 0; i < table_count; i++)
{
TABLE_LIST *table_ref= join_tabs[i].tab_list;
Json_writer_object trace_one_table(thd);
trace_one_table.
add_table_name(&join_tabs[i]).
add("row_may_be_null",
(bool)table_ref->table->maybe_null);
const table_map map= table_ref->get_map();
DBUG_ASSERT(map < (1ULL << table_count));
for (uint j= 0; j < table_count; j++)
{
if (map & (1ULL << j))
{
trace_one_table.add("map_bit", j);
break;
}
}
Json_writer_array depends_on(thd, "depends_on_map_bits");
Table_map_iterator it(join_tabs[i].dependent);
uint dep_bit;
while ((dep_bit= it++) != Table_map_iterator::BITMAP_END)
depends_on.add(static_cast<longlong>(dep_bit));
}
}
/**
This handles SELECT with and without UNION.
*/
bool handle_select(THD *thd, LEX *lex, select_result *result,
ulonglong setup_tables_done_option)
{
bool res;
SELECT_LEX *select_lex= lex->first_select_lex();
DBUG_ENTER("handle_select");
MYSQL_SELECT_START(thd->query());
if (select_lex->master_unit()->is_unit_op() ||
select_lex->master_unit()->fake_select_lex)
res= mysql_union(thd, lex, result, &lex->unit, setup_tables_done_option);
else
{
SELECT_LEX_UNIT *unit= &lex->unit;
unit->set_limit(unit->global_parameters());
/*
'options' of mysql_select will be set in JOIN, as far as JOIN for
every PS/SP execution new, we will not need reset this flag if
setup_tables_done_option changed for next rexecution
*/
res= mysql_select(thd,
select_lex->table_list.first,
select_lex->item_list,
select_lex->where,
select_lex->order_list.elements +
select_lex->group_list.elements,
select_lex->order_list.first,
select_lex->group_list.first,
select_lex->having,
lex->proc_list.first,
select_lex->options | thd->variables.option_bits |
setup_tables_done_option,
result, unit, select_lex);
}
DBUG_PRINT("info",("res: %d is_error(): %d", res,
thd->is_error()));
res|= thd->is_error();
if (unlikely(res))
result->abort_result_set();
if (unlikely(thd->killed == ABORT_QUERY && !thd->no_errors))
{
/*
If LIMIT ROWS EXAMINED interrupted query execution, issue a warning,
continue with normal processing and produce an incomplete query result.
*/
bool saved_abort_on_warning= thd->abort_on_warning;
thd->abort_on_warning= false;
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_QUERY_RESULT_INCOMPLETE,
ER_THD(thd, ER_QUERY_RESULT_INCOMPLETE),
"LIMIT ROWS EXAMINED",
thd->lex->limit_rows_examined->val_uint());
thd->abort_on_warning= saved_abort_on_warning;
thd->reset_killed();
}
/* Disable LIMIT ROWS EXAMINED after query execution. */
thd->lex->limit_rows_examined_cnt= ULONGLONG_MAX;
MYSQL_SELECT_DONE((int) res, (ulong) thd->limit_found_rows);
DBUG_RETURN(res);
}
/**
Fix fields referenced from inner selects.
@param thd Thread handle
@param all_fields List of all fields used in select
@param select Current select
@param ref_pointer_array Array of references to Items used in current select
@param group_list GROUP BY list (is NULL by default)
@details
The function serves 3 purposes
- adds fields referenced from inner query blocks to the current select list
- Decides which class to use to reference the items (Item_ref or
Item_direct_ref)
- fixes references (Item_ref objects) to these fields.
If a field isn't already on the select list and the ref_pointer_array
is provided then it is added to the all_fields list and the pointer to
it is saved in the ref_pointer_array.
The class to access the outer field is determined by the following rules:
-#. If the outer field isn't used under an aggregate function then the
Item_ref class should be used.
-#. If the outer field is used under an aggregate function and this
function is, in turn, aggregated in the query block where the outer
field was resolved or some query nested therein, then the
Item_direct_ref class should be used. Also it should be used if we are
grouping by a subquery that references this outer field.
The resolution is done here and not at the fix_fields() stage as
it can be done only after aggregate functions are fixed and pulled up to
selects where they are to be aggregated.
When the class is chosen it substitutes the original field in the
Item_outer_ref object.
After this we proceed with fixing references (Item_outer_ref objects) to
this field from inner subqueries.
@return Status
@retval true An error occurred.
@retval false OK.
*/
bool
fix_inner_refs(THD *thd, List<Item> &all_fields, SELECT_LEX *select,
Ref_ptr_array ref_pointer_array)
{
Item_outer_ref *ref;
/*
Mark the references from the inner_refs_list that are occurred in
the group by expressions. Those references will contain direct
references to the referred fields. The markers are set in
the found_in_group_by field of the references from the list.
*/
List_iterator_fast <Item_outer_ref> ref_it(select->inner_refs_list);
for (ORDER *group= select->join->group_list; group; group= group->next)
{
(*group->item)->walk(&Item::check_inner_refs_processor, TRUE, &ref_it);
}
while ((ref= ref_it++))
{
bool direct_ref= false;
Item *item= ref->outer_ref;
Item **item_ref= ref->ref;
Item_ref *new_ref;
/*
TODO: this field item already might be present in the select list.
In this case instead of adding new field item we could use an
existing one. The change will lead to less operations for copying fields,
smaller temporary tables and less data passed through filesort.
*/
if (!ref_pointer_array.is_null() && !ref->found_in_select_list)
{
int el= all_fields.elements;
ref_pointer_array[el]= item;
/* Add the field item to the select list of the current select. */
all_fields.push_front(item, thd->mem_root);
/*
If it's needed reset each Item_ref item that refers this field with
a new reference taken from ref_pointer_array.
*/
item_ref= &ref_pointer_array[el];
}
if (ref->in_sum_func)
{
Item_sum *sum_func;
if (ref->in_sum_func->nest_level > select->nest_level)
direct_ref= TRUE;
else
{
for (sum_func= ref->in_sum_func; sum_func &&
sum_func->aggr_level >= select->nest_level;
sum_func= sum_func->in_sum_func)
{
if (sum_func->aggr_level == select->nest_level)
{
direct_ref= TRUE;
break;
}
}
}
}
else if (ref->found_in_group_by)
direct_ref= TRUE;
new_ref= direct_ref ?
new (thd->mem_root) Item_direct_ref(thd, ref->context, item_ref, ref->table_name,
ref->field_name, ref->alias_name_used) :
new (thd->mem_root) Item_ref(thd, ref->context, item_ref, ref->table_name,
ref->field_name, ref->alias_name_used);
if (!new_ref)
return TRUE;
ref->outer_ref= new_ref;
ref->ref= &ref->outer_ref;
if (ref->fix_fields_if_needed(thd, 0))
return TRUE;
thd->lex->used_tables|= item->used_tables();
thd->lex->current_select->select_list_tables|= item->used_tables();
}
return false;
}
/**
The following clauses are redundant for subqueries:
DISTINCT
GROUP BY if there are no aggregate functions and no HAVING
clause
Because redundant clauses are removed both from JOIN and
select_lex, the removal is permanent. Thus, it only makes sense to
call this function for normal queries and on first execution of
SP/PS
@param subq_select_lex select_lex that is part of a subquery
predicate. This object and the associated
join is modified.
*/
static
void remove_redundant_subquery_clauses(st_select_lex *subq_select_lex)
{
DBUG_ENTER("remove_redundant_subquery_clauses");
Item_subselect *subq_predicate= subq_select_lex->master_unit()->item;
/*
The removal should happen for IN, ALL, ANY and EXISTS subqueries,
which means all but single row subqueries. Example single row
subqueries:
a) SELECT * FROM t1 WHERE t1.a = (<single row subquery>)
b) SELECT a, (<single row subquery) FROM t1
*/
if (subq_predicate->substype() == Item_subselect::SINGLEROW_SUBS)
DBUG_VOID_RETURN;
/* A subquery that is not single row should be one of IN/ALL/ANY/EXISTS. */
DBUG_ASSERT (subq_predicate->substype() == Item_subselect::EXISTS_SUBS ||
subq_predicate->is_in_predicate());
if (subq_select_lex->options & SELECT_DISTINCT)
{
subq_select_lex->join->select_distinct= false;
subq_select_lex->options&= ~SELECT_DISTINCT;
DBUG_PRINT("info", ("DISTINCT removed"));
}
/*
Remove GROUP BY if there are no aggregate functions and no HAVING
clause
*/
if (subq_select_lex->group_list.elements &&
!subq_select_lex->with_sum_func && !subq_select_lex->join->having)
{
/*
Temporary workaround for MDEV-28621: Do not remove GROUP BY expression
if it has any subqueries in it.
*/
bool have_subquery= false;
for (ORDER *ord= subq_select_lex->group_list.first; ord; ord= ord->next)
{
if ((*ord->item)->with_subquery())
{
have_subquery= true;
break;
}
}
if (!have_subquery)
{
for (ORDER *ord= subq_select_lex->group_list.first; ord; ord= ord->next)
{
/*
Do not remove the item if it is used in select list and then referred
from GROUP BY clause by its name or number. Example:
select (select ... ) as SUBQ ... group by SUBQ
Here SUBQ cannot be removed.
*/
if (!ord->in_field_list)
{
/*
Not necessary due to workaround for MDEV-28621:
(*ord->item)->walk(&Item::eliminate_subselect_processor, FALSE, NULL);
*/
/*
Remove from the JOIN::all_fields list any reference to the elements
of the eliminated GROUP BY list unless it is 'in_field_list'.
This is needed in order not to confuse JOIN::make_aggr_tables_info()
when it constructs different structure for execution phase.
*/
List_iterator<Item> li(subq_select_lex->join->all_fields);
Item *item;
while ((item= li++))
{
if (item == *ord->item)
li.remove();
}
}
}
subq_select_lex->join->group_list= NULL;
subq_select_lex->group_list.empty();
DBUG_PRINT("info", ("GROUP BY removed"));
}
}
/*
TODO: This would prevent processing quries with ORDER BY ... LIMIT
therefore we disable this optimization for now.
Remove GROUP BY if there are no aggregate functions and no HAVING
clause
if (subq_select_lex->group_list.elements &&
!subq_select_lex->with_sum_func && !subq_select_lex->join->having)
{
subq_select_lex->join->group_list= NULL;
subq_select_lex->group_list.empty();
}
*/
DBUG_VOID_RETURN;
}
/**
Function to setup clauses without sum functions.
*/
static inline int
setup_without_group(THD *thd, Ref_ptr_array ref_pointer_array,
TABLE_LIST *tables,
List<TABLE_LIST> &leaves,
List<Item> &fields,
List<Item> &all_fields,
COND **conds,
ORDER *order,
ORDER *group,
List<Window_spec> &win_specs,
List<Item_window_func> &win_funcs,
bool *hidden_group_fields)
{
int res;
enum_parsing_place save_place;
st_select_lex *const select= thd->lex->current_select;
nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
/*
Need to stave the value, so we can turn off only any new non_agg_field_used
additions coming from the WHERE
*/
const bool saved_non_agg_field_used= select->non_agg_field_used();
DBUG_ENTER("setup_without_group");
thd->lex->allow_sum_func.clear_bit(select->nest_level);
res= setup_conds(thd, tables, leaves, conds);
/* it's not wrong to have non-aggregated columns in a WHERE */
select->set_non_agg_field_used(saved_non_agg_field_used);
thd->lex->allow_sum_func.set_bit(select->nest_level);
save_place= thd->lex->current_select->context_analysis_place;
thd->lex->current_select->context_analysis_place= IN_ORDER_BY;
res= res || setup_order(thd, ref_pointer_array, tables, fields, all_fields,
order);
thd->lex->allow_sum_func.clear_bit(select->nest_level);
thd->lex->current_select->context_analysis_place= IN_GROUP_BY;
res= res || setup_group(thd, ref_pointer_array, tables, fields, all_fields,
group, hidden_group_fields);
thd->lex->current_select->context_analysis_place= save_place;
thd->lex->allow_sum_func.set_bit(select->nest_level);
res= res || setup_windows(thd, ref_pointer_array, tables, fields, all_fields,
win_specs, win_funcs);
thd->lex->allow_sum_func= save_allow_sum_func;
DBUG_RETURN(res);
}
bool vers_select_conds_t::init_from_sysvar(THD *thd)
{
vers_asof_timestamp_t &in= thd->variables.vers_asof_timestamp;
type= (vers_system_time_t) in.type;
delete_history= false;
start.unit= VERS_TIMESTAMP;
if (type != SYSTEM_TIME_UNSPECIFIED && type != SYSTEM_TIME_ALL)
{
DBUG_ASSERT(type == SYSTEM_TIME_AS_OF);
Datetime dt(in.unix_time, in.second_part, thd->variables.time_zone);
start.item= new (thd->mem_root)
Item_datetime_literal(thd, &dt, TIME_SECOND_PART_DIGITS);
if (!start.item)
return true;
}
else
start.item= NULL;
end.empty();
return false;
}
void vers_select_conds_t::print(String *str, enum_query_type query_type) const
{
switch (orig_type) {
case SYSTEM_TIME_UNSPECIFIED:
break;
case SYSTEM_TIME_AS_OF:
start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME AS OF "));
break;
case SYSTEM_TIME_FROM_TO:
start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME FROM "));
end.print(str, query_type, STRING_WITH_LEN(" TO "));
break;
case SYSTEM_TIME_BETWEEN:
start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME BETWEEN "));
end.print(str, query_type, STRING_WITH_LEN(" AND "));
break;
case SYSTEM_TIME_BEFORE:
start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME BEFORE "));
break;
case SYSTEM_TIME_HISTORY:
// nothing to add
break;
case SYSTEM_TIME_ALL:
str->append(STRING_WITH_LEN(" FOR SYSTEM_TIME ALL"));
break;
}
}
static
Item* period_get_condition(THD *thd, TABLE_LIST *table, SELECT_LEX *select,
vers_select_conds_t *conds, bool timestamp)
{
DBUG_ASSERT(table);
DBUG_ASSERT(table->table);
#define newx new (thd->mem_root)
TABLE_SHARE *share= table->table->s;
const TABLE_SHARE::period_info_t *period= conds->period;
const LEX_CSTRING &fstart= period->start_field(share)->field_name;
const LEX_CSTRING &fend= period->end_field(share)->field_name;
conds->field_start= newx Item_field(thd, &select->context,
table->db, table->alias,
thd->strmake_lex_cstring(fstart));
conds->field_end= newx Item_field(thd, &select->context,
table->db, table->alias,
thd->strmake_lex_cstring(fend));
Item *cond1= NULL, *cond2= NULL, *cond3= NULL, *curr= NULL;
if (timestamp)
{
MYSQL_TIME max_time;
switch (conds->type)
{
case SYSTEM_TIME_UNSPECIFIED:
case SYSTEM_TIME_HISTORY:
{
thd->variables.time_zone->gmt_sec_to_TIME(&max_time, TIMESTAMP_MAX_VALUE);
max_time.second_part= TIME_MAX_SECOND_PART;
Datetime dt(&max_time);
curr= newx Item_datetime_literal(thd, &dt, TIME_SECOND_PART_DIGITS);
if (conds->type == SYSTEM_TIME_UNSPECIFIED)
cond1= newx Item_func_eq(thd, conds->field_end, curr);
else
cond1= newx Item_func_lt(thd, conds->field_end, curr);
break;
}
case SYSTEM_TIME_AS_OF:
cond1= newx Item_func_le(thd, conds->field_start, conds->start.item);
cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
break;
case SYSTEM_TIME_FROM_TO:
cond1= newx Item_func_lt(thd, conds->field_start, conds->end.item);
cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
cond3= newx Item_func_lt(thd, conds->start.item, conds->end.item);
break;
case SYSTEM_TIME_BETWEEN:
cond1= newx Item_func_le(thd, conds->field_start, conds->end.item);
cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
cond3= newx Item_func_le(thd, conds->start.item, conds->end.item);
break;
case SYSTEM_TIME_BEFORE:
cond1= newx Item_func_history(thd, conds->field_end);
cond2= newx Item_func_lt(thd, conds->field_end, conds->start.item);
break;
default:
DBUG_ASSERT(0);
}
}
else
{
DBUG_ASSERT(table->table->s && table->table->s->db_plugin);
Item *trx_id0= conds->start.item;
Item *trx_id1= conds->end.item;
if (conds->start.item && conds->start.unit == VERS_TIMESTAMP)
{
bool backwards= conds->type != SYSTEM_TIME_AS_OF;
trx_id0= newx Item_func_trt_id(thd, conds->start.item,
TR_table::FLD_TRX_ID, backwards);
}
if (conds->end.item && conds->end.unit == VERS_TIMESTAMP)
{
trx_id1= newx Item_func_trt_id(thd, conds->end.item,
TR_table::FLD_TRX_ID, false);
}
switch (conds->type)
{
case SYSTEM_TIME_UNSPECIFIED:
case SYSTEM_TIME_HISTORY:
curr= newx Item_int(thd, ULONGLONG_MAX);
if (conds->type == SYSTEM_TIME_UNSPECIFIED)
cond1= newx Item_func_eq(thd, conds->field_end, curr);
else
cond1= newx Item_func_lt(thd, conds->field_end, curr);
break;
DBUG_ASSERT(!conds->start.item);
DBUG_ASSERT(!conds->end.item);
break;
case SYSTEM_TIME_AS_OF:
cond1= newx Item_func_trt_trx_sees_eq(thd, trx_id0, conds->field_start);
cond2= newx Item_func_trt_trx_sees(thd, conds->field_end, trx_id0);
DBUG_ASSERT(!conds->end.item);
break;
case SYSTEM_TIME_FROM_TO:
cond1= newx Item_func_trt_trx_sees(thd, trx_id1, conds->field_start);
cond2= newx Item_func_trt_trx_sees_eq(thd, conds->field_end, trx_id0);
cond3= newx Item_func_lt(thd, conds->start.item, conds->end.item);
break;
case SYSTEM_TIME_BETWEEN:
cond1= newx Item_func_trt_trx_sees_eq(thd, trx_id1, conds->field_start);
cond2= newx Item_func_trt_trx_sees_eq(thd, conds->field_end, trx_id0);
cond3= newx Item_func_le(thd, conds->start.item, conds->end.item);
break;
case SYSTEM_TIME_BEFORE:
cond1= newx Item_func_history(thd, conds->field_end);
cond2= newx Item_func_trt_trx_sees(thd, trx_id0, conds->field_end);
break;
default:
DBUG_ASSERT(0);
}
}
if (cond1)
{
cond1= and_items(thd, cond2, cond1);
cond1= and_items(thd, cond3, cond1);
}
return cond1;
}
static
bool skip_setup_conds(THD *thd)
{
return (!thd->stmt_arena->is_conventional()
&& !thd->stmt_arena->is_stmt_prepare_or_first_sp_execute())
|| thd->lex->is_view_context_analysis();
}
int SELECT_LEX::period_setup_conds(THD *thd, TABLE_LIST *tables)
{
DBUG_ENTER("SELECT_LEX::period_setup_conds");
const bool update_conds= !skip_setup_conds(thd);
Query_arena backup;
Query_arena *arena= thd->activate_stmt_arena_if_needed(&backup);
DBUG_ASSERT(!tables->next_local && tables->table);
Item *result= NULL;
for (TABLE_LIST *table= tables; table; table= table->next_local)
{
if (!table->table)
continue;
vers_select_conds_t &conds= table->period_conditions;
if (!table->table->s->period.name.streq(conds.name))
{
my_error(ER_PERIOD_NOT_FOUND, MYF(0), conds.name.str);
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(-1);
}
if (update_conds)
{
conds.period= &table->table->s->period;
result= and_items(thd, result,
period_get_condition(thd, table, this, &conds, true));
}
}
if (update_conds)
where= and_items(thd, where, result);
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(0);
}
int SELECT_LEX::vers_setup_conds(THD *thd, TABLE_LIST *tables)
{
DBUG_ENTER("SELECT_LEX::vers_setup_conds");
const bool update_conds= !skip_setup_conds(thd);
if (!versioned_tables)
{
for (TABLE_LIST *table= tables; table; table= table->next_local)
{
if (table->table && table->table->versioned())
versioned_tables++;
else if (table->vers_conditions.is_set() &&
(table->is_non_derived() || !table->vers_conditions.used))
{
my_error(ER_VERS_NOT_VERSIONED, MYF(0), table->alias.str);
DBUG_RETURN(-1);
}
}
}
if (versioned_tables == 0)
DBUG_RETURN(0);
/* For prepared statements we create items on statement arena,
because they must outlive execution phase for multiple executions. */
Query_arena_stmt on_stmt_arena(thd);
// find outer system_time
SELECT_LEX *outer_slex= outer_select();
TABLE_LIST* outer_table= NULL;
if (outer_slex)
{
TABLE_LIST* derived= master_unit()->derived;
// inner SELECT may not be a derived table (derived == NULL)
while (derived && outer_slex && !derived->vers_conditions.is_set())
{
derived= outer_slex->master_unit()->derived;
outer_slex= outer_slex->outer_select();
}
if (derived && outer_slex)
{
DBUG_ASSERT(derived->vers_conditions.is_set());
outer_table= derived;
}
}
bool is_select= false;
bool use_sysvar= false;
switch (thd->lex->sql_command)
{
case SQLCOM_SELECT:
use_sysvar= true;
/* fall through */
case SQLCOM_CREATE_TABLE:
case SQLCOM_INSERT_SELECT:
case SQLCOM_REPLACE_SELECT:
case SQLCOM_DELETE_MULTI:
case SQLCOM_UPDATE_MULTI:
is_select= true;
default:
break;
}
for (TABLE_LIST *table= tables; table; table= table->next_local)
{
if (!table->table || table->is_view() || !table->table->versioned())
continue;
vers_select_conds_t &vers_conditions= table->vers_conditions;
#ifdef WITH_PARTITION_STORAGE_ENGINE
/*
if the history is stored in partitions, then partitions
themselves are not versioned
*/
if (table->partition_names && table->table->part_info->vers_info)
{
/* If the history is stored in partitions, then partitions
themselves are not versioned. */
if (vers_conditions.was_set())
{
my_error(ER_VERS_QUERY_IN_PARTITION, MYF(0), table->alias.str);
DBUG_RETURN(-1);
}
else if (!vers_conditions.is_set())
vers_conditions.set_all();
}
#endif
if (outer_table && !vers_conditions.is_set())
{
// propagate system_time from nearest outer SELECT_LEX
vers_conditions= outer_table->vers_conditions;
outer_table->vers_conditions.used= true;
}
// propagate system_time from sysvar
if (!vers_conditions.is_set() && use_sysvar)
{
if (vers_conditions.init_from_sysvar(thd))
DBUG_RETURN(-1);
}
if (vers_conditions.is_set())
{
if (vers_conditions.was_set() &&
table->lock_type >= TL_FIRST_WRITE &&
!vers_conditions.delete_history)
{
my_error(ER_TABLE_NOT_LOCKED_FOR_WRITE, MYF(0), table->alias.str);
DBUG_RETURN(-1);
}
if (vers_conditions.type == SYSTEM_TIME_ALL)
continue;
}
bool timestamps_only= table->table->versioned(VERS_TIMESTAMP);
bool update_this= update_conds;
if (vers_conditions.is_set() && vers_conditions.type != SYSTEM_TIME_HISTORY)
{
thd->where= THD_WHERE::FOR_SYSTEM_TIME;
/* TODO: do resolve fix_length_and_dec(), fix_fields(). This requires
storing vers_conditions as Item and make some magic related to
vers_system_time_t/VERS_TRX_ID at stage of fix_fields()
(this is large refactoring). */
if (vers_conditions.check_units(thd))
DBUG_RETURN(-1);
if (timestamps_only && (vers_conditions.start.unit == VERS_TRX_ID ||
vers_conditions.end.unit == VERS_TRX_ID))
{
my_error(ER_VERS_ENGINE_UNSUPPORTED, MYF(0), table->table_name.str);
DBUG_RETURN(-1);
}
if (vers_conditions.has_param)
{
/*
PS parameter in history expression requires processing at execution
stage when parameters has values substituted. So at prepare continue
the loop, but at execution enter update_this. The second execution
is skipped on vers_conditions.type == SYSTEM_TIME_ALL condition.
*/
if (thd->stmt_arena->is_stmt_prepare())
continue;
DBUG_ASSERT(thd->stmt_arena->is_stmt_execute());
update_this= true;
}
}
if (update_this)
{
vers_conditions.period = &table->table->s->vers;
Item *cond= period_get_condition(thd, table, this, &vers_conditions,
timestamps_only);
if (is_select)
table->on_expr= and_items(thd, table->on_expr, cond);
else
{
if (join)
{
where= and_items(thd, join->conds, cond);
join->conds= where;
}
else
where= and_items(thd, where, cond);
table->where= and_items(thd, table->where, cond);
if (where && vers_conditions.has_param && vers_conditions.delete_history)
prep_where= where->copy_andor_structure(thd);
}
table->vers_conditions.set_all();
}
} // for (table= tables; ...)
DBUG_RETURN(0);
}
/*****************************************************************************
Check fields, find best join, do the select and output fields.
mysql_select assumes that all tables are already opened
*****************************************************************************/
/*
Check if we have a field reference. If yes, we have to use
mixed_implicit_grouping.
*/
static bool check_list_for_field(List<Item> *items)
{
List_iterator_fast <Item> select_it(*items);
Item *select_el;
while ((select_el= select_it++))
{
if (select_el->with_field())
return true;
}
return false;
}
static bool check_list_for_field(ORDER *order)
{
for (; order; order= order->next)
{
if (order->item[0]->with_field())
return true;
}
return false;
}
/**
Prepare of whole select (including sub queries in future).
@todo
Add check of calculation of GROUP functions and fields:
SELECT COUNT(*)+table.col1 from table1;
@retval
-1 on error
@retval
0 on success
*/
int
JOIN::prepare(TABLE_LIST *tables_init, COND *conds_init, uint og_num,
ORDER *order_init, bool skip_order_by,
ORDER *group_init, Item *having_init,
ORDER *proc_param_init, SELECT_LEX *select_lex_arg,
SELECT_LEX_UNIT *unit_arg)
{
DBUG_ENTER("JOIN::prepare");
// to prevent double initialization on EXPLAIN
if (optimization_state != JOIN::NOT_OPTIMIZED)
DBUG_RETURN(0);
conds= conds_init;
order= order_init;
group_list= group_init;
having= having_init;
proc_param= proc_param_init;
tables_list= tables_init;
select_lex= select_lex_arg;
DBUG_PRINT("info", ("select %p (%u) = JOIN %p",
select_lex, select_lex->select_number, this));
select_lex->join= this;
join_list= &select_lex->top_join_list;
union_part= unit_arg->is_unit_op();
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_prepare(thd, "join_preparation");
trace_prepare.add_select_number(select_lex->select_number);
Json_writer_array trace_steps(thd, "steps");
// simple check that we got usable conds
dbug_print_item(conds);
/* Fix items that requires the join structure to exist */
fix_items_after_optimize(thd, select_lex);
/*
It is hack which force creating EXPLAIN object always on runt-time arena
(because very top JOIN::prepare executes always with runtime arena, but
constant subquery like (SELECT 'x') can be called with statement arena
during prepare phase of top SELECT).
*/
if (!(thd->lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE))
create_explain_query_if_not_exists(thd->lex, thd->mem_root);
if (select_lex->handle_derived(thd->lex, DT_PREPARE))
DBUG_RETURN(-1);
thd->lex->current_select->context_analysis_place= NO_MATTER;
thd->lex->current_select->is_item_list_lookup= 1;
/*
If we have already executed SELECT, then it have not sense to prevent
its table from update (see unique_table())
Affects only materialized derived tables.
*/
/* Check that all tables, fields, conds and order are ok */
if (!(select_options & OPTION_SETUP_TABLES_DONE) &&
setup_tables_and_check_access(thd, &select_lex->context, join_list,
tables_list, select_lex->leaf_tables,
FALSE, SELECT_ACL, SELECT_ACL, FALSE))
DBUG_RETURN(-1);
/* System Versioning: handle FOR SYSTEM_TIME clause. */
if (select_lex->vers_setup_conds(thd, tables_list) < 0)
DBUG_RETURN(-1);
/*
mixed_implicit_grouping will be set to TRUE if the SELECT list
mixes elements with and without grouping, and there is no GROUP BY
clause.
Mixing non-aggregated fields with aggregate functions in the
SELECT list or HAVING is a MySQL extension that is allowed only if
the ONLY_FULL_GROUP_BY sql mode is not set.
*/
mixed_implicit_grouping= false;
if ((~thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY) &&
select_lex->with_sum_func && !group_list)
{
if (check_list_for_field(&fields_list) ||
check_list_for_field(order))
{
List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
mixed_implicit_grouping= true; // mark for future
while (TABLE_LIST *tbl= li++)
{
/*
If the query uses implicit grouping where the select list
contains both aggregate functions and non-aggregate fields,
any non-aggregated field may produce a NULL value. Set all
fields of each table as nullable before semantic analysis to
take into account this change of nullability.
Note: this loop doesn't touch tables inside merged
semi-joins, because subquery-to-semijoin conversion has not
been done yet. This is intended.
*/
if (tbl->table)
tbl->table->maybe_null= 1;
}
}
}
table_count= select_lex->leaf_tables.elements;
uint real_og_num= og_num;
if (skip_order_by &&
select_lex != select_lex->master_unit()->global_parameters())
real_og_num+= select_lex->order_list.elements;
DBUG_ASSERT(select_lex->hidden_bit_fields == 0);
if (setup_wild(thd, tables_list, fields_list, &all_fields, select_lex, false))
DBUG_RETURN(-1);
/*
If the select_lex is immediately contained within a derived table
AND this derived table is a CTE
WITH supplied column names
AND we have the correct number of elements in both lists
(mismatches found in mysql_derived_prepare/rename_columns_of_derived_unit)
THEN NOW is the time to take a copy of these item_names for
later restoration if required.
*/
TABLE_LIST *derived= select_lex->master_unit()->derived;
if (derived &&
derived->with &&
derived->with->column_list.elements &&
(derived->with->column_list.elements == select_lex->item_list.elements))
{
if (select_lex->save_item_list_names(thd))
DBUG_RETURN(-1);
}
if (thd->lex->current_select->first_cond_optimization)
{
if ( conds && ! thd->lex->current_select->merged_into)
select_lex->select_n_reserved= conds->exists2in_reserved_items();
else
select_lex->select_n_reserved= 0;
}
if (select_lex->setup_ref_array(thd, real_og_num))
DBUG_RETURN(-1);
ref_ptrs= ref_ptr_array_slice(0);
enum_parsing_place save_place=
thd->lex->current_select->context_analysis_place;
thd->lex->current_select->context_analysis_place= SELECT_LIST;
{
List_iterator_fast<TABLE_LIST> it(select_lex->leaf_tables);
while (TABLE_LIST *tbl= it++)
{
if (tbl->table_function &&
tbl->table_function->setup(thd, tbl, select_lex_arg))
DBUG_RETURN(-1);
}
}
if (setup_fields(thd, ref_ptrs, fields_list, select_lex->item_list_usage,
&all_fields, &select_lex->pre_fix, 1))
DBUG_RETURN(-1);
thd->lex->current_select->context_analysis_place= save_place;
if (setup_without_group(thd, ref_ptrs, tables_list,
select_lex->leaf_tables, fields_list,
all_fields, &conds, order, group_list,
select_lex->window_specs,
select_lex->window_funcs,
&hidden_group_fields))
DBUG_RETURN(-1);
/*
Permanently remove redundant parts from the query if
1) This is a subquery
2) This is the first time this query is optimized (since the
transformation is permanent
3) Not normalizing a view. Removal should take place when a
query involving a view is optimized, not when the view
is created
*/
if (select_lex->master_unit()->item && // 1)
select_lex->first_cond_optimization && // 2)
!thd->lex->is_view_context_analysis()) // 3)
{
remove_redundant_subquery_clauses(select_lex);
}
/* Resolve the ORDER BY that was skipped, then remove it. */
if (skip_order_by && select_lex !=
select_lex->master_unit()->global_parameters())
{
nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
thd->lex->allow_sum_func.set_bit(select_lex->nest_level);
thd->where= THD_WHERE::ORDER_CLAUSE;
for (ORDER *order= select_lex->order_list.first; order; order= order->next)
{
/* Don't add the order items to all fields. Just resolve them to ensure
the query is valid, we'll drop them immediately after. */
if (find_order_in_list(thd, ref_ptrs, tables_list, order,
fields_list, all_fields, false, false, false))
DBUG_RETURN(-1);
}
thd->lex->allow_sum_func= save_allow_sum_func;
select_lex->order_list.empty();
}
if (having)
{
nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
thd->where= THD_WHERE::HAVING_CLAUSE;
thd->lex->allow_sum_func.set_bit(select_lex_arg->nest_level);
select_lex->having_fix_field= 1;
/*
Wrap alone field in HAVING clause in case it will be outer field
of subquery which need persistent pointer on it, but having
could be changed by optimizer
*/
if (having->type() == Item::REF_ITEM &&
((Item_ref *)having)->ref_type() == Item_ref::REF)
wrap_ident(thd, &having);
bool having_fix_rc= having->fix_fields_if_needed_for_bool(thd, &having);
select_lex->having_fix_field= 0;
if (unlikely(having_fix_rc || thd->is_error()))
DBUG_RETURN(-1); /* purecov: inspected */
thd->lex->allow_sum_func= save_allow_sum_func;
if (having->with_window_func())
{
my_error(ER_WRONG_PLACEMENT_OF_WINDOW_FUNCTION, MYF(0));
DBUG_RETURN(-1);
}
}
/*
After setting up window functions, we may have discovered additional
used tables from the PARTITION BY and ORDER BY list. Update all items
that contain window functions.
*/
if (select_lex->have_window_funcs())
{
List_iterator_fast<Item> it(select_lex->item_list);
Item *item;
while ((item= it++))
{
if (item->with_window_func())
item->update_used_tables();
}
}
With_clause *with_clause=select_lex->get_with_clause();
if (with_clause && with_clause->prepare_unreferenced_elements(thd))
DBUG_RETURN(1);
With_element *with_elem= select_lex->get_with_element();
if (with_elem &&
select_lex->check_unrestricted_recursive(
thd->variables.only_standard_compliant_cte))
DBUG_RETURN(-1);
if (!(select_lex->changed_elements & TOUCHED_SEL_COND))
select_lex->check_subqueries_with_recursive_references();
int res= check_and_do_in_subquery_rewrites(this);
select_lex->fix_prepare_information(thd, &conds, &having);
if (res)
DBUG_RETURN(res);
if (order)
{
bool requires_sorting= FALSE;
/*
WITH TIES forces the results to be sorted, even if it's not sanely
sortable.
*/
if (select_lex->limit_params.with_ties)
requires_sorting= true;
/*
Go through each ORDER BY item and perform the following:
1. Detect if none of the items contain meaningful data, which means we
can drop the sorting altogether.
2. Split any columns with aggregation functions or window functions into
their base components and store them as separate fields.
(see split_sum_func) for more details.
*/
for (ORDER *ord= order; ord; ord= ord->next)
{
Item *item= *ord->item;
/*
Disregard sort order if there's only
zero length NOT NULL fields (e.g. {VAR}CHAR(0) NOT NULL") or
zero length NOT NULL string functions there.
Such tuples don't contain any data to sort.
*/
if (!requires_sorting &&
/* Not a zero length NOT NULL field */
((item->type() != Item::FIELD_ITEM ||
((Item_field *) item)->field->maybe_null() ||
((Item_field *) item)->field->sort_length()) &&
/* AND not a zero length NOT NULL string function. */
(item->type() != Item::FUNC_ITEM ||
item->maybe_null() ||
item->result_type() != STRING_RESULT ||
item->max_length)))
requires_sorting= TRUE;
if ((item->with_sum_func() && item->type() != Item::SUM_FUNC_ITEM) ||
item->with_window_func())
item->split_sum_func(thd, ref_ptrs, all_fields, SPLIT_SUM_SELECT);
}
/* Drop the ORDER BY clause if none of the columns contain any data that
can produce a meaningful sorted set. */
if (!requires_sorting)
order= NULL;
}
else
{
/* The current select does not have an ORDER BY */
if (select_lex->limit_params.with_ties)
{
my_error(ER_WITH_TIES_NEEDS_ORDER, MYF(0));
DBUG_RETURN(-1);
}
}
if (having && (having->with_sum_func() || having->with_rownum_func()))
having->split_sum_func2(thd, ref_ptrs, all_fields,
&having, SPLIT_SUM_SKIP_REGISTERED);
if (select_lex->inner_sum_func_list)
{
Item_sum *end=select_lex->inner_sum_func_list;
Item_sum *item_sum= end;
do
{
item_sum= item_sum->next;
item_sum->split_sum_func2(thd, ref_ptrs,
all_fields, item_sum->ref_by, 0);
} while (item_sum != end);
}
if (select_lex->inner_refs_list.elements &&
fix_inner_refs(thd, all_fields, select_lex, ref_ptrs))
DBUG_RETURN(-1);
if (group_list)
{
/*
Because HEAP tables can't index BIT fields we need to use an
additional hidden field for grouping because later it will be
converted to a LONG field. Original field will remain of the
BIT type and will be returned to a client.
*/
for (ORDER *ord= group_list; ord; ord= ord->next)
{
if ((*ord->item)->type() == Item::FIELD_ITEM &&
(*ord->item)->field_type() == MYSQL_TYPE_BIT)
{
Item_field *field= new (thd->mem_root) Item_field(thd, *(Item_field**)ord->item);
if (!field)
DBUG_RETURN(-1);
int el= all_fields.elements;
ref_ptrs[el]= field;
all_fields.push_front(field, thd->mem_root);
ord->item= &ref_ptrs[el];
}
}
}
/*
Check if there are references to un-aggregated columns when computing
aggregate functions with implicit grouping (there is no GROUP BY).
*/
if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY && !group_list &&
!(select_lex->master_unit()->item &&
select_lex->master_unit()->item->is_in_predicate() &&
select_lex->master_unit()->item->get_IN_subquery()->
test_set_strategy(SUBS_MAXMIN_INJECTED)) &&
select_lex->non_agg_field_used() &&
select_lex->agg_func_used())
{
my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
ER_THD(thd, ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
DBUG_RETURN(-1);
}
{
/* Caclulate the number of groups */
send_group_parts= 0;
for (ORDER *group_tmp= group_list ; group_tmp ; group_tmp= group_tmp->next)
send_group_parts++;
}
procedure= setup_procedure(thd, proc_param, result, fields_list, &error);
if (unlikely(error))
goto err; /* purecov: inspected */
if (procedure)
{
if (setup_new_fields(thd, fields_list, all_fields,
procedure->param_fields))
goto err; /* purecov: inspected */
if (procedure->group)
{
if (!test_if_subpart(procedure->group,group_list))
{ /* purecov: inspected */
my_message(ER_DIFF_GROUPS_PROC, ER_THD(thd, ER_DIFF_GROUPS_PROC),
MYF(0)); /* purecov: inspected */
goto err; /* purecov: inspected */
}
}
if (order && (procedure->flags & PROC_NO_SORT))
{ /* purecov: inspected */
my_message(ER_ORDER_WITH_PROC, ER_THD(thd, ER_ORDER_WITH_PROC),
MYF(0)); /* purecov: inspected */
goto err; /* purecov: inspected */
}
if (thd->lex->derived_tables)
{
/*
Queries with derived tables and PROCEDURE are not allowed.
Many of such queries are disallowed grammatically, but there
are still some complex cases:
SELECT 1 FROM (SELECT 1) a PROCEDURE ANALYSE()
*/
my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE",
thd->lex->derived_tables & DERIVED_VIEW ?
"view" : "subquery");
goto err;
}
if (thd->lex->sql_command != SQLCOM_SELECT)
{
// EXPLAIN SELECT * FROM t1 PROCEDURE ANALYSE()
my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE", "non-SELECT");
goto err;
}
}
if (unlikely(thd->trace_started()))
{
Json_writer_object trace_wrapper(thd);
opt_trace_print_expanded_query(thd, select_lex, &trace_wrapper);
}
if (!procedure && result && result->prepare(fields_list, unit_arg))
goto err; /* purecov: inspected */
select_lex->where_cond_after_prepare= conds;
unit= unit_arg;
if (prepare_stage2())
goto err;
prepared= true;
DBUG_RETURN(0); // All OK
err:
delete procedure; /* purecov: inspected */
procedure= 0;
DBUG_RETURN(-1); /* purecov: inspected */
}
/**
Second phase of prepare where we collect some statistic.
@details
We made this part separate to be able recalculate some statistic after
transforming subquery on optimization phase.
*/
bool JOIN::prepare_stage2()
{
bool res= TRUE;
DBUG_ENTER("JOIN::prepare_stage2");
/* Init join struct */
count_field_types(select_lex, &tmp_table_param, all_fields, 0);
this->group= group_list != 0;
if (tmp_table_param.sum_func_count && !group_list)
{
implicit_grouping= TRUE;
// Result will contain zero or one row - ordering is meaningless
order= NULL;
}
#ifdef RESTRICTED_GROUP
if (implicit_grouping)
{
my_message(ER_WRONG_SUM_SELECT,ER_THD(thd, ER_WRONG_SUM_SELECT),MYF(0));
goto err;
}
#endif
if (select_lex->olap == ROLLUP_TYPE && rollup_init())
goto err;
if (alloc_func_list() ||
make_sum_func_list(all_fields, fields_list, false))
goto err;
res= FALSE;
err:
DBUG_RETURN(res); /* purecov: inspected */
}
bool JOIN::build_explain()
{
DBUG_ENTER("JOIN::build_explain");
have_query_plan= QEP_AVAILABLE;
/*
explain data must be created on the Explain_query::mem_root. Because it's
just a memroot, not an arena, explain data must not contain any Items
*/
MEM_ROOT *old_mem_root= thd->mem_root;
Item *old_free_list __attribute__((unused))= thd->free_list;
thd->mem_root= thd->lex->explain->mem_root;
bool res= save_explain_data(thd->lex->explain, false /* can overwrite */,
need_tmp,
!skip_sort_order && !no_order && (order || group_list),
select_distinct);
thd->mem_root= old_mem_root;
DBUG_ASSERT(thd->free_list == old_free_list); // no Items were created
if (res)
DBUG_RETURN(1);
uint select_nr= select_lex->select_number;
JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
for (uint i= 0; i < aggr_tables; i++, curr_tab++)
{
if (select_nr == FAKE_SELECT_LEX_ID)
{
/* this is a fake_select_lex of a union */
select_nr= select_lex->master_unit()->first_select()->select_number;
curr_tab->tracker= thd->lex->explain->get_union(select_nr)->
get_tmptable_read_tracker();
}
else if (select_nr < INT_MAX)
{
Explain_select *tmp= thd->lex->explain->get_select(select_nr);
if (tmp)
curr_tab->tracker= tmp->get_using_temporary_read_tracker();
}
}
if (is_in_subquery())
{
Item_in_subselect *subq= unit->item->get_IN_subquery();
subq->init_subq_materialization_tracker(thd);
}
DBUG_RETURN(0);
}
int JOIN::optimize()
{
int res= 0;
join_optimization_state init_state= optimization_state;
if (select_lex->pushdown_select)
{
if (optimization_state == JOIN::OPTIMIZATION_DONE)
return 0;
DBUG_ASSERT(optimization_state == JOIN::NOT_OPTIMIZED);
// Do same as JOIN::optimize_inner does:
fields= &select_lex->item_list;
if (!(select_options & SELECT_DESCRIBE))
{
/* Prepare to execute the query pushed into a foreign engine */
res= select_lex->pushdown_select->prepare();
}
with_two_phase_optimization= false;
}
else if (optimization_state == JOIN::OPTIMIZATION_PHASE_1_DONE)
res= optimize_stage2();
else
{
// to prevent double initialization on EXPLAIN
if (optimization_state != JOIN::NOT_OPTIMIZED)
return FALSE;
optimization_state= JOIN::OPTIMIZATION_IN_PROGRESS;
res= optimize_inner();
}
if (!with_two_phase_optimization ||
init_state == JOIN::OPTIMIZATION_PHASE_1_DONE)
{
if (!res && have_query_plan != QEP_DELETED)
res= build_explain();
optimization_state= JOIN::OPTIMIZATION_DONE;
}
/*
Store the cost of this query into a user variable
TODO: calculate a correct cost for a query with subqueries and UNIONs.
*/
if (select_lex->select_number == 1)
thd->status_var.last_query_cost= best_read;
return res;
}
/**
@brief
Create range filters objects needed in execution for all join tables
@details
For each join table from the chosen execution plan such that a range filter
is used when joining this table the function creates a Rowid_filter object
for this range filter. In order to do this the function first constructs
a quick select to scan the range for this range filter. Then it creates
a container for the range filter and finally constructs a Range_rowid_filter
object a pointer to which is set in the field JOIN_TAB::rowid_filter of
the joined table.
@retval false Ok
@retval true Error, query should abort
*/
bool JOIN::make_range_rowid_filters()
{
DBUG_ENTER("make_range_rowid_filters");
/*
Do not build range filters with detected impossible WHERE.
Anyway conditions cannot be used anymore to extract ranges for filters.
*/
if (const_table_map != found_const_table_map)
DBUG_RETURN(0);
JOIN_TAB *tab;
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
if (!tab->range_rowid_filter_info)
continue;
DBUG_ASSERT(!(tab->ref.key >= 0 &&
tab->ref.key == (int) tab->range_rowid_filter_info->get_key_no()));
DBUG_ASSERT(!(tab->ref.key == -1 && tab->quick &&
tab->quick->index == tab->range_rowid_filter_info->get_key_no()));
int err;
SQL_SELECT *sel= NULL;
Rowid_filter_container *filter_container= NULL;
Item **sargable_cond= get_sargable_cond(this, tab->table);
sel= make_select(tab->table, const_table_map, const_table_map,
*sargable_cond, (SORT_INFO*) 0, 1, &err);
if (!sel)
continue;
key_map filter_map;
filter_map.clear_all();
filter_map.set_bit(tab->range_rowid_filter_info->get_key_no());
filter_map.merge(tab->table->with_impossible_ranges);
quick_select_return rc;
/*
EQ_FUNC and EQUAL_FUNC already sent unusable key notes (if any)
during update_ref_and_keys(). Have only other functions raise notes
from can_optimize_scalar_range().
*/
rc= sel->test_quick_select(thd, filter_map, (table_map) 0,
(ha_rows) HA_POS_ERROR, true, false, true,
true, Item_func::BITMAP_EXCEPT_ANY_EQUALITY);
if (rc == SQL_SELECT::ERROR || thd->is_error() || thd->check_killed())
{
delete sel;
DBUG_RETURN(true); /* Fatal error */
}
/*
If SUBS_IN_TO_EXISTS strtrategy is chosen for the subquery then
additional conditions are injected into WHERE/ON/HAVING and it may
happen that the call of test_quick_select() discovers impossible range.
*/
if (rc == SQL_SELECT::IMPOSSIBLE_RANGE)
{
const_table_map|= tab->table->map;
goto no_filter;
}
DBUG_ASSERT(sel->quick);
filter_container=
tab->range_rowid_filter_info->create_container();
if (filter_container)
{
tab->rowid_filter=
new (thd->mem_root) Range_rowid_filter(tab->table,
tab->range_rowid_filter_info,
filter_container, sel);
if (tab->rowid_filter)
{
tab->need_to_build_rowid_filter= true;
continue;
}
}
no_filter:
delete sel;
}
DBUG_RETURN(0);
}
/**
@brief
Allocate memory the rowid containers of the used the range filters
@details
For each join table from the chosen execution plan such that a range filter
is used when joining this table the function allocate memory for the
rowid container employed by the filter. On success it lets the table engine
know that what rowid filter will be used when accessing the table rows.
@retval
false OK
true Error, query should abort
*/
bool
JOIN::init_range_rowid_filters()
{
JOIN_TAB *tab;
DBUG_ENTER("init_range_rowid_filters");
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
tab->need_to_build_rowid_filter= false; // Safety
if (!tab->rowid_filter)
continue;
if (tab->rowid_filter->get_container()->alloc())
{
tab->clear_range_rowid_filter();
continue;
}
tab->table->file->rowid_filter_push(tab->rowid_filter);
tab->need_to_build_rowid_filter= true;
}
DBUG_RETURN(0);
}
/**
global select optimisation.
@note
error code saved in field 'error'
@retval
0 success
@retval
1 error
*/
int
JOIN::optimize_inner()
{
DBUG_ENTER("JOIN::optimize_inner");
subq_exit_fl= false;
best_read= 0.0;
DEBUG_SYNC(thd, "before_join_optimize");
THD_STAGE_INFO(thd, stage_optimizing);
#ifndef DBUG_OFF
dbug_join_tab_array_size= 0;
#endif
// rownum used somewhere in query, no limits and it is derived
if (unlikely(thd->lex->with_rownum &&
select_lex->first_cond_optimization &&
select_lex->master_unit()->derived))
optimize_upper_rownum_func();
do_send_rows = (unit->lim.get_select_limit()) ? 1 : 0;
set_allowed_join_cache_types();
need_distinct= TRUE;
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_prepare(thd, "join_optimization");
trace_prepare.add_select_number(select_lex->select_number);
Json_writer_array trace_steps(thd, "steps");
/*
Needed in case optimizer short-cuts,
set properly in make_aggr_tables_info()
*/
fields= &select_lex->item_list;
if (select_lex->first_cond_optimization)
{
//Do it only for the first execution
/* Merge all mergeable derived tables/views in this SELECT. */
if (select_lex->handle_derived(thd->lex, DT_MERGE))
DBUG_RETURN(TRUE);
table_count= select_lex->leaf_tables.elements;
}
if (select_lex->first_cond_optimization &&
transform_in_predicates_into_in_subq(thd))
DBUG_RETURN(1);
/*
Update used tables after all handling derived table procedures
After this call, select_lex->select_list_tables contains the table
bits of all items in the select list (but not bits from WHERE clause or
other items).
*/
select_lex->update_used_tables();
/*
In fact we transform underlying subqueries after their 'prepare' phase and
before 'optimize' from upper query 'optimize' to allow semijoin
conversion happened (which done in the same way.
*/
if (select_lex->first_cond_optimization &&
conds && conds->walk(&Item::exists2in_processor, 0, thd))
DBUG_RETURN(1);
/*
TODO
make view to decide if it is possible to write to WHERE directly or make Semi-Joins able to process ON condition if it is possible
for (TABLE_LIST *tbl= tables_list; tbl; tbl= tbl->next_local)
{
if (tbl->on_expr &&
tbl->on_expr->walk(&Item::exists2in_processor, 0, thd))
DBUG_RETURN(1);
}
*/
if (transform_max_min_subquery())
DBUG_RETURN(1); /* purecov: inspected */
if (select_lex->first_cond_optimization)
{
/* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */
if (convert_join_subqueries_to_semijoins(this))
DBUG_RETURN(1); /* purecov: inspected */
/* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */
select_lex->update_used_tables();
}
eval_select_list_used_tables();
table_count= select_lex->leaf_tables.elements;
if (select_lex->options & OPTION_SCHEMA_TABLE &&
optimize_schema_tables_memory_usage(select_lex->leaf_tables))
DBUG_RETURN(1);
if (setup_ftfuncs(select_lex)) /* should be after having->fix_fields */
DBUG_RETURN(-1);
row_limit= ((select_distinct || order || group_list) ? HA_POS_ERROR :
unit->lim.get_select_limit());
/* select_limit is used to decide if we are likely to scan the whole table */
select_limit= unit->lim.get_select_limit();
if (having || (select_options & OPTION_FOUND_ROWS))
select_limit= HA_POS_ERROR;
#ifdef HAVE_REF_TO_FIELDS // Not done yet
/* Add HAVING to WHERE if possible */
if (having && !group_list && !sum_func_count)
{
if (!conds)
{
conds= having;
having= 0;
}
else if ((conds=new (thd->mem_root) Item_cond_and(conds,having)))
{
/*
Item_cond_and can't be fixed after creation, so we do not check
conds->fixed()
*/
conds->fix_fields(thd, &conds);
conds->change_ref_to_fields(thd, tables_list);
conds->top_level_item();
having= 0;
}
}
#endif
SELECT_LEX *sel= select_lex;
if (sel->first_cond_optimization)
{
bool error= false;
/*
The following code will allocate the new items in a permanent
MEMROOT for prepared statements and stored procedures.
But first we need to ensure that thd->lex->explain is allocated
in the execution arena
*/
create_explain_query_if_not_exists(thd->lex, thd->mem_root);
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
sel->first_cond_optimization= 0;
/* Convert all outer joins to inner joins if possible */
conds= simplify_joins(this, join_list, conds, TRUE, FALSE);
add_table_function_dependencies(join_list, table_map(-1), &error);
if (thd->is_error() ||
(!select_lex->leaf_tables_saved && select_lex->save_leaf_tables(thd)))
{
/*
If there was an error above, the data structures may have been left in
some undefined state. If this is a PS/SP statement, it might not be
safe to run it again. Note that it needs to be re-prepared.
*/
thd->lex->needs_reprepare= true;
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(1);
}
select_lex->leaf_tables_saved= true;
build_bitmap_for_nested_joins(join_list, 0);
sel->prep_where= conds ? conds->copy_andor_structure(thd) : 0;
sel->where= conds;
select_lex->update_used_tables();
if (arena)
thd->restore_active_arena(arena, &backup);
}
if (!allowed_top_level_tables)
calc_allowed_top_level_tables(select_lex);
if (optimize_constant_subqueries())
DBUG_RETURN(1);
if (conds && conds->with_subquery())
(void) conds->walk(&Item::cleanup_is_expensive_cache_processor,
0, (void *) 0);
if (having && having->with_subquery())
(void) having->walk(&Item::cleanup_is_expensive_cache_processor,
0, (void *) 0);
List<Item> eq_list;
if (setup_degenerate_jtbm_semi_joins(this, join_list, eq_list))
DBUG_RETURN(1);
if (eq_list.elements != 0)
{
Item *new_cond;
if (eq_list.elements == 1)
new_cond= eq_list.pop();
else
new_cond= new (thd->mem_root) Item_cond_and(thd, eq_list);
if (new_cond &&
((new_cond->fix_fields(thd, &new_cond) ||
!(conds= and_items(thd, conds, new_cond)) ||
conds->fix_fields(thd, &conds))))
DBUG_RETURN(TRUE);
}
eq_list.empty();
if (select_lex->cond_pushed_into_where)
{
conds= and_conds(thd, conds, select_lex->cond_pushed_into_where);
if (conds && conds->fix_fields(thd, &conds))
DBUG_RETURN(1);
}
if (select_lex->cond_pushed_into_having)
{
having= and_conds(thd, having, select_lex->cond_pushed_into_having);
if (having)
{
select_lex->having_fix_field= 1;
select_lex->having_fix_field_for_pushed_cond= 1;
if (having->fix_fields(thd, &having))
DBUG_RETURN(1);
select_lex->having_fix_field= 0;
select_lex->having_fix_field_for_pushed_cond= 0;
}
}
bool ignore_on_expr= false;
/*
PS/SP note: on_expr of versioned table can not be reallocated
(see build_equal_items() below) because it can be not rebuilt
at second invocation.
*/
if (!thd->stmt_arena->is_conventional() &&
thd->mem_root != thd->stmt_arena->mem_root)
for (TABLE_LIST *tbl= tables_list; tbl; tbl= tbl->next_local)
if (tbl->table && tbl->on_expr && tbl->table->versioned())
{
ignore_on_expr= true;
break;
}
transform_in_predicates_into_equalities(thd);
if (thd->lex->are_date_funcs_used())
transform_date_conds_into_sargable();
if (optimizer_flag(thd, OPTIMIZER_SWITCH_SARGABLE_CASEFOLD))
{
transform_all_conds_and_on_exprs(
thd, &Item::varchar_upper_cmp_transformer);
}
if (substitute_indexed_vcols_for_join(this))
{
error= 1;
DBUG_RETURN(1);
}
conds= optimize_cond(this, conds, join_list, ignore_on_expr,
&cond_value, &cond_equal, OPT_LINK_EQUAL_FIELDS);
if (thd->is_error())
{
error= 1;
DBUG_PRINT("error",("Error from optimize_cond"));
DBUG_RETURN(1);
}
if (select_lex->with_rownum && ! order && ! group_list &&
!select_distinct && conds && select_lex == unit->global_parameters() &&
select_lex->first_rownum_optimization)
{
optimize_rownum(thd, unit, conds);
select_lex->first_rownum_optimization= false;
}
having= optimize_cond(this, having, join_list, TRUE,
&having_value, &having_equal);
if (thd->is_error())
{
error= 1;
DBUG_PRINT("error",("Error from optimize_cond"));
DBUG_RETURN(1);
}
/* Do not push into WHERE from HAVING if cond_value == Item::COND_FALSE */
if (thd->lex->sql_command == SQLCOM_SELECT &&
optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FROM_HAVING) &&
cond_value != Item::COND_FALSE)
{
having=
select_lex->pushdown_from_having_into_where(thd, having);
if (select_lex->attach_to_conds.elements != 0)
{
conds= and_new_conditions_to_optimized_cond(thd, conds, &cond_equal,
select_lex->attach_to_conds,
&cond_value);
sel->attach_to_conds.empty();
Json_writer_object wrapper(thd);
Json_writer_object pushd(thd, "condition_pushdown_from_having");
pushd.add("conds", conds);
pushd.add("having", having);
}
}
if (optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FOR_SUBQUERY))
{
TABLE_LIST *tbl;
List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
while ((tbl= li++))
if (tbl->jtbm_subselect)
{
if (tbl->jtbm_subselect->pushdown_cond_for_in_subquery(thd, conds))
DBUG_RETURN(1);
}
}
if (setup_jtbm_semi_joins(this, join_list, eq_list))
DBUG_RETURN(1);
if (eq_list.elements != 0)
{
conds= and_new_conditions_to_optimized_cond(thd, conds, &cond_equal,
eq_list, &cond_value);
if (!conds &&
cond_value != Item::COND_FALSE && cond_value != Item::COND_TRUE)
DBUG_RETURN(TRUE);
}
if (optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FOR_DERIVED))
{
TABLE_LIST *tbl;
List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
while ((tbl= li++))
{
/*
Do not push conditions from where into materialized inner tables
of outer joins: this is not valid.
*/
if (tbl->is_materialized_derived())
{
JOIN *join= tbl->get_unit()->first_select()->join;
if (join &&
join->optimization_state == JOIN::OPTIMIZATION_PHASE_1_DONE &&
join->with_two_phase_optimization)
continue;
/*
Do not push conditions from where into materialized inner tables
of outer joins: this is not valid.
*/
if (!tbl->is_inner_table_of_outer_join())
{
if (pushdown_cond_for_derived(thd, conds, tbl))
DBUG_RETURN(1);
}
if (mysql_handle_single_derived(thd->lex, tbl, DT_OPTIMIZE))
DBUG_RETURN(1);
}
}
}
else
{
/* Run optimize phase for all derived tables/views used in this SELECT. */
if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
DBUG_RETURN(1);
}
{
if (select_lex->where)
{
select_lex->cond_value= cond_value;
if (sel->where != conds && cond_value == Item::COND_OK)
thd->change_item_tree(&sel->where, conds);
}
if (select_lex->having)
{
select_lex->having_value= having_value;
if (sel->having != having && having_value == Item::COND_OK)
thd->change_item_tree(&sel->having, having);
}
if (cond_value == Item::COND_FALSE || having_value == Item::COND_FALSE ||
(!unit->lim.get_select_limit() &&
!(select_options & OPTION_FOUND_ROWS)))
{ /* Impossible cond */
if (unit->lim.get_select_limit())
{
DBUG_PRINT("info", (having_value == Item::COND_FALSE ?
"Impossible HAVING" : "Impossible WHERE"));
zero_result_cause= having_value == Item::COND_FALSE ?
"Impossible HAVING" : "Impossible WHERE";
}
else
{
DBUG_PRINT("info", ("Zero limit"));
zero_result_cause= "Zero limit";
}
table_count= top_join_tab_count= 0;
handle_implicit_grouping_with_window_funcs();
error= 0;
subq_exit_fl= true;
goto setup_subq_exit;
}
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
{
TABLE_LIST *tbl;
List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
while ((tbl= li++))
{
Item **prune_cond= get_sargable_cond(this, tbl->table);
tbl->table->all_partitions_pruned_away=
prune_partitions(thd, tbl->table, *prune_cond);
}
}
#endif
/*
Try to optimize count(*), MY_MIN() and MY_MAX() to const fields if
there is implicit grouping (aggregate functions but no
group_list). In this case, the result set shall only contain one
row.
*/
if (tables_list && implicit_grouping)
{
int res;
/*
opt_sum_query() returns HA_ERR_KEY_NOT_FOUND if no rows match
to the WHERE conditions,
or 1 if all items were resolved (optimized away),
or 0, or an error number HA_ERR_...
If all items were resolved by opt_sum_query, there is no need to
open any tables.
*/
/*
The following resetting and restoring of sum_funcs is needed to
go around a bug in spider where it assumes that
make_sum_func_list() has not been called yet and do logical
choices based on this if special handling of min/max functions should
be done. We disable this special handling while we are trying to find
out if we can replace MIN/MAX values with constants.
*/
Item_sum **save_func_sums= sum_funcs, *tmp_sum_funcs= 0;
sum_funcs= &tmp_sum_funcs;
res= opt_sum_query(thd, select_lex->leaf_tables, all_fields, conds);
sum_funcs= save_func_sums;
if (res)
{
DBUG_ASSERT(res >= 0);
if (res == HA_ERR_KEY_NOT_FOUND)
{
DBUG_PRINT("info",("No matching min/max row"));
zero_result_cause= "No matching min/max row";
table_count= top_join_tab_count= 0;
error=0;
subq_exit_fl= true;
handle_implicit_grouping_with_window_funcs();
goto setup_subq_exit;
}
if (res > 1)
{
error= res;
DBUG_PRINT("error",("Error from opt_sum_query"));
DBUG_RETURN(1);
}
DBUG_PRINT("info",("Select tables optimized away"));
if (!select_lex->have_window_funcs())
zero_result_cause= "Select tables optimized away";
tables_list= 0; // All tables resolved
select_lex->min_max_opt_list.empty();
const_tables= top_join_tab_count= table_count;
handle_implicit_grouping_with_window_funcs();
/*
Extract all table-independent conditions and replace the WHERE
clause with them. All other conditions were computed by opt_sum_query
and the MIN/MAX/COUNT function(s) have been replaced by constants,
so there is no need to compute the whole WHERE clause again.
Notice that make_cond_for_table() will always succeed to remove all
computed conditions, because opt_sum_query() is applicable only to
conjunctions.
Preserve conditions for EXPLAIN.
*/
if (conds && !(thd->lex->describe & DESCRIBE_EXTENDED))
{
COND *table_independent_conds=
make_cond_for_table(thd, conds, PSEUDO_TABLE_BITS, 0, -1,
FALSE, FALSE);
if (!table_independent_conds && thd->is_error())
DBUG_RETURN(1);
DBUG_EXECUTE("where",
print_where(table_independent_conds,
"where after opt_sum_query()",
QT_ORDINARY););
conds= table_independent_conds;
}
}
}
if (!tables_list)
{
DBUG_PRINT("info",("No tables"));
error= 0;
subq_exit_fl= true;
goto setup_subq_exit;
}
error= -1; // Error is sent to client
/* get_sort_by_table() call used to be here: */
MEM_UNDEFINED(&sort_by_table, sizeof(sort_by_table));
/*
We have to remove constants and duplicates from group_list before
calling make_join_statistics() as this may call get_best_group_min_max()
which needs a simplified group_list.
*/
if (group_list && table_count == 1)
{
group_list= remove_const(this, group_list, conds,
rollup.state == ROLLUP::STATE_NONE,
&simple_group);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_RETURN(1);
}
if (!group_list)
{
/* The output has only one row */
order=0;
simple_order=1;
group_optimized_away= 1;
select_distinct=0;
}
}
/* Calculate how to do the join */
THD_STAGE_INFO(thd, stage_statistics);
result->prepare_to_read_rows();
if (unlikely(make_join_statistics(this, select_lex->leaf_tables,
&keyuse)) ||
unlikely(thd->is_error()))
{
DBUG_PRINT("error",("Error: make_join_statistics() failed"));
DBUG_RETURN(1);
}
/*
If a splittable materialized derived/view dt_i is embedded into
into another splittable materialized derived/view dt_o then
splitting plans for dt_i and dt_o are evaluated independently.
First the optimizer looks for the best splitting plan sp_i for dt_i.
It happens when non-splitting plans for dt_o are evaluated.
The cost of sp_i is considered as the cost of materialization of dt_i
when evaluating any splitting plan for dt_o.
*/
if (fix_all_splittings_in_plan())
DBUG_RETURN(1);
setup_subq_exit:
with_two_phase_optimization= check_two_phase_optimization(thd);
if (with_two_phase_optimization)
optimization_state= JOIN::OPTIMIZATION_PHASE_1_DONE;
else
{
if (optimize_stage2())
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
int JOIN::optimize_stage2()
{
ulonglong select_opts_for_readinfo;
uint no_jbuf_after;
JOIN_TAB *tab;
DBUG_ENTER("JOIN::optimize_stage2");
if (subq_exit_fl)
goto setup_subq_exit;
if (unlikely(thd->check_killed()))
DBUG_RETURN(1);
/* Generate an execution plan from the found optimal join order. */
if (get_best_combination())
DBUG_RETURN(1);
if (make_range_rowid_filters())
DBUG_RETURN(1);
if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
DBUG_RETURN(1);
/*
We have to call drop_unused_derived_keys() even if we don't have any
generated keys (enabled with OPTIMIZER_SWITCH_DERIVED_WITH_KEYS)
as we may still have unique constraints we have to get rid of.
*/
drop_unused_derived_keys();
if (rollup.state != ROLLUP::STATE_NONE)
{
if (rollup_process_const_fields())
{
DBUG_PRINT("error", ("Error: rollup_process_fields() failed"));
DBUG_RETURN(1);
}
}
else
{
/* Remove distinct if only const tables */
select_distinct= select_distinct && (const_tables != table_count);
}
THD_STAGE_INFO(thd, stage_preparing);
if (result->initialize_tables(this))
{
DBUG_PRINT("error",("Error: initialize_tables() failed"));
DBUG_RETURN(1); // error == -1
}
if (const_table_map != found_const_table_map &&
!(select_options & SELECT_DESCRIBE))
{
// There is at least one empty const table
zero_result_cause= "no matching row in const table";
DBUG_PRINT("error",("Error: %s", zero_result_cause));
error= 0;
handle_implicit_grouping_with_window_funcs();
goto setup_subq_exit;
}
if (!(thd->variables.option_bits & OPTION_BIG_SELECTS) &&
join_record_count > (double) thd->variables.max_join_size &&
!(select_options & SELECT_DESCRIBE))
{ /* purecov: inspected */
my_message(ER_TOO_BIG_SELECT, ER_THD(thd, ER_TOO_BIG_SELECT), MYF(0));
error= -1;
DBUG_RETURN(1);
}
if (const_tables && !thd->locked_tables_mode &&
!(select_options & SELECT_NO_UNLOCK))
{
/*
Unlock all tables, except sequences, as accessing these may still
require table updates. It's safe to ignore result code as all
tables where opened for read only.
*/
(void) mysql_unlock_some_tables(thd, table, const_tables,
GET_LOCK_SKIP_SEQUENCES);
}
if (!conds && outer_join)
{
/* Handle the case where we have an OUTER JOIN without a WHERE */
conds= (Item*) Item_true;
}
if (impossible_where)
{
zero_result_cause=
"Impossible WHERE noticed after reading const tables";
select_lex->mark_const_derived(zero_result_cause);
handle_implicit_grouping_with_window_funcs();
goto setup_subq_exit;
}
select= make_select(*table, const_table_map,
const_table_map, conds, (SORT_INFO*) 0, 1, &error);
if (unlikely(error))
{ /* purecov: inspected */
error= -1; /* purecov: inspected */
DBUG_PRINT("error",("Error: make_select() failed"));
DBUG_RETURN(1);
}
reset_nj_counters(this, join_list);
if (make_outerjoin_info(this))
{
DBUG_RETURN(1);
}
/*
Among the equal fields belonging to the same multiple equality
choose the one that is to be retrieved first and substitute
all references to these in where condition for a reference for
the selected field.
*/
if (conds)
{
conds= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB, conds,
cond_equal, map2table, true);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_PRINT("error",("Error from substitute_for_best_equal"));
DBUG_RETURN(1);
}
conds->update_used_tables();
if (unlikely(thd->trace_started()))
trace_condition(thd, "WHERE", "substitute_best_equal", conds);
DBUG_EXECUTE("where",
print_where(conds,
"after substitute_best_equal",
QT_ORDINARY););
}
if (having)
{
having= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB, having,
having_equal, map2table, false);
if (thd->is_error())
{
error= 1;
DBUG_PRINT("error",("Error from substitute_for_best_equal"));
DBUG_RETURN(1);
}
if (having)
{
having->update_used_tables();
if (unlikely(thd->trace_started()))
trace_condition(thd, "HAVING", "substitute_best_equal", having);
}
DBUG_EXECUTE("having",
print_where(having,
"after substitute_best_equal",
QT_ORDINARY););
}
/*
Perform the optimization on fields evaluation mentioned above
for all on expressions.
*/
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES); tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
if (*tab->on_expr_ref)
{
*tab->on_expr_ref= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB,
*tab->on_expr_ref,
tab->cond_equal,
map2table, true);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_PRINT("error",("Error from substitute_for_best_equal"));
DBUG_RETURN(1);
}
(*tab->on_expr_ref)->update_used_tables();
if (unlikely(thd->trace_started()))
{
trace_condition(thd, "ON expr", "substitute_best_equal",
(*tab->on_expr_ref), tab->table->alias.c_ptr());
}
}
}
/*
Perform the optimization on fields evaliation mentioned above
for all used ref items.
*/
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES); tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
uint key_copy_index=0;
for (uint i=0; i < tab->ref.key_parts; i++)
{
Item **ref_item_ptr= tab->ref.items+i;
Item *ref_item= *ref_item_ptr;
if (!ref_item->used_tables() && !(select_options & SELECT_DESCRIBE))
continue;
COND_EQUAL *equals= cond_equal;
JOIN_TAB *first_inner= tab->first_inner;
while (equals)
{
ref_item= substitute_for_best_equal_field(thd, tab, ref_item,
equals, map2table, true);
if (unlikely(thd->is_error()))
DBUG_RETURN(1);
if (first_inner)
{
equals= first_inner->cond_equal;
first_inner= first_inner->first_upper;
}
else
equals= 0;
}
ref_item->update_used_tables();
if (*ref_item_ptr != ref_item)
{
*ref_item_ptr= ref_item;
Item *item= ref_item->real_item();
store_key *key_copy= tab->ref.key_copy[key_copy_index];
if (key_copy->type() == store_key::FIELD_STORE_KEY)
{
if (item->basic_const_item())
{
/* It is constant propagated here */
tab->ref.key_copy[key_copy_index]=
new store_key_const_item(*tab->ref.key_copy[key_copy_index],
item);
}
else if (item->const_item())
{
tab->ref.key_copy[key_copy_index]=
new store_key_item(*tab->ref.key_copy[key_copy_index],
item, TRUE);
}
else
{
store_key_field *field_copy= ((store_key_field *)key_copy);
DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
field_copy->change_source_field((Item_field *) item);
}
}
}
key_copy_index++;
}
}
if (conds && const_table_map != found_const_table_map &&
(select_options & SELECT_DESCRIBE))
conds= (Item*) Item_false;
/* Cache constant expressions in WHERE, HAVING, ON clauses. */
cache_const_exprs();
if (setup_semijoin_loosescan(this))
DBUG_RETURN(1);
if (make_join_select(this, select, conds))
{
if (thd->is_error())
DBUG_RETURN(1);
zero_result_cause=
"Impossible WHERE noticed after reading const tables";
select_lex->mark_const_derived(zero_result_cause);
handle_implicit_grouping_with_window_funcs();
goto setup_subq_exit;
}
error= -1; /* if goto err */
/* Optimize distinct away if possible */
{
ORDER *org_order= order;
order=remove_const(this, order,conds,1, &simple_order);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_RETURN(1);
}
/*
If we are using ORDER BY NULL or ORDER BY const_expression,
return result in any order (even if we are using a GROUP BY)
*/
if (!order && org_order)
skip_sort_order= 1;
}
/*
For FETCH ... WITH TIES save how many items order by had, after we've
removed constant items that have no relevance on the final sorting.
*/
if (unit->lim.is_with_ties())
{
DBUG_ASSERT(with_ties_order_count == 0);
for (ORDER *it= order; it; it= it->next)
with_ties_order_count+= 1;
}
/*
Check if we can optimize away GROUP BY/DISTINCT.
We can do that if there are no aggregate functions, the
fields in DISTINCT clause (if present) and/or columns in GROUP BY
(if present) contain direct references to all key parts of
an unique index (in whatever order) and if the key parts of the
unique index cannot contain NULLs.
Note that the unique keys for DISTINCT and GROUP BY should not
be the same (as long as they are unique).
The FROM clause must contain a single non-constant table.
*/
if (table_count - const_tables == 1 && (group || select_distinct) &&
!tmp_table_param.sum_func_count &&
(!join_tab[const_tables].select ||
!join_tab[const_tables].select->quick ||
join_tab[const_tables].select->quick->get_type() !=
QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX) &&
!select_lex->have_window_funcs())
{
if (group && rollup.state == ROLLUP::STATE_NONE &&
list_contains_unique_index(join_tab[const_tables].table,
find_field_in_order_list,
(void *) group_list))
{
/*
We have found that grouping can be removed since groups correspond to
only one row anyway, but we still have to guarantee correct result
order. The line below effectively rewrites the query from GROUP BY
<fields> to ORDER BY <fields>. There are three exceptions:
- if skip_sort_order is set (see above), then we can simply skip
GROUP BY;
- if we are in a subquery, we don't have to maintain order unless there
is a limit clause in the subquery.
- we can only rewrite ORDER BY if the ORDER BY fields are 'compatible'
with the GROUP BY ones, i.e. either one is a prefix of another.
We only check if the ORDER BY is a prefix of GROUP BY. In this case
test_if_subpart() copies the ASC/DESC attributes from the original
ORDER BY fields.
If GROUP BY is a prefix of ORDER BY, then it is safe to leave
'order' as is.
*/
if (!order || test_if_subpart(group_list, order))
{
if (skip_sort_order ||
(select_lex->master_unit()->item && select_limit == HA_POS_ERROR)) // This is a subquery
order= NULL;
else
order= group_list;
}
/*
If we have an IGNORE INDEX FOR GROUP BY(fields) clause, this must be
rewritten to IGNORE INDEX FOR ORDER BY(fields).
*/
join_tab->table->keys_in_use_for_order_by=
join_tab->table->keys_in_use_for_group_by;
group_list= 0;
group= 0;
}
if (select_distinct &&
list_contains_unique_index(join_tab[const_tables].table,
find_field_in_item_list,
(void *) &fields_list))
{
select_distinct= 0;
}
}
if (group || tmp_table_param.sum_func_count)
{
if (! hidden_group_fields && rollup.state == ROLLUP::STATE_NONE
&& !select_lex->have_window_funcs())
select_distinct=0;
}
else if (select_distinct && table_count - const_tables == 1 &&
rollup.state == ROLLUP::STATE_NONE &&
!select_lex->have_window_funcs())
{
/*
We are only using one table. In this case we change DISTINCT to a
GROUP BY query if:
- The GROUP BY can be done through indexes (no sort) and the ORDER
BY only uses selected fields.
(In this case we can later optimize away GROUP BY and ORDER BY)
- We are scanning the whole table without LIMIT
This can happen if:
- We are using CALC_FOUND_ROWS
- We are using an ORDER BY that can't be optimized away.
We don't want to use this optimization when we are using LIMIT
because in this case we can just create a temporary table that
holds LIMIT rows and stop when this table is full.
*/
bool all_order_fields_used;
tab= &join_tab[const_tables];
if (order)
{
bool fatal_err;
skip_sort_order=
test_if_skip_sort_order(tab, order, select_limit,
true, // no_changes
&tab->table->keys_in_use_for_order_by,
&fatal_err);
if (fatal_err)
DBUG_RETURN(1);
}
if ((group_list=create_distinct_group(thd, select_lex->ref_pointer_array,
order, fields_list, all_fields,
&all_order_fields_used)))
{
bool fatal_err= 0;
const bool skip_group=
skip_sort_order &&
test_if_skip_sort_order(tab, group_list, select_limit,
true, // no_changes
&tab->table->keys_in_use_for_group_by,
&fatal_err);
if (fatal_err)
DBUG_RETURN(1);
count_field_types(select_lex, &tmp_table_param, all_fields, 0);
if ((skip_group && all_order_fields_used) ||
select_limit == HA_POS_ERROR ||
(order && !skip_sort_order))
{
/* Change DISTINCT to GROUP BY */
select_distinct= 0;
no_order= !order;
if (all_order_fields_used)
{
if (order && skip_sort_order)
{
/*
Force MySQL to read the table in sorted order to get result in
ORDER BY order.
*/
tmp_table_param.quick_group=0;
}
order=0;
}
group=1; // For end_write_group
}
else
group_list= 0;
}
else if (thd->is_error()) // End of memory
DBUG_RETURN(1);
}
simple_group= rollup.state == ROLLUP::STATE_NONE;
if (group)
{
/*
Update simple_group and group_list as we now have more information, like
which tables or columns are constant.
*/
group_list= remove_const(this, group_list, conds,
rollup.state == ROLLUP::STATE_NONE,
&simple_group);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_RETURN(1);
}
if (!group_list)
{
/* The output has only one row */
order=0;
simple_order=1;
select_distinct= 0;
group_optimized_away= 1;
}
}
calc_group_buffer(this, group_list);
send_group_parts= tmp_table_param.group_parts; /* Save org parts */
if (procedure && procedure->group)
{
group_list= procedure->group= remove_const(this, procedure->group, conds,
1, &simple_group);
if (unlikely(thd->is_error()))
{
error= 1;
DBUG_RETURN(1);
}
calc_group_buffer(this, group_list);
}
/*
We can ignore ORDER BY if it's a prefix of the GROUP BY list
(as MariaDB is by default sorting on GROUP BY) or
if there is no GROUP BY and aggregate functions are used
(as the result will only contain one row).
*/
if (order && (test_if_subpart(group_list, order) ||
(!group_list && tmp_table_param.sum_func_count)))
order=0;
// Can't use sort on head table if using join buffering
if (full_join || hash_join)
{
TABLE *stable= (sort_by_table == (TABLE *) 1 ?
join_tab[const_tables].table : sort_by_table);
/*
FORCE INDEX FOR ORDER BY can be used to prevent join buffering when
sorting on the first table.
*/
if (!stable || (!stable->force_index_order &&
!map2table[stable->tablenr]->keep_current_rowid))
{
if (group_list)
simple_group= 0;
if (order)
simple_order= 0;
}
}
need_tmp= test_if_need_tmp_table();
/*
If window functions are present then we can't have simple_order set to
TRUE as the window function needs a temp table for computation.
ORDER BY is computed after the window function computation is done, so
the sort will be done on the temp table.
*/
if (select_lex->have_window_funcs())
simple_order= FALSE;
/*
If the hint FORCE INDEX FOR ORDER BY/GROUP BY is used for the table
whose columns are required to be returned in a sorted order, then
the proper value for no_jbuf_after should be yielded by a call to
the make_join_orderinfo function.
Yet the current implementation of FORCE INDEX hints does not
allow us to do it in a clean manner.
*/
no_jbuf_after= 1 ? table_count : make_join_orderinfo(this);
// Don't use join buffering when we use MATCH
select_opts_for_readinfo=
(select_options & (SELECT_DESCRIBE | SELECT_NO_JOIN_CACHE)) |
(select_lex->ftfunc_list->elements ? SELECT_NO_JOIN_CACHE : 0);
if (select_lex->options & OPTION_SCHEMA_TABLE &&
optimize_schema_tables_reads(this))
DBUG_RETURN(1);
if (make_join_readinfo(this, select_opts_for_readinfo, no_jbuf_after))
DBUG_RETURN(1);
/* Perform FULLTEXT search before all regular searches */
if (!(select_options & SELECT_DESCRIBE))
if (init_ftfuncs(thd, select_lex, MY_TEST(order)))
DBUG_RETURN(1);
/*
It's necessary to check const part of HAVING cond as
there is a chance that some cond parts may become
const items after make_join_statistics(for example
when Item is a reference to cost table field from
outer join).
This check is performed only for those conditions
which do not use aggregate functions. In such case
temporary table may not be used and const condition
elements may be lost during further having
condition transformation.
*/
if (having && const_table_map && !having->with_sum_func())
{
having->update_used_tables();
if (having->const_item() && !having->is_expensive())
{
if (!having->val_bool())
{
having= Item_false;
zero_result_cause= "Impossible HAVING noticed after reading const tables";
error= 0;
select_lex->mark_const_derived(zero_result_cause);
goto setup_subq_exit;
}
having= Item_true;
}
}
if (optimize_unflattened_subqueries())
DBUG_RETURN(1);
int res;
if ((res= rewrite_to_index_subquery_engine(this)) != -1)
DBUG_RETURN(res);
if (setup_subquery_caches())
DBUG_RETURN(-1);
/*
Need to tell handlers that to play it safe, it should fetch all
columns of the primary key of the tables: this is because MySQL may
build row pointers for the rows, and for all columns of the primary key
the read set has not necessarily been set by the server code.
*/
if (need_tmp || select_distinct || group_list || order)
{
for (uint i= 0; i < table_count; i++)
{
if (!(table[i]->map & const_table_map))
table[i]->prepare_for_position();
}
}
DBUG_EXECUTE("info",TEST_join(this););
if (!only_const_tables())
{
JOIN_TAB *tab= &join_tab[const_tables];
if (order && !need_tmp)
{
/*
Force using of tmp table if sorting by a SP or UDF function due to
their expensive and probably non-deterministic nature.
*/
for (ORDER *tmp_order= order; tmp_order ; tmp_order=tmp_order->next)
{
Item *item= *tmp_order->item;
if (item->is_expensive())
{
/* Force tmp table without sort */
need_tmp=1; simple_order=simple_group=0;
break;
}
}
}
/*
Because filesort always does a full table scan or a quick range scan
we must add the removed reference to the select for the table.
We only need to do this when we have a simple_order or simple_group
as in other cases the join is done before the sort.
*/
if ((order || group_list) &&
tab->type != JT_ALL &&
tab->type != JT_RANGE &&
tab->type != JT_NEXT &&
tab->type != JT_FT &&
tab->type != JT_REF_OR_NULL &&
((order && simple_order) || (group_list && simple_group)))
{
if (add_ref_to_table_cond(thd,tab)) {
DBUG_RETURN(1);
}
}
/*
Investigate whether we may use an ordered index as part of either
DISTINCT, GROUP BY or ORDER BY execution. An ordered index may be
used for only the first of any of these terms to be executed. This
is reflected in the order which we check for test_if_skip_sort_order()
below. However we do not check for DISTINCT here, as it would have
been transformed to a GROUP BY at this stage if it is a candidate for
ordered index optimization.
If a decision was made to use an ordered index, the availability
of such an access path is stored in 'ordered_index_usage' for later
use by 'execute' or 'explain'
*/
DBUG_ASSERT(ordered_index_usage == ordered_index_void);
if (group_list) // GROUP BY honoured first
// (DISTINCT was rewritten to GROUP BY if skippable)
{
/*
When there is SQL_BIG_RESULT do not sort using index for GROUP BY,
and thus force sorting on disk unless a group min-max optimization
is going to be used as it is applied now only for one table queries
with covering indexes.
*/
if (!(select_options & SELECT_BIG_RESULT) ||
(tab->select &&
tab->select->quick &&
tab->select->quick->get_type() ==
QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX))
{
if (simple_group && // GROUP BY is possibly skippable
!select_distinct) // .. if not preceded by a DISTINCT
{
/*
Calculate a possible 'limit' of table rows for 'GROUP BY':
A specified 'LIMIT' is relative to the final resultset.
'need_tmp' implies that there will be more postprocessing
so the specified 'limit' should not be enforced yet.
*/
bool fatal_err;
const ha_rows limit = need_tmp ? HA_POS_ERROR : select_limit;
if (test_if_skip_sort_order(tab, group_list, limit, false,
&tab->table->keys_in_use_for_group_by,
&fatal_err))
{
ordered_index_usage= ordered_index_group_by;
}
if (fatal_err)
DBUG_RETURN(1);
}
/*
If we are going to use semi-join LooseScan, it will depend
on the selected index scan to be used. If index is not used
for the GROUP BY, we risk that sorting is put on the LooseScan
table. In order to avoid this, force use of temporary table.
TODO: Explain the quick_group part of the test below.
*/
if ((ordered_index_usage != ordered_index_group_by) &&
((tmp_table_param.quick_group && !procedure) ||
(tab->emb_sj_nest &&
best_positions[const_tables].sj_strategy == SJ_OPT_LOOSE_SCAN)))
{
need_tmp=1;
simple_order= simple_group= false; // Force tmp table without sort
}
}
}
else if (order && // ORDER BY wo/ preceding GROUP BY
(simple_order || skip_sort_order)) // which is possibly skippable
{
bool fatal_err;
if (test_if_skip_sort_order(tab, order, select_limit, false,
&tab->table->keys_in_use_for_order_by,
&fatal_err))
{
ordered_index_usage= ordered_index_order_by;
}
if (fatal_err)
DBUG_RETURN(1);
}
}
if (having)
having_is_correlated= MY_TEST(having->used_tables() & OUTER_REF_TABLE_BIT);
tmp_having= having;
if (unlikely(thd->is_error()))
DBUG_RETURN(TRUE);
/*
The loose index scan access method guarantees that all grouping or
duplicate row elimination (for distinct) is already performed
during data retrieval, and that all MIN/MAX functions are already
computed for each group. Thus all MIN/MAX functions should be
treated as regular functions, and there is no need to perform
grouping in the main execution loop.
Notice that currently loose index scan is applicable only for
single table queries, thus it is sufficient to test only the first
join_tab element of the plan for its access method.
*/
if (join_tab->is_using_loose_index_scan())
{
tmp_table_param.precomputed_group_by= TRUE;
if (join_tab->is_using_agg_loose_index_scan())
{
need_distinct= FALSE;
tmp_table_param.precomputed_group_by= FALSE;
}
}
if (make_aggr_tables_info())
DBUG_RETURN(1);
init_join_cache_and_keyread();
if (init_range_rowid_filters())
DBUG_RETURN(1);
error= 0;
if (select_options & SELECT_DESCRIBE)
goto derived_exit;
DBUG_RETURN(0);
setup_subq_exit:
/* Choose an execution strategy for this JOIN. */
if (!tables_list || !table_count)
{
choose_tableless_subquery_plan();
/* The output has atmost one row */
if (group_list)
{
group_list= NULL;
group_optimized_away= 1;
rollup.state= ROLLUP::STATE_NONE;
}
order= NULL;
simple_order= TRUE;
select_distinct= FALSE;
if (select_lex->have_window_funcs())
{
if (!(join_tab= thd->alloc<JOIN_TAB>(1)))
DBUG_RETURN(1);
#ifndef DBUG_OFF
dbug_join_tab_array_size= 1;
#endif
need_tmp= 1;
}
if (make_aggr_tables_info())
DBUG_RETURN(1);
/*
It could be that we've only done optimization stage 1 for
some of the derived tables, and never did stage 2.
Do it now, otherwise Explain data structure will not be complete.
*/
if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
DBUG_RETURN(1);
}
/*
Even with zero matching rows, subqueries in the HAVING clause may
need to be evaluated if there are aggregate functions in the query.
*/
if (optimize_unflattened_subqueries())
DBUG_RETURN(1);
error= 0;
derived_exit:
select_lex->mark_const_derived(zero_result_cause);
DBUG_RETURN(0);
}
/**
Add having condition as a where clause condition of the given temp table.
@param tab Table to which having condition is added.
@returns false if success, true if error.
*/
bool JOIN::add_having_as_table_cond(JOIN_TAB *tab)
{
tmp_having->update_used_tables();
table_map used_tables= tab->table->map | OUTER_REF_TABLE_BIT;
/* If tmp table is not used then consider conditions of const table also */
if (!need_tmp)
used_tables|= const_table_map;
DBUG_ENTER("JOIN::add_having_as_table_cond");
Item* sort_table_cond= make_cond_for_table(thd, tmp_having, used_tables,
(table_map) 0, 0, false, false);
if (sort_table_cond)
{
if (!tab->select)
{
if (!(tab->select= new SQL_SELECT))
DBUG_RETURN(true);
tab->select->head= tab->table;
}
if (!tab->select->cond)
tab->select->cond= sort_table_cond;
else
{
if (!(tab->select->cond=
new (thd->mem_root) Item_cond_and(thd,
tab->select->cond,
sort_table_cond)))
DBUG_RETURN(true);
}
if (tab->pre_idx_push_select_cond)
{
if (sort_table_cond->type() == Item::COND_ITEM)
sort_table_cond= sort_table_cond->copy_andor_structure(thd);
if (!(tab->pre_idx_push_select_cond=
new (thd->mem_root) Item_cond_and(thd,
tab->pre_idx_push_select_cond,
sort_table_cond)))
DBUG_RETURN(true);
}
if (tab->select->cond)
tab->select->cond->fix_fields_if_needed(thd, 0);
if (tab->pre_idx_push_select_cond)
tab->pre_idx_push_select_cond->fix_fields_if_needed(thd, 0);
tab->select->pre_idx_push_select_cond= tab->pre_idx_push_select_cond;
tab->set_select_cond(tab->select->cond, __LINE__);
tab->select_cond->top_level_item();
DBUG_EXECUTE("where",print_where(tab->select->cond,
"select and having",
QT_ORDINARY););
having= make_cond_for_table(thd, tmp_having, ~ (table_map) 0,
~used_tables, 0, false, false);
if (!having && thd->is_error())
DBUG_RETURN(true);
DBUG_EXECUTE("where",
print_where(having, "having after sort", QT_ORDINARY););
}
else if (thd->is_error())
DBUG_RETURN(true);
DBUG_RETURN(false);
}
bool JOIN::add_fields_for_current_rowid(JOIN_TAB *cur, List<Item> *table_fields)
{
/*
this will not walk into semi-join materialization nests but this is ok
because we will never need to save current rowids for those.
*/
for (JOIN_TAB *tab=join_tab; tab < cur; tab++)
{
if (!tab->keep_current_rowid)
continue;
Item *item= new (thd->mem_root) Item_temptable_rowid(tab->table);
item->fix_fields(thd, 0);
/*
table_fields points to JOIN::all_fields or JOIN::tmp_all_fields_*.
These lists start with "added" fields and then their suffix is shared
with JOIN::fields_list or JOIN::tmp_fields_list*.
Because of that, new elements can only be added to the front of the list,
not to the back.
*/
table_fields->push_front(item, thd->mem_root);
cur->tmp_table_param->func_count++;
}
return 0;
}
/**
Set info for aggregation tables
@details
This function finalizes execution plan by taking following actions:
.) aggregation temporary tables are created, but not instantiated
(this is done during execution).
JOIN_TABs for aggregation tables are set appropriately
(see JOIN::create_postjoin_aggr_table).
.) prepare fields lists (fields, all_fields, ref_pointer_array slices) for
each required stage of execution. These fields lists are set for
working tables' tabs and for the tab of last table in the join.
.) info for sorting/grouping/dups removal is prepared and saved in
appropriate tabs. Here is an example:
@returns
false - Ok
true - Error
*/
bool JOIN::make_aggr_tables_info()
{
List<Item> *curr_all_fields= &all_fields;
List<Item> *curr_fields_list= &fields_list;
// Avoid UB (applying .. offset to nullptr) when join_tab is nullptr
JOIN_TAB *curr_tab= join_tab ? join_tab + const_tables : nullptr;
TABLE *exec_tmp_table= NULL;
bool distinct= false;
const bool has_group_by= this->group;
bool keep_row_order= thd->lex->with_rownum && (group_list || order);
bool is_having_added_as_table_cond= false;
DBUG_ENTER("JOIN::make_aggr_tables_info");
DBUG_ASSERT(current_ref_ptrs == items0);
sort_and_group_aggr_tab= NULL;
if (group_optimized_away)
implicit_grouping= true;
bool implicit_grouping_with_window_funcs= implicit_grouping &&
select_lex->have_window_funcs();
bool implicit_grouping_without_tables= implicit_grouping &&
!tables_list;
/*
Setup last table to provide fields and all_fields lists to the next
node in the plan.
*/
if (join_tab && top_join_tab_count && tables_list)
{
join_tab[top_join_tab_count - 1].fields= &fields_list;
join_tab[top_join_tab_count - 1].all_fields= &all_fields;
}
/*
All optimization is done. Check if we can use the storage engines
group by handler to evaluate the group by.
Some storage engines, like spider can also do joins, group by and
distinct in the engine, so we do this for all queries, not only
GROUP BY queries.
*/
if (tables_list && top_join_tab_count && !only_const_tables() && !procedure)
{
/*
At the moment we only support push down for queries where
all tables are in the same storage engine
*/
TABLE_LIST *tbl= tables_list;
handlerton *ht= tbl && tbl->table ? tbl->table->file->partition_ht() : 0;
for (tbl= tbl->next_local; ht && tbl; tbl= tbl->next_local)
{
if (!tbl->table || tbl->table->file->partition_ht() != ht)
ht= 0;
}
if (ht && ht->create_group_by)
{
/*
Check if the storage engine can intercept the query
JOIN::optimize_stage2() might convert DISTINCT into GROUP BY and then
optimize away GROUP BY (group_list). In such a case, we need to notify
a storage engine supporting a group by handler of the existence of the
original DISTINCT. Thus, we set select_distinct || group_optimized_away
to Query::distinct.
*/
Query query= {&all_fields,
(int) all_fields.elements - (int) fields_list.elements,
select_distinct || group_optimized_away,
tables_list, conds,
group_list, order ? order : group_list, having,
&select_lex->master_unit()->lim};
group_by_handler *gbh= ht->create_group_by(thd, &query);
if (gbh)
{
if (!(pushdown_query= new (thd->mem_root) Pushdown_query(select_lex,
gbh)))
DBUG_RETURN(1);
/*
We must store rows in the tmp table if we need to do an ORDER BY
or DISTINCT and the storage handler can't handle it.
*/
need_tmp= query.order_by || query.group_by || query.distinct;
distinct= query.distinct;
keep_row_order= query.order_by || query.group_by;
order= query.order_by;
aggr_tables++;
curr_tab= join_tab + exec_join_tab_cnt();
bzero((void*)curr_tab, sizeof(JOIN_TAB));
curr_tab->ref.key= -1;
curr_tab->join= this;
if (!(curr_tab->tmp_table_param= new TMP_TABLE_PARAM(tmp_table_param)))
DBUG_RETURN(1);
curr_tab->tmp_table_param->func_count= all_fields.elements;
TABLE* table= create_tmp_table(thd, curr_tab->tmp_table_param,
all_fields,
NULL, distinct,
TRUE, select_options, HA_ROWS_MAX,
&empty_clex_str, !need_tmp,
keep_row_order);
if (!table)
DBUG_RETURN(1);
if (!(curr_tab->aggr= new (thd->mem_root) AGGR_OP(curr_tab)))
DBUG_RETURN(1);
curr_tab->aggr->set_write_func(::end_send);
curr_tab->table= table;
/*
Setup reference fields, used by summary functions and group by fields,
to point to the temporary table.
The actual switching to the temporary tables fields for HAVING
and ORDER BY is done in do_select() by calling
set_items_ref_array(items1).
*/
init_items_ref_array();
items1= ref_ptr_array_slice(2);
if (change_to_use_tmp_fields(thd, items1,
tmp_fields_list1, tmp_all_fields1,
fields_list.elements, all_fields))
DBUG_RETURN(1);
/* Give storage engine access to temporary table */
gbh->table= table;
pushdown_query->store_data_in_temp_table= need_tmp;
pushdown_query->having= having;
/*
Group by and having is calculated by the group_by handler.
Reset the group by and having
*/
DBUG_ASSERT(query.group_by == NULL);
group= 0; group_list= 0;
having= tmp_having= 0;
/*
Select distinct is handled by handler or by creating an unique index
over all fields in the temporary table
*/
select_distinct= 0;
order= query.order_by;
tmp_table_param.field_count+= tmp_table_param.sum_func_count;
tmp_table_param.sum_func_count= 0;
fields= curr_fields_list;
//todo: new:
curr_tab->ref_array= &items1;
curr_tab->all_fields= &tmp_all_fields1;
curr_tab->fields= &tmp_fields_list1;
DBUG_RETURN(thd->is_error());
}
}
}
/*
The loose index scan access method guarantees that all grouping or
duplicate row elimination (for distinct) is already performed
during data retrieval, and that all MIN/MAX functions are already
computed for each group. Thus all MIN/MAX functions should be
treated as regular functions, and there is no need to perform
grouping in the main execution loop.
Notice that currently loose index scan is applicable only for
single table queries, thus it is sufficient to test only the first
join_tab element of the plan for its access method.
*/
if (join_tab && top_join_tab_count && tables_list &&
join_tab->is_using_loose_index_scan())
tmp_table_param.precomputed_group_by=
!join_tab->is_using_agg_loose_index_scan();
group_list_for_estimates= group_list;
/* Create a tmp table if distinct or if the sort is too complicated */
if (need_tmp)
{
aggr_tables++;
curr_tab= join_tab + exec_join_tab_cnt();
DBUG_ASSERT(curr_tab - join_tab < dbug_join_tab_array_size);
bzero((void*)curr_tab, sizeof(JOIN_TAB));
curr_tab->ref.key= -1;
if (only_const_tables())
first_select= sub_select_postjoin_aggr;
/*
Create temporary table on first execution of this join.
(Will be reused if this is a subquery that is executed several times.)
*/
init_items_ref_array();
ORDER *tmp_group= (ORDER *) 0;
if (!simple_group && !procedure && !(test_flags & TEST_NO_KEY_GROUP))
tmp_group= group_list;
tmp_table_param.hidden_field_count=
all_fields.elements - fields_list.elements;
distinct= select_distinct && !group_list &&
!select_lex->have_window_funcs();
keep_row_order= thd->lex->with_rownum && (group_list || order);
bool save_sum_fields= (group_list && simple_group) ||
implicit_grouping_with_window_funcs;
if (create_postjoin_aggr_table(curr_tab,
&all_fields, tmp_group,
save_sum_fields,
distinct, keep_row_order))
DBUG_RETURN(true);
exec_tmp_table= curr_tab->table;
if (exec_tmp_table->distinct)
optimize_distinct();
/* Change sum_fields reference to calculated fields in tmp_table */
items1= ref_ptr_array_slice(2);
if ((sort_and_group || curr_tab->table->group ||
tmp_table_param.precomputed_group_by) &&
!implicit_grouping_without_tables)
{
if (change_to_use_tmp_fields(thd, items1,
tmp_fields_list1, tmp_all_fields1,
fields_list.elements, all_fields))
DBUG_RETURN(true);
}
else
{
if (change_refs_to_tmp_fields(thd, items1,
tmp_fields_list1, tmp_all_fields1,
fields_list.elements, all_fields))
DBUG_RETURN(true);
}
curr_all_fields= &tmp_all_fields1;
curr_fields_list= &tmp_fields_list1;
// Need to set them now for correct group_fields setup, reset at the end.
set_items_ref_array(items1);
curr_tab->ref_array= &items1;
curr_tab->all_fields= &tmp_all_fields1;
curr_tab->fields= &tmp_fields_list1;
set_postjoin_aggr_write_func(curr_tab);
/*
If having is not handled here, it will be checked before the row is sent
to the client.
*/
if (tmp_having &&
(sort_and_group || (exec_tmp_table->distinct && !group_list) ||
select_lex->have_window_funcs()))
{
/*
If there is no select distinct and there are no window functions
then move the having to table conds of tmp table.
NOTE : We cannot apply having after distinct or window functions
If columns of having are not part of select distinct,
then distinct may remove rows which can satisfy having.
In the case of window functions we *must* make sure to not
store any rows which don't match HAVING within the temp table,
as rows will end up being used during their computation.
*/
if (!select_distinct && !select_lex->have_window_funcs() &&
add_having_as_table_cond(curr_tab))
DBUG_RETURN(true);
is_having_added_as_table_cond= tmp_having != having;
/*
Having condition which we are not able to add as tmp table conds are
kept as before. And, this will be applied before storing the rows in
tmp table.
*/
curr_tab->having= having;
having= NULL; // Already done
}
tmp_table_param.func_count= 0;
tmp_table_param.field_count+= tmp_table_param.func_count;
if (sort_and_group || curr_tab->table->group)
{
tmp_table_param.field_count+= tmp_table_param.sum_func_count;
tmp_table_param.sum_func_count= 0;
}
if (exec_tmp_table->group)
{ // Already grouped
if (!order && !no_order && !skip_sort_order)
order= group_list; /* order by group */
group_list= NULL;
}
/*
If we have different sort & group then we must sort the data by group
and copy it to another tmp table.
This code is also used if we are using distinct something
we haven't been able to store in the temporary table yet
like SEC_TO_TIME(SUM(...)).
3. Also, this is used when
- the query has Window functions,
- the GROUP BY operation is done with OrderedGroupBy algorithm.
In this case, the first temptable will contain pre-GROUP-BY data. Force
the creation of the second temporary table. Post-GROUP-BY dataset will be
written there, and then Window Function processing code will be able to
process it.
*/
if ((group_list &&
(!test_if_subpart(group_list, order) || select_distinct)) ||
(select_distinct && tmp_table_param.using_outer_summary_function) ||
(group_list && !tmp_table_param.quick_group && // (3)
select_lex->have_window_funcs())) // (3)
{ /* Must copy to another table */
DBUG_PRINT("info",("Creating group table"));
calc_group_buffer(this, group_list);
count_field_types(select_lex, &tmp_table_param, tmp_all_fields1,
select_distinct && !group_list);
tmp_table_param.hidden_field_count=
tmp_all_fields1.elements - tmp_fields_list1.elements;
curr_tab++;
aggr_tables++;
DBUG_ASSERT(curr_tab - join_tab < dbug_join_tab_array_size);
bzero((void*)curr_tab, sizeof(JOIN_TAB));
curr_tab->ref.key= -1;
/* group data to new table */
/*
If the access method is loose index scan then all MIN/MAX
functions are precomputed, and should be treated as regular
functions. See extended comment above.
*/
if (join_tab->is_using_loose_index_scan())
tmp_table_param.precomputed_group_by= TRUE;
tmp_table_param.hidden_field_count=
curr_all_fields->elements - curr_fields_list->elements;
ORDER *dummy= NULL; //TODO can use table->group here also
if (create_postjoin_aggr_table(curr_tab, curr_all_fields, dummy, true,
distinct, keep_row_order))
DBUG_RETURN(true);
if (group_list)
{
if (!only_const_tables()) // No need to sort a single row
{
if (add_sorting_to_table(curr_tab - 1, group_list))
DBUG_RETURN(true);
}
if (make_group_fields(this, this))
DBUG_RETURN(true);
}
// Setup sum funcs only when necessary, otherwise we might break info
// for the first table
if (group_list || tmp_table_param.sum_func_count)
{
if (make_sum_func_list(*curr_all_fields, *curr_fields_list, true))
DBUG_RETURN(true);
if (prepare_sum_aggregators(thd, sum_funcs,
!join_tab->is_using_agg_loose_index_scan()))
DBUG_RETURN(true);
group_list= NULL;
if (setup_sum_funcs(thd, sum_funcs))
DBUG_RETURN(true);
}
// No sum funcs anymore
DBUG_ASSERT(items2.is_null());
items2= ref_ptr_array_slice(3);
if (change_to_use_tmp_fields(thd, items2,
tmp_fields_list2, tmp_all_fields2,
fields_list.elements, tmp_all_fields1))
DBUG_RETURN(true);
curr_fields_list= &tmp_fields_list2;
curr_all_fields= &tmp_all_fields2;
set_items_ref_array(items2);
curr_tab->ref_array= &items2;
curr_tab->all_fields= &tmp_all_fields2;
curr_tab->fields= &tmp_fields_list2;
set_postjoin_aggr_write_func(curr_tab);
tmp_table_param.field_count+= tmp_table_param.sum_func_count;
tmp_table_param.sum_func_count= 0;
}
if (curr_tab->table->distinct)
select_distinct= false; /* Each row is unique */
if (select_distinct && !group_list)
{
if (having)
{
curr_tab->having= having;
having->update_used_tables();
}
/*
We only need DISTINCT operation if the join is not degenerate.
If it is, we must not request DISTINCT processing, because
remove_duplicates() assumes there is a preceding computation step (and
in the degenerate join, there's none)
*/
if (top_join_tab_count && tables_list)
curr_tab->distinct= true;
having= NULL;
select_distinct= false;
}
/* Clean tmp_table_param for the next tmp table. */
tmp_table_param.field_count= tmp_table_param.sum_func_count=
tmp_table_param.func_count= 0;
tmp_table_param.copy_field= tmp_table_param.copy_field_end=0;
first_record= sort_and_group=0;
if (!group_optimized_away || implicit_grouping_with_window_funcs)
{
group= false;
}
else
{
/*
If grouping has been optimized away, a temporary table is
normally not needed unless we're explicitly requested to create
one (e.g. due to a SQL_BUFFER_RESULT hint or INSERT ... SELECT).
In this case (grouping was optimized away), temp_table was
created without a grouping expression and JOIN::exec() will not
perform the necessary grouping (by the use of end_send_group()
or end_write_group()) if JOIN::group is set to false.
*/
// the temporary table was explicitly requested
DBUG_ASSERT(select_options & OPTION_BUFFER_RESULT);
// the temporary table does not have a grouping expression
DBUG_ASSERT(!curr_tab->table->group);
}
calc_group_buffer(this, group_list);
count_field_types(select_lex, &tmp_table_param, *curr_all_fields, false);
}
if (group ||
(implicit_grouping && !implicit_grouping_with_window_funcs) ||
tmp_table_param.sum_func_count)
{
if (make_group_fields(this, this))
DBUG_RETURN(true);
DBUG_ASSERT(items3.is_null());
if (items0.is_null())
init_items_ref_array();
items3= ref_ptr_array_slice(4);
setup_copy_fields(thd, &tmp_table_param,
items3, tmp_fields_list3, tmp_all_fields3,
curr_fields_list->elements, *curr_all_fields);
curr_fields_list= &tmp_fields_list3;
curr_all_fields= &tmp_all_fields3;
set_items_ref_array(items3);
if (join_tab)
{
JOIN_TAB *last_tab= join_tab + top_join_tab_count + aggr_tables - 1;
// Set grouped fields on the last table
last_tab->ref_array= &items3;
last_tab->all_fields= &tmp_all_fields3;
last_tab->fields= &tmp_fields_list3;
}
if (make_sum_func_list(*curr_all_fields, *curr_fields_list, true))
DBUG_RETURN(true);
if (prepare_sum_aggregators(thd, sum_funcs,
!join_tab ||
!join_tab-> is_using_agg_loose_index_scan()))
DBUG_RETURN(true);
if (unlikely(setup_sum_funcs(thd, sum_funcs) || thd->is_error()))
DBUG_RETURN(true);
}
if (group_list || order)
{
DBUG_PRINT("info",("Sorting for send_result_set_metadata"));
THD_STAGE_INFO(thd, stage_sorting_result);
/* If we have already done the group, add HAVING to sorted table */
if (tmp_having && !is_having_added_as_table_cond &&
!group_list && !sort_and_group)
{
if (add_having_as_table_cond(curr_tab))
DBUG_RETURN(true);
}
if (group)
select_limit= HA_POS_ERROR;
else if (!need_tmp)
{
/*
We can abort sorting after thd->select_limit rows if there are no
filter conditions for any tables after the sorted one.
Filter conditions come in several forms:
1. as a condition item attached to the join_tab, or
2. as a keyuse attached to the join_tab (ref access).
*/
for (uint i= const_tables + 1; i < top_join_tab_count; i++)
{
JOIN_TAB *const tab= join_tab + i;
if (tab->select_cond || // 1
(tab->keyuse && !tab->first_inner)) // 2
{
/* We have to sort all rows */
select_limit= HA_POS_ERROR;
break;
}
}
}
/*
Here we add sorting stage for ORDER BY/GROUP BY clause, if the
optimiser chose FILESORT to be faster than INDEX SCAN or there is
no suitable index present.
OPTION_FOUND_ROWS supersedes LIMIT and is taken into account.
*/
DBUG_PRINT("info",("Sorting for order by/group by"));
ORDER *order_arg= group_list ? group_list : order;
if (top_join_tab_count + aggr_tables > const_tables &&
ordered_index_usage !=
(group_list ? ordered_index_group_by : ordered_index_order_by) &&
curr_tab->type != JT_CONST &&
curr_tab->type != JT_EQ_REF) // Don't sort 1 row
{
// Sort either first non-const table or the last tmp table
JOIN_TAB *sort_tab= curr_tab;
if (add_sorting_to_table(sort_tab, order_arg))
DBUG_RETURN(true);
/*
filesort_limit: Return only this many rows from filesort().
We can use select_limit_cnt only if we have no group_by and 1 table.
This allows us to use Bounded_queue for queries like:
"select SQL_CALC_FOUND_ROWS * from t1 order by b desc limit 1;"
m_select_limit == HA_POS_ERROR (we need a full table scan)
unit->select_limit_cnt == 1 (we only need one row in the result set)
*/
sort_tab->filesort->limit=
(has_group_by || (join_tab + top_join_tab_count > curr_tab + 1)) ?
select_limit : unit->lim.get_select_limit();
if (unit->lim.is_with_ties())
sort_tab->filesort->limit= HA_POS_ERROR;
}
if (!only_const_tables() &&
!join_tab[const_tables].filesort &&
!(select_options & SELECT_DESCRIBE))
{
/*
If no IO cache exists for the first table then we are using an
INDEX SCAN and no filesort. Thus we should not remove the sorted
attribute on the INDEX SCAN.
*/
skip_sort_order= true;
}
}
/*
Window functions computation step should be attached to the last join_tab
that's doing aggregation.
The last join_tab reads the data from the temp. table. It also may do
- sorting
- duplicate value removal
Both of these operations are done after window function computation step.
*/
if (select_lex->window_funcs.elements)
{
curr_tab= join_tab + total_join_tab_cnt();
if (!(curr_tab->window_funcs_step= new Window_funcs_computation))
DBUG_RETURN(true);
if (curr_tab->window_funcs_step->setup(thd, &select_lex->window_funcs,
curr_tab))
DBUG_RETURN(true);
/* Count that we're using window functions. */
status_var_increment(thd->status_var.feature_window_functions);
}
if (select_lex->custom_agg_func_used())
status_var_increment(thd->status_var.feature_custom_aggregate_functions);
/*
Allocate Cached_items of ORDER BY for FETCH FIRST .. WITH TIES.
The order list might have been modified prior to this, but we are
only interested in the initial order by columns, after all const
elements are removed.
*/
if (unit->lim.is_with_ties())
{
/*
When ORDER BY is eliminated, we make use of the GROUP BY list.
We've already counted how many elements from ORDER BY
must be evaluated as part of WITH TIES so we use that.
*/
ORDER *order_src = order ? order : group_list;
if (alloc_order_fields(this, order_src,
with_ties_order_count))
DBUG_RETURN(true);
}
fields= curr_fields_list;
// Reset before execution
set_items_ref_array(items0);
if (join_tab)
join_tab[exec_join_tab_cnt() + aggr_tables - 1].next_select=
setup_end_select_func(this);
group= has_group_by;
DBUG_RETURN(false);
}
bool
JOIN::create_postjoin_aggr_table(JOIN_TAB *tab, List<Item> *table_fields,
ORDER *table_group,
bool save_sum_fields,
bool distinct,
bool keep_row_order)
{
DBUG_ENTER("JOIN::create_postjoin_aggr_table");
THD_STAGE_INFO(thd, stage_creating_tmp_table);
/*
Pushing LIMIT to the post-join temporary table creation is not applicable
when there is ORDER BY or GROUP BY or there is no GROUP BY, but
there are aggregate functions, because in all these cases we need
all result rows.
We also can not push limit if the limit is WITH TIES, as we do not know
how many rows we will actually have. This can happen if ORDER BY was
a constant and removed (during remove_const), thus we have an "unlimited"
WITH TIES.
*/
ha_rows table_rows_limit= ((order == NULL || skip_sort_order) &&
!table_group &&
!select_lex->with_sum_func &&
!unit->lim.is_with_ties()) ? select_limit
: HA_POS_ERROR;
if (!(tab->tmp_table_param= new TMP_TABLE_PARAM(tmp_table_param)))
DBUG_RETURN(true);
if (tmp_table_keep_current_rowid)
add_fields_for_current_rowid(tab, table_fields);
tab->tmp_table_param->skip_create_table= true;
TABLE* table= create_tmp_table(thd, tab->tmp_table_param, *table_fields,
table_group, distinct,
save_sum_fields, select_options,
table_rows_limit,
&empty_clex_str, true, keep_row_order);
if (!table)
DBUG_RETURN(true);
tmp_table_param.using_outer_summary_function=
tab->tmp_table_param->using_outer_summary_function;
tab->join= this;
DBUG_ASSERT(tab > tab->join->join_tab || !top_join_tab_count ||
!tables_list);
tab->table= table;
if (tab > join_tab)
(tab - 1)->next_select= sub_select_postjoin_aggr;
/* if group or order on first table, sort first */
if ((group_list && simple_group) ||
(implicit_grouping && select_lex->have_window_funcs()))
{
DBUG_PRINT("info",("Sorting for group"));
THD_STAGE_INFO(thd, stage_sorting_for_group);
if (ordered_index_usage != ordered_index_group_by &&
!only_const_tables() &&
(join_tab + const_tables)->type != JT_CONST && // Don't sort 1 row
!implicit_grouping &&
add_sorting_to_table(join_tab + const_tables, group_list))
goto err;
if (alloc_group_fields(this, group_list))
goto err;
if (make_sum_func_list(all_fields, fields_list, true))
goto err;
if (prepare_sum_aggregators(thd, sum_funcs,
!(tables_list &&
join_tab->is_using_agg_loose_index_scan())))
goto err;
if (setup_sum_funcs(thd, sum_funcs))
goto err;
group_list= NULL;
}
else
{
if (prepare_sum_aggregators(thd, sum_funcs,
!join_tab->is_using_agg_loose_index_scan()))
goto err;
if (setup_sum_funcs(thd, sum_funcs))
goto err;
if (!group_list && !table->distinct && order && simple_order &&
tab == join_tab + const_tables)
{
DBUG_PRINT("info",("Sorting for order"));
THD_STAGE_INFO(thd, stage_sorting_for_order);
if (ordered_index_usage != ordered_index_order_by &&
!only_const_tables() &&
add_sorting_to_table(join_tab + const_tables, order))
goto err;
order= NULL;
}
}
if (!(tab->aggr= new (thd->mem_root) AGGR_OP(tab)))
goto err;
table->reginfo.join_tab= tab;
DBUG_RETURN(false);
err:
if (table != NULL)
free_tmp_table(thd, table);
tab->table= NULL;
DBUG_RETURN(true);
}
void
JOIN::optimize_distinct()
{
for (JOIN_TAB *last_join_tab= join_tab + top_join_tab_count - 1; ;)
{
if (select_lex->select_list_tables & last_join_tab->table->map ||
last_join_tab->use_join_cache)
break;
last_join_tab->shortcut_for_distinct= true;
if (last_join_tab == join_tab)
break;
--last_join_tab;
}
/* Optimize "select distinct b from t1 order by key_part_1 limit #" */
if (order && skip_sort_order && !unit->lim.is_with_ties()
&& (*order->item)->type() == Item::FIELD_ITEM)
{
/* Should already have been optimized away */
DBUG_ASSERT(ordered_index_usage == ordered_index_order_by);
if (ordered_index_usage == ordered_index_order_by)
{
order= NULL;
}
}
}
/**
@brief Add Filesort object to the given table to sort if with filesort
@param tab the JOIN_TAB object to attach created Filesort object to
@param order List of expressions to sort the table by
@note This function moves tab->select, if any, to filesort->select
@return false on success, true on OOM
*/
bool
JOIN::add_sorting_to_table(JOIN_TAB *tab, ORDER *order)
{
tab->filesort=
new (thd->mem_root) Filesort(order, HA_ROWS_MAX, tab->keep_current_rowid,
tab->select);
if (!tab->filesort)
return true;
TABLE *table= tab->table;
if ((tab == join_tab + const_tables) &&
table->pos_in_table_list->is_sjm_scan_table())
{
tab->filesort->set_all_read_bits= TRUE;
tab->filesort->unpack= unpack_to_base_table_fields;
}
/*
Select was moved to filesort->select to force join_init_read_record to use
sorted result instead of reading table through select.
*/
if (tab->select)
{
tab->select= NULL;
tab->set_select_cond(NULL, __LINE__);
}
tab->read_first_record= join_init_read_record;
return false;
}
/**
Setup expression caches for subqueries that need them
@details
The function wraps correlated subquery expressions that return one value
into objects of the class Item_cache_wrapper setting up an expression
cache for each of them. The result values of the subqueries are to be
cached together with the corresponding sets of the parameters - outer
references of the subqueries.
@retval FALSE OK
@retval TRUE Error
*/
bool JOIN::setup_subquery_caches()
{
DBUG_ENTER("JOIN::setup_subquery_caches");
/*
We have to check all this condition together because items created in
one of this clauses can be moved to another one by optimizer
*/
if (select_lex->expr_cache_may_be_used[IN_WHERE] ||
select_lex->expr_cache_may_be_used[IN_HAVING] ||
select_lex->expr_cache_may_be_used[IN_ON] ||
select_lex->expr_cache_may_be_used[NO_MATTER])
{
JOIN_TAB *tab;
if (conds &&
!(conds= conds->transform(thd, &Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab; tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
if (tab->select_cond &&
!(tab->select_cond=
tab->select_cond->transform(thd,
&Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
if (tab->cache_select && tab->cache_select->cond)
if (!(tab->cache_select->cond=
tab->cache_select->
cond->transform(thd, &Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
}
if (having &&
!(having= having->transform(thd,
&Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
if (tmp_having)
{
DBUG_ASSERT(having == NULL);
if (!(tmp_having=
tmp_having->transform(thd,
&Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
}
}
if (select_lex->expr_cache_may_be_used[SELECT_LIST] ||
select_lex->expr_cache_may_be_used[IN_GROUP_BY] ||
select_lex->expr_cache_may_be_used[NO_MATTER])
{
List_iterator<Item> li(all_fields);
Item *item;
while ((item= li++))
{
Item *new_item;
if (!(new_item=
item->transform(thd, &Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
if (new_item != item)
{
thd->change_item_tree(li.ref(), new_item);
}
}
for (ORDER *tmp_group= group_list; tmp_group ; tmp_group= tmp_group->next)
{
if (!(*tmp_group->item=
(*tmp_group->item)->transform(thd,
&Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
}
}
if (select_lex->expr_cache_may_be_used[NO_MATTER])
{
for (ORDER *ord= order; ord; ord= ord->next)
{
if (!(*ord->item=
(*ord->item)->transform(thd,
&Item::expr_cache_insert_transformer,
NULL)))
DBUG_RETURN(TRUE);
}
}
DBUG_RETURN(FALSE);
}
/*
Shrink join buffers used for preceding tables to reduce the occupied space
SYNOPSIS
shrink_join_buffers()
jt table up to which the buffers are to be shrunk
curr_space the size of the space used by the buffers for tables 1..jt
needed_space the size of the space that has to be used by these buffers
DESCRIPTION
The function makes an attempt to shrink all join buffers used for the
tables starting from the first up to jt to reduce the total size of the
space occupied by the buffers used for tables 1,...,jt from curr_space
to needed_space.
The function assumes that the buffer for the table jt has not been
allocated yet.
RETURN
FALSE if all buffer have been successfully shrunk
TRUE otherwise
*/
bool JOIN::shrink_join_buffers(JOIN_TAB *jt,
ulonglong curr_space,
ulonglong needed_space)
{
JOIN_TAB *tab;
JOIN_CACHE *cache;
for (tab= first_linear_tab(this, WITHOUT_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab != jt;
tab= next_linear_tab(this, tab, WITHOUT_BUSH_ROOTS))
{
cache= tab->cache;
if (cache)
{
size_t buff_size;
if (needed_space < cache->get_min_join_buffer_size())
return TRUE;
if (cache->shrink_join_buffer_in_ratio(curr_space, needed_space))
{
revise_cache_usage(tab);
return TRUE;
}
buff_size= cache->get_join_buffer_size();
curr_space-= buff_size;
if (needed_space < buff_size)
{
/*
Safety: fail if we've exhausted available buffer space with
reduced join buffers.
*/
DBUG_ASSERT(0);
return TRUE;
}
needed_space-= buff_size;
}
}
cache= jt->cache;
DBUG_ASSERT(cache);
if (needed_space < cache->get_min_join_buffer_size())
return TRUE;
cache->set_join_buffer_size((size_t)needed_space);
return FALSE;
}
int
JOIN::reinit()
{
DBUG_ENTER("JOIN::reinit");
first_record= false;
group_sent= false;
cleaned= false;
accepted_rows= 0;
if (aggr_tables)
{
JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
JOIN_TAB *end_tab= curr_tab + aggr_tables;
for ( ; curr_tab < end_tab; curr_tab++)
{
TABLE *tmp_table= curr_tab->table;
if (!tmp_table->is_created())
continue;
tmp_table->file->extra(HA_EXTRA_RESET_STATE);
tmp_table->file->ha_delete_all_rows();
}
}
clear_sj_tmp_tables(this);
if (current_ref_ptrs != items0)
{
set_items_ref_array(items0);
}
/* need to reset ref access state (see join_read_key) */
if (join_tab)
{
JOIN_TAB *tab;
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITH_CONST_TABLES); tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
tab->ref.key_err= TRUE;
}
}
clear_sum_funcs();
if (no_rows_in_result_called)
{
/* Reset effect of possible no_rows_in_result() */
List_iterator_fast<Item> it(fields_list);
Item *item;
no_rows_in_result_called= 0;
while ((item= it++))
item->restore_to_before_no_rows_in_result();
}
if (!(select_options & SELECT_DESCRIBE))
if (init_ftfuncs(thd, select_lex, MY_TEST(order)))
DBUG_RETURN(1);
DBUG_RETURN(0);
}
/**
Prepare join result.
@details Prepare join result prior to join execution or describing.
Instantiate derived tables and get schema tables result if necessary.
@return
TRUE An error during derived or schema tables instantiation.
FALSE Ok
*/
bool JOIN::prepare_result(List<Item> **columns_list)
{
DBUG_ENTER("JOIN::prepare_result");
error= 0;
/* Create result tables for materialized views. */
if (!zero_result_cause &&
select_lex->handle_derived(thd->lex, DT_CREATE))
goto err;
if (result->prepare2(this))
goto err;
if ((select_lex->options & OPTION_SCHEMA_TABLE) &&
get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
goto err;
DBUG_RETURN(FALSE);
err:
error= 1;
DBUG_RETURN(TRUE);
}
/**
@retval
0 ok
1 error
*/
bool JOIN::save_explain_data(Explain_query *output, bool can_overwrite,
bool need_tmp_table, bool need_order,
bool distinct)
{
DBUG_ENTER("JOIN::save_explain_data");
DBUG_PRINT("enter", ("Save explain Select_lex: %u (%p) parent lex: %p stmt_lex: %p present select: %u (%p)",
select_lex->select_number, select_lex,
select_lex->parent_lex, thd->lex->stmt_lex,
(output->get_select(select_lex->select_number) ?
select_lex->select_number : 0),
(output->get_select(select_lex->select_number) ?
output->get_select(select_lex->select_number)
->select_lex : NULL)));
/*
If there is SELECT in this statement with the same number it must be the
same SELECT
*/
DBUG_ASSERT(select_lex->select_number == FAKE_SELECT_LEX_ID || !output ||
!output->get_select(select_lex->select_number) ||
output->get_select(select_lex->select_number)->select_lex ==
select_lex);
if (select_lex->select_number != FAKE_SELECT_LEX_ID &&
have_query_plan != JOIN::QEP_NOT_PRESENT_YET &&
have_query_plan != JOIN::QEP_DELETED && // this happens when there was
// no QEP ever, but then
//cleanup() is called multiple times
output && // for "SET" command in SPs.
(can_overwrite? true: !output->get_select(select_lex->select_number)))
{
const char *message= NULL;
if (!table_count || !tables_list || zero_result_cause)
{
/* It's a degenerate join */
message= zero_result_cause ? zero_result_cause : "No tables used";
}
bool rc= save_explain_data_intern(thd->lex->explain, need_tmp_table,
need_order, distinct, message);
DBUG_RETURN(rc);
}
/*
Can have join_tab==NULL for degenerate cases (e.g. SELECT .. UNION ... SELECT LIMIT 0)
*/
if (select_lex == select_lex->master_unit()->fake_select_lex && join_tab)
{
/*
This is fake_select_lex. It has no query plan, but we need to set up a
tracker for ANALYZE
*/
uint nr= select_lex->master_unit()->first_select()->select_number;
Explain_union *eu= output->get_union(nr);
explain= &eu->fake_select_lex_explain;
join_tab[0].tracker= eu->get_fake_select_lex_tracker();
for (uint i=0 ; i < exec_join_tab_cnt() + aggr_tables; i++)
{
if (join_tab[i].filesort)
{
if (!(join_tab[i].filesort->tracker=
new Filesort_tracker(thd->lex->analyze_stmt)))
DBUG_RETURN(1);
}
}
}
DBUG_RETURN(0);
}
int JOIN::exec()
{
int res;
DBUG_EXECUTE_IF("show_explain_probe_join_exec_start",
if (dbug_user_var_equals_int(thd,
"show_explain_probe_select_id",
select_lex->select_number))
dbug_serve_apcs(thd, 1);
);
ANALYZE_START_TRACKING(thd, &explain->time_tracker);
res= exec_inner();
ANALYZE_STOP_TRACKING(thd, &explain->time_tracker);
DBUG_EXECUTE_IF("show_explain_probe_join_exec_end",
if (dbug_user_var_equals_int(thd,
"show_explain_probe_select_id",
select_lex->select_number))
dbug_serve_apcs(thd, 1);
);
return res;
}
int JOIN::exec_inner()
{
List<Item> *columns_list= &fields_list;
DBUG_ENTER("JOIN::exec_inner");
DBUG_ASSERT(optimization_state == JOIN::OPTIMIZATION_DONE);
THD_STAGE_INFO(thd, stage_executing);
/*
Enable LIMIT ROWS EXAMINED during query execution if:
(1) This JOIN is the outermost query (not a subquery or derived table)
This ensures that the limit is enabled when actual execution begins,
and not if a subquery is evaluated during optimization of the outer
query.
(2) This JOIN is not the result of a UNION. In this case do not apply the
limit in order to produce the partial query result stored in the
UNION temp table.
*/
if (!select_lex->outer_select() && // (1)
select_lex != select_lex->master_unit()->fake_select_lex) // (2)
thd->lex->set_limit_rows_examined();
if (procedure)
{
procedure_fields_list= fields_list;
if (procedure->change_columns(thd, procedure_fields_list) ||
result->prepare(procedure_fields_list, unit))
{
thd->limit_found_rows= 0;
DBUG_RETURN(0);
}
columns_list= &procedure_fields_list;
}
if (result->prepare2(this))
DBUG_RETURN(error);
if (!tables_list && (table_count || !select_lex->with_sum_func) &&
!select_lex->have_window_funcs())
{ // Only test of functions
if (select_options & SELECT_DESCRIBE)
select_describe(this, FALSE, FALSE, FALSE,
(zero_result_cause?zero_result_cause:"No tables used"));
else
{
if (result->send_result_set_metadata(*columns_list,
Protocol::SEND_NUM_ROWS |
Protocol::SEND_EOF))
{
DBUG_RETURN(error);
}
/*
We have to test for 'conds' here as the WHERE may not be constant
even if we don't have any tables for prepared statements or if
conds uses something like 'rand()'.
If the HAVING clause is either impossible or always true, then
JOIN::having is set to NULL by optimize_cond.
In this case JOIN::exec must check for JOIN::having_value, in the
same way it checks for JOIN::cond_value.
*/
DBUG_ASSERT(error == 0);
if (cond_value != Item::COND_FALSE &&
having_value != Item::COND_FALSE &&
(!conds || conds->val_bool()) &&
(!having || having->val_bool()))
{
if (do_send_rows &&
(procedure ? (procedure->send_row(procedure_fields_list) ||
procedure->end_of_records()):
result->send_data_with_check(fields_list, unit, 0)> 0))
error= 1;
else
send_records= ((select_options & OPTION_FOUND_ROWS) ? 1 :
thd->get_sent_row_count());
}
else
send_records= 0;
if (likely(!error))
{
join_free(); // Unlock all cursors
error= (int) result->send_eof();
}
}
/* Single select (without union) always returns 0 or 1 row */
thd->limit_found_rows= send_records;
DBUG_RETURN(error);
}
/*
Evaluate expensive constant conditions that were not evaluated during
optimization. Do not evaluate them for EXPLAIN statements as these
condtions may be arbitrarily costly, and because the optimize phase
might not have produced a complete executable plan for EXPLAINs.
*/
if (!zero_result_cause &&
exec_const_cond && !(select_options & SELECT_DESCRIBE) &&
!exec_const_cond->val_bool())
zero_result_cause= "Impossible WHERE noticed after reading const tables";
/*
We've called exec_const_cond->val_bool(). This may have caused an error.
*/
if (unlikely(thd->is_error()))
{
error= thd->is_error();
DBUG_RETURN(error);
}
if (zero_result_cause)
{
if (select_lex->have_window_funcs() && send_row_on_empty_set())
{
/*
The query produces just one row but it has window functions.
The only way to compute the value of window function(s) is to
run the entire window function computation step (there is no shortcut).
*/
const_tables= table_count;
first_select= sub_select_postjoin_aggr;
}
else
{
(void) return_zero_rows(this, result, &select_lex->leaf_tables,
columns_list,
send_row_on_empty_set(),
select_options,
zero_result_cause,
having ? having : tmp_having, &all_fields);
DBUG_RETURN(0);
}
}
/*
Evaluate all constant expressions with subqueries in the
ORDER/GROUP clauses to make sure that all subqueries return a
single row. The evaluation itself will trigger an error if that is
not the case.
*/
if (exec_const_order_group_cond.elements &&
!(select_options & SELECT_DESCRIBE) &&
!select_lex->pushdown_select)
{
List_iterator_fast<Item> const_item_it(exec_const_order_group_cond);
Item *cur_const_item;
StringBuffer<MAX_FIELD_WIDTH> tmp;
while ((cur_const_item= const_item_it++))
{
tmp.set_buffer_if_not_allocated(&my_charset_bin);
cur_const_item->val_str(&tmp);
if (unlikely(thd->is_error()))
{
error= thd->is_error();
DBUG_RETURN(error);
}
}
}
if ((this->select_lex->options & OPTION_SCHEMA_TABLE) &&
get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
{
error= thd->is_error();
DBUG_RETURN(error);
}
if (select_options & SELECT_DESCRIBE)
{
select_describe(this, need_tmp,
order != 0 && !skip_sort_order,
select_distinct,
!table_count ? "No tables used" : NullS);
DBUG_RETURN(0);
}
else if (select_lex->pushdown_select)
{
/* Execute the query pushed into a foreign engine */
error= select_lex->pushdown_select->execute();
DBUG_RETURN(error);
}
else
{
/* it's a const select, materialize it. */
select_lex->mark_const_derived(zero_result_cause);
}
/* XXX: When can we have here thd->is_error() not zero? */
if (unlikely(thd->is_error()))
{
error= thd->is_error();
DBUG_RETURN(error);
}
THD_STAGE_INFO(thd, stage_sending_data);
DBUG_PRINT("info", ("%s", thd->proc_info));
result->send_result_set_metadata(
procedure ? procedure_fields_list : *fields,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
error= result->view_structure_only() ? false : do_select(this, procedure);
/* Accumulate the counts from all join iterations of all join parts. */
thd->ps_report_examined_row_count();
DBUG_PRINT("counts", ("thd->examined_row_count: %lu",
(ulong) thd->get_examined_row_count()));
DBUG_RETURN(error);
}
/**
Clean up join.
@return
Return error that hold JOIN.
*/
int
JOIN::destroy()
{
DBUG_ENTER("JOIN::destroy");
DBUG_PRINT("info", ("select %p (%u) <> JOIN %p",
select_lex, select_lex->select_number, this));
select_lex->join= 0;
cond_equal= 0;
having_equal= 0;
cleanup(1);
if (join_tab)
{
for (JOIN_TAB *tab= first_linear_tab(this, WITH_BUSH_ROOTS,
WITH_CONST_TABLES);
tab; tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
if (tab->aggr)
{
free_tmp_table(thd, tab->table);
delete tab->tmp_table_param;
tab->tmp_table_param= NULL;
tab->aggr= NULL;
}
tab->table= NULL;
}
}
/* Cleanup items referencing temporary table columns */
cleanup_item_list(tmp_all_fields1);
cleanup_item_list(tmp_all_fields3);
destroy_sj_tmp_tables(this);
delete_dynamic(&keyuse);
if (save_qep)
delete(save_qep);
if (ext_keyuses_for_splitting)
delete(ext_keyuses_for_splitting);
delete procedure;
DBUG_RETURN(error);
}
void JOIN::cleanup_item_list(List<Item> &items) const
{
DBUG_ENTER("JOIN::cleanup_item_list");
if (!items.is_empty())
{
List_iterator_fast<Item> it(items);
Item *item;
while ((item= it++))
item->cleanup();
}
DBUG_VOID_RETURN;
}
/**
@brief
Look for provision of the select_handler interface by a foreign engine.
Must not be called directly, use find_single_select_handler() or
find_partial_select_handler() instead.
@param
thd The thread handler
select_lex SELECT_LEX object, must be passed in the cases of:
- single select pushdown
- partial pushdown (part of a UNION/EXCEPT/INTERSECT)
Must be NULL in case of entire unit pushdown
select_lex_unit SELECT_LEX_UNIT object, must be passed in the cases of:
- entire unit pushdown
- partial pushdown (part of a UNION/EXCEPT/INTERSECT)
Must be NULL in case of single select pushdown
@details
The function checks that this is an upper level select and if so looks
through its tables searching for one whose handlerton owns a
create_select call-back function. If the call of this function returns
a select_handler interface object then the server will push the select
query into this engine.
This function does not check if the select has tables from
different engines. Such a check must be done inside each engine's
create_select function.
Also the engine's create_select function must perform other checks
to make sure the engine can execute the query.
@retval the found select_handler if the search is successful
0 otherwise
*/
static
select_handler *find_select_handler_inner(THD *thd,
SELECT_LEX *select_lex,
SELECT_LEX_UNIT *select_lex_unit)
{
if (select_lex->master_unit()->outer_select() ||
(select_lex_unit && select_lex->master_unit()->with_clause))
{
/*
Pushdown is not supported neither for non-top-level SELECTs nor for parts
of SELECT_LEX_UNITs that have CTEs (SELECT_LEX_UNIT::with_clause)
*/
return 0;
}
TABLE_LIST *tbl= nullptr;
// For SQLCOM_INSERT_SELECT the server takes TABLE_LIST
// from thd->lex->query_tables and skips its first table
// b/c it is the target table for the INSERT..SELECT.
if (thd->lex->sql_command != SQLCOM_INSERT_SELECT)
{
tbl= select_lex->join->tables_list;
}
else if (thd->lex->query_tables &&
thd->lex->query_tables->next_global)
{
tbl= thd->lex->query_tables->next_global;
}
else
return 0;
for (;tbl; tbl= tbl->next_global)
{
if (!tbl->table)
continue;
handlerton *ht= tbl->table->file->partition_ht();
if (!ht->create_select)
continue;
select_handler *sh= ht->create_select(thd, select_lex, select_lex_unit);
if (sh)
return sh;
}
return 0;
}
/**
Wrapper for find_select_handler_inner() for the case of single select
pushdown. See more comments at the description of
find_select_handler_inner()
*/
select_handler *find_single_select_handler(THD *thd, SELECT_LEX *select_lex)
{
return find_select_handler_inner(thd, select_lex, nullptr);
}
/**
Wrapper for find_select_handler_inner() for the case of partial select
pushdown. Partial pushdown means that a unit (i.e. multiple selects combined
with UNION/EXCEPT/INTERSECT operators) cannot be pushed down to
the storage engine as a whole but some particular selects of this unit can.
For example,
SELECT a FROM federated.t1 -- can be pushed down to Federated
UNION
SELECT b FROM local.t2 -- cannot be pushed down, executed locally
See more comments at the description of find_select_handler_inner()
*/
select_handler *
find_partial_select_handler(THD *thd, SELECT_LEX *select_lex,
SELECT_LEX_UNIT *select_lex_unit)
{
return find_select_handler_inner(thd, select_lex, select_lex_unit);
}
/**
An entry point to single-unit select (a select without UNION).
@param thd thread handler
@param rref_pointer_array a reference to ref_pointer_array of
the top-level select_lex for this query
@param tables list of all tables used in this query.
The tables have been pre-opened.
@param fields list of items in SELECT list of the top-level
select
e.g. SELECT a, b, c FROM t1 will have Item_field
for a, b and c in this list.
@param conds top level item of an expression representing
WHERE clause of the top level select
@param og_num total number of ORDER BY and GROUP BY clauses
arguments
@param order linked list of ORDER BY agruments
@param group linked list of GROUP BY arguments
@param having top level item of HAVING expression
@param proc_param list of PROCEDUREs
@param select_options select options (BIG_RESULT, etc)
@param result an instance of result set handling class.
This object is responsible for send result
set rows to the client or inserting them
into a table.
@param select_lex the only SELECT_LEX of this query
@param unit top-level UNIT of this query
UNIT is an artificial object created by the
parser for every SELECT clause.
e.g.
SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2)
has 2 unions.
@retval
FALSE success
@retval
TRUE an error
*/
bool
mysql_select(THD *thd, TABLE_LIST *tables, List<Item> &fields, COND *conds,
uint og_num, ORDER *order, ORDER *group, Item *having,
ORDER *proc_param, ulonglong select_options, select_result *result,
SELECT_LEX_UNIT *unit, SELECT_LEX *select_lex)
{
int err= 0;
bool free_join= 1, exec_error= 0;
DBUG_ENTER("mysql_select");
if (!fields.is_empty())
select_lex->context.resolve_in_select_list= true;
JOIN *join;
if (select_lex->join != 0)
{
join= select_lex->join;
/*
is it single SELECT in derived table, called in derived table
creation
*/
if (select_lex->get_linkage() != DERIVED_TABLE_TYPE ||
(select_options & SELECT_DESCRIBE))
{
if (select_lex->get_linkage() != GLOBAL_OPTIONS_TYPE)
{
/*
Original join tabs might be overwritten at first
subselect execution. So we need to restore them.
*/
Item_subselect *subselect= select_lex->master_unit()->item;
if (subselect && subselect->is_uncacheable() && join->reinit())
DBUG_RETURN(TRUE);
}
else
{
if (!join->prepared &&
(err= join->prepare(tables, conds, og_num, order, false, group,
having, proc_param, select_lex, unit)))
{
goto err;
}
}
}
free_join= 0;
join->select_options= select_options;
}
else
{
if (thd->lex->describe)
select_options|= SELECT_DESCRIBE;
/*
When in EXPLAIN, delay deleting the joins so that they are still
available when we're producing EXPLAIN EXTENDED warning text.
*/
if (select_options & SELECT_DESCRIBE)
free_join= 0;
if (!(join= new (thd->mem_root) JOIN(thd, fields, select_options, result)))
DBUG_RETURN(TRUE);
THD_STAGE_INFO(thd, stage_init);
thd->lex->used_tables=0;
if (!join->prepared &&
(err= join->prepare(tables, conds, og_num, order, false, group, having,
proc_param, select_lex, unit)))
{
goto err;
}
}
thd->get_stmt_da()->reset_current_row_for_warning(1);
/* Look for a table owned by an engine with the select_handler interface */
select_lex->pushdown_select= find_single_select_handler(thd, select_lex);
if ((err= join->optimize()))
{
goto err; // 1
}
if (thd->lex->describe & DESCRIBE_EXTENDED)
{
join->conds_history= join->conds;
join->having_history= (join->having?join->having:join->tmp_having);
}
if (unlikely(thd->is_error()))
goto err;
exec_error= join->exec();
if (thd->lex->describe & DESCRIBE_EXTENDED)
{
select_lex->where= join->conds_history;
select_lex->having= join->having_history;
}
err:
thd->push_final_warnings();
if (select_lex->pushdown_select)
{
delete select_lex->pushdown_select;
select_lex->pushdown_select= NULL;
}
if (free_join)
{
THD_STAGE_INFO(thd, stage_end);
err|= (int)(select_lex->cleanup());
DBUG_RETURN(exec_error || err || thd->is_error());
}
DBUG_RETURN(exec_error || err);
}
/**
Approximate how many records are going to be returned by this table in this
select with this key.
@param thd Thread handle
@param select Select to be examined
@param table The table of interest
@param keys The keys of interest
@param limit Maximum number of rows of interest
@param quick_count Pointer to where we want the estimate written
@return Status
@retval false Success
@retval true Error
*/
static bool get_quick_record_count(THD *thd, SQL_SELECT *select,
TABLE *table,
const key_map *keys,ha_rows limit,
ha_rows *quick_count)
{
quick_select_return error;
DBUG_ENTER("get_quick_record_count");
uchar buff[STACK_BUFF_ALLOC];
if (unlikely(check_stack_overrun(thd, STACK_MIN_SIZE, buff)))
DBUG_RETURN(false); // Fatal error flag is set
if (select)
{
select->head=table;
table->reginfo.impossible_range=0;
/*
EQ_FUNC and EQUAL_FUNC already sent unusable key notes (if any)
during update_ref_and_keys(). Have only other functions raise notes
from can_optimize_scalar_range().
*/
error= select->test_quick_select(thd, *(key_map *)keys, (table_map) 0,
limit, 0, FALSE,
TRUE, /* remove_where_parts*/
FALSE,
Item_func::BITMAP_EXCEPT_ANY_EQUALITY);
if (error == SQL_SELECT::OK)
{
if (select->quick)
{
/*
opt_range_condition_rows was updated in test_quick_select to be
the smallest number of rows in any range.
select->quick->records is the number of rows in range with
smallest cost.
*/
DBUG_ASSERT(select->quick->records >=
table->opt_range_condition_rows);
*quick_count= select->quick->records;
}
DBUG_RETURN(false);
}
if (error == SQL_SELECT::IMPOSSIBLE_RANGE)
{
table->reginfo.impossible_range=1;
*quick_count= 0;
DBUG_RETURN(false);
}
if (unlikely(error == SQL_SELECT::ERROR))
DBUG_RETURN(true);
DBUG_PRINT("warning",("Couldn't use record count on const keypart"));
}
*quick_count= HA_POS_ERROR;
DBUG_RETURN(false); /* This shouldn't happen */
}
/*
This structure is used to collect info on potentially sargable
predicates in order to check whether they become sargable after
reading const tables.
We form a bitmap of indexes that can be used for sargable predicates.
Only such indexes are involved in range analysis.
*/
struct SARGABLE_PARAM
{
Field *field; /* field against which to check sargability */
Item **arg_value; /* values of potential keys for lookups */
uint num_values; /* number of values in the above array */
};
/*
Mark all tables inside a join nest as constant.
@detail This is called when there is a local "Impossible WHERE" inside
a multi-table LEFT JOIN.
*/
void mark_join_nest_as_const(JOIN *join,
TABLE_LIST *join_nest,
table_map *found_const_table_map,
uint *const_count)
{
List_iterator<TABLE_LIST> it(join_nest->nested_join->join_list);
TABLE_LIST *tbl;
Json_writer_object emb_obj(join->thd);
Json_writer_object trace_obj(join->thd, "mark_join_nest_as_const");
Json_writer_array trace_array(join->thd, "members");
while ((tbl= it++))
{
if (tbl->nested_join)
{
mark_join_nest_as_const(join, tbl, found_const_table_map, const_count);
continue;
}
JOIN_TAB *tab= tbl->table->reginfo.join_tab;
if (!(join->const_table_map & tab->table->map))
{
tab->type= JT_CONST;
tab->info= ET_IMPOSSIBLE_ON_CONDITION;
tab->table->const_table= 1;
join->const_table_map|= tab->table->map;
*found_const_table_map|= tab->table->map;
set_position(join,(*const_count)++,tab,(KEYUSE*) 0);
mark_as_null_row(tab->table); // All fields are NULL
trace_array.add_table_name(tab->table);
}
}
}
/*
@brief Get the condition that can be used to do range analysis/partition
pruning/etc
@detail
Figure out which condition we can use:
- For INNER JOIN, we use the WHERE,
- "t1 LEFT JOIN t2 ON ..." uses t2's ON expression
- "t1 LEFT JOIN (...) ON ..." uses the join nest's ON expression.
*/
static Item **get_sargable_cond(JOIN *join, TABLE *table)
{
Item **retval;
if (table->pos_in_table_list->on_expr)
{
/*
This is an inner table from a single-table LEFT JOIN, "t1 LEFT JOIN
t2 ON cond". Use the condition cond.
*/
retval= &table->pos_in_table_list->on_expr;
}
else if (table->pos_in_table_list->embedding &&
!table->pos_in_table_list->embedding->sj_on_expr)
{
/*
This is the inner side of a multi-table outer join. Use the
appropriate ON expression.
*/
retval= &(table->pos_in_table_list->embedding->on_expr);
}
else
{
/* The table is not inner wrt some LEFT JOIN. Use the WHERE clause */
retval= &join->conds;
}
return retval;
}
/**
Calculate the best possible join and initialize the join structure.
@retval
0 ok
@retval
1 Fatal error
*/
static bool
make_join_statistics(JOIN *join, List<TABLE_LIST> &tables_list,
DYNAMIC_ARRAY *keyuse_array)
{
int error= 0;
uint i,table_count,const_count,key;
uint sort_space;
table_map found_const_table_map, all_table_map;
key_map const_ref, eq_part;
bool has_expensive_keyparts;
TABLE **table_vector;
JOIN_TAB *stat,*stat_end,*s,**stat_ref, **stat_vector;
KEYUSE *keyuse,*start_keyuse;
table_map outer_join=0;
table_map no_rows_const_tables= 0;
SARGABLE_PARAM *sargables= 0;
List_iterator<TABLE_LIST> ti(tables_list);
TABLE_LIST *tables;
THD *thd= join->thd;
DBUG_ENTER("make_join_statistics");
table_count=join->table_count;
/*
best_extension_by_limited_search need sort space for 2POSITIION
objects per remaining table, which gives us
2*(T + T-1 + T-2 + T-3...1 POSITIONS) = 2*(T+1)/2*T = (T*T+T)
*/
join->sort_space= sort_space= (table_count*table_count + table_count);
/*
best_positions is ok to allocate with alloc() as we copy things to it with
memcpy()
*/
if (!multi_alloc_root(join->thd->mem_root,
&stat, sizeof(JOIN_TAB)*(table_count),
&stat_ref, sizeof(JOIN_TAB*)* MAX_TABLES,
&stat_vector, sizeof(JOIN_TAB*)* (table_count +1),
&table_vector, sizeof(TABLE*)*(table_count*2),
&join->positions, sizeof(POSITION)*(table_count + 1),
&join->sort_positions, sizeof(POSITION)*(sort_space),
&join->best_positions,
sizeof(POSITION)*(table_count + 1),
NullS))
DBUG_RETURN(1);
/* The following should be optimized to only clear critical things */
bzero((void*)stat, sizeof(JOIN_TAB)* table_count);
join->top_join_tab_count= table_count;
/* Initialize POSITION objects */
for (i=0 ; i <= table_count ; i++)
(void) new ((char*) (join->positions + i)) POSITION;
for (i=0 ; i < sort_space ; i++)
(void) new ((char*) (join->sort_positions + i)) POSITION;
join->best_ref= stat_vector;
stat_end=stat+table_count;
found_const_table_map= all_table_map=0;
const_count=0;
for (s= stat, i= 0; (tables= ti++); s++, i++)
{
TABLE_LIST *embedding= tables->embedding;
TABLE *table= tables->table;
stat_vector[i]=s;
table_vector[i]= s->table= table;
s->tab_list= tables;
table->pos_in_table_list= tables;
error= tables->fetch_number_of_rows();
/* Calculate table->use_stat_records */
set_statistics_for_table(join->thd, table);
bitmap_clear_all(&table->cond_set);
#ifdef WITH_PARTITION_STORAGE_ENGINE
const bool all_partitions_pruned_away= table->all_partitions_pruned_away;
#else
const bool all_partitions_pruned_away= FALSE;
#endif
DBUG_EXECUTE_IF("bug11747970_raise_error",
{ join->thd->set_killed(KILL_QUERY_HARD); });
if (unlikely(error))
{
table->file->print_error(error, MYF(0));
goto error;
}
table->opt_range_keys.clear_all();
table->intersect_keys.clear_all();
table->reginfo.join_tab=s;
table->reginfo.not_exists_optimize=0;
bzero(table->const_key_parts, sizeof(key_part_map)*table->s->total_keys);
all_table_map|= table->map;
s->preread_init_done= FALSE;
s->join=join;
s->dependent= tables->dep_tables;
if (tables->schema_table)
{
/*
Information schema is slow and we don't know how many rows we will
find. Be setting a moderate ammount of rows we are more likely
to have it materialized if needed.
*/
table->file->stats.records= table->used_stat_records= 100;
}
table->opt_range_condition_rows= table->stat_records();
s->on_expr_ref= &tables->on_expr;
if (*s->on_expr_ref)
{
/* s is the only inner table of an outer join */
if (!table->is_filled_at_execution() &&
((!table->file->stats.records &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) ||
all_partitions_pruned_away) && !embedding)
{ // Empty table
s->dependent= 0; // Ignore LEFT JOIN depend.
no_rows_const_tables |= table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
continue;
}
outer_join|= table->map;
s->embedding_map= 0;
for (;embedding; embedding= embedding->embedding)
s->embedding_map|= embedding->nested_join->nj_map;
continue;
}
if (embedding)
{
/* s belongs to a nested join, maybe to several embedded joins */
s->embedding_map= 0;
bool inside_an_outer_join= FALSE;
do
{
/*
If this is a semi-join nest, skip it, and proceed upwards. Maybe
we're in some outer join nest
*/
if (embedding->sj_on_expr)
{
embedding= embedding->embedding;
continue;
}
inside_an_outer_join= TRUE;
NESTED_JOIN *nested_join= embedding->nested_join;
s->embedding_map|=nested_join->nj_map;
s->dependent|= embedding->dep_tables;
embedding= embedding->embedding;
outer_join|= nested_join->used_tables;
}
while (embedding);
if (inside_an_outer_join)
continue;
}
if (!table->is_filled_at_execution() &&
(table->s->system ||
(table->file->stats.records <= 1 &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) ||
all_partitions_pruned_away) &&
!s->dependent &&
!table->fulltext_searched && !join->no_const_tables)
{
set_position(join,const_count++,s,(KEYUSE*) 0);
no_rows_const_tables |= table->map;
}
/* SJ-Materialization handling: */
if (table->pos_in_table_list->jtbm_subselect &&
table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
{
set_position(join,const_count++,s,(KEYUSE*) 0);
no_rows_const_tables |= table->map;
table->file->stats.records= 0;
}
}
stat_vector[i]=0;
join->outer_join=outer_join;
if (join->outer_join)
{
/*
Build transitive closure for relation 'to be dependent on'.
This will speed up the plan search for many cases with outer joins,
as well as allow us to catch illegal cross references/
Warshall's algorithm is used to build the transitive closure.
As we use bitmaps to represent the relation the complexity
of the algorithm is O((number of tables)^2).
The classic form of the Warshall's algorithm would look like:
for (i= 0; i < table_count; i++)
{
for (j= 0; j < table_count; j++)
{
for (k= 0; k < table_count; k++)
{
if (bitmap_is_set(stat[j].dependent, i) &&
bitmap_is_set(stat[i].dependent, k))
bitmap_set_bit(stat[j].dependent, k);
}
}
}
*/
for (s= stat ; s < stat_end ; s++)
{
TABLE *table= s->table;
for (JOIN_TAB *t= stat ; t < stat_end ; t++)
{
if (t->dependent & table->map)
t->dependent |= table->reginfo.join_tab->dependent;
}
if (outer_join & s->table->map)
s->table->maybe_null= 1;
}
/* Catch illegal cross references for outer joins */
for (i= 0, s= stat ; i < table_count ; i++, s++)
{
if (s->dependent & s->table->map)
{
join->table_count=0; // Don't use join->table
my_message(ER_WRONG_OUTER_JOIN,
ER_THD(join->thd, ER_WRONG_OUTER_JOIN), MYF(0));
goto error;
}
s->key_dependent= s->dependent;
}
}
{
for (JOIN_TAB *s= stat ; s < stat_end ; s++)
{
TABLE_LIST *tl= s->table->pos_in_table_list;
if (tl->embedding && tl->embedding->sj_subq_pred)
{
s->embedded_dependent= tl->embedding->original_subq_pred_used_tables;
}
}
}
if (unlikely(thd->trace_started()))
trace_table_dependencies(thd, stat, join->table_count);
if (join->conds || outer_join)
{
if (update_ref_and_keys(thd, keyuse_array, stat, join->table_count,
join->conds, ~outer_join, join->select_lex, &sargables))
goto error;
/*
Keyparts without prefixes may be useful if this JOIN is a subquery, and
if the subquery may be executed via the IN-EXISTS strategy.
*/
bool skip_unprefixed_keyparts=
!(join->is_in_subquery() &&
join->unit->item->get_IN_subquery()->test_strategy(SUBS_IN_TO_EXISTS));
if (keyuse_array->elements &&
sort_and_filter_keyuse(join, keyuse_array,
skip_unprefixed_keyparts))
goto error;
DBUG_EXECUTE("opt", print_keyuse_array(keyuse_array););
if (unlikely(thd->trace_started()))
print_keyuse_array_for_trace(thd, keyuse_array);
}
join->const_table_map= no_rows_const_tables;
join->const_tables= const_count;
eliminate_tables(join);
join->const_table_map &= ~no_rows_const_tables;
const_count= join->const_tables;
found_const_table_map= join->const_table_map;
/* Read tables with 0 or 1 rows (system tables) */
for (POSITION *p_pos=join->positions, *p_end=p_pos+const_count;
p_pos < p_end ;
p_pos++)
{
s= p_pos->table;
if (! (s->table->map & join->eliminated_tables))
{
int tmp;
s->type=JT_SYSTEM;
join->const_table_map|=s->table->map;
if ((tmp=join_read_const_table(join->thd, s, p_pos)))
{
if (tmp > 0)
goto error; // Fatal error
}
else
{
found_const_table_map|= s->table->map;
s->table->pos_in_table_list->optimized_away= TRUE;
}
}
}
/* loop until no more const tables are found */
int ref_changed;
do
{
ref_changed = 0;
more_const_tables_found:
/*
We only have to loop from stat_vector + const_count as
set_position() will move all const_tables first in stat_vector
*/
for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
{
TABLE *table= s->table;
if (table->is_filled_at_execution())
continue;
/*
If equi-join condition by a key is null rejecting and after a
substitution of a const table the key value happens to be null
then we can state that there are no matches for this equi-join.
*/
if ((keyuse= s->keyuse) && *s->on_expr_ref && !s->embedding_map &&
!(table->map & join->eliminated_tables))
{
/*
When performing an outer join operation if there are no matching rows
for the single row of the outer table all the inner tables are to be
null complemented and thus considered as constant tables.
Here we apply this consideration to the case of outer join operations
with a single inner table only because the case with nested tables
would require a more thorough analysis.
TODO. Apply single row substitution to null complemented inner tables
for nested outer join operations.
*/
while (keyuse->table == table)
{
if (!keyuse->is_for_hash_join() &&
!(keyuse->val->used_tables() & ~join->const_table_map) &&
keyuse->val->is_null() && keyuse->null_rejecting)
{
s->type= JT_CONST;
s->table->const_table= 1;
mark_as_null_row(table);
found_const_table_map|= table->map;
join->const_table_map|= table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
goto more_const_tables_found;
}
keyuse++;
}
}
if (s->dependent) // If dependent on some table
{
// All dep. must be constants
if (s->dependent & ~(found_const_table_map))
continue;
if (table->file->stats.records <= 1L &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
!table->pos_in_table_list->embedding &&
!((outer_join & table->map) &&
(*s->on_expr_ref)->is_expensive()))
{ // system table
int tmp= 0;
s->type= JT_SYSTEM;
join->const_table_map|=table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
if ((tmp= join_read_const_table(join->thd, s,
join->positions+const_count-1)))
{
if (tmp > 0)
goto error; // Fatal error
}
else
found_const_table_map|= table->map;
continue;
}
}
/* check if table can be read by key or table only uses const refs */
if ((keyuse=s->keyuse))
{
s->type= JT_REF;
while (keyuse->table == table)
{
if (keyuse->is_for_hash_join())
{
keyuse++;
continue;
}
start_keyuse=keyuse;
key=keyuse->key;
s->keys.set_bit(key); // TODO: remove this ?
const_ref.clear_all();
eq_part.clear_all();
has_expensive_keyparts= false;
do
{
if (keyuse->val->type() != Item::NULL_ITEM &&
!keyuse->optimize &&
keyuse->keypart != FT_KEYPART)
{
if (!((~found_const_table_map) & keyuse->used_tables))
{
const_ref.set_bit(keyuse->keypart);
if (keyuse->val->is_expensive())
has_expensive_keyparts= true;
}
eq_part.set_bit(keyuse->keypart);
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key);
TABLE_LIST *embedding= table->pos_in_table_list->embedding;
/*
TODO (low priority): currently we ignore the const tables that
are within a semi-join nest which is within an outer join nest.
The effect of this is that we don't do const substitution for
such tables.
*/
KEY *keyinfo= table->key_info + key;
uint key_parts= table->actual_n_key_parts(keyinfo);
if (eq_part.is_prefix(key_parts) &&
!table->fulltext_searched &&
(!embedding || (embedding->sj_on_expr && !embedding->embedding)))
{
key_map base_part, base_const_ref, base_eq_part;
base_part.set_prefix(keyinfo->user_defined_key_parts);
base_const_ref= const_ref;
base_const_ref.intersect(base_part);
base_eq_part= eq_part;
base_eq_part.intersect(base_part);
/*
We can read the const record if we are using a full unique key and
if the table is not an unopened to be materialized table/view.
*/
if ((table->actual_key_flags(keyinfo) & HA_NOSAME) &&
(!s->table->pos_in_table_list->is_materialized_derived() ||
s->table->pos_in_table_list->fill_me))
{
if (base_const_ref == base_eq_part &&
!has_expensive_keyparts &&
!((outer_join & table->map) &&
(*s->on_expr_ref)->is_expensive()))
{ // Found everything for ref.
int tmp;
ref_changed = 1;
s->type= JT_CONST;
join->const_table_map|=table->map;
set_position(join,const_count++,s,start_keyuse);
/* create_ref_for_key will set s->table->const_table */
if (create_ref_for_key(join, s, start_keyuse, FALSE,
found_const_table_map))
goto error;
if ((tmp=join_read_const_table(join->thd, s,
join->positions+const_count-1)))
{
if (tmp > 0)
goto error; // Fatal error
}
else
found_const_table_map|= table->map;
break;
}
}
else if (base_const_ref == base_eq_part)
s->const_keys.set_bit(key);
}
}
}
}
} while (ref_changed);
join->sort_by_table= get_sort_by_table(join->order, join->group_list,
join->select_lex->leaf_tables,
join->const_table_map);
join->limit_shortcut_applicable= join_limit_shortcut_is_applicable(join);
/*
Update info on indexes that can be used for search lookups as
reading const tables may has added new sargable predicates.
*/
if (const_count && sargables)
{
for( ; sargables->field ; sargables++)
{
Field *field= sargables->field;
JOIN_TAB *join_tab= field->table->reginfo.join_tab;
key_map possible_keys= field->key_start;
possible_keys.intersect(field->table->keys_in_use_for_query);
bool is_const= 1;
for (uint j=0; j < sargables->num_values; j++)
is_const&= sargables->arg_value[j]->const_item();
if (is_const)
join_tab[0].const_keys.merge(possible_keys);
}
}
join->impossible_where= false;
if (join->conds && const_count)
{
Item* &conds= join->conds;
COND_EQUAL *orig_cond_equal = join->cond_equal;
conds->update_used_tables();
conds= conds->remove_eq_conds(join->thd, &join->cond_value, true);
if (conds && conds->type() == Item::COND_ITEM &&
((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
join->cond_equal= &((Item_cond_and*) conds)->m_cond_equal;
join->select_lex->where= conds;
if (join->cond_value == Item::COND_FALSE)
{
join->impossible_where= true;
conds= (Item*) Item_false;
}
join->cond_equal= NULL;
if (conds)
{
if (conds->type() == Item::COND_ITEM &&
((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
join->cond_equal= (&((Item_cond_and *) conds)->m_cond_equal);
else if (conds->type() == Item::FUNC_ITEM &&
((Item_func*) conds)->functype() == Item_func::MULT_EQUAL_FUNC)
{
if (!join->cond_equal)
join->cond_equal= new COND_EQUAL;
join->cond_equal->current_level.empty();
join->cond_equal->current_level.push_back((Item_equal*) conds,
join->thd->mem_root);
}
}
if (orig_cond_equal != join->cond_equal)
{
/*
If join->cond_equal has changed all references to it from COND_EQUAL
objects associated with ON expressions must be updated.
*/
for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
{
if (*s->on_expr_ref && s->cond_equal &&
s->cond_equal->upper_levels == orig_cond_equal)
s->cond_equal->upper_levels= join->cond_equal;
}
}
}
join->join_tab= stat;
join->make_notnull_conds_for_range_scans();
/* Calc how many (possible) matched records in each table */
/*
Todo: add a function so that we can add these Json_writer_objects
easily.
Another way would be to enclose them in a scope {};
*/
{
Json_writer_object rows_estimation_wrapper(thd);
Json_writer_array rows_estimation(thd, "rows_estimation");
for (s=stat ; s < stat_end ; s++)
{
s->startup_cost= 0;
if (s->type == JT_SYSTEM || s->type == JT_CONST)
{
Json_writer_object table_records(thd);
ha_rows records= 1;
if (s->type == JT_SYSTEM || s->table->file->stats.records == 0)
records= s->table->file->stats.records;
/* zero or one matching row */
s->records= s->found_records= records;
s->records_init= s->records_out= rows2double(records);
s->read_time=1.0;
table_records.add_table_name(s).
add("rows", s->found_records).
add("cost", s->read_time).
add("table_type", s->type == JT_CONST ?
"const" : "system");
continue;
}
/*
Approximate found rows and time to read them
Update found_records, records, read_time and other scan related
variables
*/
s->estimate_scan_time();
if (s->table->is_splittable())
s->add_keyuses_for_splitting();
/*
Add to stat->const_keys those indexes for which all group fields or
all select distinct fields participate in one index.
*/
add_group_and_distinct_keys(join, s);
/* This will be updated in calculate_cond_selectivity_for_table() */
s->table->set_cond_selectivity(1.0);
DBUG_ASSERT(s->table->used_stat_records == 0 ||
s->table->cond_selectivity <=
s->table->opt_range_condition_rows /
s->table->used_stat_records);
/*
Perform range analysis if there are keys it could use (1).
Don't do range analysis for materialized subqueries (2).
Don't do range analysis for materialized derived tables/views (3)
*/
if ((!s->const_keys.is_clear_all() ||
!bitmap_is_clear_all(&s->table->cond_set)) && // (1)
!s->table->is_filled_at_execution() && // (2)
!(s->table->pos_in_table_list->derived && // (3)
s->table->pos_in_table_list->is_materialized_derived())) // (3)
{
bool impossible_range= FALSE;
ha_rows records= HA_ROWS_MAX;
SQL_SELECT *select= 0;
Item **sargable_cond= NULL;
if (!s->const_keys.is_clear_all())
{
sargable_cond= get_sargable_cond(join, s->table);
bool is_sargable_cond_of_where= sargable_cond == &join->conds;
select= make_select(s->table, found_const_table_map,
found_const_table_map,
*sargable_cond,
(SORT_INFO*) 0, 1, &error);
if (!select)
goto error;
if (get_quick_record_count(join->thd, select, s->table,
&s->const_keys, join->row_limit, &records))
{
/* There was an error in test_quick_select */
delete select;
goto error;
}
/*
Range analyzer might have modified the condition. Put it the new
condition to where we got it from.
*/
*sargable_cond= select->cond;
if (is_sargable_cond_of_where &&
join->conds && join->conds->type() == Item::COND_ITEM &&
((Item_cond*) (join->conds))->functype() ==
Item_func::COND_AND_FUNC)
join->cond_equal= &((Item_cond_and*) (join->conds))->m_cond_equal;
s->quick=select->quick;
select->quick=0;
s->needed_reg=select->needed_reg;
impossible_range= records == 0 && s->table->reginfo.impossible_range;
if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_USE_ROWID_FILTER))
s->table->init_cost_info_for_usable_range_rowid_filters(join->thd);
}
if (!impossible_range)
{
if (!sargable_cond)
sargable_cond= get_sargable_cond(join, s->table);
if (join->thd->variables.optimizer_use_condition_selectivity > 1)
calculate_cond_selectivity_for_table(join->thd, s->table,
sargable_cond);
if (s->table->reginfo.impossible_range)
{
impossible_range= TRUE;
records= 0;
}
}
if (impossible_range)
{
/*
Impossible WHERE or ON expression
In case of ON, we mark that the we match one empty NULL row.
In case of WHERE, don't set found_const_table_map to get the
caller to abort with a zero row result.
*/
TABLE_LIST *emb= s->table->pos_in_table_list->embedding;
if (emb && !emb->sj_on_expr && !*s->on_expr_ref)
{
/* Mark all tables in a multi-table join nest as const */
mark_join_nest_as_const(join, emb, &found_const_table_map,
&const_count);
}
else
{
double records= 1;
join->const_table_map|= s->table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
s->type= JT_CONST;
s->table->const_table= 1;
if (*s->on_expr_ref)
{
/* Generate empty row */
s->info= ET_IMPOSSIBLE_ON_CONDITION;
found_const_table_map|= s->table->map;
mark_as_null_row(s->table); // All fields are NULL
records= 0;
}
s->records_init= s->records_out= records;
s->found_records= s->records= (ha_rows)records;
}
}
if (records != HA_POS_ERROR)
{
s->found_records=records;
s->read_time= s->quick ? s->quick->read_time : 0.0;
}
if (select)
delete select;
else
{
if (unlikely(thd->trace_started()))
add_table_scan_values_to_trace(thd, s);
}
}
else
{
if (unlikely(thd->trace_started()))
add_table_scan_values_to_trace(thd, s);
}
}
}
if (pull_out_semijoin_tables(join))
DBUG_RETURN(TRUE);
join->join_tab=stat;
join->top_join_tab_count= table_count;
join->map2table=stat_ref;
join->table= table_vector;
join->const_tables=const_count;
join->found_const_table_map=found_const_table_map;
if (join->const_tables != join->table_count)
optimize_keyuse(join, keyuse_array);
DBUG_ASSERT(!join->conds || !join->cond_equal ||
!join->cond_equal->current_level.elements ||
(join->conds->type() == Item::COND_ITEM &&
((Item_cond*) (join->conds))->functype() ==
Item_func::COND_AND_FUNC &&
join->cond_equal ==
&((Item_cond_and *) (join->conds))->m_cond_equal) ||
(join->conds->type() == Item::FUNC_ITEM &&
((Item_func*) (join->conds))->functype() ==
Item_func::MULT_EQUAL_FUNC &&
join->cond_equal->current_level.elements == 1 &&
join->cond_equal->current_level.head() == join->conds));
if (optimize_semijoin_nests(join, all_table_map))
DBUG_RETURN(TRUE); /* purecov: inspected */
{
SELECT_LEX_UNIT *unit= join->select_lex->master_unit();
/* Find an optimal join order of the non-constant tables. */
if (join->const_tables != join->table_count)
{
if (choose_plan(join, all_table_map & ~join->const_table_map, 0))
goto error;
#ifdef HAVE_valgrind
// JOIN::positions holds the current query plan. We've already
// made the plan choice, so we should only use JOIN::best_positions
for (uint k=join->const_tables; k < join->table_count; k++)
MEM_UNDEFINED(&join->positions[k], sizeof(join->positions[k]));
#endif
}
else
{
memcpy((uchar*) join->best_positions,(uchar*) join->positions,
sizeof(POSITION)*join->const_tables);
join->join_record_count= 1.0;
/* Const tables are part of optimizer setup and not counted in cost */
join->best_read=0.0;
}
if (!(join->select_options & SELECT_DESCRIBE) &&
unit->derived && unit->derived->is_materialized_derived())
{
/*
Calculate estimated number of rows for materialized derived
table/view.
*/
double records= 1.0;
ha_rows rows;
for (i= 0; i < join->table_count ; i++)
if (double rr= join->best_positions[i].records_read)
records= COST_MULT(records, rr);
if (join->group_list)
records= estimate_post_group_cardinality(join, records);
rows= double_to_rows(records);
set_if_smaller(rows, unit->lim.get_select_limit());
join->select_lex->increase_derived_records(rows);
}
}
if (join->choose_subquery_plan(all_table_map & ~join->const_table_map))
goto error;
DEBUG_SYNC(join->thd, "inside_make_join_statistics");
DBUG_RETURN(0);
error:
/*
Need to clean up join_tab from TABLEs in case of error.
They won't get cleaned up by JOIN::cleanup() because JOIN::join_tab
may not be assigned yet by this function (which is building join_tab).
Dangling TABLE::reginfo.join_tab may cause part_of_refkey to choke.
*/
{
TABLE_LIST *tmp_table;
List_iterator<TABLE_LIST> ti2(tables_list);
while ((tmp_table= ti2++))
tmp_table->table->reginfo.join_tab= NULL;
}
DBUG_RETURN (1);
}
/*****************************************************************************
Check with keys are used and with tables references with tables
Updates in stat:
keys Bitmap of all used keys
const_keys Bitmap of all keys with may be used with quick_select
keyuse Pointer to possible keys
*****************************************************************************/
/**
Merge new key definitions to old ones, remove those not used in both.
This is called for OR between different levels.
That is, the function operates on an array of KEY_FIELD elements which has
two parts:
$LEFT_PART $RIGHT_PART
+-----------------------+-----------------------+
start new_fields end
$LEFT_PART and $RIGHT_PART are arrays that have KEY_FIELD elements for two
parts of the OR condition. Our task is to produce an array of KEY_FIELD
elements that would correspond to "$LEFT_PART OR $RIGHT_PART".
The rules for combining elements are as follows:
(keyfieldA1 AND keyfieldA2 AND ...) OR (keyfieldB1 AND keyfieldB2 AND ...)=
= AND_ij (keyfieldA_i OR keyfieldB_j)
We discard all (keyfieldA_i OR keyfieldB_j) that refer to different
fields. For those referring to the same field, the logic is as follows:
t.keycol=expr1 OR t.keycol=expr2 -> (since expr1 and expr2 are different
we can't produce a single equality,
so produce nothing)
t.keycol=expr1 OR t.keycol=expr1 -> t.keycol=expr1
t.keycol=expr1 OR t.keycol IS NULL -> t.keycol=expr1, and also set
KEY_OPTIMIZE_REF_OR_NULL flag
The last one is for ref_or_null access. We have handling for this special
because it's needed for evaluating IN subqueries that are internally
transformed into
@code
EXISTS(SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL)
@endcode
See add_key_fields() for discussion of what is and_level.
KEY_FIELD::null_rejecting is processed as follows: @n
result has null_rejecting=true if it is set for both ORed references.
for example:
- (t2.key = t1.field OR t2.key = t1.field) -> null_rejecting=true
- (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false
@todo
The result of this is that we're missing some 'ref' accesses.
OptimizerTeam: Fix this
*/
static KEY_FIELD *
merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
uint and_level)
{
if (start == new_fields)
return start; // Impossible or
if (new_fields == end)
return start; // No new fields, skip all
KEY_FIELD *first_free=new_fields;
/* Mark all found fields in old array */
for (; new_fields != end ; new_fields++)
{
for (KEY_FIELD *old=start ; old != first_free ; old++)
{
if (old->field == new_fields->field)
{
/*
NOTE: below const_item() call really works as "!used_tables()", i.e.
it can return FALSE where it is feasible to make it return TRUE.
The cause is as follows: Some of the tables are already known to be
const tables (the detection code is in make_join_statistics(),
above the update_ref_and_keys() call), but we didn't propagate
information about this: TABLE::const_table is not set to TRUE, and
Item::update_used_tables() hasn't been called for each item.
The result of this is that we're missing some 'ref' accesses.
TODO: OptimizerTeam: Fix this
*/
if (!new_fields->val->const_item())
{
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->val->eq(new_fields->val, old->field->binary()))
{
old->level= and_level;
old->optimize= ((old->optimize & new_fields->optimize &
KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting= (old->null_rejecting &&
new_fields->null_rejecting);
}
}
else if (old->eq_func && new_fields->eq_func &&
old->val->eq_by_collation(new_fields->val,
old->field->binary(),
old->field->charset()))
{
old->level= and_level;
old->optimize= ((old->optimize & new_fields->optimize &
KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting= (old->null_rejecting &&
new_fields->null_rejecting);
}
else if (old->eq_func && new_fields->eq_func &&
((old->val->can_eval_in_optimize() && old->val->is_null()) ||
(!new_fields->val->is_expensive() &&
new_fields->val->is_null())))
{
/* field = expression OR field IS NULL */
old->level= and_level;
if (old->field->maybe_null())
{
old->optimize= KEY_OPTIMIZE_REF_OR_NULL;
/* The referred expression can be NULL: */
old->null_rejecting= 0;
}
/*
Remember the NOT NULL value unless the value does not depend
on other tables.
*/
if (!old->val->used_tables() && !old->val->is_expensive() &&
old->val->is_null())
old->val= new_fields->val;
}
else
{
/*
We are comparing two different const. In this case we can't
use a key-lookup on this so it's better to remove the value
and let the range optimzier handle it
*/
if (old == --first_free) // If last item
break;
*old= *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/* Remove all not used items */
for (KEY_FIELD *old=start ; old != first_free ;)
{
if (old->level != and_level)
{ // Not used in all levels
if (old == --first_free)
break;
*old= *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/*
Given a field, return its index in semi-join's select list, or UINT_MAX
DESCRIPTION
Given a field, we find its table; then see if the table is within a
semi-join nest and if the field was in select list of the subselect.
If it was, we return field's index in the select list. The value is used
by LooseScan strategy.
*/
static uint get_semi_join_select_list_index(Field *field)
{
uint res= UINT_MAX;
TABLE_LIST *emb_sj_nest;
if ((emb_sj_nest= field->table->pos_in_table_list->embedding) &&
emb_sj_nest->sj_on_expr)
{
Item_in_subselect *subq_pred= emb_sj_nest->sj_subq_pred;
st_select_lex *subq_lex= subq_pred->unit->first_select();
uint ncols= subq_pred->left_exp()->cols();
if (ncols == 1)
{
Item *sel_item= subq_lex->ref_pointer_array[0];
if (sel_item->type() == Item::FIELD_ITEM &&
((Item_field*)sel_item)->field->eq(field))
{
res= 0;
}
}
else
{
for (uint i= 0; i < ncols; i++)
{
Item *sel_item= subq_lex->ref_pointer_array[i];
if (sel_item->type() == Item::FIELD_ITEM &&
((Item_field*)sel_item)->field->eq(field))
{
res= i;
break;
}
}
}
}
return res;
}
/**
Add a possible key to array of possible keys if it's usable as a key
@param key_fields Pointer to add key, if usable
@param and_level And level, to be stored in KEY_FIELD
@param cond Condition predicate
@param field Field used in comparision
@param eq_func True if we used =, <=> or IS NULL
@param value Value used for comparison with field
@param num_values Number of values[] that we are comparing against
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates
@param row_col_no if = n that > 0 then field is compared only
against the n-th component of row values
@note
If we are doing a NOT NULL comparison on a NOT NULL field in a outer join
table, we store this to be able to do not exists optimization later.
@returns
*key_fields is incremented if we stored a key in the array
*/
static void
add_key_field(JOIN *join,
KEY_FIELD **key_fields,uint and_level, Item_bool_func *cond,
Field *field, bool eq_func, Item **value, uint num_values,
table_map usable_tables, SARGABLE_PARAM **sargables,
uint row_col_no= 0)
{
uint optimize= 0;
if (eq_func &&
((join->is_allowed_hash_join_access() &&
field->hash_join_is_possible() &&
!(field->table->pos_in_table_list->is_materialized_derived() &&
field->table->is_created())) ||
(field->table->pos_in_table_list->is_materialized_derived() &&
!field->table->is_created() && !(field->flags & BLOB_FLAG))))
{
optimize= KEY_OPTIMIZE_EQ;
}
else if (!(field->flags & PART_KEY_FLAG))
{
// Don't remove column IS NULL on a LEFT JOIN table
if (eq_func && (*value)->type() == Item::NULL_ITEM &&
field->table->maybe_null && !field->null_ptr)
{
optimize= KEY_OPTIMIZE_EXISTS;
DBUG_ASSERT(num_values == 1);
}
}
if (optimize != KEY_OPTIMIZE_EXISTS)
{
table_map used_tables=0;
bool optimizable=0;
for (uint i=0; i<num_values; i++)
{
Item *curr_val;
if (row_col_no && value[i]->real_item()->type() == Item::ROW_ITEM)
{
Item_row *value_tuple= (Item_row *) (value[i]->real_item());
curr_val= value_tuple->element_index(row_col_no - 1);
}
else
curr_val= value[i];
table_map value_used_tables= curr_val->used_tables();
used_tables|= value_used_tables;
if (!(value_used_tables & (field->table->map | RAND_TABLE_BIT)))
optimizable=1;
}
if (!optimizable)
return;
if (!(usable_tables & field->table->map))
{
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
!field->table->maybe_null || field->null_ptr)
return; // Can't use left join optimize
optimize= KEY_OPTIMIZE_EXISTS;
}
else
{
JOIN_TAB *stat=field->table->reginfo.join_tab;
key_map possible_keys=field->get_possible_keys();
possible_keys.intersect(field->table->keys_in_use_for_query);
stat[0].keys.merge(possible_keys); // Add possible keys
/*
Save the following cases:
Field op constant
Field LIKE constant where constant doesn't start with a wildcard
Field = field2 where field2 is in a different table
Field op formula
Field IS NULL
Field IS NOT NULL
Field BETWEEN ...
Field IN ...
*/
if (field->flags & PART_KEY_FLAG)
{
stat[0].key_dependent|= used_tables;
if (field->key_start.bits_set())
stat[0].key_start_dependent= 1;
}
bool is_const=1;
for (uint i=0; i<num_values; i++)
{
Item *curr_val;
if (row_col_no && value[i]->real_item()->type() == Item::ROW_ITEM)
{
Item_row *value_tuple= (Item_row *) (value[i]->real_item());
curr_val= value_tuple->element_index(row_col_no - 1);
}
else
curr_val= value[i];
if (!(is_const&= curr_val->const_item()))
break;
}
if (is_const)
{
stat[0].const_keys.merge(possible_keys);
bitmap_set_bit(&field->table->cond_set, field->field_index);
}
else if (!eq_func)
{
/*
Save info to be able check whether this predicate can be
considered as sargable for range analysis after reading const tables.
We do not save info about equalities as update_const_equal_items
will take care of updating info on keys from sargable equalities.
*/
(*sargables)--;
(*sargables)->field= field;
(*sargables)->arg_value= value;
(*sargables)->num_values= num_values;
}
if (!eq_func) // eq_func is NEVER true when num_values > 1
return;
}
}
/*
For the moment eq_func is always true. This slot is reserved for future
extensions where we want to remembers other things than just eq comparisons
*/
DBUG_ASSERT(eq_func);
/* Store possible eq field */
(*key_fields)->field= field;
(*key_fields)->eq_func= eq_func;
(*key_fields)->val= *value;
(*key_fields)->cond= cond;
(*key_fields)->level= and_level;
(*key_fields)->optimize= optimize;
/*
If the condition we are analyzing is NULL-rejecting and at least
one side of the equalities is NULLable, mark the KEY_FIELD object as
null-rejecting. This property is used by:
- add_not_null_conds() to add "column IS NOT NULL" conditions
- best_access_path() to produce better estimates for NULL-able unique keys.
*/
{
if ((cond->functype() == Item_func::EQ_FUNC ||
cond->functype() == Item_func::MULT_EQUAL_FUNC) &&
((*value)->maybe_null() || field->real_maybe_null()))
(*key_fields)->null_rejecting= true;
else
(*key_fields)->null_rejecting= false;
}
(*key_fields)->cond_guard= NULL;
(*key_fields)->sj_pred_no= get_semi_join_select_list_index(field);
(*key_fields)++;
}
/**
Add possible keys to array of possible keys originated from a simple
predicate.
@param key_fields Pointer to add key, if usable
@param and_level And level, to be stored in KEY_FIELD
@param cond Condition predicate
@param field_item Field item used for comparison
@param eq_func True if we used =, <=> or IS NULL
@param value Value used for comparison with field_item
@param num_values Number of values[] that we are comparing against
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates
@param row_col_no if = n that > 0 then field is compared only
against the n-th component of row values
@note
If field items f1 and f2 belong to the same multiple equality and
a key is added for f1, the the same key is added for f2.
@returns
*key_fields is incremented if we stored a key in the array
*/
static void
add_key_equal_fields(JOIN *join, KEY_FIELD **key_fields, uint and_level,
Item_bool_func *cond, Item *field_item,
bool eq_func, Item **val,
uint num_values, table_map usable_tables,
SARGABLE_PARAM **sargables, uint row_col_no= 0)
{
Field *field= ((Item_field *) (field_item->real_item()))->field;
add_key_field(join, key_fields, and_level, cond, field,
eq_func, val, num_values, usable_tables, sargables,
row_col_no);
Item_equal *item_equal= field_item->get_item_equal();
if (item_equal)
{
/*
Add to the set of possible key values every substitution of
the field for an equal field included into item_equal
*/
Item_equal_fields_iterator it(*item_equal);
while (it++)
{
Field *equal_field= it.get_curr_field();
if (!field->eq(equal_field))
{
add_key_field(join, key_fields, and_level, cond, equal_field,
eq_func, val, num_values, usable_tables,
sargables, row_col_no);
}
}
}
}
/**
Check if an expression is a non-outer field.
Checks if an expression is a field and belongs to the current select.
@param field Item expression to check
@return boolean
@retval TRUE the expression is a local field
@retval FALSE it's something else
*/
static bool
is_local_field (Item *field)
{
return field->real_item()->type() == Item::FIELD_ITEM
&& !(field->used_tables() & OUTER_REF_TABLE_BIT)
&& !((Item_field *)field->real_item())->get_depended_from();
}
/*
In this and other functions, and_level is a number that is ever-growing
and is different for the contents of every AND or OR clause. For example,
when processing clause
(a AND b AND c) OR (x AND y)
we'll have
* KEY_FIELD elements for (a AND b AND c) are assigned and_level=1
* KEY_FIELD elements for (x AND y) are assigned and_level=2
* OR operation is performed, and whatever elements are left after it are
assigned and_level=3.
The primary reason for having and_level attribute is the OR operation which
uses and_level to mark KEY_FIELDs that should get into the result of the OR
operation
*/
void
Item_cond_and::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
List_iterator_fast<Item> li(*argument_list());
KEY_FIELD *org_key_fields= *key_fields;
Item *item;
while ((item=li++))
item->add_key_fields(join, key_fields, and_level, usable_tables,
sargables);
for (; org_key_fields != *key_fields ; org_key_fields++)
org_key_fields->level= *and_level;
}
void
Item_cond::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
List_iterator_fast<Item> li(*argument_list());
KEY_FIELD *org_key_fields= *key_fields;
(*and_level)++;
(li++)->add_key_fields(join, key_fields, and_level, usable_tables,
sargables);
Item *item;
while ((item=li++))
{
KEY_FIELD *start_key_fields= *key_fields;
(*and_level)++;
item->add_key_fields(join, key_fields, and_level, usable_tables,
sargables);
*key_fields= merge_key_fields(org_key_fields,start_key_fields,
*key_fields, ++(*and_level));
}
}
void
Item_func_trig_cond::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
/*
Subquery optimization: Conditions that are pushed down into subqueries
are wrapped into Item_func_trig_cond. We process the wrapped condition
but need to set cond_guard for KEYUSE elements generated from it.
*/
if (!join->group_list && !join->order &&
join->unit->item &&
join->unit->item->substype() == Item_subselect::IN_SUBS &&
!join->unit->is_unit_op())
{
KEY_FIELD *save= *key_fields;
args[0]->add_key_fields(join, key_fields, and_level, usable_tables,
sargables);
// Indicate that this ref access candidate is for subquery lookup:
for (; save != *key_fields; save++)
save->cond_guard= get_trig_var();
}
}
void
Item_func_between::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
/*
Build list of possible keys for 'a BETWEEN low AND high'.
It is handled similar to the equivalent condition
'a >= low AND a <= high':
*/
Item_field *field_item;
bool equal_func= false;
uint num_values= 2;
bool binary_cmp= (args[0]->real_item()->type() == Item::FIELD_ITEM)
? ((Item_field*) args[0]->real_item())->field->binary()
: true;
/*
Additional optimization: If 'low = high':
Handle as if the condition was "t.key = low".
*/
if (!negated && args[1]->eq(args[2], binary_cmp))
{
equal_func= true;
num_values= 1;
}
/*
Append keys for 'field <cmp> value[]' if the
condition is of the form::
'<field> BETWEEN value[1] AND value[2]'
*/
if (is_local_field(args[0]))
{
field_item= (Item_field *) (args[0]->real_item());
add_key_equal_fields(join, key_fields, *and_level, this,
field_item, equal_func, &args[1],
num_values, usable_tables, sargables);
}
/*
Append keys for 'value[0] <cmp> field' if the
condition is of the form:
'value[0] BETWEEN field1 AND field2'
*/
for (uint i= 1; i <= num_values; i++)
{
if (is_local_field(args[i]))
{
field_item= (Item_field *) (args[i]->real_item());
add_key_equal_fields(join, key_fields, *and_level, this,
field_item, equal_func, args,
1, usable_tables, sargables);
}
}
}
void
Item_func_in::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
if (is_local_field(args[0]) && !(used_tables() & OUTER_REF_TABLE_BIT))
{
DBUG_ASSERT(arg_count != 2);
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) (args[0]->real_item()), false,
args + 1, arg_count - 1, usable_tables, sargables);
}
else if (key_item()->type() == Item::ROW_ITEM &&
!(used_tables() & OUTER_REF_TABLE_BIT))
{
Item_row *key_row= (Item_row *) key_item();
Item **key_col= key_row->addr(0);
uint row_cols= key_row->cols();
for (uint i= 0; i < row_cols; i++, key_col++)
{
if (is_local_field(*key_col))
{
Item_field *field_item= (Item_field *)((*key_col)->real_item());
add_key_equal_fields(join, key_fields, *and_level, this,
field_item, false, args + 1, arg_count - 1,
usable_tables, sargables, i + 1);
}
}
}
}
void
Item_func_ne::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
if (!(used_tables() & OUTER_REF_TABLE_BIT))
{
/*
QQ: perhaps test for !is_local_field(args[1]) is not really needed here.
Other comparison functions, e.g. Item_func_le, Item_func_gt, etc,
do not have this test. See Item_bool_func2::add_key_fieldoptimize_op().
Check with the optimizer team.
*/
if (is_local_field(args[0]) && !is_local_field(args[1]))
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) (args[0]->real_item()), false,
&args[1], 1, usable_tables, sargables);
/*
QQ: perhaps test for !is_local_field(args[0]) is not really needed here.
*/
if (is_local_field(args[1]) && !is_local_field(args[0]))
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) (args[1]->real_item()), false,
&args[0], 1, usable_tables, sargables);
}
}
void
Item_func_like::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
if (is_local_field(args[0]) && with_sargable_pattern())
{
/*
SELECT * FROM t1 WHERE field LIKE const_pattern
const_pattern starts with a non-wildcard character
*/
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) args[0]->real_item(), false,
args + 1, 1, usable_tables, sargables);
}
}
void
Item_bool_func2::add_key_fields_optimize_op(JOIN *join, KEY_FIELD **key_fields,
uint *and_level,
table_map usable_tables,
SARGABLE_PARAM **sargables,
bool equal_func)
{
/* If item is of type 'field op field/constant' add it to key_fields */
if (is_local_field(args[0]))
{
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) args[0]->real_item(), equal_func,
args + 1, 1, usable_tables, sargables);
}
else
{
Item_field *field= NULL;
int value_idx= -1;
/* Handle SUBSTR(key,1,N)='const', 'const'=SUBSTR(key,1,N), etc */
if (with_sargable_substr(&field, &value_idx))
{
add_key_equal_fields(join, key_fields, *and_level, this, field,
false, args + value_idx, 1, usable_tables, sargables);
}
}
if (is_local_field(args[1]))
{
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) args[1]->real_item(), equal_func,
args, 1, usable_tables, sargables);
}
}
void
Item_func_truth::add_key_fields(JOIN *join,
KEY_FIELD **key_fields,
uint *and_level,
table_map usable_tables,
SARGABLE_PARAM **sargables)
{
if (is_local_field(args[0]))
{
Item *tmp= args[0]->type_handler()->create_boolean_false_item(join->thd);
if (unlikely(!tmp))
return;
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) args[0]->real_item(),
false/*equal_func*/,
&tmp, 1, usable_tables, sargables);
}
}
void
Item_func_null_predicate::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level,
table_map usable_tables,
SARGABLE_PARAM **sargables)
{
/* column_name IS [NOT] NULL */
if (is_local_field(args[0]) && !(used_tables() & OUTER_REF_TABLE_BIT))
{
Item *tmp= new (join->thd->mem_root) Item_null(join->thd);
if (unlikely(!tmp)) // Should never be true
return;
add_key_equal_fields(join, key_fields, *and_level, this,
(Item_field*) args[0]->real_item(),
functype() == Item_func::ISNULL_FUNC,
&tmp, 1, usable_tables, sargables);
}
}
void
Item_equal::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
uint *and_level, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
Item *const_item2= get_const();
Item_equal_fields_iterator it(*this);
if (const_item2)
{
/*
For each field field1 from item_equal consider the equality
field1=const_item as a condition allowing an index access of the table
with field1 by the keys value of field1.
*/
while (it++)
{
Field *equal_field= it.get_curr_field();
add_key_field(join, key_fields, *and_level, this, equal_field,
TRUE, &const_item2, 1, usable_tables, sargables);
}
}
else
{
/*
Consider all pairs of different fields included into item_equal.
For each of them (field1, field1) consider the equality
field1=field2 as a condition allowing an index access of the table
with field1 by the keys value of field2.
*/
Item_equal_fields_iterator fi(*this);
while (fi++)
{
Field *field= fi.get_curr_field();
Item *item;
while ((item= it++))
{
Field *equal_field= it.get_curr_field();
if (!field->eq(equal_field))
{
add_key_field(join, key_fields, *and_level, this, field,
TRUE, &item, 1, usable_tables,
sargables);
}
}
it.rewind();
}
}
}
static inline uint
max_part_bit(key_part_map bits)
{
if (bits == 0)
return 0;
/* find first zero bit by reverting all bits and find first bit */
return my_find_first_bit(~(ulonglong) bits);
}
/**
Add a new keuse to the specified array of KEYUSE objects
@param[in,out] keyuse_array array of keyuses to be extended
@param[in] key_field info on the key use occurrence
@param[in] key key number for the keyse to be added
@param[in] part key part for the keyuse to be added
@note
The function builds a new KEYUSE object for a key use utilizing the info
on the left and right parts of the given key use extracted from the
structure key_field, the key number and key part for this key use.
The built object is added to the dynamic array keyuse_array.
@retval 0 the built object is successfully added
@retval 1 otherwise
*/
static bool
add_keyuse(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field,
uint key, uint part)
{
KEYUSE keyuse;
Field *field= key_field->field;
keyuse.table= field->table;
keyuse.val= key_field->val;
keyuse.key= key;
if (!is_hash_join_key_no(key))
{
keyuse.keypart=part;
keyuse.keypart_map= (key_part_map) 1 << part;
}
else
{
keyuse.keypart= field->field_index;
keyuse.keypart_map= (key_part_map) 0;
}
keyuse.used_tables= key_field->val->used_tables();
keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL;
keyuse.ref_table_rows= 0;
keyuse.null_rejecting= key_field->null_rejecting;
keyuse.cond_guard= key_field->cond_guard;
keyuse.sj_pred_no= key_field->sj_pred_no;
keyuse.validity_ref= 0;
return (insert_dynamic(keyuse_array,(uchar*) &keyuse));
}
/*
Add all keys with uses 'field' for some keypart
If field->and_level != and_level then only mark key_part as const_part
RETURN
0 - OK
1 - Out of memory.
*/
static LEX_CSTRING equal_str= { STRING_WITH_LEN("=") };
static bool add_key_part(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field)
{
Field *field=key_field->field;
TABLE *form= field->table;
THD *thd= form->in_use;
if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS))
{
for (uint key=0 ; key < form->s->keys ; key++)
{
if (!(form->keys_in_use_for_query.is_set(key)))
continue;
if (form->key_info[key].algorithm == HA_KEY_ALG_FULLTEXT ||
form->key_info[key].algorithm == HA_KEY_ALG_RTREE ||
form->key_info[key].algorithm == HA_KEY_ALG_VECTOR ||
form->key_info[key].flags & HA_UNIQUE_HASH)
continue;
KEY *keyinfo= form->key_info+key;
uint key_parts= form->actual_n_key_parts(keyinfo);
for (uint part=0 ; part < key_parts ; part++)
{
if (field->eq(form->key_info[key].key_part[part].field))
{
Data_type_compatibility compat=
field->can_optimize_keypart_ref(key_field->cond, key_field->val);
if (compat == Data_type_compatibility::OK)
{
if (add_keyuse(keyuse_array, key_field, key, part))
return TRUE;
}
else if (thd->give_notes_for_unusable_keys())
{
field->raise_note_cannot_use_key_part(thd, key, part,
equal_str,
key_field->cond->compare_collation(),
key_field->val,
compat);
}
}
}
}
/*
Compressed field cannot be part of a key. For optimizer temporary table
compressed fields are replaced by uncompressed, see
is_optimizer_tmp_table() and Field_*_compressed::make_new_field().
*/
if (!field->compression_method() &&
field->hash_join_is_possible() &&
(key_field->optimize & KEY_OPTIMIZE_EQ) &&
key_field->val->used_tables())
{
if (field->can_optimize_hash_join(key_field->cond, key_field->val) !=
Data_type_compatibility::OK)
return false;
if (form->is_splittable())
form->add_splitting_info_for_key_field(key_field);
/*
If a key use is extracted from an equi-join predicate then it is
added not only as a key use for every index whose component can
be evalusted utilizing this key use, but also as a key use for
hash join. Such key uses are marked with a special key number.
*/
if (add_keyuse(keyuse_array, key_field, get_hash_join_key_no(), 0))
return TRUE;
}
}
return FALSE;
}
static bool
add_ft_keys(DYNAMIC_ARRAY *keyuse_array,
JOIN_TAB *stat,COND *cond,table_map usable_tables)
{
Item_func_match *cond_func=NULL;
if (!cond)
return FALSE;
if (cond->type() == Item::FUNC_ITEM)
{
Item_func *func=(Item_func *)cond;
Item_func::Functype functype= func->functype();
if (functype == Item_func::FT_FUNC)
cond_func=(Item_func_match *)cond;
else if (func->argument_count() == 2)
{
Item *arg0=(Item *)(func->arguments()[0]),
*arg1=(Item *)(func->arguments()[1]);
if (arg1->const_item() && arg1->cols() == 1 &&
arg0->type() == Item::FUNC_ITEM &&
((Item_func *) arg0)->functype() == Item_func::FT_FUNC &&
((functype == Item_func::GE_FUNC && arg1->val_real() > 0) ||
(functype == Item_func::GT_FUNC && arg1->val_real() >=0)))
cond_func= (Item_func_match *) arg0;
else if (arg0->const_item() && arg0->cols() == 1 &&
arg1->type() == Item::FUNC_ITEM &&
((Item_func *) arg1)->functype() == Item_func::FT_FUNC &&
((functype == Item_func::LE_FUNC && arg0->val_real() > 0) ||
(functype == Item_func::LT_FUNC && arg0->val_real() >=0)))
cond_func= (Item_func_match *) arg1;
}
}
else if (cond->type() == Item::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item *item;
while ((item=li++))
{
if (add_ft_keys(keyuse_array,stat,item,usable_tables))
return TRUE;
}
}
}
if (!cond_func || cond_func->key == NO_SUCH_KEY ||
!(usable_tables & cond_func->table->map))
return FALSE;
KEYUSE keyuse;
keyuse.table= cond_func->table;
keyuse.val = cond_func;
keyuse.key = cond_func->key;
keyuse.keypart= FT_KEYPART;
keyuse.used_tables=cond_func->key_item()->used_tables();
keyuse.optimize= 0;
keyuse.ref_table_rows= 0;
keyuse.keypart_map= 0;
keyuse.sj_pred_no= UINT_MAX;
keyuse.validity_ref= 0;
keyuse.null_rejecting= FALSE;
return insert_dynamic(keyuse_array,(uchar*) &keyuse);
}
static int
sort_keyuse(const void *a_, const void *b_)
{
const KEYUSE *a= static_cast<const KEYUSE *>(a_);
const KEYUSE *b= static_cast<const KEYUSE *>(b_);
int res;
if (a->table->tablenr != b->table->tablenr)
return (int) (a->table->tablenr - b->table->tablenr);
if (a->key != b->key)
return (int) (a->key - b->key);
if (a->key == MAX_KEY && b->key == MAX_KEY &&
a->used_tables != b->used_tables)
return (int) ((ulong) a->used_tables - (ulong) b->used_tables);
if (a->keypart != b->keypart)
return (int) (a->keypart - b->keypart);
// Place const values before other ones
if ((res= MY_TEST((a->used_tables & ~OUTER_REF_TABLE_BIT)) -
MY_TEST((b->used_tables & ~OUTER_REF_TABLE_BIT))))
return res;
/* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
return (int) ((a->optimize & KEY_OPTIMIZE_REF_OR_NULL) -
(b->optimize & KEY_OPTIMIZE_REF_OR_NULL));
}
/*
Add to KEY_FIELD array all 'ref' access candidates within nested join.
This function populates KEY_FIELD array with entries generated from the
ON condition of the given nested join, and does the same for nested joins
contained within this nested join.
@param[in] nested_join_table Nested join pseudo-table to process
@param[in,out] end End of the key field array
@param[in,out] and_level And-level
@param[in,out] sargables Array of found sargable candidates
@note
We can add accesses to the tables that are direct children of this nested
join (1), and are not inner tables w.r.t their neighbours (2).
Example for #1 (outer brackets pair denotes nested join this function is
invoked for):
@code
... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond
@endcode
Example for #2:
@code
... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond
@endcode
In examples 1-2 for condition cond, we can add 'ref' access candidates to
t1 only.
Example #3:
@code
... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond
@endcode
Here we can add 'ref' access candidates for t1 and t2, but not for t3.
*/
static void add_key_fields_for_nj(JOIN *join, TABLE_LIST *nested_join_table,
KEY_FIELD **end, uint *and_level,
SARGABLE_PARAM **sargables)
{
List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list);
List_iterator<TABLE_LIST> li2(nested_join_table->nested_join->join_list);
bool have_another = FALSE;
table_map tables= 0;
TABLE_LIST *table;
DBUG_ASSERT(nested_join_table->nested_join);
while ((table= li++) || (have_another && (li=li2, have_another=FALSE,
(table= li++))))
{
if (table->nested_join)
{
if (!table->on_expr)
{
/* It's a semi-join nest. Walk into it as if it wasn't a nest */
have_another= TRUE;
li2= li;
li= List_iterator<TABLE_LIST>(table->nested_join->join_list);
}
else
add_key_fields_for_nj(join, table, end, and_level, sargables);
}
else
if (!table->on_expr)
tables |= table->table->map;
}
if (nested_join_table->on_expr)
nested_join_table->on_expr->add_key_fields(join, end, and_level, tables,
sargables);
}
void count_cond_for_nj(SELECT_LEX *sel, TABLE_LIST *nested_join_table)
{
List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list);
List_iterator<TABLE_LIST> li2(nested_join_table->nested_join->join_list);
bool have_another = FALSE;
TABLE_LIST *table;
while ((table= li++) || (have_another && (li=li2, have_another=FALSE,
(table= li++))))
if (table->nested_join)
{
if (!table->on_expr)
{
/* It's a semi-join nest. Walk into it as if it wasn't a nest */
have_another= TRUE;
li2= li;
li= List_iterator<TABLE_LIST>(table->nested_join->join_list);
}
else
count_cond_for_nj(sel, table);
}
if (nested_join_table->on_expr)
nested_join_table->on_expr->walk(&Item::count_sargable_conds, 0, sel);
}
/**
Update keyuse array with all possible keys we can use to fetch rows.
@param thd
@param[out] keyuse Put here ordered array of KEYUSE structures
@param join_tab Array in tablenr_order
@param tables Number of tables in join
@param cond WHERE condition (note that the function analyzes
join_tab[i]->on_expr too)
@param normal_tables Tables not inner w.r.t some outer join (ones
for which we can make ref access based the WHERE
clause)
@param select_lex current SELECT
@param[out] sargables Array of found sargable candidates
@retval
0 OK
@retval
1 Out of memory.
*/
static bool
update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
uint tables, COND *cond, table_map normal_tables,
SELECT_LEX *select_lex, SARGABLE_PARAM **sargables)
{
uint and_level,i;
KEY_FIELD *key_fields, *end, *field;
uint sz;
uint m= MY_MAX(select_lex->max_equal_elems,1);
DBUG_ENTER("update_ref_and_keys");
DBUG_PRINT("enter", ("normal_tables: %llx", normal_tables));
SELECT_LEX *sel=thd->lex->current_select;
sel->cond_count= 0;
sel->between_count= 0;
if (cond)
cond->walk(&Item::count_sargable_conds, 0, sel);
for (i=0 ; i < tables ; i++)
{
if (*join_tab[i].on_expr_ref)
(*join_tab[i].on_expr_ref)->walk(&Item::count_sargable_conds, 0, sel);
}
{
List_iterator<TABLE_LIST> li(*join_tab->join->join_list);
TABLE_LIST *table;
while ((table= li++))
{
if (table->nested_join)
count_cond_for_nj(sel, table);
}
}
/*
We use the same piece of memory to store both KEY_FIELD
and SARGABLE_PARAM structure.
KEY_FIELD values are placed at the beginning this memory
while SARGABLE_PARAM values are put at the end.
All predicates that are used to fill arrays of KEY_FIELD
and SARGABLE_PARAM structures have at most 2 arguments
except BETWEEN predicates that have 3 arguments and
IN predicates.
This any predicate if it's not BETWEEN/IN can be used
directly to fill at most 2 array elements, either of KEY_FIELD
or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements
can be filled as this predicate is considered as
saragable with respect to each of its argument.
An IN predicate can require at most 1 element as currently
it is considered as sargable only for its first argument.
Multiple equality can add elements that are filled after
substitution of field arguments by equal fields. There
can be not more than select_lex->max_equal_elems such
substitutions.
*/
sz= MY_MAX(sizeof(KEY_FIELD),sizeof(SARGABLE_PARAM))*
((sel->cond_count*2 + sel->between_count)*m+1);
if (!(key_fields=(KEY_FIELD*) thd->alloc(sz)))
DBUG_RETURN(TRUE); /* purecov: inspected */
and_level= 0;
field= end= key_fields;
*sargables= (SARGABLE_PARAM *) key_fields +
(sz - sizeof((*sargables)[0].field))/sizeof(SARGABLE_PARAM);
/* set a barrier for the array of SARGABLE_PARAM */
(*sargables)[0].field= 0;
if (my_init_dynamic_array2(thd->mem_root->psi_key, keyuse, sizeof(KEYUSE),
thd->alloc<KEYUSE>(20), 20, 64,
MYF(MY_THREAD_SPECIFIC)))
DBUG_RETURN(TRUE);
if (cond)
{
KEY_FIELD *saved_field= field;
cond->add_key_fields(join_tab->join, &end, &and_level, normal_tables,
sargables);
for (; field != end ; field++)
{
/* Mark that we can optimize LEFT JOIN */
if (field->val->type() == Item::NULL_ITEM &&
!field->field->real_maybe_null())
field->field->table->reginfo.not_exists_optimize=1;
}
field= saved_field;
}
for (i=0 ; i < tables ; i++)
{
/*
Block the creation of keys for inner tables of outer joins.
Here only the outer joins that can not be converted to
inner joins are left and all nests that can be eliminated
are flattened.
In the future when we introduce conditional accesses
for inner tables in outer joins these keys will be taken
into account as well.
*/
if (*join_tab[i].on_expr_ref)
(*join_tab[i].on_expr_ref)->add_key_fields(join_tab->join, &end,
&and_level,
join_tab[i].table->map,
sargables);
}
/* Process ON conditions for the nested joins */
{
List_iterator<TABLE_LIST> li(*join_tab->join->join_list);
TABLE_LIST *table;
while ((table= li++))
{
if (table->nested_join)
add_key_fields_for_nj(join_tab->join, table, &end, &and_level,
sargables);
}
}
/* fill keyuse with found key parts */
for ( ; field != end ; field++)
{
if (add_key_part(keyuse,field))
DBUG_RETURN(TRUE);
}
if (select_lex->ftfunc_list->elements)
{
if (add_ft_keys(keyuse,join_tab,cond,normal_tables))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
/*
check if key could be used with eq_ref
The assumption is that all previous key parts where used
*/
static void remember_if_eq_ref_key(JOIN *join, KEYUSE *use)
{
DBUG_ASSERT(use->keypart != FT_KEYPART && use->key != MAX_KEY);
TABLE *table= use->table;
KEY *key= table->key_info+use->key;
ulong key_flags= table->actual_key_flags(key);
/*
Check if possible eq_ref key
This may include keys that does not have HA_NULL_PART_KEY
set, but this is ok as best_access_path will resolve this.
*/
if ((key_flags & (HA_NOSAME | HA_EXT_NOSAME)))
{
uint key_parts= table->actual_n_key_parts(key);
if (use->keypart+1 == key_parts)
join->eq_ref_tables|= table->map;
}
}
/**
Sort the array of possible keys and remove the following key parts:
- ref if there is a keypart which is a ref and a const.
(e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
then we skip the key part corresponding to b=t2.d)
- keyparts without previous keyparts
(e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
used in the query, we drop the partial key parts from consideration).
Special treatment for ft-keys.
Update join->eq_ref_tables with a bitmap of all tables that can possible
have a EQ_REF key.
Note that the keys are generated to be used by best_access_path() during
the optimization stage. Unused keys will later be deleted by
JOIN::drop_unused_derived_keys().
*/
bool sort_and_filter_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse,
bool skip_unprefixed_keyparts)
{
THD *thd= join->thd;
KEYUSE key_end, *prev, *save_pos, *use;
uint found_eq_constant, i;
bool found_unprefixed_key_part= 0;
join->eq_ref_tables= 0;
DBUG_ASSERT(keyuse->elements);
my_qsort(keyuse->buffer, keyuse->elements, sizeof(KEYUSE),
(qsort_cmp) sort_keyuse);
bzero((char*) &key_end, sizeof(key_end)); /* Add for easy testing */
if (insert_dynamic(keyuse, (uchar*) &key_end))
return TRUE;
if (optimizer_flag(thd, OPTIMIZER_SWITCH_DERIVED_WITH_KEYS))
generate_derived_keys(keyuse);
use= save_pos= dynamic_element(keyuse,0,KEYUSE*);
prev= &key_end;
found_eq_constant= 0;
/* Loop over all elements except the last 'key_end' */
for (i=0 ; i < keyuse->elements-1 ; i++,use++)
{
if (!use->is_for_hash_join())
{
if (!(use->used_tables & ~OUTER_REF_TABLE_BIT) &&
use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
use->table->const_key_parts[use->key]|= use->keypart_map;
if (use->keypart != FT_KEYPART)
{
if (use->key == prev->key && use->table == prev->table)
{
if (prev->keypart == use->keypart && found_eq_constant)
continue;
if (prev->keypart+1 < use->keypart)
{
found_unprefixed_key_part= 1;
if (skip_unprefixed_keyparts)
continue; /* remove */
}
}
else
{
/*
Key changed, check if previous key was a primary/unique key lookup
*/
if (prev != &key_end && !found_unprefixed_key_part)
remember_if_eq_ref_key(join, prev);
found_unprefixed_key_part= 0;
if (use->keypart != 0)
{
found_unprefixed_key_part= 1;
if (skip_unprefixed_keyparts)
continue; /* remove - first found key part must be 0 */
}
}
}
else /* FT_KEY_PART */
{
if (prev != &key_end && !found_unprefixed_key_part)
remember_if_eq_ref_key(join, prev);
found_unprefixed_key_part= 1; // This key cannot be EQ_REF
}
prev= use;
found_eq_constant= !use->used_tables;
use->table->reginfo.join_tab->checked_keys.set_bit(use->key);
}
else
{
if (prev != &key_end && !found_unprefixed_key_part)
remember_if_eq_ref_key(join, prev);
prev= &key_end;
}
/*
Old gcc used a memcpy(), which is undefined if save_pos==use:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19410
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=39480
This also disables a valgrind warning, so better to have the test.
*/
if (save_pos != use)
*save_pos= *use;
/* Save ptr to first use */
if (!use->table->reginfo.join_tab->keyuse)
use->table->reginfo.join_tab->keyuse= save_pos;
save_pos++;
}
if (prev != &key_end && !found_unprefixed_key_part)
remember_if_eq_ref_key(join, prev);
i= (uint) (save_pos-(KEYUSE*) keyuse->buffer);
(void) set_dynamic(keyuse,(uchar*) &key_end,i);
keyuse->elements= i;
return FALSE;
}
/**
Update some values in keyuse for faster choose_plan() loop.
*/
void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array)
{
KEYUSE *end,*keyuse= dynamic_element(keyuse_array, 0, KEYUSE*);
for (end= keyuse+ keyuse_array->elements ; keyuse < end ; keyuse++)
{
table_map map;
/*
If we find a ref, assume this table matches a proportional
part of this table.
For example 100 records matching a table with 5000 records
gives 5000/100 = 50 records per key
Constant tables are ignored.
To avoid bad matches, we don't make ref_table_rows less than 100.
*/
keyuse->ref_table_rows= ~(ha_rows) 0; // If no ref
if (keyuse->used_tables &
(map= (keyuse->used_tables & ~join->const_table_map &
~OUTER_REF_TABLE_BIT)))
{
uint n_tables= my_count_bits(map);
if (n_tables == 1) // Only one table
{
DBUG_ASSERT(!(map & PSEUDO_TABLE_BITS)); // Must be a real table
Table_map_iterator it(map);
int tablenr= it.next_bit();
DBUG_ASSERT(tablenr != Table_map_iterator::BITMAP_END);
TABLE *tmp_table=join->table[tablenr];
if (tmp_table) // already created
keyuse->ref_table_rows= MY_MAX(tmp_table->file->stats.records, 100);
}
}
/*
Outer reference (external field) is constant for single executing
of subquery
*/
if (keyuse->used_tables == OUTER_REF_TABLE_BIT)
keyuse->ref_table_rows= 1;
}
}
/**
Check for the presence of AGGFN(DISTINCT a) queries that may be subject
to loose index scan.
Check if the query is a subject to AGGFN(DISTINCT) using loose index scan
(QUICK_GROUP_MIN_MAX_SELECT).
Optionally (if out_args is supplied) will push the arguments of
AGGFN(DISTINCT) to the list
Check for every COUNT(DISTINCT), AVG(DISTINCT) or
SUM(DISTINCT). These can be resolved by Loose Index Scan as long
as all the aggregate distinct functions refer to the same
fields. Thus:
SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT b, a)... => can use LIS
SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT a) ... => can use LIS
SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT a) ... => cannot use LIS
SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT b) ... => cannot use LIS
etc.
@param join the join to check
@param[out] out_args Collect the arguments of the aggregate functions
to a list. We don't worry about duplicates as
these will be sorted out later in
get_best_group_min_max.
@return does the query qualify for indexed AGGFN(DISTINCT)
@retval true it does
@retval false AGGFN(DISTINCT) must apply distinct in it.
*/
bool
is_indexed_agg_distinct(JOIN *join, List<Item_field> *out_args)
{
Item_sum **sum_item_ptr;
bool result= false;
if (join->table_count != 1 || /* reference more than 1 table */
join->select_distinct || /* or a DISTINCT */
join->select_lex->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
return false;
Bitmap<MAX_FIELDS> first_aggdistinct_fields;
bool first_aggdistinct_fields_initialized= false;
for (sum_item_ptr= join->sum_funcs; *sum_item_ptr; sum_item_ptr++)
{
Item_sum *sum_item= *sum_item_ptr;
Item *expr;
/* aggregate is not AGGFN(DISTINCT) or more than 1 argument to it */
switch (sum_item->sum_func())
{
case Item_sum::MIN_FUNC:
case Item_sum::MAX_FUNC:
continue;
case Item_sum::COUNT_DISTINCT_FUNC:
break;
case Item_sum::AVG_DISTINCT_FUNC:
case Item_sum::SUM_DISTINCT_FUNC:
if (sum_item->get_arg_count() == 1)
break;
/* fall through */
default: return false;
}
/*
We arrive here for every COUNT(DISTINCT),AVG(DISTINCT) or SUM(DISTINCT).
Collect the arguments of the aggregate functions to a list.
We don't worry about duplicates as these will be sorted out later in
get_best_group_min_max
*/
Bitmap<MAX_FIELDS> cur_aggdistinct_fields;
cur_aggdistinct_fields.clear_all();
for (uint i= 0; i < sum_item->get_arg_count(); i++)
{
expr= sum_item->get_arg(i);
/* The AGGFN(DISTINCT) arg is not an attribute? */
if (expr->real_item()->type() != Item::FIELD_ITEM)
return false;
Item_field* item= static_cast<Item_field*>(expr->real_item());
if (out_args)
out_args->push_back(item, join->thd->mem_root);
cur_aggdistinct_fields.set_bit(item->field->field_index);
result= true;
}
/*
If there are multiple aggregate functions, make sure that they all
refer to exactly the same set of columns.
*/
if (!first_aggdistinct_fields_initialized)
{
first_aggdistinct_fields= cur_aggdistinct_fields;
first_aggdistinct_fields_initialized=true;
}
else if (first_aggdistinct_fields != cur_aggdistinct_fields)
return false;
}
return result;
}
/**
Discover the indexes that can be used for GROUP BY or DISTINCT queries.
If the query has a GROUP BY clause, find all indexes that contain all
GROUP BY fields, and add those indexes to join->const_keys.
If the query has a DISTINCT clause, find all indexes that contain all
SELECT fields, and add those indexes to join->const_keys.
This allows later on such queries to be processed by a
QUICK_GROUP_MIN_MAX_SELECT.
@param join
@param join_tab
@return
None
*/
static void
add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab)
{
List<Item_field> indexed_fields;
List_iterator<Item_field> indexed_fields_it(indexed_fields);
ORDER *cur_group;
Item_field *cur_item;
key_map possible_keys(0);
if (join->group_list)
{ /* Collect all query fields referenced in the GROUP clause. */
for (cur_group= join->group_list; cur_group; cur_group= cur_group->next)
(*cur_group->item)->walk(&Item::collect_item_field_processor, 0,
&indexed_fields);
}
else if (join->select_distinct)
{ /* Collect all query fields referenced in the SELECT clause. */
List<Item> &select_items= join->fields_list;
List_iterator<Item> select_items_it(select_items);
Item *item;
while ((item= select_items_it++))
item->walk(&Item::collect_item_field_processor, 0, &indexed_fields);
}
else if (!join->tmp_table_param.sum_func_count ||
!is_indexed_agg_distinct(join, &indexed_fields))
{
/*
There where no GROUP BY fields and also either no aggregate
functions or not all aggregate functions where used with the
same DISTINCT (or MIN() / MAX() that works similarly).
Nothing to do there.
*/
return;
}
if (indexed_fields.elements == 0)
{
/* There where no index we could use to satisfy the GROUP BY */
return;
}
/* Intersect the keys of all group fields. */
cur_item= indexed_fields_it++;
possible_keys.merge(cur_item->field->part_of_key);
while ((cur_item= indexed_fields_it++))
{
possible_keys.intersect(cur_item->field->part_of_key);
}
if (!possible_keys.is_clear_all())
join_tab->const_keys.merge(possible_keys);
}
/*****************************************************************************
Go through all combinations of not marked tables and find the one
which uses least records
*****************************************************************************/
/** Save const tables first as used tables. */
void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
{
join->positions[idx].table= table;
join->positions[idx].key=key;
join->positions[idx].records_read=1.0; /* This is a const table */
join->positions[idx].records_out=1.0; /* This is a const table */
join->positions[idx].records_init=1.0; /* This is a const table */
join->positions[idx].cond_selectivity= 1.0;
join->positions[idx].ref_depend_map= 0;
join->positions[idx].partial_join_cardinality= 1;
// join->positions[idx].loosescan_key= MAX_KEY; /* Not a LooseScan */
join->positions[idx].sj_strategy= SJ_OPT_NONE;
join->positions[idx].use_join_buffer= FALSE;
join->positions[idx].range_rowid_filter_info= 0;
/* Move the const table as down as possible in best_ref */
JOIN_TAB **pos=join->best_ref+idx+1;
JOIN_TAB *next=join->best_ref[idx];
for (;next != table ; pos++)
{
JOIN_TAB *tmp=pos[0];
pos[0]=next;
next=tmp;
}
join->best_ref[idx]=table;
join->positions[idx].spl_plan= 0;
join->positions[idx].spl_pd_boundary= 0;
}
/*
Estimate how many records we will get if we read just this table and apply
a part of WHERE that can be checked using only the current table and
const tables.
@param s Current JOIN_TAB
@param use_cond_selectivity Value of optimizer_use_condition_selectivity.
If > 1 then use table->cond_selecitivity.
@return 0.0 No matching rows
@return >= 1.0 Number of expected matching rows
Estimate how many records we will get if we
- read the given table with its "independent" access method (either quick
select or full table/index scan),
- apply the part of WHERE that refers only to this table and const tables.
- The result cannot be bigger than table records
@see also
table_after_join_selectivity() produces selectivity of condition that is
checked after joining rows from this table to rows from preceding tables.
*/
static double apply_selectivity_for_table(JOIN_TAB *s,
uint use_cond_selectivity)
{
double dbl_records;
if (use_cond_selectivity > 1)
{
TABLE *table= s->table;
double sel= table->cond_selectivity;
double table_records= rows2double(s->records);
DBUG_ASSERT(sel >= 0 && sel <= 1.0);
/*
table->cond_selectivity will include data from opt_range.
Here we check that this is indeeded the case.
Note that if table_records == 0, then 'sel' is probably 1
*/
DBUG_ASSERT(table_records == 0 ||
sel <= s->table->opt_range_condition_rows /
table_records);
dbl_records= table_records * sel;
}
else
{
/*
This is only taking into considering constant key parts used with
this table!
If no such conditions existed the following should normally hold:
s->table->opt_range_condition_rows == s->found_rows ==
s->records.
The case when this does not hold is when using 'best splitting'
in which case s->records may be less than s->found_rows;
*/
DBUG_ASSERT(s->table->opt_range_condition_rows <= s->found_records);
dbl_records= rows2double(MY_MIN(s->table->opt_range_condition_rows,
s->records));
}
DBUG_ASSERT(dbl_records <= s->records);
/*
Ensure we return at least one row if there is any possibility to have
a matching row. Having rows >= 1.0 helps ensure that when we calculate
total rows of joins, the number of resulting rows will not be less
after the join. In other words, we assume there is at least one matching
row when joining a row with the next table.
0.0 is returned only if it is guaranteed there are no matching rows
(for example if the table is empty).
*/
return dbl_records ? MY_MAX(dbl_records, MIN_ROWS_AFTER_FILTERING) : 0.0;
}
/*
Take into account that the table's WHERE clause has conditions on earlier
tables that can reduce the number of accepted rows.
@param records Number of original rows (after selectivity)
If there is a filtering condition on the table (i.e. ref analyzer found
at least one "table.keyXpartY= exprZ", where exprZ refers only to tables
preceding this table in the join order we're now considering), then
assume that 25% of the rows will be filtered out by this condition.
This heuristic is supposed to force tables used in exprZ to be before
this table in join order.
*/
inline double use_found_constraint(double records)
{
records-= records/4;
return records ? MY_MAX(records, MIN_ROWS_AFTER_FILTERING) : 0.0;
}
/*
Calculate the cost of reading a set of rows trough an index
@param eq_ref True if there is only one matching key (EQ_REF)
Logically this is identical to the code in multi_range_read_info_const()
excepts the function also takes into account io_blocks and multiple
ranges.
One main difference between the functions is that
multi_range_read_info_const() adds a very small cost per range
MULTI_RANGE_READ_SETUP_COST, to ensure that 'ref' is preferred
over ranges.
Note that this function assumes that index_only_cost is only to be
used with filtering (as cost.read_cost takes into account both
clustering and covered keys). index_only_cost does not include
KEY_COPY_COST as for filtering there is no copying of not accepted
keys.
If eq_ref is not set, it means that we have to do one extra 'read_next'
on the index to verify that there is not more keys with the same value.
WHERE_COST cost is not added to any result.
*/
static ALL_READ_COST cost_for_index_read(const THD *thd, const TABLE *table,
uint key, ha_rows records,
bool eq_ref)
{
ALL_READ_COST cost;
handler *file= table->file;
ha_rows max_seeks;
ha_rows extra_reads= eq_ref ? 0 : 1;
DBUG_ENTER("cost_for_index_read");
max_seeks= (ha_rows) thd->variables.max_seeks_for_key;
set_if_bigger(records, 1);
if (file->is_clustering_key(key))
{
cost.index_cost=
file->ha_keyread_clustered_time(key, 1, records+extra_reads, 0);
cost.copy_cost= rows2double(records) * file->ROW_COPY_COST;
/* There is no 'index_only_read' with a clustered index */
cost.row_cost= {0,0};
/* Caping of index_blocks will happen in handler::cost() */
cost.max_index_blocks= MY_MIN(file->row_blocks(), max_seeks);
cost.max_row_blocks= 0;
}
else if (table->covering_keys.is_set(key) && !table->no_keyread)
{
cost.index_cost= file->ha_keyread_time(key, 1, records + extra_reads, 0);
cost.row_cost= {0,0};
cost.copy_cost= rows2double(records) * file->KEY_COPY_COST;
cost.max_index_blocks= MY_MIN(file->index_blocks(key), max_seeks);
cost.max_row_blocks= 0;
}
else
{
cost.index_cost= file->ha_keyread_time(key, 1, records + extra_reads, 0);
/* ha_rnd_pos_time() includes time for copying the row */
cost.row_cost= file->ha_rnd_pos_time(records);
cost.max_index_blocks= MY_MIN(file->index_blocks(key), max_seeks);
cost.max_row_blocks= MY_MIN(file->row_blocks(), max_seeks);
cost.copy_cost= 0;
}
DBUG_PRINT("statistics", ("index_cost: %.3f row_cost: %.3f",
file->cost(cost.index_cost),
file->cost(cost.row_cost)));
DBUG_RETURN(cost);
}
/**
Apply filter if the filter is better than the current cost
@param thd Thread handler
@param table Table
@param cost Pointer to cost for current cost, which does not
include WHERE_COST cost. Will be updated to
new cost if filter is chosen.
Will be updated to new cost if filter is used.
@param records_arg Pointer to number of records for the current key.
Will be updated to records after filter, if filter is
used.
@param startup_cost Startup cost. Will be updated if filter is used.
@param fetch_cost Cost of finding the row, without where compare cost
@param index_only_cost Cost if fetching '*records_arg' key values
@param prev_records Number of record combinations in previous tables
@return 'this' Filter is used (and variables are updated)
@return 0 Filter is worse than old plan
*/
Range_rowid_filter_cost_info* Range_rowid_filter_cost_info::
apply_filter(THD *thd, TABLE *table, ALL_READ_COST *cost,
double *records_arg,
double *startup_cost,
uint ranges, double prev_records)
{
handler *file= table->file;
bool use_filter;
double new_cost, org_cost, records= *records_arg, new_records;
double filter_startup_cost= get_setup_cost();
double filter_lookup_cost= records * lookup_cost();
double tmp;
ALL_READ_COST adjusted_cost;
/*
Calculate number of resulting rows after filtering
Here we trust selectivity and do not adjust rows up even if
the end result is low. This means that new_records is allowed to be
be < 1.0
*/
new_records= records * selectivity;
/*
Calculate the cost of the filter based on that we had originally
'records' rows and after the filter only 'new_records' accepted
rows.
Note that the rejected rows, we have only done a key read. We only
fetch the row and compare the where if the filter accepts the
row id.
In case of index only read, fetch_cost == index_only_cost. Even in this
the filter can give a better plan as we have to do less comparisons
with the WHERE clause.
The io_cost is used to take into account that we have to do 1 key
lookup to find the first matching key in each range.
*/
adjusted_cost= *cost;
/* We are going to read 'selectivity' fewer rows */
adjusted_cost.row_cost.io*= selectivity;
adjusted_cost.row_cost.cpu*= selectivity;
adjusted_cost.copy_cost*= selectivity; // Cost of copying row or key
adjusted_cost.index_cost.cpu+= filter_lookup_cost;
tmp= prev_records * WHERE_COST_THD(thd);
org_cost= (file->cost_for_reading_multiple_times(prev_records,
cost) +
records * tmp);
new_cost= (file->cost_for_reading_multiple_times(prev_records,
&adjusted_cost) +
new_records * tmp + filter_startup_cost);
DBUG_ASSERT(new_cost >= 0 && new_records >= 0);
use_filter= new_cost < org_cost;
if (unlikely(thd->trace_started()))
{
Json_writer_object trace_filter(thd, "filter");
trace_filter.add("rowid_filter_index",
table->key_info[get_key_no()].name).
add("index_only_cost", file->cost(cost->index_cost)).
add("filter_startup_cost", filter_startup_cost).
add("find_key_and_filter_lookup_cost", filter_lookup_cost).
add("filter_selectivity", selectivity).
add("original_rows", records).
add("new_rows", new_records).
add("original_access_cost", file->cost(cost)).
add("with_filter_access_cost", file->cost(&adjusted_cost)).
add("original_found_rows_cost", file->cost(cost->row_cost)).
add("with_filter_found_rows_cost", file->cost(adjusted_cost.row_cost)).
add("org_cost", org_cost).
add("filter_cost", new_cost).
add("filter_used", use_filter);
}
if (use_filter)
{
cost->row_cost= adjusted_cost.row_cost;
cost->index_cost= adjusted_cost.index_cost;
cost->copy_cost= adjusted_cost.copy_cost;
*records_arg= new_records;
(*startup_cost)+= filter_startup_cost;
return this;
}
return 0;
}
/*
@brief
Compute the fanout of hash join operation using EITS data
@param join JOIN structure
@param tab JOIN_TAB for the current table
@param remaining_tables Map of tables not yet accessable
@param rnd_records Number of accepted rows in the table, after taking
selectivity into account.
@param hj_start_key Pointer to hash key
@param stats_found Is set to 1 if we found any usable hash key part
with statistics from analyze.
*/
double hash_join_fanout(JOIN *join, JOIN_TAB *tab, table_map remaining_tables,
double rnd_records, KEYUSE *hj_start_key,
bool *stats_found)
{
THD *thd= join->thd;
/*
Before doing the hash join, we will scan the table and apply the local part
of the WHERE condition. This will produce rnd_records.
The EITS statistics describes the entire table. Calling
table->field[N]->get_avg_frequency()
produces average #rows in the table with some value.
What happens if we filter out rows so that rnd_records rows are left?
Something between the two outcomes:
A. filtering removes a fraction of rows for each value:
avg_frequency=avg_frequency * condition_selectivity
B. filtering removes entire groups of rows with the same value, but
the remaining groups remain of the same size.
We make pessimistic assumption and assume B.
We also handle an edge case: if rnd_records is less than avg_frequency,
assume we'll get rnd_records rows with the same value, and return
rnd_records as the fanout estimate.
*/
double min_freq= (double) tab->table->stat_records();
bool found_not_usable_field= 0;
bool found_usable_field __attribute__((unused))= 0;
DBUG_ENTER("hash_join_cardinality");
DBUG_ASSERT(rnd_records > 0 && min_freq > 0);
Json_writer_object trace_obj(thd, "hash_join_cardinality");
/*
There can be multiple KEYUSE referring to same or different columns
KEYUSE(tbl.col1 = ...)
KEYUSE(tbl.col1 = ...)
KEYUSE(tbl.col2 = ...)
Hash join code can use multiple columns: (col1, col2) for joining.
We need n_distinct({col1, col2}).
EITS only has statistics on individual columns: n_distinct(col1),
n_distinct(col2).
Our current solution is to be very conservative and use selectivity
of one column with the lowest avg_frequency.
In the future, we should an approach that cautiosly takes into account
multiple KEYUSEs either multiply by number of equalities or by sqrt
of the second most selective equality.
*/
Json_writer_array trace_arr(thd, "hash_join_columns");
for (KEYUSE *keyuse= hj_start_key;
keyuse->table == tab->table && is_hash_join_key_no(keyuse->key);
keyuse++)
{
if (!(remaining_tables & keyuse->used_tables) &&
(!keyuse->validity_ref || *keyuse->validity_ref) &&
tab->access_from_tables_is_allowed(keyuse->used_tables,
join->sjm_lookup_tables))
{
Field *field= tab->table->field[keyuse->keypart];
found_usable_field= 1;
if (is_eits_usable(field))
{
double freq= field->read_stats->get_avg_frequency();
Json_writer_object trace_field(thd);
trace_field.add("field",field->field_name.str).
add("avg_frequency", freq);
if (freq < min_freq)
min_freq= freq;
*stats_found= 1;
continue;
}
}
if (!keyuse->validity_ref || *keyuse->validity_ref)
found_not_usable_field= 1;
}
/* Ensure that some part of hash_key is usable */
DBUG_ASSERT(found_usable_field);
trace_arr.end();
if (found_not_usable_field)
{
/*
We did not't have data for all key fields. Assume that the hash
will at least limit the number of matched rows to HASH_FANOUT.
This makes the cost same as when 'hash_join_cardinality=off'
in the case when no analyze of the tables have been made.
However, it may cause problems when min_freq is higher than
HASH_FANOUT as the optimizer will then assume it is better to
put the table earlier in the plan when all key parts are not
usable.
Note that min_freq can become less than 1.0. This is intentional
as it matches what happens if OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY
is not used.
*/
double max_expected_records= rnd_records * HASH_FANOUT;
set_if_smaller(min_freq, max_expected_records);
trace_obj.add("using_default_hash_fanout", HASH_FANOUT);
}
else
{
/*
Before joining the table with the contents of join buffer, we will
use the quick select and/or apply the table condition.
This will reduce the number of rows joined to rnd_records.
How will this affect n_distinct?
Depending on which rows are removed, this can either leave n_distinct as
is (for some value X, some rows are removed but some are left, leaving the
number of distinct values the same), or reduce n_distinct in proportion
with the fraction of rows removed (for some values of X, either all or
none of the rows with that value are removed).
We assume the latter: n_distinct is reduced in proportion the condition
and quick select's selectivity.
This is in effect same as applying apply_selectivity_for_table() on
min_freq as we have already done on rnd_records
*/
min_freq*= rnd_records / tab->table->stat_records();
set_if_bigger(min_freq, HASH_FANOUT);
}
trace_obj.add("rows", min_freq);
DBUG_RETURN(min_freq);
}
#ifndef DBUG_OFF
static char dbug_join_prefix_buf[256];
const char* dbug_print_join_prefix(const POSITION *join_positions,
uint idx,
JOIN_TAB *s)
{
char *buf= dbug_join_prefix_buf;
String str(buf, sizeof(dbug_join_prefix_buf), &my_charset_bin);
str.length(0);
for (uint i=0; i!=idx; i++)
{
str.append(join_positions[i].table->table->alias);
str.append(',');
}
str.append(s->table->alias);
if (str.c_ptr_safe() == buf)
return buf;
else
return "Couldn't fit into buffer";
}
#endif
/**
Find the best access path for an extension of a partial execution
plan and add this path to the plan.
The function finds the best access path to table 's' from the passed
partial plan where an access path is the general term for any means to
cacess the data in 's'. An access path may use either an index or a scan,
whichever is cheaper. The input partial plan is passed via the array
'join->positions' of length 'idx'. The chosen access method for 's' and its
cost are stored in 'join->positions[idx]'.
@param join pointer to the structure providing all context info
for the query
@param s the table to be joined by the function
@param thd thread for the connection that submitted the query
@param remaining_tables set of tables not included into the partial plan yet
@param idx the length of the partial plan
@param disable_jbuf TRUE<=> Don't use join buffering
@param record_count estimate for the number of records returned by the
partial plan
@param pos OUT Table access plan
@param loose_scan_pos OUT Table plan that uses loosescan, or set cost to
DBL_MAX if not possible.
@detail
Use this to print the current join prefix:
dbug_print_join_prefix(join_positions, idx, s)
Use this as breakpoint condition to stop at join prefix "t1,t2,t3":
$_streq(dbug_print_join_prefix(join_positions, idx, s), "t1,t2,t3")
@return
None
*/
struct best_plan
{
double cost; // Smallest cost found
double records; // Old 'Records'
double records_read; // Records accessed
double records_after_filter; // Records_read + filter
double records_out; // Smallest record count seen
double prev_record_reads; // Save value from prev_record_reads
double identical_keys; // Save value from prev_record_reads
Range_rowid_filter_cost_info *filter; // Best filter
KEYUSE *key; // Best key
SplM_plan_info *spl_plan;
table_map ref_depends_map;
ulonglong refills; // Join cache refills
enum join_type type;
uint forced_index;
uint max_key_part;
table_map found_ref;
bool use_join_buffer;
};
void
best_access_path(JOIN *join,
JOIN_TAB *s,
table_map remaining_tables,
const POSITION *join_positions,
uint idx,
bool disable_jbuf,
double record_count,
POSITION *pos,
POSITION *loose_scan_pos)
{
THD *thd= join->thd;
uint use_cond_selectivity=
thd->variables.optimizer_use_condition_selectivity;
TABLE *table= s->table;
handler *file= table->file;
my_bool found_constraint= 0;
/*
key_dependent is 0 if all key parts could be used or if there was an
EQ_REF table found (which uses all key parts). In other words, we cannot
find a better key for the table even if remaining_tables is reduced.
Otherwise it's a bitmap of tables that could improve key usage.
*/
table_map key_dependent= 0;
ALL_READ_COST tmp;
ha_rows rec;
MY_BITMAP *eq_join_set= &s->table->eq_join_set;
KEYUSE *hj_start_key= 0;
table_map spl_pd_boundary= 0;
Loose_scan_opt loose_scan_opt;
struct best_plan best;
Json_writer_object trace_wrapper(thd, "best_access_path");
DBUG_ENTER("best_access_path");
/*
Assume that there is at least one accepted row from previous table
combinations.
This fixes a problem when the selectivity for the preceding table
combinations becomes so high that record_count becomes << 1.0,
which makes the cost for the current table so low that it does not
matter when calculating the best plans.
*/
set_if_bigger(record_count, 1.0);
best.cost= DBL_MAX;
best.records= DBL_MAX;
best.records_read= DBL_MAX;
best.records_after_filter= DBL_MAX;
best.records_out= MY_MIN(table->stat_records() * table->cond_selectivity,
table->opt_range_condition_rows);
best.prev_record_reads= best.identical_keys= 0;
best.filter= 0;
best.key= 0;
best.max_key_part= 0;
best.type= JT_UNKNOWN;
best.forced_index= MAX_KEY;
best.found_ref= 0;
best.ref_depends_map= 0;
best.refills= 0;
best.use_join_buffer= FALSE;
best.spl_plan= 0;
disable_jbuf= disable_jbuf || idx == join->const_tables;
trace_wrapper.add_table_name(s);
bitmap_clear_all(eq_join_set);
loose_scan_opt.init(join, s, remaining_tables);
if (table->is_splittable())
best.spl_plan= s->choose_best_splitting(idx,
remaining_tables,
join_positions,
&spl_pd_boundary);
if (unlikely(thd->trace_started()))
{
Json_writer_object info(thd, "plan_details");
info.add("record_count", record_count);
}
Json_writer_array trace_paths(thd, "considered_access_paths");
if (s->keyuse)
{ /* Use key if possible */
KEYUSE *keyuse, *start_key= 0;
const char *cause= NULL;
uint max_key_part=0;
enum join_type type= JT_UNKNOWN;
double cur_cost, copy_cost, cached_prev_record_reads= 0.0;
table_map cached_prev_ref= ~(table_map) 0;
/* Test how we can use keys */
rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE; // Assumed records/key
for (keyuse=s->keyuse ; keyuse->table == table ;)
{
KEY *keyinfo;
ulong key_flags;
uint key_parts;
key_part_map found_part= 0;
/* key parts which won't have NULL in lookup tuple */
key_part_map notnull_part=0;
table_map found_ref= 0;
uint key= keyuse->key;
uint max_const_parts;
bool ft_key= (keyuse->keypart == FT_KEYPART);
/* Bitmap of keyparts where the ref access is over 'keypart=const': */
key_part_map const_part= 0;
/* The or-null keypart in ref-or-null access: */
key_part_map ref_or_null_part= 0;
key_part_map all_parts= 0;
double startup_cost= s->startup_cost;
double records_after_filter, records_best_filter, records;
Range_rowid_filter_cost_info *filter= 0;
double prev_record_count= record_count;
double identical_keys= 0;
if (is_hash_join_key_no(key))
{
/*
Hash join as any join employing join buffer can be used to join
only those tables that are joined after the first non const table
*/
if (!(remaining_tables & keyuse->used_tables) &&
idx > join->const_tables)
{
if (!hj_start_key)
hj_start_key= keyuse;
bitmap_set_bit(eq_join_set, keyuse->keypart);
}
keyuse++;
continue;
}
keyinfo= table->key_info+key;
key_parts= table->actual_n_key_parts(keyinfo);
key_flags= table->actual_key_flags(keyinfo);
/* Calculate how many key segments of the current key we can use */
start_key= keyuse;
loose_scan_opt.next_ref_key();
DBUG_PRINT("info", ("Considering ref access on key %s",
keyuse->table->key_info[keyuse->key].name.str));
do /* For each keypart */
{
uint keypart= keyuse->keypart;
table_map best_part_found_ref= 0, key_parts_dependent= 0;
double best_prev_record_reads= DBL_MAX;
do /* For each way to access the keypart */
{
/*
If 1. expression does not refer to forward tables
2. we won't get two ref-or-null's
*/
double ignore;
all_parts|= keyuse->keypart_map;
if (!(remaining_tables & keyuse->used_tables) &&
(!keyuse->validity_ref || *keyuse->validity_ref) &&
s->access_from_tables_is_allowed(keyuse->used_tables,
join->sjm_lookup_tables) &&
!(ref_or_null_part && (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL)))
{
found_part|= keyuse->keypart_map;
key_parts_dependent= 0;
if (!(keyuse->used_tables & ~join->const_table_map))
const_part|= keyuse->keypart_map;
if (!keyuse->val->maybe_null() || keyuse->null_rejecting)
notnull_part|=keyuse->keypart_map;
if ((found_ref | keyuse->used_tables) != cached_prev_ref)
{
cached_prev_ref= (found_ref | keyuse->used_tables);
cached_prev_record_reads=
prev_record_reads(join_positions, idx,
cached_prev_ref, record_count,
&ignore);
}
if (cached_prev_record_reads < best_prev_record_reads)
{
best_prev_record_reads= cached_prev_record_reads;
best_part_found_ref= (keyuse->used_tables &
~join->const_table_map);
}
if (rec > keyuse->ref_table_rows)
rec= keyuse->ref_table_rows;
/*
If there is one 'key_column IS NULL' expression, we can
use this ref_or_null optimisation of this field
*/
if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
ref_or_null_part |= keyuse->keypart_map;
/*
Remember if there is a WHERE condition that contains
'key_part=expression_with_only_accessible_tables'
We ignore const tables as these are handled by selectivity
code (const table fields are treated as constants).
*/
found_constraint|= (keyuse->used_tables &
~(remaining_tables |
join->const_table_map));
}
else if (!(found_part & keyuse->keypart_map))
key_parts_dependent|= keyuse->used_tables;
loose_scan_opt.add_keyuse(remaining_tables, keyuse);
keyuse++;
} while (keyuse->table == table && keyuse->key == key &&
keyuse->keypart == keypart);
/* If we found a usable key, remember the dependent tables */
if (all_parts & 1)
key_dependent|= key_parts_dependent;
found_ref|= best_part_found_ref;
/* Remember if the key expression used previous non const tables */
} while (keyuse->table == table && keyuse->key == key);
/*
Assume that that each key matches a proportional part of table.
*/
if (!found_part && !ft_key && !loose_scan_opt.have_a_case())
continue; // Nothing usable found
if (rec < MATCHING_ROWS_IN_OTHER_TABLE)
rec= MATCHING_ROWS_IN_OTHER_TABLE; // Fix for small tables
Json_writer_object trace_access_idx(thd);
max_const_parts= max_part_bit(const_part);
/*
full text keys require special treatment
*/
if (ft_key)
{
/*
Fulltext indexes are preformed the following way:
- In the prepare step it performs the search, collects all positions
in an array, sorts it.
- If optimizer decides to use the ft index access method it simply'
returns positions from the array one by one
- If optimizer decides to use something else (another index, table
scan), then it'll use binary search in the array to find the
position.
The following code puts the cost down to very small as the prep
step will always be done and the cost to fetch the row from memory
is very small.
Alternatively we could use the cost of an EQ_REF here.
*/
tmp.reset();
tmp.row_cost.cpu= file->ROW_COPY_COST;
/*
We don't know how many records will match. However, we want to have
the fulltext search done early, so we put the number of records
to be very low.
*/
records= 1.0;
type= JT_FT;
if (unlikely(trace_access_idx.trace_started()))
trace_access_idx.
add("access_type", join_type_str[type]).
add("full-text index", keyinfo->name);
}
else
{
loose_scan_opt.check_ref_access_part1(s, key, start_key, found_part);
/* Check if we found full key */
const key_part_map all_key_parts= PREV_BITS(key_part_map, key_parts);
if (found_part == all_key_parts && !ref_or_null_part)
{ /* use eq key */
max_key_part= (uint) ~0;
/*
If the index is a unique index (1), and
- all its columns are not null (2), or
- equalities we are using reject NULLs (3)
then the estimate is rows=1.
*/
if ((key_flags & (HA_NOSAME | HA_EXT_NOSAME)) && // (1)
(!(key_flags & HA_NULL_PART_KEY) || // (2)
all_key_parts == notnull_part)) // (3)
{
/* Check that eq_ref_tables are correctly updated */
DBUG_ASSERT(join->eq_ref_tables & table->map);
type= JT_EQ_REF;
if (unlikely(trace_access_idx.trace_started()))
trace_access_idx.
add("access_type", join_type_str[type]).
add("index", keyinfo->name);
if (!found_ref && table->opt_range_keys.is_set(key))
{
/* Ensure that the cost is identical to the range cost */
table->opt_range[key].get_costs(&tmp);
}
else
{
tmp= cost_for_index_read(thd, table, key, 1, 1);
}
/*
Calculate how many record read calls will be made taking
into account that we will cache the last read row.
*/
prev_record_count= prev_record_reads(join_positions, idx,
found_ref, record_count,
&identical_keys);
records= 1.0;
}
else
{
type= JT_REF;
if (unlikely(trace_access_idx.trace_started()))
trace_access_idx.
add("access_type", join_type_str[type]).
add("index", keyinfo->name);
if (!found_ref)
{ /* We found a const key */
/*
ReuseRangeEstimateForRef-1:
We get here if we've found a ref(const) (c_i are constants):
"(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond]
If range optimizer was able to construct a "range"
access on this index, then its condition "quick_cond" was
eqivalent to ref_const_cond (*), and we can re-use E(#rows)
from the range optimizer.
Proof of (*): By properties of range and ref optimizers
quick_cond will be equal or tighther than ref_const_cond.
ref_const_cond already covers "smallest" possible interval -
a singlepoint interval over all keyparts. Therefore,
quick_cond is equivalent to ref_const_cond (if it was an
empty interval we wouldn't have got here).
*/
if (table->opt_range_keys.is_set(key))
{
/* Ensure that the cost is identical to the range cost */
records= (double) table->opt_range[key].rows;
trace_access_idx.add("used_range_estimates", true);
table->opt_range[key].get_costs(&tmp);
goto got_cost2;
}
/* quick_range couldn't use key! */
records= (double) s->records/rec;
if (unlikely(trace_access_idx.trace_started()))
trace_access_idx.
add("used_range_estimates", false).
add("reason", "not available");
}
else
{
if (!(records= keyinfo->actual_rec_per_key(key_parts-1)))
{ /* Prefer longer keys */
trace_access_idx.add("rec_per_key_stats_missing", true);
records=
((double) s->records / (double) rec *
(1.0 +
((double) (table->s->max_key_length-keyinfo->key_length) /
(double) table->s->max_key_length)));
set_if_smaller(records, (double)s->records);
if (records < 1.0)
records= 1.0; /* Can't be as good as a unique */
}
/*
ReuseRangeEstimateForRef-2: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make an adjustment. The criteria of when we
can make an adjustment is a special case of the criteria used
in ReuseRangeEstimateForRef-3.
*/
if (table->opt_range_keys.is_set(key) &&
table->opt_range[key].key_parts <= max_const_parts &&
table->opt_range[key].ranges == 1 &&
records > (double) table->opt_range[key].rows)
{
records= (double) table->opt_range[key].rows;
trace_access_idx.add("used_range_estimates", "clipped down");
}
else if (unlikely(trace_access_idx.trace_started()))
{
if (table->opt_range_keys.is_set(key))
{
trace_access_idx.
add("used_range_estimates",false).
add("reason", "not better than ref estimates");
}
else
{
trace_access_idx.
add("used_range_estimates", false).
add("reason", "not available");
}
}
}
/* Calculate the cost of the index access */
tmp= cost_for_index_read(thd, table, key,
(ha_rows) records, 0);
}
}
else
{
type = ref_or_null_part ? JT_REF_OR_NULL : JT_REF;
if (unlikely(trace_access_idx.trace_started()))
trace_access_idx.
add("access_type", join_type_str[type]).
add("index", keyinfo->name);
/*
Use as much key-parts as possible and a uniq key is better
than a not unique key
Set tmp to the cost of the accessing the expected number of
records.
*/
if ((found_part & 1) &&
(!(table->key_info[key].index_flags & HA_ONLY_WHOLE_INDEX) ||
found_part == PREV_BITS(key_part_map,
keyinfo->user_defined_key_parts)))
{
double extra_cost= 0;
max_key_part= max_part_bit(found_part);
bool all_used_equalities_are_const= (max_key_part ==
max_const_parts);
/*
ReuseRangeEstimateForRef-3:
We're now considering a ref[or_null] access via
(t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL")] (**)
Try re-using E(#rows) from "range" optimizer:
We can do so if "range" optimizer used the same intervals as
in (**). The intervals used by range optimizer may be not
available at this point (as "range" access might have chosen to
create quick select over another index), so we can't compare
them to (**). We'll make indirect judgements instead.
The sufficient conditions for re-use are:
(C1) All e_i in (**) are constants (if
this is not satisfied we have no way to know which ranges
will be actually scanned by 'ref' until we execute the
join)
(C2) max #key parts in 'range' access == K == max_key_part (this
is apparently a necessary requirement)
We also have a property that "range optimizer produces equal or
tighter set of scan intervals than ref(const) optimizer". Each
of the intervals in (**) are "tightest possible" intervals when
one limits itself to using keyparts 1..K (which we do in #2).
From here it follows that range access used either one, or
both of the (I1) and (I2) intervals:
(t.keypart1=c1 AND ... AND t.keypartK=eK) (I1)
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL") (I2)
The remaining part is to exclude the situation where range
optimizer used one interval while we're considering
ref-or-null and looking for estimate for two intervals. This
is done by last limitation:
(C3) "range optimizer used (have ref_or_null?2:1) intervals"
*/
if (table->opt_range_keys.is_set(key) &&
all_used_equalities_are_const && // (C1)
table->opt_range[key].key_parts == max_key_part && //(C2)
(table->opt_range[key].ranges ==
1 + MY_TEST(ref_or_null_part))) //(C3)
{
records= (double) table->opt_range[key].rows;
table->opt_range[key].get_costs(&tmp);
/*
TODO: Disable opt_range testing below for this range as we can
always use this ref instead.
*/
trace_access_idx.add("used_range_estimates", true);
goto got_cost2;
}
else
{
/* Check if we have statistic about the distribution */
if ((records= keyinfo->actual_rec_per_key(max_key_part-1)))
{
/*
Fix for the case where the index statistics is too
optimistic: If
(1) We're considering ref(const) and there is quick select
on the same index,
(2) and that quick select uses more keyparts (i.e. it will
scan equal/smaller interval then this ref(const))
(3) and E(#rows) for quick select is higher then our
estimate,
Then
We'll use E(#rows) from quick select.
Q: Why do we choose to use 'ref'? Won't quick select be
cheaper in some cases ?
TODO: figure this out and adjust the plan choice if needed.
*/
if (table->opt_range_keys.is_set(key))
{
double rows;
if (table->opt_range[key].key_parts >= max_key_part) // (2)
{
/*
Choose range over REF in the case range will always be
as good or better than REF.
This is the case when we have only one const range
and it consist of more parts than what we used for REF.
*/
if (all_used_equalities_are_const &&
table->opt_range[key].key_parts > max_key_part &&
table->opt_range[key].ranges <=
(uint) (1 + MY_TEST(ref_or_null_part)))
{
trace_access_idx.
add("chosen", false).
add("cause", "range is simple and more selective");
continue; // continue with next key
}
}
rows= (double) table->opt_range[key].rows;
if (all_used_equalities_are_const && // (1)
records < rows) // (3)
{
trace_access_idx.add("used_range_estimates",
"clipped up");
records= rows;
}
}
}
else
{
trace_access_idx.add("rec_per_key_stats_missing", true);
/*
Assume that the first key part matches 1% of the file
and that the whole key matches 10 (duplicates) or 1
(unique) records.
Assume also that more key matches proportionally more
records
This gives the formula:
records = (x * (b-a) + a*c-b)/(c-1)
b = records matched by whole key
a = records matched by first key part (1% of all records?)
c = number of key parts in key
x = used key parts (1 <= x <= c)
*/
double rec_per_key;
if (!(rec_per_key=(double)
keyinfo->rec_per_key[keyinfo->user_defined_key_parts-1]))
rec_per_key=(double) s->records/rec+1;
if (!s->records)
records= 0;
else if (rec_per_key/(double) s->records >= 0.01)
records= rec_per_key;
else
{
double a=s->records*0.01;
if (keyinfo->user_defined_key_parts > 1)
records= (max_key_part * (rec_per_key - a) +
a*keyinfo->user_defined_key_parts - rec_per_key)/
(keyinfo->user_defined_key_parts-1);
else
records= rows2double(s->records);
set_if_bigger(records, MIN_ROWS_AFTER_FILTERING);
}
}
if (ref_or_null_part)
{
/* We need to do two key searches to find row */
records *= 2.0;
extra_cost= s->table->file->KEY_LOOKUP_COST;
}
/*
ReuseRangeEstimateForRef-4: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make the adjustment.
The decision whether we can re-use the estimate from the range
optimizer is the same as in ReuseRangeEstimateForRef-3,
applied to first table->quick_key_parts[key] key parts.
*/
if (table->opt_range_keys.is_set(key) &&
table->opt_range[key].key_parts <= max_const_parts &&
table->opt_range[key].ranges == (1 +
MY_TEST(ref_or_null_part &
const_part)) &&
records > (double) table->opt_range[key].rows)
{
// psergey-merge-sept: remove: if (table->opt_range[key].key_parts <= max_const_parts)
{
trace_access_idx.add("used_range_estimates", true);
records= (double) table->opt_range[key].rows;
}
}
}
set_if_smaller(records, (double) s->records);
tmp= cost_for_index_read(thd, table, key, (ha_rows)records, 0);
tmp.copy_cost+= extra_cost;
}
else
{
if (!(found_part & 1))
cause= "no predicate for first keypart";
else
cause= "No full key found";
trace_access_idx.add("chosen", false).add("cause", cause);
continue;
}
}
got_cost2:
loose_scan_opt.check_ref_access_part2(key, start_key, records,
file->cost(&tmp) + startup_cost,
found_ref);
} /* not ft_key */
if (records == DBL_MAX) // Key not usable
continue;
records_best_filter= records_after_filter= records;
/*
Check if we can use a filter.
Records can be 0 in case of empty tables.
*/
if ((found_part & 1) && records &&
table->can_use_rowid_filter(start_key->key))
{
/*
If we use filter F with selectivity s the the cost of fetching data
by key using this filter will be
cost_of_fetching_1_row * rows * s +
cost_of_fetching_1_key_tuple * rows * (1 - s) +
cost_of_1_lookup_into_filter * rows
Without using any filter the cost would be just
cost_of_fetching_1_row * rows
So the gain in access cost per row will be
cost_of_fetching_1_row * (1 - s) -
cost_of_fetching_1_key_tuple * (1 - s) -
cost_of_1_lookup_into_filter
=
(cost_of_fetching_1_row - cost_of_fetching_1_key_tuple) * (1 - s)
- cost_of_1_lookup_into_filter
Here we have:
cost_of_fetching_1_row = tmp/rows
cost_of_fetching_1_key_tuple = keyread_tmp/rows
Here's a more detailed explanation that uses the formulas behind
the function the call filter->get_adjusted_gain(). The function
takes as a parameter the number of probes/look-ups into the filter
that is equal to the number of fetched key entries that is equal to
the number of row fetches when no filter is used (assuming no
index condition pushdown is employed for the used key access).
Let this number be N. Then the total gain from using the filter is
N*a_adj - b where b is the cost of building the filter and
a_adj is calcilated as follows:
a - (1-access_cost_factor)*(1-s) =
(1+1_cond_eval_cost)*(1-s)-1_probe_cost - (1-access_cost_factor)*(1-s)
= (1-s)*(1_cond_eval_cost+access_cost_factor) - 1_probe_cost.
Here ((1-s)*(1_cond_eval_cost) * N is the gain from checking less
conditions pushed into the table, 1_probe_cost*N is the cost of the
probes and (1*s) * access_cost_factor * N must be the gain from
accessing less rows.
It does not matter how we calculate the cost of N full row fetches
cost_of_fetching_N_rows or
how we calculate the cost of fetching N key entries
cost_of_fetching_N_key_entries
the gain from less row fetches will be
(cost_of_fetching_N_rows - cost_of_fetching_N_key_entries) * (1-s)
and this should be equal to (1*s) * access_cost_factor * N.
Thus access_cost_factor must be calculated as
(cost_of_fetching_N_rows - cost_of_fetching_N_key_entries) / N.
For safety we clip cost_of_fetching_N_key_entries by the value
of cost_of_fetching_N_row though formally it's not necessary.
We cannot use filter with JT_EQ_REF as in this case 'tmp' is
number of rows from prev_record_read() and keyread_tmp is 0. These
numbers are not usable with rowid filter code.
*/
filter= table->best_range_rowid_filter(start_key->key,
records,
file->cost(&tmp),
file->cost(tmp.index_cost),
prev_record_count,
&records_best_filter);
set_if_smaller(best.records_out, records_best_filter);
if (filter)
filter= filter->apply_filter(thd, table, &tmp,
&records_after_filter,
&startup_cost,
1, prev_record_count);
}
/*
Take into account WHERE and setup cost.
We have to check the WHERE for all previous row combinations
(record_count).
'prev_record_count' is either 'record_count', or in case of
EQ_REF the estimated number of index_read() calls to the
engine when taking the one row read cache into account.
*/
copy_cost= (record_count * records_after_filter * WHERE_COST_THD(thd) +
startup_cost);
cur_cost= (file->cost_for_reading_multiple_times(prev_record_count,
&tmp) +
copy_cost);
if (unlikely(trace_access_idx.trace_started()))
{
if (prev_record_count != record_count)
trace_access_idx.add("prev_record_count", prev_record_count);
trace_access_idx.
add("rows", records_after_filter).
add("cost", cur_cost);
}
/*
The COST_EPS is here to ensure we use the first key if there are
two 'identical keys' that could be used.
*/
if (cur_cost + COST_EPS < best.cost)
{
trace_access_idx.add("chosen", true);
best.cost= cur_cost;
/*
We use 'records' instead of 'records_after_filter' here as we want
to have EXPLAIN print the number of rows found by the key access.
*/
best.records= records; // Records before filter!
best.records_read= records;
/*
If we are using 'use_cond_selectivity > 1' then
table_after_join_selectivity() may take into account other
filters that what is currently used so we have to use
records_after_filter. If 'use_cond_selectivity <= 1 then we
can use information from the best filter.
*/
best.records_after_filter= ((use_cond_selectivity > 1) ?
records_after_filter :
records_best_filter);
best.prev_record_reads= prev_record_count;
best.identical_keys= identical_keys;
best.key= start_key;
best.found_ref= found_ref;
best.max_key_part= max_key_part;
best.ref_depends_map= found_ref;
best.filter= filter;
best.type= type;
}
else if (unlikely(thd->trace_started()))
{
trace_access_idx.
add("chosen", false).
add("cause", cause ? cause : "cost");
}
set_if_smaller(best.records_out, records);
} /* for each key */
}
else
{
/*
No usable keys found. However, there may still be an option to use
"Range checked for each record" when all depending tables has
been read. s->key_dependent tells us which tables these could be and
s->key_start_dependent tells us if a first key part was used.
s->key_dependent may include more tables than could be used,
but this is ok as not having any usable keys is a rare thing and
the performance penalty for extra table bits is that
best_extension_by_limited_search() would not be able to prune tables
earlier.
Example query:
SELECT * FROM t1,t2 where t1.key1=t2.key1 OR t2.key2<1
*/
if (s->key_start_dependent)
key_dependent= s->key_dependent;
/* Add dependency for sub queries */
key_dependent|= s->embedded_dependent;
} /* if (s->keyuse) */
/* Check that s->key_dependent contains all used_tables found in s->keyuse */
key_dependent&= ~PSEUDO_TABLE_BITS;
DBUG_ASSERT((key_dependent & (s->key_dependent | s->embedded_dependent)) ==
key_dependent);
/*
If there is no key to access the table, but there is an equi-join
predicate connecting the table with the privious tables then we
consider the possibility of using hash join.
We need also to check that:
(1) s is inner table of semi-join -> join cache is allowed for semijoins
(2) s is inner table of outer join -> join cache is allowed for outer joins
*/
if (idx > join->const_tables && best.key == 0 &&
(join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT) &&
join->max_allowed_join_cache_level > 2 &&
!bitmap_is_clear_all(eq_join_set) && !disable_jbuf &&
(!s->emb_sj_nest ||
join->allowed_semijoin_with_cache) && // (1)
(!(table->map & join->outer_join) ||
join->allowed_outer_join_with_cache)) // (2)
{
Json_writer_object trace_access_hash(thd);
double refills, row_copy_cost, copy_cost, cur_cost, where_cost;
double matching_combinations, fanout= 0.0, join_sel;
trace_access_hash.add("type", "hash");
trace_access_hash.add("index", "hj-key");
/* Estimate the cost of the hash join access to the table */
double rnd_records;
bool stats_found= 0;
rnd_records= apply_selectivity_for_table(s, use_cond_selectivity);
DBUG_ASSERT(rnd_records <= rows2double(s->found_records) + 0.5);
DBUG_ASSERT(hj_start_key);
fanout= rnd_records;
if (optimizer_flag(thd, OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY) &&
rnd_records > 0)
{
/*
Starting from this point, rnd_records should not be used anymore.
Use "fanout" for an estimate of # matching records.
*/
fanout= hash_join_fanout(join, s, remaining_tables, rnd_records,
hj_start_key, &stats_found);
set_if_smaller(best.records_out, fanout);
join_sel= 1.0;
}
if (!stats_found)
{
/*
No OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY or no field statistics
found.
Take into account if there is non constant constraints used with
earlier tables in the where expression.
If yes, this will set fanout to rnd_records/4.
We estimate that there will be HASH_FANOUT (10%)
hash matches / row.
*/
fanout= ((found_constraint) ?
use_found_constraint(rnd_records) :
rnd_records);
set_if_smaller(best.records_out, fanout * HASH_FANOUT);
join_sel= HASH_FANOUT;
}
/*
The following cost calculation is identical to the cost calculation for
the join cache later on, except for the HASH_FANOUT
*/
if (s->quick)
{
/*
Cost of reading rows through opt_range including comparing the rows
with the attached WHERE clause.
*/
cur_cost= s->quick->read_time;
}
else
cur_cost= s->cached_scan_and_compare_time;
/* We read the table as many times as join buffer becomes full. */
refills= (1.0 + floor((double) cache_record_length(join,idx) *
record_count /
(double) thd->variables.join_buff_size));
cur_cost= COST_MULT(cur_cost, refills);
/*
Cost of doing the hash lookup and check all matching rows with the
WHERE clause.
We assume here that, thanks to the hash, we don't have to compare all
row combinations, only a fanout or HASH_FANOUT (10%) rows in the cache.
*/
row_copy_cost= (ROW_COPY_COST_THD(thd) *
JOIN_CACHE_ROW_COPY_COST_FACTOR(thd));
matching_combinations= fanout * join_sel * record_count;
copy_cost= (record_count * row_copy_cost +
matching_combinations *
((idx - join->const_tables) * row_copy_cost));
where_cost= matching_combinations * WHERE_COST_THD(thd);
cur_cost= COST_ADD(cur_cost, copy_cost + where_cost);
best.cost= cur_cost;
best.records_read= best.records_after_filter= rows2double(s->records);
best.records= rnd_records; // Records after where (Legacy value)
best.key= hj_start_key;
best.ref_depends_map= 0;
best.use_join_buffer= TRUE;
best.filter= 0;
best.type= JT_HASH;
best.refills= double_to_ulonglong(ceil(refills));
if (unlikely(trace_access_hash.trace_started()))
trace_access_hash.
add("rows", rnd_records).
add("rows_after_hash", fanout * join_sel).
add("refills", refills).
add("jbuf_use_cost", copy_cost).
add("extra_cond_check_cost", where_cost).
add("total_cost", best.cost).
add("chosen", true);
}
/*
Don't test table scan if it can't be better.
Prefer key lookup if we would use the same key for scanning.
Don't do a table scan on InnoDB tables, if we can read the used
parts of the row from any of the used index.
This is because table scans uses index and we would not win
anything by using a table scan.
A word for word translation of the below if-statement in sergefp's
understanding: we check if we should use table scan if:
(1) The found 'ref' access produces more records than a table scan
(or index scan, or quick select), or 'ref' is more expensive than
any of them.
(2) This doesn't hold: the best way to perform table scan is to to perform
'range' access using index IDX, and the best way to perform 'ref'
access is to use the same index IDX, with the same or more key parts.
(note: it is not clear how this rule is/should be extended to
index_merge quick selects). Also if we have a hash join we prefer that
over a table scan. This heuristic doesn't apply if the quick select
uses the group-by min-max optimization.
(3) See above note about InnoDB.
(4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access
path, but there is no quick select)
If the condition in the above brackets holds, then the only possible
"table scan" access method is ALL/index (there is no quick select).
Since we have a 'ref' access path, and FORCE INDEX instructs us to
choose it over ALL/index, there is no need to consider a full table
scan.
(5) Non-flattenable semi-joins: don't consider doing a scan of temporary
table if we had an option to make lookups into it. In real-world cases,
lookups are cheaper than full scans, but when the table is small, they
can be [considered to be] more expensive, which causes lookups not to
be used for cases with small datasets, which is annoying.
*/
Json_writer_object trace_access_scan(thd);
if ((best.records_read >= s->found_records ||
best.cost > s->read_time) && // (1)
!(best.key && best.key->key == MAX_KEY) && // (2)
!(s->quick &&
s->quick->get_type() != QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX && // (2)
best.key && s->quick->index == best.key->key && // (2)
table->opt_range_keys.is_set(best.key->key) && // (2)
best.max_key_part >= table->opt_range[best.key->key].key_parts) &&// (2)
!((file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX) && // (3)
!table->covering_keys.is_clear_all() && best.key && !s->quick) &&// (3)
!(table->force_index_join && best.key && !s->quick) && // (4)
!(best.key && table->pos_in_table_list->jtbm_subselect)) // (5)
{ // Check full join
double records_after_filter, org_records;
double records_best_filter, cur_cost;
Range_rowid_filter_cost_info *filter= 0;
double startup_cost= s->startup_cost;
const char *scan_type= "";
enum join_type type;
uint forced_index= MAX_KEY;
bool force_plan= 0, use_join_buffer= 0;
ulonglong refills= 1;
ALL_READ_COST cost;
/*
Range optimizer never proposes a RANGE if it isn't better
than FULL: so if RANGE is present, it's always preferred to FULL.
Here we estimate its cost.
*/
if (s->quick)
{
/*
For each record we:
- read record range through 'quick'
- skip rows which does not satisfy WHERE constraints
*/
/*
Use record count from range optimizer.
This is done to make records found comparable to what we get with
'ref' access.
*/
org_records= records_after_filter= rows2double(s->found_records);
records_best_filter= org_records;
set_if_smaller(best.records_out, records_best_filter);
if (s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
{
uint key_no= s->quick->index;
TABLE::OPT_RANGE *range= &table->opt_range[key_no];
/*
Ensure that 'range' and 's' are coming from the same source
The complex 'double' comparison is there because floating point
registers complications when costs are calculated.
*/
DBUG_ASSERT(range->rows >= s->found_records);
DBUG_ASSERT((range->cost.total_cost() == 0.0 &&
s->quick->read_time == 0.0) ||
compare_cost(range->cost.total_cost(),
s->quick->read_time));
DBUG_ASSERT(compare_cost(range->cost.comp_cost,
range->rows * file->WHERE_COST));
/* Get range cost. This does not include cost of the WHERE */
range->get_costs(&cost);
/* Ensure that cost from opt_range are correct */
DBUG_ASSERT(compare_cost(file->cost_no_capping(&cost) +
range->cost.comp_cost +
range->cost.setup_cost,
s->quick->read_time));
if (table->can_use_rowid_filter(key_no))
{
filter= table->best_range_rowid_filter(key_no,
rows2double(range->rows),
file->cost(&cost),
file->cost(cost.index_cost),
record_count,
&records_best_filter);
set_if_smaller(best.records_out, records_best_filter);
if (filter)
{
filter= filter->apply_filter(thd, table, &cost,
&records_after_filter,
&startup_cost,
range->ranges,
record_count);
if (filter)
{
set_if_smaller(best.records_out, records_after_filter);
table->opt_range[key_no].selectivity= filter->selectivity;
}
}
}
if (best.key && key_no == best.key->key &&
!best.found_ref &&
best.max_key_part < table->opt_range[best.key->key].key_parts &&
table->opt_range[best.key->key].ranges == 1)
{
/*
Force to use range as it is using the 'best key' and using more
key parts (and thus will read less rows)
*/
force_plan= 1;
}
type= JT_RANGE;
/*
We cannot use range->cost.cmp_cost here as records_after_filter
is be different if filter is used.
*/
cost.copy_cost+= (records_after_filter * file->WHERE_COST +
range->cost.setup_cost);
}
else
{
type= JT_INDEX_MERGE;
/*
We don't know exactly from where the costs comes from.
Let's store it in copy_cost.
Note that s->quick->read_time includes the cost of comparing
the row with the where clause (WHERE_COST)
*/
cost.reset();
cost.copy_cost= s->quick->read_time;
}
loose_scan_opt.check_range_access(join, idx, s->quick);
}
else
{
double records_table_filter;
/* We will now calculate cost of scan, with or without join buffer */
records_best_filter= records_after_filter=
apply_selectivity_for_table(s, use_cond_selectivity);
records_table_filter= ((found_constraint) ?
use_found_constraint(records_after_filter) :
records_after_filter);
DBUG_ASSERT(records_after_filter <= s->records);
DBUG_ASSERT(records_after_filter <= s->found_records);
set_if_smaller(best.records_out, records_table_filter);
org_records= rows2double(s->records);
/* Estimate cost of reading table. */
if (s->cached_forced_index_type)
{
type= s->cached_forced_index_type;
cost= s->cached_forced_index_cost;
forced_index= s->cached_forced_index;
}
else
{
if (table->force_index_join && !best.key)
{
/*
The query is using 'forced_index' and we did not find a usable key.
Calculate cost of a table scan with the forced index.
*/
type= JT_NEXT;
if (s->cached_covering_key != MAX_KEY)
{
/* Use value from estimate_scan_time */
forced_index= s->cached_covering_key;
cost= s->cached_scan_and_compare_cost;
}
else
{
#ifdef FORCE_INDEX_SHOULD_FORCE_INDEX_SCAN
/* No cached key, use shortest allowed key */
key_map keys= *file->keys_to_use_for_scanning();
keys.intersect(table->keys_in_use_for_query);
if ((forced_index= find_shortest_key(table, &keys)) < MAX_KEY)
{
cost= cost_for_index_read(thd, table,
forced_index,
s->records, 0);
/* Calculate cost of checking the attached WHERE */
cost.copy_cost+= s->records * file->WHERE_COST;
}
else
#endif
{
/* No usable key, use table scan */
cost= s->cached_scan_and_compare_cost;
type= JT_ALL;
}
}
}
else // table scan
{
cost= s->cached_scan_and_compare_cost;
type= JT_ALL;
}
/* Cache result for other calls */
s->cached_forced_index_type= type;
s->cached_forced_index_cost= cost;
s->cached_forced_index= forced_index;
}
}
/*
Note: the condition checked here is very out of date and incorrect.
Below, we use a more accurate check when assigning the value of
best.use_join_buffer.
*/
if ((s->table->map & join->outer_join) || disable_jbuf)
{
/*
Simple scan
We estimate we have to read org_records rows.
records_after_filter rows will survive the where check of constants.
'best.records_out' rows will survive after the check against columns
from previous tables.
*/
scan_type= "scan";
/*
We have to compare each row set against all previous row combinations
*/
cur_cost= file->cost_for_reading_multiple_times(record_count,
&cost);
}
else
{
/* Scan trough join cache */
double cmp_time, row_copy_cost, tmp_refills;
/*
Note that the cost of checking all rows against the table specific
WHERE is already included in cur_cost.
*/
scan_type= "scan_with_join_cache";
/* Calculate cost of refills */
tmp_refills= (1.0 + floor((double) cache_record_length(join,idx) *
(record_count /
(double) thd->variables.join_buff_size)));
cur_cost= file->cost_for_reading_multiple_times(tmp_refills,
&cost);
refills= double_to_ulonglong(ceil(tmp_refills));
/* We come here only if there are already rows in the join cache */
DBUG_ASSERT(idx != join->const_tables);
/*
records_after_filter is the number of rows that have survived
the table specific WHERE check that only involves constants.
Calculate cost of:
- Copying all previous record combinations to the join cache
- Copying the tables from the join cache to table records
- Checking the WHERE against the final row combination
*/
row_copy_cost= (ROW_COPY_COST_THD(thd) *
JOIN_CACHE_ROW_COPY_COST_FACTOR(thd));
cmp_time= (record_count * row_copy_cost +
records_after_filter * record_count *
((idx - join->const_tables) * row_copy_cost +
WHERE_COST_THD(thd)));
cur_cost= COST_ADD(cur_cost, cmp_time);
use_join_buffer= 1;
}
/* Splitting technique cannot be used with join cache */
if (table->is_splittable())
startup_cost+= table->get_materialization_cost();
cur_cost+= startup_cost;
if (unlikely(trace_access_scan.trace_started()))
{
trace_access_scan.
add("access_type",
type == JT_ALL ? scan_type : join_type_str[type]);
if (type == JT_RANGE)
trace_access_scan.
add("range_index", table->key_info[s->quick->index].name);
trace_access_scan.
add("rows", org_records).
add("rows_after_filter", records_after_filter).
add("rows_out", best.records_out).
add("cost", cur_cost);
if (use_join_buffer)
trace_access_scan.
add("cost_without_join_buffer",
file->cost_for_reading_multiple_times(record_count, &cost));
if (type == JT_ALL)
{
trace_access_scan.add("index_only",
(s->cached_covering_key != MAX_KEY));
}
}
if (cur_cost + COST_EPS < best.cost || force_plan)
{
/*
If the table has a range (s->quick is set) make_join_select()
will ensure that this will be used
*/
best.cost= cur_cost;
best.records_read= org_records; // Records accessed
best.records= records_after_filter; // Records to be checked against
// previous row combinations
/*
If we are using 'use_cond_selectivity > 1' then
table_after_join_selectivity may take into account other
filters that what is currently used so we have to use
records_after_filter. If 'use_cond_selectivity <= 1 then we
can use information from the best filter.
*/
best.records_after_filter= ((use_cond_selectivity > 1) ?
records_after_filter :
records_best_filter);
best.key= 0;
best.forced_index= forced_index;
/*
filter is only set if
s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE
*/
best.filter= filter;
/* range/index_merge/ALL/index access method are "independent", so: */
best.ref_depends_map= 0;
best.use_join_buffer= use_join_buffer ||
MY_TEST(!disable_jbuf &&
(join->allowed_outer_join_with_cache ||
!(s->table->map & join->outer_join)));
best.refills= refills;
best.spl_plan= 0;
best.type= type;
trace_access_scan.add("chosen", true);
}
else
trace_access_scan.add("chosen", false);
}
else
{
if (unlikely(trace_access_scan.trace_started()))
trace_access_scan.
add("type", "scan").
add("chosen", false).
add("cause", "cost");
}
crash_if_first_double_is_bigger(best.records_out, best.records);
crash_if_first_double_is_bigger(best.records_out, best.records_read);
/* Update the cost information for the current partial plan */
pos->loops= record_count;
pos->records_init= best.records_read;
pos->records_after_filter= best.records_after_filter;
pos->records_read= best.records;
pos->records_out= best.records_out;
pos->prev_record_reads= best.prev_record_reads;
pos->identical_keys= best.identical_keys;
pos->read_time= best.cost;
pos->key= best.key;
pos->forced_index= best.forced_index;
pos->type= best.type;
pos->table= s;
pos->ref_depend_map= best.ref_depends_map;
pos->loosescan_picker.loosescan_key= MAX_KEY;
pos->use_join_buffer= best.use_join_buffer;
pos->firstmatch_with_join_buf= 0;
pos->spl_plan= best.spl_plan;
pos->spl_pd_boundary= best.spl_plan ? spl_pd_boundary: 0;
pos->range_rowid_filter_info= best.filter;
pos->key_dependent= (best.type == JT_EQ_REF ? (table_map) 0 :
key_dependent & remaining_tables);
pos->refills= best.refills;
loose_scan_opt.save_to_position(s, record_count, pos->records_out,
loose_scan_pos);
if (!best.key &&
idx == join->const_tables && // First table
table == join->sort_by_table &&
join->unit->lim.get_select_limit() >= best.records) // QQQ Why?
{
trace_access_scan.add("use_tmp_table", true);
join->sort_by_table= (TABLE*) 1; // Must use temporary table
}
trace_access_scan.end();
trace_paths.end();
if (unlikely(thd->trace_started()))
print_best_access_for_table(thd, pos);
DBUG_VOID_RETURN;
}
/*
Find JOIN_TAB's embedding (i.e, parent) subquery.
- For merged semi-joins, tables inside the semi-join nest have their
semi-join nest as parent. We intentionally ignore results of table
pullout action here.
- For non-merged semi-joins (JTBM tabs), the embedding subquery is the
JTBM join tab itself.
*/
static TABLE_LIST* get_emb_subq(JOIN_TAB *tab)
{
TABLE_LIST *tlist= tab->table->pos_in_table_list;
if (tlist->jtbm_subselect)
return tlist;
TABLE_LIST *embedding= tlist->embedding;
if (!embedding || !embedding->sj_subq_pred)
return NULL;
return embedding;
}
/*
Choose initial table order that "helps" semi-join optimizations.
The idea is that we should start with the order that is the same as the one
we would have had if we had semijoin=off:
- Top-level tables go first
- subquery tables are grouped together by the subquery they are in,
- subquery tables are attached where the subquery predicate would have been
attached if we had semi-join off.
This function relies on join_tab_cmp()/join_tab_cmp_straight() to produce
certain pre-liminary ordering, see compare_embedding_subqueries() for its
description.
*/
static void choose_initial_table_order(JOIN *join)
{
TABLE_LIST *emb_subq;
JOIN_TAB **tab= join->best_ref + join->const_tables;
JOIN_TAB **tabs_end= tab + join->table_count - join->const_tables;
DBUG_ENTER("choose_initial_table_order");
/* Find where the top-level JOIN_TABs end and subquery JOIN_TABs start */
for (; tab != tabs_end; tab++)
{
if ((emb_subq= get_emb_subq(*tab)))
break;
}
uint n_subquery_tabs= (uint)(tabs_end - tab);
if (!n_subquery_tabs)
DBUG_VOID_RETURN;
/* Copy the subquery JOIN_TABs to a separate array */
JOIN_TAB *subquery_tabs[MAX_TABLES];
memcpy(subquery_tabs, tab, sizeof(JOIN_TAB*) * n_subquery_tabs);
JOIN_TAB **last_top_level_tab= tab;
JOIN_TAB **subq_tab= subquery_tabs;
JOIN_TAB **subq_tabs_end= subquery_tabs + n_subquery_tabs;
TABLE_LIST *cur_subq_nest= NULL;
for (; subq_tab < subq_tabs_end; subq_tab++)
{
if (get_emb_subq(*subq_tab)!= cur_subq_nest)
{
/*
Reached the part of subquery_tabs that covers tables in some subquery.
*/
cur_subq_nest= get_emb_subq(*subq_tab);
/* Determine how many tables the subquery has */
JOIN_TAB **last_tab_for_subq;
for (last_tab_for_subq= subq_tab;
last_tab_for_subq < subq_tabs_end &&
get_emb_subq(*last_tab_for_subq) == cur_subq_nest;
last_tab_for_subq++) {}
uint n_subquery_tables= (uint)(last_tab_for_subq - subq_tab);
/*
Walk the original array and find where this subquery would have been
attached to
*/
table_map need_tables= cur_subq_nest->original_subq_pred_used_tables;
need_tables &= ~(join->const_table_map | PSEUDO_TABLE_BITS);
for (JOIN_TAB **top_level_tab= join->best_ref + join->const_tables;
top_level_tab < last_top_level_tab;
//top_level_tab < join->best_ref + join->table_count;
top_level_tab++)
{
need_tables &= ~(*top_level_tab)->table->map;
/* Check if this is the place where subquery should be attached */
if (!need_tables)
{
/* Move away the top-level tables that are after top_level_tab */
size_t top_tail_len= last_top_level_tab - top_level_tab - 1;
memmove(top_level_tab + 1 + n_subquery_tables, top_level_tab + 1,
sizeof(JOIN_TAB*)*top_tail_len);
last_top_level_tab += n_subquery_tables;
memcpy(top_level_tab + 1, subq_tab, sizeof(JOIN_TAB*)*n_subquery_tables);
break;
}
}
DBUG_ASSERT(!need_tables);
subq_tab += n_subquery_tables - 1;
}
}
DBUG_VOID_RETURN;
}
/**
Selects and invokes a search strategy for an optimal query plan.
The function checks user-configurable parameters that control the search
strategy for an optimal plan, selects the search method and then invokes
it. Each specific optimization procedure stores the final optimal plan in
the array 'join->best_positions', and the cost of the plan in
'join->best_read'.
@param join pointer to the structure providing all context info for
the query
@param join_tables set of the tables in the query
@param emb_sjm_nest List of tables in case of materialized semi-join nest
@retval
FALSE ok
@retval
TRUE Fatal error
*/
bool
choose_plan(JOIN *join, table_map join_tables, TABLE_LIST *emb_sjm_nest)
{
uint search_depth= join->thd->variables.optimizer_search_depth;
uint use_cond_selectivity=
join->thd->variables.optimizer_use_condition_selectivity;
bool straight_join= MY_TEST(join->select_options & SELECT_STRAIGHT_JOIN);
THD *thd= join->thd;
qsort_cmp2 jtab_sort_func;
DBUG_ENTER("choose_plan");
join->limit_optimization_mode= false;
join->cur_embedding_map= 0;
join->extra_heuristic_pruning= false;
join->prune_level= join->thd->variables.optimizer_prune_level;
reset_nj_counters(join, join->join_list);
if ((join->emb_sjm_nest= emb_sjm_nest))
{
/* We're optimizing semi-join materialization nest, so put the
tables from this semi-join as first
*/
jtab_sort_func= join_tab_cmp_embedded_first;
/*
If we are searching for the execution plan of a materialized semi-join
nest then allowed_tables contains bits only for the tables from this
nest.
*/
join->allowed_tables= (emb_sjm_nest->sj_inner_tables &
~join->const_table_map);
}
else
{
/*
if (SELECT_STRAIGHT_JOIN option is set)
reorder tables so dependent tables come after tables they depend
on, otherwise keep tables in the order they were specified in the query
else
Apply heuristic: pre-sort all access plans with respect to the number
of records accessed.
*/
jtab_sort_func= straight_join ? join_tab_cmp_straight : join_tab_cmp;
join->allowed_tables= ~join->const_table_map;
}
/*
psergey-todo: if we're not optimizing an SJM nest,
- sort that outer tables are first, and each sjm nest follows
- then, put each [sjm_table1, ... sjm_tableN] sub-array right where
WHERE clause pushdown would have put it.
*/
my_qsort2(join->best_ref + join->const_tables,
join->table_count - join->const_tables, sizeof(JOIN_TAB*),
jtab_sort_func, (void*) emb_sjm_nest);
Json_writer_object wrapper(thd);
Json_writer_array trace_plan(thd,"considered_execution_plans");
if (!emb_sjm_nest)
choose_initial_table_order(join);
/*
Note: constant tables are already in the join prefix. We don't
put them into the cur_sj_inner_tables, though.
*/
join->cur_sj_inner_tables= 0;
if (straight_join)
{
optimize_straight_join(join, join_tables);
}
else
{
DBUG_ASSERT(search_depth <= MAX_TABLES + 1);
if (search_depth == 0)
/* Automatically determine a reasonable value for 'search_depth' */
search_depth= determine_search_depth(join);
if (join->prune_level >= 1 &&
search_depth >= thd->variables.optimizer_extra_pruning_depth)
{
join->extra_heuristic_pruning= true;
}
double limit_cost= DBL_MAX;
double limit_record_count;
POSITION *limit_plan= NULL;
/*
First, build a join plan that can short-cut ORDER BY...LIMIT.
Do it if
(1) The SELECT in query makes it possible to do short-cutting for
some table TBL.
(2) We are optimizing the whole JOIN, not a semi-join nest
(3) The table TBL has not been marked as constant (in this case,
ORDER BY LIMIT will be optimized away)
*/
if (join->limit_shortcut_applicable && // (1)
!join->emb_sjm_nest && // (2)
!(join->sort_by_table->map & join->const_table_map)) //(3)
{
bool res;
Json_writer_object wrapper(join->thd);
Json_writer_array trace(join->thd, "join_limit_shortcut_plan_search");
join->limit_optimization_mode= true;
res= greedy_search(join, join_tables, search_depth,
use_cond_selectivity);
join->limit_optimization_mode= false;
if (res)
DBUG_RETURN(TRUE);
DBUG_ASSERT(join->best_read != DBL_MAX);
/*
We've built a join order. Adjust its cost based on ORDER BY...LIMIT
short-cutting.
*/
limit_plan= join_limit_shortcut_finalize_plan(join, &limit_cost);
limit_record_count= join->join_record_count;
}
/* The main call to search for the query plan: */
if (greedy_search(join, join_tables, search_depth, use_cond_selectivity))
DBUG_RETURN(TRUE);
DBUG_ASSERT(join->best_read != DBL_MAX);
if (limit_plan && limit_cost < join->best_read)
{
/* Plan that uses ORDER BY ... LIMIT shortcutting is better. */
memcpy((uchar*)join->best_positions, (uchar*)limit_plan,
sizeof(POSITION)*join->table_count);
join->best_read= limit_cost;
join->join_record_count= limit_record_count;
}
}
join->emb_sjm_nest= 0;
DBUG_RETURN(FALSE);
}
/*
Compare two join tabs based on the subqueries they are from.
- top-level join tabs go first
- then subqueries are ordered by their select_id (we're using this
criteria because we need a cross-platform, deterministic ordering)
@return
0 - equal
-1 - jt1 < jt2
1 - jt1 > jt2
*/
static int compare_embedding_subqueries(const JOIN_TAB *jt1, const JOIN_TAB *jt2)
{
/* Determine if the first table is originally from a subquery */
TABLE_LIST *tbl1= jt1->table->pos_in_table_list;
uint tbl1_select_no;
if (tbl1->jtbm_subselect)
{
tbl1_select_no=
tbl1->jtbm_subselect->unit->first_select()->select_number;
}
else if (tbl1->embedding && tbl1->embedding->sj_subq_pred)
{
tbl1_select_no=
tbl1->embedding->sj_subq_pred->unit->first_select()->select_number;
}
else
tbl1_select_no= 1; /* Top-level */
/* Same for the second table */
TABLE_LIST *tbl2= jt2->table->pos_in_table_list;
uint tbl2_select_no;
if (tbl2->jtbm_subselect)
{
tbl2_select_no=
tbl2->jtbm_subselect->unit->first_select()->select_number;
}
else if (tbl2->embedding && tbl2->embedding->sj_subq_pred)
{
tbl2_select_no=
tbl2->embedding->sj_subq_pred->unit->first_select()->select_number;
}
else
tbl2_select_no= 1; /* Top-level */
/*
Put top-level tables in front. Tables from within subqueries must follow,
grouped by their owner subquery. We don't care about the order that
subquery groups are in, because choose_initial_table_order() will re-order
the groups.
*/
if (tbl1_select_no != tbl2_select_no)
return tbl1_select_no > tbl2_select_no ? 1 : -1;
return 0;
}
/**
Compare two JOIN_TAB objects based on the number of accessed records.
@param ptr1 pointer to first JOIN_TAB object
@param ptr2 pointer to second JOIN_TAB object
NOTES
The order relation implemented by join_tab_cmp() is not transitive,
i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
but (c < a). This implies that result of a sort using the relation
implemented by join_tab_cmp() depends on the order in which
elements are compared, i.e. the result is implementation-specific.
Example:
a: dependent = 0x0 table->map = 0x1 found_records = 3 ptr = 0x907e6b0
b: dependent = 0x0 table->map = 0x2 found_records = 3 ptr = 0x907e838
c: dependent = 0x6 table->map = 0x10 found_records = 2 ptr = 0x907ecd0
As for subqueries, this function must produce order that can be fed to
choose_initial_table_order().
@retval
1 if first is bigger
@retval
-1 if second is bigger
@retval
0 if equal
*/
static int
join_tab_cmp(void *, const void* ptr1, const void* ptr2)
{
auto jt1= *(static_cast<const JOIN_TAB *const *>(ptr1));
auto jt2= *(static_cast<const JOIN_TAB *const *>(ptr2));
int cmp;
if ((cmp= compare_embedding_subqueries(jt1, jt2)) != 0)
return cmp;
/*
After that do ordering according to numbers of
records in the table.
*/
if (jt1->found_records > jt2->found_records)
return 1;
if (jt1->found_records < jt2->found_records)
return -1;
return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}
/**
Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN.
*/
static int
join_tab_cmp_straight(void *, const void* ptr1, const void* ptr2)
{
auto jt1= *(static_cast<const JOIN_TAB *const *>(ptr1));
auto jt2= *(static_cast<const JOIN_TAB *const *>(ptr2));
/*
We don't do subquery flattening if the parent or child select has
STRAIGHT_JOIN modifier. It is complicated to implement and the semantics
is hardly useful.
*/
DBUG_ASSERT(!jt1->emb_sj_nest);
DBUG_ASSERT(!jt2->emb_sj_nest);
int cmp;
if ((cmp= compare_embedding_subqueries(jt1, jt2)) != 0)
return cmp;
/*
We have to check dependency with straight_join as we don't reorder
later as we do for other plans in best_extension_by_limited_search().
*/
if (jt1->dependent & jt2->table->map)
return 1;
if (jt2->dependent & jt1->table->map)
return -1;
return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}
/*
Same as join_tab_cmp but tables from within the given semi-join nest go
first. Used when the optimizing semi-join materialization nests.
*/
static int
join_tab_cmp_embedded_first(void *emb, const void* ptr1, const void* ptr2)
{
TABLE_LIST *emb_nest= static_cast<TABLE_LIST *>(emb);
auto jt1= *(static_cast<const JOIN_TAB *const *>(ptr1));
auto jt2= *(static_cast<const JOIN_TAB *const *>(ptr2));
if (jt1->emb_sj_nest == emb_nest && jt2->emb_sj_nest != emb_nest)
return -1;
if (jt1->emb_sj_nest != emb_nest && jt2->emb_sj_nest == emb_nest)
return 1;
if (jt1->found_records > jt2->found_records)
return 1;
if (jt1->found_records < jt2->found_records)
return -1;
return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}
/**
Heuristic procedure to automatically guess a reasonable degree of
exhaustiveness for the greedy search procedure.
The procedure estimates the optimization time and selects a search depth
big enough to result in a near-optimal QEP, that doesn't take too long to
find. If the number of tables in the query exceeds some constant, then
search_depth is set to this constant.
@param join pointer to the structure providing all context info for
the query
@note
This is an extremely simplistic implementation that serves as a stub for a
more advanced analysis of the join. Ideally the search depth should be
determined by learning from previous query optimizations, because it will
depend on the CPU power (and other factors).
@todo
this value should be determined dynamically, based on statistics:
uint max_tables_for_exhaustive_opt= 7;
@todo
this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
@return
A positive integer that specifies the search depth (and thus the
exhaustiveness) of the depth-first search algorithm used by
'greedy_search'.
*/
static uint
determine_search_depth(JOIN *join)
{
uint table_count= join->table_count - join->const_tables;
uint search_depth;
/* TODO: this value should be determined dynamically, based on statistics: */
uint max_tables_for_exhaustive_opt= 7;
if (table_count <= max_tables_for_exhaustive_opt)
search_depth= table_count+1; // use exhaustive for small number of tables
else
/*
TODO: this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
*/
search_depth= max_tables_for_exhaustive_opt; // use greedy search
return search_depth;
}
/**
Select the best ways to access the tables in a query without reordering them.
Find the best access paths for each query table and compute their costs
according to their order in the array 'join->best_ref' (thus without
reordering the join tables). The function calls sequentially
'best_access_path' for each table in the query to select the best table
access method. The final optimal plan is stored in the array
'join->best_positions', and the corresponding cost in 'join->best_read'.
@param join pointer to the structure providing all context info
for the query
@param remaining_tables set of the tables in the query
@note
This function can be applied to:
- queries with STRAIGHT_JOIN
- internally to compute the cost of an arbitrary QEP
@par
Thus 'optimize_straight_join' can be used at any stage of the query
optimization process to finalize a QEP as it is.
*/
static void
optimize_straight_join(JOIN *join, table_map remaining_tables)
{
JOIN_TAB *s;
uint idx= join->const_tables;
bool disable_jbuf= join->thd->variables.join_cache_level == 0;
double record_count= 1.0;
double read_time= 0.0;
uint use_cond_selectivity=
join->thd->variables.optimizer_use_condition_selectivity;
POSITION loose_scan_pos;
THD *thd= join->thd;
for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
{
POSITION *position= join->positions + idx;
Json_writer_object trace_one_table(thd);
double original_record_count, current_record_count;
if (unlikely(thd->trace_started()))
trace_plan_prefix(&trace_one_table, join, idx, remaining_tables);
/* Find the best access method from 's' to the current partial plan */
best_access_path(join, s, remaining_tables, join->positions, idx,
disable_jbuf, record_count,
position, &loose_scan_pos);
/* Compute the cost of the new plan extended with 's' */
current_record_count= COST_MULT(record_count, position->records_out);
read_time= COST_ADD(read_time, position->read_time);
original_record_count= current_record_count;
optimize_semi_joins(join, remaining_tables, idx, ¤t_record_count,
&read_time, &loose_scan_pos);
if (position->sj_strategy != SJ_OPT_NONE && original_record_count)
{
/* Adjust records_out to contain the final number of rows */
double ratio= current_record_count / original_record_count;
if (ratio < 1)
{
position->records_out*= ratio;
}
if (unlikely(trace_one_table.trace_started()))
{
trace_one_table.
add("sj_rows_out", position->records_out).
add("sj_rows_for_plan", current_record_count).
add("sj_filtered", safe_filtered(position->records_out,
position->records_init));
}
}
remaining_tables&= ~(s->table->map);
if (use_cond_selectivity > 1 && position->sj_strategy == SJ_OPT_NONE)
{
double pushdown_cond_selectivity, records_out;
pushdown_cond_selectivity= table_after_join_selectivity(join, idx, s,
remaining_tables,
&records_out);
if (unlikely(thd->trace_started()) &&
pushdown_cond_selectivity != 1.0)
{
trace_one_table.
add("rows_out", records_out).
add("pushdown_cond_selectivity", pushdown_cond_selectivity).
add("filtered", safe_filtered(position->records_out,
position->records_init));
}
position->cond_selectivity= pushdown_cond_selectivity;
position->records_out= records_out;
current_record_count= COST_MULT(record_count, records_out);
}
else
position->cond_selectivity= 1.0;
position->partial_join_cardinality= current_record_count;
++idx;
record_count= current_record_count;
}
if (join->sort_by_table &&
join->sort_by_table != join->positions[join->const_tables].table->table)
{
/*
We may have to make a temp table, note that this is only a
heuristic since we cannot know for sure at this point if we
we are going to use addon fields or to have flush sorting to
disk. We also don't know the temporary table will be in memory
or disk.
The following calculation takes a middle ground where assume
we can sort the keys in memory but have to use a disk based
temporary table to retrive the rows.
This cost is probably much bigger than it has to be...
*/
double sort_cost;
sort_cost= (get_qsort_sort_cost((ha_rows)record_count, 0) +
record_count *
DISK_TEMPTABLE_LOOKUP_COST(thd));
{
if (unlikely(thd->trace_started()))
{
Json_writer_object trace_one_table(thd);
trace_one_table.add("estimated_cost_for_sorting", sort_cost);
}
}
read_time= COST_ADD(read_time, sort_cost);
}
memcpy((uchar*) join->best_positions, (uchar*) join->positions,
sizeof(POSITION)*idx);
join->join_record_count= record_count;
join->best_read= read_time;
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a greedy search.
The search procedure uses a hybrid greedy/exhaustive search with controlled
exhaustiveness. The search is performed in N = card(remaining_tables)
steps. Each step evaluates how promising is each of the unoptimized tables,
selects the most promising table, and extends the current partial QEP with
that table. Currenly the most 'promising' table is the one with least
expensive extension.\
There are two extreme cases:
-# When (card(remaining_tables) < search_depth), the estimate finds the
best complete continuation of the partial QEP. This continuation can be
used directly as a result of the search.
-# When (search_depth == 1) the 'best_extension_by_limited_search'
consideres the extension of the current QEP with each of the remaining
unoptimized tables.
All other cases are in-between these two extremes. Thus the parameter
'search_depth' controlls the exhaustiveness of the search. The higher the
value, the longer the optimization time and possibly the better the
resulting plan. The lower the value, the fewer alternative plans are
estimated, but the more likely to get a bad QEP.
All intermediate and final results of the procedure are stored in 'join':
- join->positions : modified for every partial QEP that is explored
- join->best_positions: modified for the current best complete QEP
- join->best_read : modified for the current best complete QEP
- join->best_ref : might be partially reordered
The final optimal plan is stored in 'join->best_positions', and its
corresponding cost in 'join->best_read'.
@note
The following pseudocode describes the algorithm of 'greedy_search':
@code
procedure greedy_search
input: remaining_tables
output: pplan;
{
pplan = <>;
do {
(t, a) = best_extension(pplan, remaining_tables);
pplan = concat(pplan, (t, a));
remaining_tables = remaining_tables - t;
} while (remaining_tables != {})
return pplan;
}
@endcode
where 'best_extension' is a placeholder for a procedure that selects the
most "promising" of all tables in 'remaining_tables'.
Currently this estimate is performed by calling
'best_extension_by_limited_search' to evaluate all extensions of the
current QEP of size 'search_depth', thus the complexity of 'greedy_search'
mainly depends on that of 'best_extension_by_limited_search'.
@par
If 'best_extension()' == 'best_extension_by_limited_search()', then the
worst-case complexity of this algorithm is <=
O(N*N^search_depth/search_depth). When serch_depth >= N, then the
complexity of greedy_search is O(N!).
@par
In the future, 'greedy_search' might be extended to support other
implementations of 'best_extension', e.g. some simpler quadratic procedure.
@param join pointer to the structure providing all context info
for the query
@param remaining_tables set of tables not included into the partial plan yet
@param search_depth controlls the exhaustiveness of the search
@param use_cond_selectivity specifies how the selectivity of the conditions
pushed to a table should be taken into account
@retval
FALSE ok
@retval
TRUE Fatal error
*/
static bool
greedy_search(JOIN *join,
table_map remaining_tables,
uint search_depth,
uint use_cond_selectivity)
{
double record_count= 1.0;
double read_time= 0.0;
uint idx= join->const_tables; // index into 'join->best_ref'
uint best_idx;
uint size_remain; // cardinality of remaining_tables
table_map usable_tables, eq_ref_tables;
POSITION best_pos;
JOIN_TAB *best_table; // the next plan node to be added to the curr QEP
// ==join->tables or # tables in the sj-mat nest we're optimizing
uint n_tables __attribute__((unused));
DBUG_ENTER("greedy_search");
DBUG_ASSERT(!(remaining_tables & join->const_table_map));
/* number of tables that remain to be optimized */
usable_tables= (join->emb_sjm_nest ?
(join->emb_sjm_nest->sj_inner_tables &
~join->const_table_map & remaining_tables):
remaining_tables);
n_tables= size_remain= my_count_bits(usable_tables);
join->next_sort_position= join->sort_positions;
do {
/*
Find the extension of the current QEP with the lowest cost
We are using remaining_table instead of usable tables here as
in case of an emb_sjm_nest, we want to be able to check if
an embedded table is depending on an outer table.
*/
join->best_read= DBL_MAX;
if ((int) best_extension_by_limited_search(join, remaining_tables, idx,
record_count,
read_time, search_depth,
use_cond_selectivity,
&eq_ref_tables) <
(int) SEARCH_OK)
DBUG_RETURN(TRUE);
/*
'best_read < DBL_MAX' means that optimizer managed to find
some plan and updated 'best_positions' array accordingly.
*/
DBUG_ASSERT(join->best_read < DBL_MAX);
if (size_remain <= search_depth)
{
/*
'join->best_positions' contains a complete optimal extension of the
current partial QEP.
*/
DBUG_EXECUTE("opt", print_plan(join, n_tables,
record_count, read_time, read_time,
"optimal"););
DBUG_RETURN(FALSE);
}
/* select the first table in the optimal extension as most promising */
best_pos= join->best_positions[idx];
best_table= best_pos.table;
/*
Each subsequent loop of 'best_extension_by_limited_search' uses
'join->positions' for cost estimates, therefore we have to update its
value.
*/
join->positions[idx]= best_pos;
/*
Update the interleaving state after extending the current partial plan
with a new table.
We are doing this here because best_extension_by_limited_search reverts
the interleaving state to the one of the non-extended partial plan
on exit.
*/
bool is_interleave_error __attribute__((unused))=
check_interleaving_with_nj (best_table);
/* This has been already checked by best_extension_by_limited_search */
DBUG_ASSERT(!is_interleave_error);
/*
Also, update the semi-join optimization state. Information about the
picked semi-join operation is in best_pos->...picker, but we need to
update the global state in the JOIN object, too.
*/
if (!join->emb_sjm_nest)
update_sj_state(join, best_table, idx, remaining_tables);
/* find the position of 'best_table' in 'join->best_ref' */
best_idx= idx;
JOIN_TAB *pos= join->best_ref[best_idx];
while (pos && best_table != pos)
pos= join->best_ref[++best_idx];
DBUG_ASSERT((pos != NULL)); // should always find 'best_table'
/*
Move 'best_table' at the first free position in the array of joins
We don't need to keep the array sorted as
best_extension_by_limited_search() will sort them.
*/
swap_variables(JOIN_TAB*, join->best_ref[idx], join->best_ref[best_idx]);
/* compute the cost of the new plan extended with 'best_table' */
record_count= COST_MULT(record_count, join->positions[idx].records_read);
read_time= COST_ADD(read_time, join->positions[idx].read_time);
remaining_tables&= ~(best_table->table->map);
--size_remain;
++idx;
DBUG_EXECUTE("opt", print_plan(join, idx,
record_count, read_time, read_time,
"extended"););
} while (TRUE);
}
/**
Get cost of execution and fanout produced by selected tables in the join
prefix (where prefix is defined as prefix in depth-first traversal)
@param end_tab_idx The number of last tab to be taken into
account (in depth-first traversal prefix)
@param filter_map Bitmap of tables whose cost/fanout are to
be taken into account.
@param read_time_arg [out] store read time here
@param record_count_arg [out] store record count here
@note
@returns
read_time_arg and record_count_arg contain the computed cost and fanout
*/
void JOIN::get_partial_cost_and_fanout(int end_tab_idx,
table_map filter_map,
double *read_time_arg,
double *record_count_arg)
{
double record_count= 1;
double read_time= 0.0;
double sj_inner_fanout= 1.0;
JOIN_TAB *end_tab= NULL;
JOIN_TAB *tab;
int i;
int last_sj_table= MAX_TABLES;
/*
Handle a special case where the join is degenerate, and produces no
records
*/
if (table_count == const_tables)
{
*read_time_arg= 0.0;
/*
We return 1, because
- it is the pessimistic estimate (there might be grouping)
- it's safer, as we're less likely to hit the edge cases in
calculations.
*/
*record_count_arg=1.0;
return;
}
for (tab= first_depth_first_tab(this), i= const_tables;
tab;
tab= next_depth_first_tab(this, tab), i++)
{
end_tab= tab;
if (i == end_tab_idx)
break;
}
for (tab= first_depth_first_tab(this), i= const_tables;
;
tab= next_depth_first_tab(this, tab), i++)
{
if (end_tab->bush_root_tab && end_tab->bush_root_tab == tab)
{
/*
We've entered the SJM nest that contains the end_tab. The caller is
- interested in fanout inside the nest (because that's how many times
we'll invoke the attached WHERE conditions)
- not interested in cost
*/
record_count= 1.0;
read_time= 0.0;
}
/*
Ignore fanout (but not cost) from sj-inner tables, as long as
the range that processes them finishes before the end_tab
*/
if (tab->sj_strategy != SJ_OPT_NONE)
{
sj_inner_fanout= 1.0;
last_sj_table= i + tab->n_sj_tables;
}
table_map cur_table_map;
if (tab->table)
cur_table_map= tab->table->map;
else
{
/* This is a SJ-Materialization nest. Check all of its tables */
TABLE *first_child= tab->bush_children->start->table;
TABLE_LIST *sjm_nest= first_child->pos_in_table_list->embedding;
cur_table_map= sjm_nest->nested_join->used_tables;
}
if (tab->records_read && (cur_table_map & filter_map))
{
record_count= COST_MULT(record_count, tab->records_read);
read_time= COST_ADD(read_time, tab->read_time);
if (tab->emb_sj_nest)
sj_inner_fanout= COST_MULT(sj_inner_fanout, tab->records_read);
}
if (i == last_sj_table)
{
record_count /= sj_inner_fanout;
sj_inner_fanout= 1.0;
last_sj_table= MAX_TABLES;
}
if (tab == end_tab)
break;
}
*read_time_arg= read_time;
*record_count_arg= record_count;
}
/*
Get prefix cost and fanout. This function is different from
get_partial_cost_and_fanout:
- it operates on a JOIN that haven't yet finished its optimization phase (in
particular, fix_semijoin_strategies_for_picked_join_order() and
get_best_combination() haven't been called)
- it assumes the the join prefix doesn't have any semi-join plans
These assumptions are met by the caller of the function.
*/
void JOIN::get_prefix_cost_and_fanout(uint n_tables,
double *read_time_arg,
double *record_count_arg)
{
double record_count= 1;
double read_time= 0.0;
for (uint i= const_tables; i < n_tables + const_tables ; i++)
{
if (best_positions[i].records_read)
{
record_count= COST_MULT(record_count, best_positions[i].records_read);
read_time= COST_ADD(read_time, best_positions[i].read_time);
}
}
*read_time_arg= read_time;
*record_count_arg= record_count;
}
/**
Estimate the number of rows that query execution will read.
@todo This is a very pessimistic upper bound. Use join selectivity
when available to produce a more realistic number.
*/
double JOIN::get_examined_rows()
{
double examined_rows;
double prev_fanout= 1;
double records;
JOIN_TAB *tab= first_breadth_first_tab();
JOIN_TAB *prev_tab= tab;
records= (double)tab->get_examined_rows();
while ((tab= next_breadth_first_tab(first_breadth_first_tab(),
top_join_tab_count, tab)))
{
prev_fanout= COST_MULT(prev_fanout, prev_tab->records_read);
records=
COST_ADD(records,
COST_MULT((double) (tab->get_examined_rows()), prev_fanout));
prev_tab= tab;
}
examined_rows= records;
return examined_rows;
}
/**
@brief
Get the selectivity of equalities between columns when joining a table
@param join The optimized join
@param idx The number of tables in the evaluated partual join
@param s The table to be joined for evaluation
@param rem_tables The bitmap of tables to be joined later
@param keyparts The number of key parts to used when joining s
@param ref_keyuse_steps Array of references to keyuses employed to join s
*/
static
double table_multi_eq_cond_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
table_map rem_tables, uint keyparts,
uint16 *ref_keyuse_steps)
{
double sel= 1.0;
COND_EQUAL *cond_equal= join->cond_equal;
if (!cond_equal || !cond_equal->current_level.elements || !s->keyuse)
return sel;
Item_equal *item_equal;
List_iterator_fast<Item_equal> it(cond_equal->current_level);
TABLE *table= s->table;
table_map table_bit= table->map;
POSITION *pos= &join->positions[idx];
while ((item_equal= it++))
{
/*
Check whether we need to take into account the selectivity of
multiple equality item_equal. If this is the case multiply
the current value of sel by this selectivity
*/
table_map used_tables= item_equal->used_tables();
if (!(used_tables & table_bit))
continue;
if (item_equal->get_const())
continue;
bool adjust_sel= FALSE;
Item_equal_fields_iterator fi(*item_equal);
while((fi++) && !adjust_sel)
{
Field *fld= fi.get_curr_field();
if (fld->table->map != table_bit)
continue;
if (pos->key == 0)
adjust_sel= TRUE;
else
{
uint i;
KEYUSE *keyuse= pos->key;
uint key= keyuse->key;
for (i= 0; i < keyparts; i++)
{
if (i > 0)
keyuse+= ref_keyuse_steps[i-1];
uint fldno;
if (is_hash_join_key_no(key))
fldno= keyuse->keypart;
else
fldno= table->key_info[key].key_part[i].fieldnr - 1;
if (fld->field_index == fldno)
break;
}
keyuse= pos->key;
if (i == keyparts)
{
/*
Field fld is included in multiple equality item_equal
and is not a part of the ref key.
The selectivity of the multiple equality must be taken
into account unless one of the ref arguments is
equal to fld.
*/
adjust_sel= TRUE;
for (uint j= 0; j < keyparts && adjust_sel; j++)
{
if (j > 0)
keyuse+= ref_keyuse_steps[j-1];
Item *ref_item= keyuse->val;
if (ref_item->real_item()->type() == Item::FIELD_ITEM)
{
Item_field *field_item= (Item_field *) (ref_item->real_item());
if (item_equal->contains(field_item->field))
adjust_sel= FALSE;
}
}
}
}
}
if (adjust_sel)
{
/*
If ref == 0 and there are no fields in the multiple equality
item_equal that belong to the tables joined prior to s
then the selectivity of multiple equality will be set to 1.0.
*/
double eq_fld_sel= 1.0;
fi.rewind();
while ((fi++))
{
double curr_eq_fld_sel;
Field *fld= fi.get_curr_field();
if (!(fld->table->map & ~(table_bit | rem_tables)))
continue;
curr_eq_fld_sel= get_column_avg_frequency(fld) /
fld->table->stat_records();
if (curr_eq_fld_sel < 1.0)
set_if_bigger(eq_fld_sel, curr_eq_fld_sel);
}
sel*= eq_fld_sel;
}
}
return sel;
}
/**
@brief
Get the selectivity of conditions when joining a table
@param join The optimized join
@param s The table to be joined for evaluation
@param rem_tables The bitmap of tables to be joined later
@param new_records_out OUT Set to number of rows accepted
@detail
Get selectivity of conditions that can be applied when joining this table
with previous tables.
For quick selects and full table scans, selectivity of COND(this_table)
is accounted for in apply_selectivity_for_table(). Here, we only count
selectivity of COND(this_table, previous_tables).
For other access methods, we need to calculate selectivity of the whole
condition, "COND(this_table) AND COND(this_table, previous_tables)".
@retval
selectivity of the conditions imposed on the rows of s related to
the rows that we are expected to read (position->records_init).
*/
static
double table_after_join_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
table_map rem_tables,
double *new_records_out)
{
uint16 ref_keyuse_steps_buf[MAX_REF_PARTS];
uint ref_keyuse_size= MAX_REF_PARTS;
uint16 *ref_keyuse_steps= ref_keyuse_steps_buf;
Field *field;
TABLE *table= s->table;
MY_BITMAP *read_set= table->read_set;
POSITION *pos= &join->positions[idx];
double sel, records_out= pos->records_out;
uint keyparts= 0;
uint found_part_ref_or_null= 0;
if (pos->key != 0)
{
sel= table->cond_selectivity;
/*
A ref access or hash join is used for this table. ref access is created
from
tbl.keypart1=expr1 AND tbl.keypart2=expr2 AND ...
and it will only return rows for which this condition is satisified.
Suppose, certain expr{i} is a constant. Since ref access only returns
rows that satisfy
tbl.keypart{i}=const (*)
then selectivity of this equality should not be counted in return value
of this function. This function uses the value of
table->cond_selectivity=selectivity(COND(tbl)) (**)
as a starting point. This value includes selectivity of equality (*). We
should somehow discount it.
Looking at calculate_cond_selectivity_for_table(), one can see that that
the value is not necessarily a direct multiplicand in
table->cond_selectivity
There are three possible ways to discount
1. There is a potential range access on t.keypart{i}=const.
(an important special case: the used ref access has a const prefix for
which a range estimate is available)
2. The field has a histogram. field[x]->cond_selectivity has the data.
3. Use index stats on this index:
rec_per_key[key_part+1]/rec_per_key[key_part]
(TODO: more details about the "t.key=othertable.col" case)
*/
KEYUSE *keyuse= pos->key;
KEYUSE *prev_ref_keyuse= keyuse;
uint key= keyuse->key;
bool used_range_selectivity= false;
/*
Check if we have a prefix of key=const that matches a quick select.
*/
if (!is_hash_join_key_no(key) && table->opt_range_keys.is_set(key))
{
key_part_map quick_key_map= (key_part_map(1) <<
table->opt_range[key].key_parts) - 1;
if (s->type == JT_RANGE ||
(table->opt_range[key].rows && (table->const_key_parts[key] & 1)))
{
/*
We are either using a range or we are using a REF which the
same key as an active range and the first key part is a constant.
In both cases we have to discount the selectivity for the range
as otherwise we are using the selectivity twice.
*/
for (; quick_key_map & 1 ; quick_key_map>>= 1)
{
while (keyuse->table == table && keyuse->key == key &&
keyuse->keypart == keyparts)
{
keyuse++;
}
keyparts++;
}
/*
Here we discount selectivity of the constant range CR. To calculate
this selectivity we use elements from the quick_rows[] array.
If we have indexes i1,...,ik with the same prefix compatible
with CR any of the estimate quick_rows[i1], ... quick_rows[ik] could
be used for this calculation but here we don't know which one was
actually used. So sel could be greater than 1 and we have to cap it.
However if sel becomes greater than 2 then with high probability
something went wrong.
*/
DBUG_ASSERT(sel <= 1.0);
DBUG_ASSERT(table->opt_range[key].rows <=
(double) table->stat_records());
sel /= ((double) table->opt_range[key].rows /
(double) table->stat_records());
set_if_smaller(sel, 1.0);
used_range_selectivity= true;
}
}
/*
Go through the "keypart{N}=..." equalities and find those that were
already taken into account in table->cond_selectivity.
*/
keyuse= pos->key;
keyparts=0;
while (keyuse->table == table && keyuse->key == key)
{
if (!(keyuse->used_tables & (rem_tables | table->map)))
{
if (are_tables_local(s, keyuse->val->used_tables()))
{
if (is_hash_join_key_no(key))
{
if (keyparts == keyuse->keypart)
keyparts++;
}
else
{
if (keyparts == keyuse->keypart &&
!((keyuse->val->used_tables()) & ~pos->ref_depend_map) &&
!(found_part_ref_or_null & keyuse->optimize))
{
/* Found a KEYUSE object that will be used by ref access */
keyparts++;
found_part_ref_or_null|= keyuse->optimize & ~KEY_OPTIMIZE_EQ;
}
}
if (keyparts > keyuse->keypart)
{
/* Ok this is the keyuse that will be used for ref access */
if (!used_range_selectivity && keyuse->val->const_item())
{
uint fldno;
if (is_hash_join_key_no(key))
fldno= keyuse->keypart;
else
fldno= table->key_info[key].key_part[keyparts-1].fieldnr - 1;
if (table->field[fldno]->cond_selectivity > 0)
{
sel /= table->field[fldno]->cond_selectivity;
set_if_smaller(sel, 1.0);
}
/*
TODO: we could do better here:
1. cond_selectivity might be =1 (the default) because quick
select on some index prevented us from analyzing
histogram for this column.
2. we could get an estimate through this?
rec_per_key[key_part-1] / rec_per_key[key_part]
*/
}
if (keyparts > 1)
{
/*
Prepare to set ref_keyuse_steps[keyparts-2]: resize the array
if it is not large enough
*/
if (keyparts - 2 >= ref_keyuse_size)
{
uint new_size= MY_MAX(ref_keyuse_size*2, keyparts);
void *new_buf;
if (!(new_buf= my_malloc(PSI_INSTRUMENT_ME,
sizeof(*ref_keyuse_steps)*new_size,
MYF(0))))
{
sel= 1.0; // As if no selectivity was computed
goto exit;
}
memcpy(new_buf, ref_keyuse_steps,
sizeof(*ref_keyuse_steps)*ref_keyuse_size);
if (ref_keyuse_steps != ref_keyuse_steps_buf)
my_free(ref_keyuse_steps);
ref_keyuse_steps= (uint16*)new_buf;
ref_keyuse_size= new_size;
}
ref_keyuse_steps[keyparts-2]= (uint16)(keyuse - prev_ref_keyuse);
prev_ref_keyuse= keyuse;
}
}
}
}
keyuse++;
}
/*
If the field f from the table is equal to a field from one the
earlier joined tables then the selectivity of the range conditions
over the field f must be discounted.
We need to discount selectivity only if we're using ref-based
access method (and have sel!=1).
If we use ALL/range/index_merge, then sel==1, and no need to discount.
*/
for (Field **f_ptr=table->field ; (field= *f_ptr) ; f_ptr++)
{
if (!bitmap_is_set(read_set, field->field_index) ||
!field->next_equal_field)
continue;
for (Field *next_field= field->next_equal_field;
next_field != field;
next_field= next_field->next_equal_field)
{
if (!(next_field->table->map & rem_tables) &&
next_field->table != table)
{
if (field->cond_selectivity > 0)
{
sel/= field->cond_selectivity;
set_if_smaller(sel, 1.0);
}
break;
}
}
}
/*
We have now calculated a more exact 'records_out' taking more index
costs into account.
pos->records_out previously contained the smallest record count for
all range or ref access, which should not be smaller than what we
calculated above.
*/
records_out= pos->records_init * sel;
set_if_smaller(records_out, pos->records_out);
}
sel= table_multi_eq_cond_selectivity(join, idx, s, rem_tables,
keyparts, ref_keyuse_steps);
records_out*= sel;
/*
Update sel to be relative pos->records_read as that is what some old
code expects. Newer code should just use 'position->records_out' instead.
*/
if (pos->records_read == 0)
sel= 1.0;
else
{
sel= records_out / pos->records_read;
DBUG_ASSERT(sel >= 0.0 && sel <= 1.00001);
if (sel > 1.0)
sel= 1.0;
}
exit:
*new_records_out= records_out;
if (ref_keyuse_steps != ref_keyuse_steps_buf)
my_free(ref_keyuse_steps);
return sel;
}
/*
Check if the table is an EQ_REF or similar table and there is no cost
to gain by moveing it to a later stage.
We call such a table a edge table (or hanging leaf) as it will read at
most one row and will not add to the number of row combinations in the join.
*/
static inline enum_best_search
check_if_edge_table(POSITION *pos,
double pushdown_cond_selectivity)
{
if ((pos->type == JT_EQ_REF ||
(pos->type == JT_REF &&
pos->records_init == 1 &&
!pos->range_rowid_filter_info)) &&
pushdown_cond_selectivity >= 0.999)
return SEARCH_FOUND_EDGE;
return SEARCH_OK;
}
struct SORT_POSITION
{
JOIN_TAB **join_tab;
POSITION *position;
};
/*
Sort SORT_POSITIONS according to expected number of rows found
If number of combinations are the same sort according to join_tab order
(same table order as used in the original SQL query)
*/
static int sort_positions(const void *a_, const void *b_)
{
const SORT_POSITION *a= static_cast<const SORT_POSITION*>(a_);
const SORT_POSITION *b= static_cast<const SORT_POSITION*>(b_);
int cmp;
if ((cmp= compare_embedding_subqueries(*a->join_tab, *b->join_tab)) != 0)
return cmp;
if (a->position->records_read > b->position->records_read)
return 1;
if (a->position->records_read < b->position->records_read)
return -1;
return CMP_NUM(*a->join_tab, *b->join_tab);
}
/*
Call best_access_path() for a set of tables and collect results
@param join JOIN object
@param trace_one_table Current optimizer_trace
@param pos Pointer to remanining tables
@param allowed_tables bitmap of allowed tables. On return set to
the collected tables.
@param store_poisition Points to where to store next found SORT_POSITION.
Will be updated to next free position.
@param stop_on_eq_ref Stop searching for more tables if we found an EQ_REF
table.
@return
0 Normal
1 Eq_ref table found (only if stop_on_eq_ref is used)
join->next_sort_position will be update to next free position.
*/
static bool
get_costs_for_tables(JOIN *join, table_map remaining_tables, uint idx,
double record_count,
Json_writer_object *trace_one_table,
JOIN_TAB **pos, SORT_POSITION **store_position,
table_map *allowed_tables,
bool stop_on_eq_ref)
{
THD *thd= join->thd;
POSITION *sort_position= join->next_sort_position;
SORT_POSITION *sort_end= *store_position;
JOIN_TAB *s;
table_map found_tables= 0;
bool found_eq_ref= 0;
bool disable_jbuf= join->thd->variables.join_cache_level == 0;
DBUG_ENTER("get_plans_for_tables");
s= *pos;
do
{
table_map real_table_bit= s->table->map;
if ((*allowed_tables & real_table_bit) &&
!(remaining_tables & s->dependent))
{
#ifdef DBUG_ASSERT_EXISTS
DBUG_ASSERT(!check_interleaving_with_nj(s));
restore_prev_nj_state(s); // Revert effect of check_... call
#endif
sort_end->join_tab= pos;
sort_end->position= sort_position;
Json_writer_object wrapper(thd);
/* Find the best access method from 's' to the current partial plan */
best_access_path(join, s, remaining_tables, join->positions, idx,
disable_jbuf, record_count,
sort_position, sort_position + 1);
found_tables|= s->table->map;
sort_end++;
sort_position+= 2;
if (unlikely(stop_on_eq_ref) && sort_position[-2].type == JT_EQ_REF)
{
/* Found an eq_ref tables. Use this, ignoring the other tables */
found_eq_ref= 1;
if (found_tables == s->table->map)
break; // First table
/* Store the found eq_ref table first in store_position */
sort_position-= 2;
*allowed_tables= s->table->map;
(*store_position)->join_tab= pos;
(*store_position)->position= sort_position;
(*store_position)++;
join->next_sort_position[0]= sort_position[0];
join->next_sort_position[1]= sort_position[1];
join->next_sort_position+= 2;
DBUG_RETURN(1);
}
}
else
{
/* Verify that 'allowed_current_tables' was calculated correctly */
DBUG_ASSERT((remaining_tables & s->dependent) ||
!(remaining_tables & real_table_bit) ||
!(*allowed_tables & real_table_bit) ||
check_interleaving_with_nj(s));
}
} while ((s= *++pos));
*allowed_tables= found_tables;
*store_position= sort_end;
join->next_sort_position= sort_position;
DBUG_RETURN(found_eq_ref);
}
/*
@brief
Check if it is potentally possible to short-cut the JOIN execution due to
ORDER BY ... LIMIT clause
@detail
It is possible when the join has "ORDER BY ... LIMIT n" clause, and the
sort+limit operation is done right after the join operation (there's no
grouping or DISTINCT in between).
Then we can potentially build a join plan that enumerates rows in the
ORDER BY order and so will be able to terminate as soon as it has produced
#limit rows.
Note that it is not a requirement that sort_by_table has an index that
matches ORDER BY. If it doesn't have one, the optimizer will pass
sort_by_table to filesort. Reading from sort_by_table won't use
short-cutting but the rest of the join will.
*/
static
bool join_limit_shortcut_is_applicable(const JOIN *join)
{
/*
Any post-join operation like GROUP BY or DISTINCT or window functions
means we cannot short-cut join execution
*/
if (!join->thd->variables.optimizer_join_limit_pref_ratio ||
!join->order ||
join->select_limit == HA_POS_ERROR ||
join->group_list ||
join->select_distinct ||
join->select_options & SELECT_BIG_RESULT ||
join->rollup.state != ROLLUP::STATE_NONE ||
join->select_lex->have_window_funcs() ||
join->select_lex->with_sum_func)
{
return false;
}
/*
Cannot do short-cutting if
(1) ORDER BY refers to more than one table or
(2) the table it refers to cannot be first table in the join order
*/
if (!join->sort_by_table || // (1)
join->sort_by_table->reginfo.join_tab->dependent) // (2)
return false;
Json_writer_object wrapper(join->thd);
Json_writer_object trace(join->thd, "join_limit_shortcut_is_applicable");
trace.add("applicable", 1);
/* It looks like we can short-cut limit due to join */
return true;
}
/*
@brief
Check if we could use an index-based access method to produce rows
in the order for ORDER BY ... LIMIT.
@detail
This should do what test_if_skip_sort_order() does. We can't use that
function directly, because:
1. We're at the join optimization stage and have not done query plan
fix-ups done in get_best_combination() and co.
2. The code in test_if_skip_sort_order() does modify query plan structures,
for example it may change the table's quick select. This is done even if
it's called with no_changes=true parameter.
@param access_method_changed OUT Whether the function changed the access
method to get rows in desired order.
@param new_access_cost OUT if access method changed: its cost.
@return
true - Can skip sorting
false - Cannot skip sorting
*/
bool test_if_skip_sort_order_early(JOIN *join,
bool *access_method_changed,
double *new_access_cost)
{
const POSITION *pos= &join->best_positions[join->const_tables];
TABLE *table= pos->table->table;
key_map usable_keys= table->keys_in_use_for_order_by;
*access_method_changed= false;
// Step #1: Find indexes that produce the required ordering.
if (find_indexes_matching_order(join, table, join->order, &usable_keys))
return false; // Cannot skip sorting
// Step #2: Check if the index we're using produces the needed ordering
uint ref_key;
if (pos->key)
{
// Mirror the (wrong) logic in test_if_skip_sort_order:
if (pos->spl_plan || pos->type == JT_REF_OR_NULL)
return false; // Use filesort
ref_key= pos->key->key;
}
else
{
if (pos->table->quick)
{
if (pos->table->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
ref_key= pos->table->quick->index;
else
ref_key= MAX_KEY;
}
else
ref_key= MAX_KEY;
}
if (ref_key != MAX_KEY && usable_keys.is_set(ref_key))
{
return true; // we're using an index that produces the reqired ordering.
}
/*
Step #3: check if we can switch to using an index that would produce the
ordering.
(But don't actually switch, this will be done by test_if_skip_sort_order)
*/
int best_key= -1;
uint UNINIT_VAR(best_key_parts);
uint saved_best_key_parts= 0;
int best_key_direction= 0;
JOIN_TAB *tab= pos->table;
ha_rows new_limit;
double new_read_time;
if (test_if_cheaper_ordering(/*in_join_optimizer */TRUE,
tab, join->order, table, usable_keys,
ref_key, join->select_limit,
&best_key, &best_key_direction,
&new_limit, &new_read_time,
&best_key_parts,
&saved_best_key_parts))
{
// Ok found a way to skip sorting
*access_method_changed= true;
*new_access_cost= new_read_time;
return true;
}
return false;
}
/*
Compute the cost of join assuming we only need fraction of the output.
*/
double recompute_join_cost_with_limit(const JOIN *join, bool skip_sorting,
double *first_table_cost,
double fraction)
{
POSITION *pos= join->best_positions + join->const_tables;
/*
Generally, we assume that producing X% of output takes X% of the cost.
best_extension_by_limited_search() subtracts COST_EPS from
join->best_read, add it back.
(Note: before 11.0, we subtracted COST_EPS here. In 11.0+, there's no need
to do this)
*/
double partial_join_cost= join->best_read * fraction;
if (skip_sorting)
{
/*
First table produces rows in required order. Two options:
A. first_table_cost=NULL means we use whatever access method the join
optimizer has picked. Its cost was included in join->best_read and
we've already took a fraction of it.
B. first_table_cost!=NULL means we will need to switch to another access
method, we have the cost to read rows to produce #LIMIT rows in join
output.
*/
if (first_table_cost)
{
/*
Subtract the remainder of the first table's cost we had in
join->best_read.
(Before 11.0, we also subtracted pos->records_read/TIME_FOR_COMPARE.
In 11.0+, that time is already included in pos->read_time)
*/
partial_join_cost -= pos->read_time*fraction;
DBUG_ASSERT(partial_join_cost >= 0.0);
/* Add the cost of the new access method we've got: */
partial_join_cost= COST_ADD(partial_join_cost, *first_table_cost);
}
}
else
{
DBUG_ASSERT(!first_table_cost);
/*
Cannot skip sorting. We read the first table entirely, then sort it.
partial_join_cost includes pos->read_time*fraction. Add to it
pos->read_time*(1-fraction) so we have the cost to read the entire first
table. Do the same for costs of checking the WHERE.
*/
double extra_first_table_cost= pos->read_time * (1.0 - fraction);
partial_join_cost= COST_ADD(partial_join_cost, extra_first_table_cost);
}
return partial_join_cost;
}
/*
@brief
Finalize building the join order which allows one to short-cut the join
execution.
@detail
This is called after we have produced a join order that allows short-
cutting.
Here, we decide if it is cheaper to use this one or the original join
order.
*/
POSITION *join_limit_shortcut_finalize_plan(JOIN *join, double *cost)
{
Json_writer_object wrapper(join->thd);
Json_writer_object trace(join->thd, "join_limit_shortcut_choice");
double fraction= join->select_limit / join->join_record_count;
trace.add("limit_fraction", fraction);
/* Check which fraction of join output we need */
if (fraction >= 1.0)
{
trace.add("skip_adjustment", "no short-cutting");
return NULL;
}
/*
Check if the first table's access method produces the required ordering.
Possible options:
1. Yes: we can just take a fraction of the execution cost.
2A No: change the access method to one that does produce the required
ordering, update the costs.
2B No: Need to pass the first table to filesort().
*/
bool skip_sorting;
bool access_method_changed;
double new_access_cost;
{
Json_writer_array tmp(join->thd, "test_if_skip_sort_order_early");
skip_sorting= test_if_skip_sort_order_early(join,
&access_method_changed,
&new_access_cost);
}
trace.add("can_skip_filesort", skip_sorting);
double cost_with_shortcut=
recompute_join_cost_with_limit(join, skip_sorting,
access_method_changed ?
&new_access_cost : (double*)0,
fraction);
double risk_ratio=
(double)join->thd->variables.optimizer_join_limit_pref_ratio;
trace.add("full_join_cost", join->best_read);
trace.add("risk_ratio", risk_ratio);
trace.add("shortcut_join_cost", cost_with_shortcut);
cost_with_shortcut *= risk_ratio;
trace.add("shortcut_cost_with_risk", cost_with_shortcut);
if (cost_with_shortcut < join->best_read)
{
trace.add("use_shortcut_cost", true);
POSITION *pos= (POSITION*)memdup_root(join->thd->mem_root,
join->best_positions,
sizeof(POSITION)*
(join->table_count + 1));
*cost= cost_with_shortcut;
return pos;
}
trace.add("use_shortcut_cost", false);
return NULL;
}
/*
@brief
If we're in Limit Optimization Mode, allow only join->sort_by_table as
the first table in the join order
*/
static
bool join_limit_shortcut_limits_tables(const JOIN *join, uint idx, table_map *map)
{
if (join->limit_optimization_mode && idx == join->const_tables)
{
*map= join->sort_by_table->map;
return true;
}
return false;
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a possibly
exhaustive search.
The procedure searches for the optimal ordering of the query tables in set
'remaining_tables' of size N, and the corresponding optimal access paths to
each table. The choice of a table order and an access path for each table
constitutes a query execution plan (QEP) that fully specifies how to
execute the query.
The maximal size of the found plan is controlled by the parameter
'search_depth'. When search_depth == N, the resulting plan is complete and
can be used directly as a QEP. If search_depth < N, the found plan consists
of only some of the query tables. Such "partial" optimal plans are useful
only as input to query optimization procedures, and cannot be used directly
to execute a query.
The algorithm begins with an empty partial plan stored in 'join->positions'
and a set of N tables - 'remaining_tables'. Each step of the algorithm
evaluates the cost of the partial plan extended by all access plans for
each of the relations in 'remaining_tables', expands the current partial
plan with the access plan that results in lowest cost of the expanded
partial plan, and removes the corresponding relation from
'remaining_tables'. The algorithm continues until it either constructs a
complete optimal plan, or constructs an optimal plartial plan with size =
search_depth.
The final optimal plan is stored in 'join->best_positions'. The
corresponding cost of the optimal plan is in 'join->best_read'.
@note
The procedure uses a recursive depth-first search where the depth of the
recursion (and thus the exhaustiveness of the search) is controlled by the
parameter 'search_depth'.
@note
The pseudocode below describes the algorithm of
'best_extension_by_limited_search'. The worst-case complexity of this
algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then
the complexity of greedy_search is O(N!).
@code
procedure best_extension_by_limited_search(
pplan in, // in, partial plan of tables-joined-so-far
pplan_cost, // in, cost of pplan
remaining_tables, // in, set of tables not referenced in pplan
best_plan_so_far, // in/out, best plan found so far
best_plan_so_far_cost,// in/out, cost of best_plan_so_far
search_depth) // in, maximum size of the plans being considered
{
for each table T from remaining_tables
{
// Calculate the cost of using table T as above
cost = complex-series-of-calculations;
// Add the cost to the cost so far.
pplan_cost+= cost;
if (pplan_cost >= best_plan_so_far_cost)
// pplan_cost already too great, stop search
continue;
pplan= expand plan by best_access_method;
remaining_tables= remaining_tables - table T;
if (remaining_tables is not an empty set
and
search_depth > 1)
{
best_extension_by_limited_search(pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
}
else
{
best_plan_so_far_cost= pplan_cost;
best_plan_so_far= pplan;
}
}
}
@endcode
@note
When 'best_extension_by_limited_search' is called for the first time,
'join->best_read' must be set to the largest possible value (e.g. DBL_MAX).
The actual implementation provides a way to optionally use pruning
heuristic to reduce the search space by skipping some partial plans.
@note
The parameter 'search_depth' provides control over the recursion
depth, and thus the size of the resulting optimal plan.
@param join pointer to the structure providing all context info
for the query
@param remaining_tables set of tables not included into the partial plan yet
@param idx length of the partial QEP in 'join->positions';
since a depth-first search is used, also corresponds
to the current depth of the search tree;
also an index in the array 'join->best_ref';
@param record_count estimate for the number of records returned by the
best partial plan
@param read_time the cost of the best partial plan
@param search_depth maximum depth of the recursion and thus size of the
found optimal plan
(0 < search_depth <= join->tables+1).
(values: 0 = EXHAUSTIVE, 1 = PRUNE_BY_TIME_OR_ROWS)
@param use_cond_selectivity specifies how the selectivity of the conditions
pushed to a table should be taken into account
@retval
enum_best_search::SEARCH_OK All fine
@retval
enum_best_search::SEARCH_FOUND_EDGE All remaning tables are edge tables
@retval
enum_best_search::SEARCH_ABORT Killed by user
@retval
enum_best_search::SEARCH_ERROR Fatal error
*/
static enum_best_search
best_extension_by_limited_search(JOIN *join,
table_map remaining_tables,
uint idx,
double record_count,
double read_time,
uint search_depth,
uint use_cond_selectivity,
table_map *processed_eq_ref_tables)
{
THD *thd= join->thd;
/*
'join' is a partial plan with lower cost than the best plan so far,
so continue expanding it further with the tables in 'remaining_tables'.
*/
JOIN_TAB *s;
double best_record_count= DBL_MAX;
double best_read_time= DBL_MAX;
enum_best_search best_res;
uint tables_left= join->table_count - idx, found_tables;
uint accepted_tables __attribute__((unused));
table_map found_eq_ref_tables= 0, used_eq_ref_table= 0;
table_map allowed_tables, allowed_current_tables;
SORT_POSITION *sort= (SORT_POSITION*) alloca(sizeof(SORT_POSITION)*tables_left);
SORT_POSITION *sort_end;
DBUG_ENTER("best_extension_by_limited_search");
DBUG_EXECUTE_IF("show_explain_probe_best_ext_lim_search",
if (dbug_user_var_equals_int(thd,
"show_explain_probe_select_id",
join->select_lex->select_number))
dbug_serve_apcs(thd, 1);
);
if (unlikely(thd->check_killed())) // Abort
DBUG_RETURN(SEARCH_ABORT);
DBUG_EXECUTE("opt", print_plan(join, idx, record_count, read_time, read_time,
"part_plan"););
status_var_increment(thd->status_var.optimizer_join_prefixes_check_calls);
if (join->emb_sjm_nest)
{
/*
If we are searching for the execution plan of a materialized semi-join nest
then allowed_tables contains bits only for the tables from this nest.
*/
allowed_tables= (join->emb_sjm_nest->sj_inner_tables & remaining_tables);
allowed_current_tables= join->get_allowed_nj_tables(idx) & remaining_tables;
}
else
{
/*
allowed_tables is used to check if there are tables left that can improve
a key search and to see if there are more tables to add in next iteration.
allowed_current_tables tells us which tables we can add to the current
plan at this stage.
*/
allowed_tables= remaining_tables;
allowed_current_tables= join->get_allowed_nj_tables(idx) & remaining_tables;
table_map sort_table;
if (join_limit_shortcut_limits_tables(join, idx, &sort_table))
allowed_current_tables= sort_table;
}
DBUG_ASSERT(allowed_tables & remaining_tables);
sort_end= sort;
{
Json_writer_object trace_one_table(thd);
JOIN_TAB **best_ref= join->best_ref + idx;
if (unlikely(thd->trace_started()))
trace_plan_prefix(&trace_one_table, join, idx, remaining_tables);
Json_writer_array arr(thd, "get_costs_for_tables");
if (idx > join->const_tables && join->prune_level >= 2 &&
join->positions[idx-1].type == JT_EQ_REF &&
(join->eq_ref_tables & allowed_current_tables))
{
/* Previous table was an EQ REF table, only add other possible EQ_REF
tables to the chain, stop after first one is found.
*/
table_map table_map= join->eq_ref_tables & allowed_current_tables;
if (get_costs_for_tables(join, remaining_tables, idx, record_count,
&trace_one_table, best_ref, &sort_end,
&table_map, 1))
used_eq_ref_table= (*sort->join_tab)->table->map;
else
{
/* We didn't find another EQ_REF table, add remaining tables */
if ((table_map= allowed_current_tables & ~table_map))
get_costs_for_tables(join, remaining_tables, idx, record_count,
&trace_one_table, best_ref, &sort_end, &table_map,
0);
}
}
else
{
table_map table_map= allowed_current_tables;
get_costs_for_tables(join, remaining_tables, idx, record_count,
&trace_one_table, best_ref, &sort_end, &table_map,
0);
}
found_tables= (uint) (sort_end - sort);
DBUG_ASSERT(found_tables > 0);
/*
Sort tables in ascending order of generated row combinations
*/
if (found_tables > 1)
my_qsort(sort, found_tables, sizeof(SORT_POSITION), sort_positions);
}
DBUG_ASSERT(join->next_sort_position <=
join->sort_positions + join->sort_space);
accepted_tables= 0;
double min_rec_count= DBL_MAX;
double min_rec_count_read_time= DBL_MAX;
double min_cost= DBL_MAX;
double min_cost_record_count= DBL_MAX;
for (SORT_POSITION *pos= sort ; pos < sort_end ; pos++)
{
s= *pos->join_tab;
if (!(found_eq_ref_tables & s->table->map) &&
!check_interleaving_with_nj(s))
{
table_map real_table_bit= s->table->map;
double current_record_count, current_read_time, original_record_count;
double partial_join_cardinality;
POSITION *position= join->positions + idx, *loose_scan_pos;
double pushdown_cond_selectivity;
Json_writer_object trace_one_table(thd);
if (unlikely(thd->trace_started()))
{
trace_plan_prefix(&trace_one_table, join, idx, remaining_tables);
trace_one_table.add_table_name(s);
}
accepted_tables++;
*position= *pos->position; // Get stored result
loose_scan_pos= pos->position+1;
/* Compute the cost of the new plan extended with 's' */
current_record_count= COST_MULT(record_count, position->records_out);
current_read_time= COST_ADD(read_time, position->read_time);
if (unlikely(trace_one_table.trace_started()))
{
trace_one_table.
add("rows_for_plan", current_record_count).
add("cost_for_plan", current_read_time);
}
original_record_count= current_record_count;
optimize_semi_joins(join, remaining_tables, idx, ¤t_record_count,
¤t_read_time, loose_scan_pos);
if (position->sj_strategy != SJ_OPT_NONE)
{
/* Adjust records_out and current_record_count after semi join */
double ratio= current_record_count / original_record_count;
if (ratio < 1.0)
position->records_out*= ratio;
if (unlikely(trace_one_table.trace_started()))
{
trace_one_table.
add("sj_rows_out", position->records_out).
add("sj_rows_for_plan", current_record_count).
add("sj_filtered", safe_filtered(position->records_out,
position->records_init));
}
}
/* Expand only partial plans with lower cost than the best QEP so far */
if (current_read_time + COST_EPS >= join->best_read)
{
DBUG_EXECUTE("opt", print_plan(join, idx+1,
current_record_count,
read_time,
current_read_time,
"prune_by_cost"););
trace_one_table
.add("pruned_by_cost", true)
.add("current_cost", current_read_time)
.add("best_cost", join->best_read);
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s, idx);
continue;
}
/*
Prune some less promising partial plans. This heuristic may miss
the optimal QEPs, thus it results in a non-exhaustive search.
*/
if (join->prune_level >= 1)
{
// Collect the members with min_cost and min_read_time.
bool min_rec_hit= false;
bool min_cost_hit= false;
if (join->extra_heuristic_pruning &&
(!(position->key_dependent & allowed_tables) ||
position->records_read < 2.0))
{
if (current_record_count < min_rec_count)
{
min_rec_count= current_record_count;
min_rec_count_read_time= current_read_time;
min_rec_hit= true;
}
if (current_read_time < min_cost)
{
min_cost_record_count= current_record_count;
min_cost= current_read_time;
min_cost_hit= true;
}
}
if (best_record_count > current_record_count ||
best_read_time > current_read_time ||
(idx == join->const_tables && // 's' is the first table in the QEP
s->table == join->sort_by_table))
{
/*
Store the current record count and cost as the best
possible cost at this level if the following holds:
- It's the lowest record number and cost so far
- There is no remaing table that could improve index usage
or we found an EQ_REF or REF key with less than 2
matching records (good enough).
*/
if (best_record_count >= current_record_count &&
best_read_time >= current_read_time &&
(!(position->key_dependent & join->allowed_tables) ||
position->records_read < 2.0))
{
best_record_count= current_record_count;
best_read_time= current_read_time;
}
}
else
{
/*
Typically, we get here if:
best_record_count < current_record_count &&
best_read_time < current_read_time
That is, both record_count and read_time are worse than the best_
ones. This plan doesn't look promising, prune it away.
*/
DBUG_EXECUTE("opt", print_plan(join, idx+1,
current_record_count,
read_time,
current_read_time,
"pruned_by_heuristic"););
trace_one_table.add("pruned_by_heuristic", true);
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s, idx);
continue;
}
const char* prune_reason= NULL;
if (!min_rec_hit &&
current_record_count >= min_rec_count &&
current_read_time >= min_rec_count_read_time)
prune_reason= "min_record_count";
if (!min_cost_hit &&
current_record_count >= min_cost_record_count &&
current_read_time >= min_cost)
prune_reason= "min_read_time";
if (prune_reason)
{
trace_one_table.add("pruned_by_heuristic", prune_reason);
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s, idx);
continue;
}
}
pushdown_cond_selectivity= 1.0;
/*
TODO: When a semi-join strategy is applied (sj_strategy!=SJ_OPT_NONE),
we should account for selectivity from table_after_join_selectivity().
(Condition filtering is performed before the semi-join removes some
fanout so this might require moving the code around)
*/
if (use_cond_selectivity > 1 && position->sj_strategy == SJ_OPT_NONE)
{
pushdown_cond_selectivity=
table_after_join_selectivity(join, idx, s,
remaining_tables & ~real_table_bit,
&position->records_out);
if (unlikely(trace_one_table.trace_started()) &&
pushdown_cond_selectivity != 1.0)
trace_one_table.
add("pushdown_cond_selectivity", pushdown_cond_selectivity).
add("filtered", safe_filtered(position->records_out,
position->records_init)).
add("rows_out", position->records_out);
}
join->positions[idx].cond_selectivity= pushdown_cond_selectivity;
partial_join_cardinality= record_count * position->records_out;
join->positions[idx].partial_join_cardinality= partial_join_cardinality;
if (unlikely(thd->trace_started()) && pushdown_cond_selectivity < 1.0 &&
partial_join_cardinality < current_record_count)
trace_one_table
.add("selectivity", pushdown_cond_selectivity)
.add("estimated_join_cardinality", partial_join_cardinality);
if ((search_depth > 1) && (remaining_tables & ~real_table_bit) &
allowed_tables)
{
/* Recursively expand the current partial plan */
Json_writer_array trace_rest(thd, "rest_of_plan");
swap_variables(JOIN_TAB*, join->best_ref[idx], *pos->join_tab);
best_res=
best_extension_by_limited_search(join,
remaining_tables &
~real_table_bit,
idx + 1,
partial_join_cardinality,
current_read_time,
search_depth - 1,
use_cond_selectivity,
&found_eq_ref_tables);
swap_variables(JOIN_TAB*, join->best_ref[idx], *pos->join_tab);
if ((int) best_res < (int) SEARCH_OK)
goto end; // Return best_res
if (best_res == SEARCH_FOUND_EDGE &&
check_if_edge_table(join->positions+ idx,
pushdown_cond_selectivity) !=
SEARCH_FOUND_EDGE)
best_res= SEARCH_OK;
}
else
{
/*
'join' is either the best partial QEP with 'search_depth' relations,
or the best complete QEP so far, whichever is smaller.
*/
if (join->sort_by_table &&
join->sort_by_table !=
join->positions[join->const_tables].table->table)
{
/*
We may have to make a temp table, note that this is only a
heuristic since we cannot know for sure at this point if we
we are going to use addon fields or to have flush sorting to
disk. We also don't know the temporary table will be in memory
or disk.
The following calculation takes a middle ground where assume
we can sort the keys in memory but have to use a disk based
temporary table to retrive the rows.
This cost is probably much bigger than it has to be...
*/
double sort_cost;
sort_cost= (get_qsort_sort_cost((ha_rows)current_record_count,0) +
current_record_count *
DISK_TEMPTABLE_LOOKUP_COST(thd));
trace_one_table.add("cost_for_sorting", sort_cost);
current_read_time= COST_ADD(current_read_time, sort_cost);
}
if (current_read_time < join->best_read)
{
memcpy((uchar*) join->best_positions, (uchar*) join->positions,
sizeof(POSITION) * (idx + 1));
join->join_record_count= partial_join_cardinality;
join->best_read= current_read_time;
}
DBUG_EXECUTE("opt", print_plan(join, idx+1,
current_record_count,
read_time,
current_read_time,
"full_plan"););
best_res= check_if_edge_table(join->positions + idx,
pushdown_cond_selectivity);
}
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s, idx);
if (best_res == SEARCH_FOUND_EDGE)
{
if (pos+1 < sort_end) // If not last table
trace_one_table.add("pruned_by_hanging_leaf", true);
goto end;
}
}
}
DBUG_ASSERT(accepted_tables > 0);
best_res= SEARCH_OK;
end:
join->next_sort_position-= found_tables*2;
if (used_eq_ref_table)
*processed_eq_ref_tables|= used_eq_ref_table | found_eq_ref_tables;
else
*processed_eq_ref_tables= 0;
DBUG_RETURN(best_res);
}
/**
Find how much space the prevous read not const tables takes in cache.
*/
void JOIN_TAB::calc_used_field_length(bool max_fl)
{
uint null_fields,blobs,fields;
ulong rec_length;
Field **f_ptr,*field;
uint uneven_bit_fields;
MY_BITMAP *read_set= table->read_set;
uneven_bit_fields= null_fields= blobs= fields= rec_length=0;
for (f_ptr=table->field ; (field= *f_ptr) ; f_ptr++)
{
if (bitmap_is_set(read_set, field->field_index))
{
uint flags=field->flags;
fields++;
rec_length+=field->pack_length();
if (flags & BLOB_FLAG)
blobs++;
if (!(flags & NOT_NULL_FLAG))
null_fields++;
if (field->type() == MYSQL_TYPE_BIT &&
((Field_bit*)field)->bit_len)
uneven_bit_fields++;
}
}
if (null_fields || uneven_bit_fields)
rec_length+=(table->s->null_fields+7)/8;
if (table->maybe_null)
rec_length+=sizeof(my_bool);
/* Take into account that DuplicateElimination may need to store rowid */
uint rowid_add_size= 0;
if (keep_current_rowid)
{
rowid_add_size= table->file->ref_length;
rec_length += rowid_add_size;
fields++;
}
if (max_fl)
{
// TODO: to improve this estimate for max expected length
if (blobs)
{
ulong blob_length= table->file->stats.mean_rec_length;
if (ULONG_MAX - rec_length > blob_length)
rec_length+= blob_length;
else
rec_length= ULONG_MAX;
}
max_used_fieldlength= rec_length;
}
else if (table->file->stats.mean_rec_length)
set_if_smaller(rec_length, table->file->stats.mean_rec_length + rowid_add_size);
used_fields=fields;
used_fieldlength=rec_length;
used_blobs=blobs;
used_null_fields= null_fields;
used_uneven_bit_fields= uneven_bit_fields;
}
/*
@brief
Extract pushdown conditions for a table scan
@details
This functions extracts pushdown conditions usable when this table is scanned.
The conditions are extracted either from WHERE or from ON expressions.
The conditions are attached to the field cache_select of this table.
@note
Currently the extracted conditions are used only by BNL and BNLH join.
algorithms.
@retval 0 on success
1 otherwise
*/
int JOIN_TAB::make_scan_filter()
{
COND *tmp;
DBUG_ENTER("make_scan_filter");
Item *cond= is_inner_table_of_outer_join() ?
*get_first_inner_table()->on_expr_ref : join->conds;
if (cond)
{
if ((tmp= make_cond_for_table(join->thd, cond,
join->const_table_map | table->map,
table->map, -1, FALSE, TRUE)))
{
DBUG_EXECUTE("where",print_where(tmp,"cache", QT_ORDINARY););
if (!(cache_select=
(SQL_SELECT*) join->thd->memdup((uchar*) select,
sizeof(SQL_SELECT))))
DBUG_RETURN(1);
cache_select->cond= tmp;
cache_select->read_tables=join->const_table_map;
}
else if (join->thd->is_error())
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
/**
@brief
Check whether hash join algorithm can be used to join this table
@details
This function finds out whether the ref items that have been chosen
by the planner to access this table can be used for hash join algorithms.
The answer depends on a certain property of the the fields of the
joined tables on which the hash join key is built.
@note
At present the function is supposed to be called only after the function
get_best_combination has been called.
@retval TRUE it's possible to use hash join to join this table
@retval FALSE otherwise
*/
bool JOIN_TAB::hash_join_is_possible()
{
if (type != JT_REF && type != JT_EQ_REF)
return FALSE;
if (!is_ref_for_hash_join())
{
KEY *keyinfo= table->key_info + ref.key;
return keyinfo->key_part[0].field->hash_join_is_possible();
}
return TRUE;
}
/**
@brief
Check whether a KEYUSE can be really used for access this join table
@param join Join structure with the best join order
for which the check is performed
@param keyuse Evaluated KEYUSE structure
@details
This function is supposed to be used after the best execution plan have been
already chosen and the JOIN_TAB array for the best join order been already set.
For a given KEYUSE to access this JOIN_TAB in the best execution plan the
function checks whether it really can be used. The function first performs
the check with access_from_tables_is_allowed(). If it succeeds it checks
whether the keyuse->val does not use some fields of a materialized semijoin
nest that cannot be used to build keys to access outer tables.
Such KEYUSEs exists for the query like this:
select * from ot
where ot.c in (select it1.c from it1, it2 where it1.c=f(it2.c))
Here we have two KEYUSEs to access table ot: with val=it1.c and val=f(it2.c).
However if the subquery was materialized the second KEYUSE cannot be employed
to access ot.
@retval true the given keyuse can be used for ref access of this JOIN_TAB
@retval false otherwise
*/
bool JOIN_TAB::keyuse_is_valid_for_access_in_chosen_plan(JOIN *join,
KEYUSE *keyuse)
{
if (!access_from_tables_is_allowed(keyuse->used_tables,
join->sjm_lookup_tables))
return false;
if (join->sjm_scan_tables & table->map)
return true;
table_map keyuse_sjm_scan_tables= keyuse->used_tables &
join->sjm_scan_tables;
if (!keyuse_sjm_scan_tables)
return true;
uint sjm_tab_nr= 0;
while (!(keyuse_sjm_scan_tables & table_map(1) << sjm_tab_nr))
sjm_tab_nr++;
JOIN_TAB *sjm_tab= join->map2table[sjm_tab_nr];
TABLE_LIST *emb_sj_nest= sjm_tab->emb_sj_nest;
if (!(emb_sj_nest->sj_mat_info && emb_sj_nest->sj_mat_info->is_used &&
emb_sj_nest->sj_mat_info->is_sj_scan))
return true;
st_select_lex *sjm_sel= emb_sj_nest->sj_subq_pred->unit->first_select();
for (uint i= 0; i < sjm_sel->item_list.elements; i++)
{
DBUG_ASSERT(sjm_sel->ref_pointer_array[i]->real_item()->type() == Item::FIELD_ITEM);
if (keyuse->val->real_item()->type() == Item::FIELD_ITEM)
{
Field *field = ((Item_field*)sjm_sel->ref_pointer_array[i]->real_item())->field;
if (field->eq(((Item_field*)keyuse->val->real_item())->field))
return true;
}
}
return false;
}
static uint
cache_record_length(JOIN *join,uint idx)
{
uint length=0;
JOIN_TAB **pos,**end;
for (pos=join->best_ref+join->const_tables,end=join->best_ref+idx ;
pos != end ;
pos++)
{
JOIN_TAB *join_tab= *pos;
length+= join_tab->get_used_fieldlength();
}
return length;
}
/*
Estimate the number of engine ha_index_read_calls for EQ_REF tables
when taking into account the one-row-cache in join_read_always_key()
SYNOPSIS
@param position All previous tables best_access_path() information.
@param idx Number of (previous) tables in positions.
@param record_count Number of incoming record combinations
@param found_ref Bitmap of tables that is used to construct the key
used with the index read.
@return # The number of estimated calls that cannot be cached by the
the one-row-cache. In other words, number of expected
calls to engine ha_read_read_map().
Between 1 and record_count or 0 if record_count == 0
DESCRIPTION
The one-row-cache gives a great benefit when there are multiple consecutive
calls to ha_index_read() with the same key. In this case we can skip
calling the engine (and in the future also skip to check the key
condition), which can notably increase the performance.
Assuming most of the rows are cached, there is no notable saving to be
made trying to calculate the total number of distinct key values that will
be used. The performance of a ha_index_read_call() is about the same even
if we repeatedly read the same set of rows.
This code works by calculating the number of identical key sequences
found in the record stream.
The number of expected distinct calls can then be calculated as
records_count / sequences.
Some things to note:
- record_count == PRODUCT(records_out) over all tables[0...idx-1]
- position->prev_record_reads contains the number of identical
sequences found for previous EQ_REF tables.
Assume a join prefix of t1,t2,t3,t4 and t4 is an EQ_REF table.
We have the following combinations that we have to consider:
======
1) No JOIN_CACHE usage, tables depend only on one previous table
Row combinations are generated as:
- for all rows in t1
- for all rows in t2
- for all rows in t3
or
t1.1,t2.1,t3.1, t1.1,t2.1,t3.2, t1.1,t2.1,t3.3... # Only t3 row changes
(until no more rows in t3., ie t3.records_out times)
t1.1,t2.2,t3.1, t1.1,t2.2,t3.2, t1.1,t2.2,t3.3... # t2.2 read
(above repeated until no more rows in t2 and t3)
t1.2,t2.1,t3.1, t1.2,t2.1,t3.2, t1.2,t2.1,t3.3... # t1.2 read
If t4 is an EQ_REF table that is depending of one of the
previous tables, the number of identical keys can be calculated
as the multiplication of records_out of the tables in between
the t4 and its first dependency.
Let's consider cases where t4 depends on different previous tables:
WHERE t4.a=t3.a
no caching as t3 can change for each row
engine_calls: record_count
WHERE t4.a=t2.a
t4 is not depending on t3. The number of repeated rows are:
t1.1,t2.1,t3.1 to t1.1,t2.1,t3.last # t3.records_out rows
t1.1,t2.2,t3.1 to t1.1,t2.2,t3.last # t3.records_out rows
...
t1.2,t2.1,t3.1 to t1.2,t2.1,t3.last
...
t1.last,t2.last.t3.1 to t1.last,t2.last.1,t3.last
For each combination of t1 and t2 there are t3.records_out repeated
rows with equal key value
engine_calls: record_count / t3.records_out calls =
t1.records_out * t2.records_out
WHERE t4.a=t1.a
The repeated sequences:
t1.1,t2.1,t3.1 to t1.1,t2.last,t3.last
t1.2,t2.1,t3.1 to t2.1,t2.last,t3.last
repeated rows: t2.records_out * t3.records_out
engine_calls: record_count/repeated_rows = t1.records_out
If t4 depends on a table that uses EQ_REF access, we can multipy that
table's repeated_rows with current table's repeated_rows to take that
into account.
=====
2) Keys depending on multiple tables
In this case we have to stop searching after we find the first
table we depend upon.
We have to also disregard the number of repeated rows for the
found table. This can be seen from (assuming tables t1...t6):
WHERE t6.a=t4.a and t6.a=t3.a and t4.a= t2.a
- Here t4 is not depending on t3 (and thus there is a
t3.records_out identical keys for t4). However t6 key will
change for each t3 row and t6 cannot thus use
t3.identical_keys
WHERE t4.key_part1=t1.a and t4.key_part2= t3.a
As t4.key_part2 will change for every row, one-row-cache will not
be hit
WHERE t4.key_part1=t1.a and t4.key_part2= t2.a
t4.key will change when t1 or t2 changes
This is the same case as above for WHERE t4.a = t2.a
engine_calls: record_count / t3.records_out calls
=====
3) JOIN_CACHE is used
If any table is using join_cache as this changes the row
combinations seen by following tables. Using join cache for a
table T# will have T# rows repeated for the next table as many
times there are combinations in the cache. The the cache will
re-read and the operations repeats 'refill-1' number of times.
Table rows from table just before T# will come in 'random order',
from the point of the next tables.
Assuming t3 is using a cache, t4 will see the rows coming in the
following order:
t1.1,t2.1,t3.1, t1.1,t2.2,t3.1, t1.1,t2.3,t3.1...
(t3.1 repeated 't2.records_out' times)
t1.2,t2.1,t3.1, t1.2,t2.2,t3.1, t1.2,t2.3,t3.1...
(Next row in t1 used)
t1.1,t2.1,t3.2, t1.1,t2.2,t3.2, t1.1,t2.3,t3.2...
(Restarting all t1 & t2 combinations for t3.2)
WHERE t4.a=t3.a
- There is a repeated sequence of t3.records_out rows for
each t1,t2 row combination.
engine_calls= record_count / t3.records_out
WHERE t4.a=t2.a
t2 changes for each row
engine_calls= record_count
WHERE t4.a=t1.a
repeated rows= t2.records_out
engine_calls= record_count / t2.records_out
A refill of the join cache will restart the row sequences
(we have 'refill' more sequences), so we will have to do 'refill' times
more engine read calls.
=====
Expectations of the accuracy of the return value
- The value is always between 1 and record_count
- The returned value should almost always larger than the true number of
engine calls.
- Assuming that every row has different values for all other columns for
echo unique key value and record_count is accurate:
- If a table is depending on multiple tables, the return value may be
notable larger than real value.
- If there is no join cache the value should be exact.
- If there is a join cache, but no refills calculated or done then
the value should be exact.
- If there was more join_cache refills than was calculated, the value
may be slightly to low.
- If the number of refills is equal or less than was calculated the value
should be larger than the expected engine read calls. The more refills,
the less exact the number will be.
*/
static double
prev_record_reads(const POSITION *position, uint idx, table_map found_ref,
double record_count, double *identical_keys)
{
double found= 1.0;
const POSITION *pos_end= position - 1;
const POSITION *cur_pos= position + idx;
/* Safety against const tables */
if (unlikely(!found_ref))
goto end;
for (const POSITION *pos= cur_pos-1; pos != pos_end; pos--)
{
if (found_ref & pos->table->table->map)
{
/* Found a table we depend on */
found_ref= ~pos->table->table->map;
if (!found_ref)
{
/*
No more dependencies. We can use the cached values to improve things
a bit
*/
if (pos->type == JT_EQ_REF)
found= COST_MULT(found, pos->identical_keys);
else if (pos->use_join_buffer)
found= COST_MULT(found, pos->loops / pos->refills);
}
break;
}
if (unlikely(pos->use_join_buffer))
{
/* Each refill can change the cached key */
found/= pos->refills;
}
else
{
/*
We are not depending on the current table.
There are 'records_out' rows with identical rows
value for our depending tables.
*/
found= COST_MULT(found, pos->records_out);
}
}
/*
In most case found should <= record_count.
However if there was a reduction of rows (records_out < 1) before
the referencing table then found could be >= record_count.
To get resonable numbers, we limit prev_record_read to be between
1.0 and record_count as we have to always do at least one read
anyway.
*/
end:
if (unlikely(found > record_count))
found= record_count;
if (unlikely(found <= 1.0))
found= 1.0;
*identical_keys= found;
return record_count / found;
}
/*
Enumerate join tabs in breadth-first fashion, including const tables.
*/
static JOIN_TAB *next_breadth_first_tab(JOIN_TAB *first_top_tab,
uint n_top_tabs_count, JOIN_TAB *tab)
{
n_top_tabs_count += tab->join->aggr_tables;
if (!tab->bush_root_tab)
{
/* We're at top level. Get the next top-level tab */
tab++;
if (tab < first_top_tab + n_top_tabs_count)
return tab;
/* No more top-level tabs. Switch to enumerating SJM nest children */
tab= first_top_tab;
}
else
{
/* We're inside of an SJM nest */
if (!tab->last_leaf_in_bush)
{
/* There's one more table in the nest, return it. */
return ++tab;
}
else
{
/*
There are no more tables in this nest. Get out of it and then we'll
proceed to the next nest.
*/
tab= tab->bush_root_tab + 1;
}
}
/*
Ok, "tab" points to a top-level table, and we need to find the next SJM
nest and enter it.
*/
for (; tab < first_top_tab + n_top_tabs_count; tab++)
{
if (tab->bush_children)
return tab->bush_children->start;
}
return NULL;
}
/*
Enumerate JOIN_TABs in "EXPLAIN order". This order
- const tabs are included
- we enumerate "optimization tabs".
-
*/
JOIN_TAB *first_explain_order_tab(JOIN* join)
{
JOIN_TAB* tab;
tab= join->join_tab;
if (!tab)
return NULL; /* Can happen when when the tables were optimized away */
return (tab->bush_children) ? tab->bush_children->start : tab;
}
JOIN_TAB *next_explain_order_tab(JOIN* join, JOIN_TAB* tab)
{
/* If we're inside SJM nest and have reached its end, get out */
if (tab->last_leaf_in_bush)
return tab->bush_root_tab;
/* Move to next tab in the array we're traversing */
tab++;
if (tab == join->join_tab + join->top_join_tab_count)
return NULL; /* Outside SJM nest and reached EOF */
if (tab->bush_children)
return tab->bush_children->start;
return tab;
}
JOIN_TAB *first_top_level_tab(JOIN *join, enum enum_with_const_tables const_tbls)
{
JOIN_TAB *tab= join->join_tab;
if (const_tbls == WITHOUT_CONST_TABLES)
{
if (join->const_tables == join->table_count || !tab)
return NULL;
tab += join->const_tables;
}
return tab;
}
JOIN_TAB *next_top_level_tab(JOIN *join, JOIN_TAB *tab)
{
tab= next_breadth_first_tab(join->first_breadth_first_tab(),
join->top_join_tab_count, tab);
if (tab && tab->bush_root_tab)
tab= NULL;
return tab;
}
JOIN_TAB *first_linear_tab(JOIN *join,
enum enum_with_bush_roots include_bush_roots,
enum enum_with_const_tables const_tbls)
{
JOIN_TAB *first= join->join_tab;
if (!first)
return NULL;
if (const_tbls == WITHOUT_CONST_TABLES)
first+= join->const_tables;
if (first >= join->join_tab + join->top_join_tab_count)
return NULL; /* All are const tables */
if (first->bush_children && include_bush_roots == WITHOUT_BUSH_ROOTS)
{
/* This JOIN_TAB is a SJM nest; Start from first table in nest */
return first->bush_children->start;
}
return first;
}
/*
A helper function to loop over all join's join_tab in sequential fashion
DESCRIPTION
Depending on include_bush_roots parameter, JOIN_TABs that represent
SJM-scan/lookups are either returned or omitted.
SJM-Bush children are returned right after (or in place of) their container
join tab (TODO: does anybody depend on this? A: make_join_readinfo() seems
to)
For example, if we have this structure:
ot1--ot2--sjm1----------------ot3-...
|
+--it1--it2--it3
calls to next_linear_tab( include_bush_roots=TRUE) will return:
ot1 ot2 sjm1 it1 it2 it3 ot3 ...
while calls to next_linear_tab( include_bush_roots=FALSE) will return:
ot1 ot2 it1 it2 it3 ot3 ...
(note that sjm1 won't be returned).
*/
JOIN_TAB *next_linear_tab(JOIN* join, JOIN_TAB* tab,
enum enum_with_bush_roots include_bush_roots)
{
if (include_bush_roots == WITH_BUSH_ROOTS && tab->bush_children)
{
/* This JOIN_TAB is a SJM nest; Start from first table in nest */
return tab->bush_children->start;
}
DBUG_ASSERT(!tab->last_leaf_in_bush || tab->bush_root_tab);
if (tab->bush_root_tab) /* Are we inside an SJM nest */
{
/* Inside SJM nest */
if (!tab->last_leaf_in_bush)
return tab+1; /* Return next in nest */
/* Continue from the sjm on the top level */
tab= tab->bush_root_tab;
}
/* If no more JOIN_TAB's on the top level */
if (++tab >= join->join_tab + join->exec_join_tab_cnt() + join->aggr_tables)
return NULL;
if (include_bush_roots == WITHOUT_BUSH_ROOTS && tab->bush_children)
{
/* This JOIN_TAB is a SJM nest; Start from first table in nest */
tab= tab->bush_children->start;
}
return tab;
}
/*
Start to iterate over all join tables in bush-children-first order, excluding
the const tables (see next_depth_first_tab() comment for details)
*/
JOIN_TAB *first_depth_first_tab(JOIN* join)
{
JOIN_TAB* tab;
/* This means we're starting the enumeration */
if (join->const_tables == join->top_join_tab_count || !join->join_tab)
return NULL;
tab= join->join_tab + join->const_tables;
return (tab->bush_children) ? tab->bush_children->start : tab;
}
/*
A helper function to iterate over all join tables in bush-children-first order
DESCRIPTION
For example, for this join plan
ot1--ot2--sjm1------------ot3-...
|
|
it1--it2--it3
call to first_depth_first_tab() will return ot1, and subsequent calls to
next_depth_first_tab() will return:
ot2 it1 it2 it3 sjm ot3 ...
*/
JOIN_TAB *next_depth_first_tab(JOIN* join, JOIN_TAB* tab)
{
/* If we're inside SJM nest and have reached its end, get out */
if (tab->last_leaf_in_bush)
return tab->bush_root_tab;
/* Move to next tab in the array we're traversing */
tab++;
if (tab == join->join_tab +join->top_join_tab_count)
return NULL; /* Outside SJM nest and reached EOF */
if (tab->bush_children)
return tab->bush_children->start;
return tab;
}
bool JOIN::check_two_phase_optimization(THD *thd)
{
if (check_for_splittable_materialized())
return true;
return false;
}
bool JOIN::inject_cond_into_where(Item *injected_cond)
{
Item *where_item= injected_cond;
List<Item> *and_args= NULL;
if (conds && conds->type() == Item::COND_ITEM &&
((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
{
and_args= ((Item_cond*) conds)->argument_list();
if (cond_equal)
and_args->disjoin((List<Item> *) &cond_equal->current_level);
}
where_item= and_items(thd, conds, where_item);
if (where_item->fix_fields_if_needed(thd, 0))
return true;
thd->change_item_tree(&select_lex->where, where_item);
select_lex->where->top_level_item();
conds= select_lex->where;
if (and_args && cond_equal)
{
and_args= ((Item_cond*) conds)->argument_list();
List_iterator<Item_equal> li(cond_equal->current_level);
Item_equal *elem;
while ((elem= li++))
{
and_args->push_back(elem, thd->mem_root);
}
}
return false;
}
static Item * const null_ptr= NULL;
/*
Set up join struct according to the picked join order in
SYNOPSIS
get_best_combination()
join The join to process (the picked join order is mainly in
join->best_positions)
DESCRIPTION
Setup join structures according the picked join order
- finalize semi-join strategy choices (see
fix_semijoin_strategies_for_picked_join_order)
- create join->join_tab array and put there the JOIN_TABs in the join order
- create data structures describing ref access methods.
NOTE
In this function we switch from pre-join-optimization JOIN_TABs to
post-join-optimization JOIN_TABs. This is achieved by copying the entire
JOIN_TAB objects.
RETURN
FALSE OK
TRUE Out of memory
*/
bool JOIN::get_best_combination()
{
uint tablenr;
table_map used_tables;
JOIN_TAB *j;
KEYUSE *keyuse;
JOIN_TAB *sjm_nest_end= NULL;
JOIN_TAB *sjm_nest_root= NULL;
DBUG_ENTER("get_best_combination");
/*
Additional plan nodes for postjoin tmp tables:
1? + // For GROUP BY
1? + // For DISTINCT
1? + // For aggregation functions aggregated in outer query
// when used with distinct
1? + // For ORDER BY
1? // buffer result
Up to 2 tmp tables are actually used, but it's hard to tell exact number
at this stage.
*/
uint aggr_tables= (group_list ? 1 : 0) +
(select_distinct ?
(tmp_table_param.using_outer_summary_function ? 2 : 1) : 0) +
(order ? 1 : 0) +
(select_options & (SELECT_BIG_RESULT | OPTION_BUFFER_RESULT) ? 1 : 0) ;
if (aggr_tables == 0)
aggr_tables= 1; /* For group by pushdown */
if (select_lex->window_specs.elements)
aggr_tables++;
if (aggr_tables > 2)
aggr_tables= 2;
full_join=0;
hash_join= FALSE;
fix_semijoin_strategies_for_picked_join_order(this);
top_join_tab_count= get_number_of_tables_at_top_level(this);
#ifndef DBUG_OFF
dbug_join_tab_array_size= top_join_tab_count + aggr_tables;
#endif
/*
NOTE: The above computation of aggr_tables can produce wrong result because some
of the variables it uses may change their values after we leave this function.
Known examples:
- Dangerous: using_outer_summary_function=false at this point. Added
DBUG_ASSERT below to demonstrate. Can this cause us to allocate less
space than we would need?
- Not dangerous: select_distinct can be true here but be assigned false
afterwards.
*/
aggr_tables= 2;
DBUG_ASSERT(!tmp_table_param.using_outer_summary_function);
if (!(join_tab= thd->alloc<JOIN_TAB>(top_join_tab_count + aggr_tables)))
DBUG_RETURN(TRUE);
if (inject_splitting_cond_for_all_tables_with_split_opt())
goto error;
JOIN_TAB_RANGE *root_range;
if (!(root_range= new (thd->mem_root) JOIN_TAB_RANGE))
goto error;
root_range->start= join_tab;
/* root_range->end will be set later */
join_tab_ranges.empty();
if (join_tab_ranges.push_back(root_range, thd->mem_root))
goto error;
for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
{
TABLE *form;
POSITION *cur_pos= &best_positions[tablenr];
if (cur_pos->sj_strategy == SJ_OPT_MATERIALIZE ||
cur_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
{
/*
Ok, we've entered an SJ-Materialization semi-join (note that this can't
be done recursively, semi-joins are not allowed to be nested).
1. Put into main join order a JOIN_TAB that represents a lookup or scan
in the temptable.
*/
bzero((void*)j, sizeof(JOIN_TAB));
j->join= this;
j->table= NULL; //temporary way to tell SJM tables from others.
j->ref.key = -1;
j->on_expr_ref= (Item**) &null_ptr;
/* The unique index is always in 'possible keys' in EXPLAIN */
j->keys= key_map(1);
/*
2. Proceed with processing SJM nest's join tabs, putting them into the
sub-order
*/
SJ_MATERIALIZATION_INFO *sjm= cur_pos->table->emb_sj_nest->sj_mat_info;
j->records_read= (sjm->is_sj_scan? sjm->rows : 1.0);
j->records_init= j->records_out= j->records_read;
j->records= (ha_rows) j->records_read;
j->cond_selectivity= 1.0;
j->join_read_time= 0.0; /* Not saved currently */
j->join_loops= 0.0;
JOIN_TAB *jt;
JOIN_TAB_RANGE *jt_range;
if (!(jt= thd->alloc<JOIN_TAB>(sjm->tables)) ||
!(jt_range= new JOIN_TAB_RANGE))
goto error;
jt_range->start= jt;
jt_range->end= jt + sjm->tables;
join_tab_ranges.push_back(jt_range, thd->mem_root);
j->bush_children= jt_range;
sjm_nest_end= jt + sjm->tables;
sjm_nest_root= j;
j= jt;
}
*j= *cur_pos->table;
j->bush_root_tab= sjm_nest_root;
form= table[tablenr]= j->table;
form->reginfo.join_tab=j;
DBUG_PRINT("info",("type: %d", j->type));
if (j->type == JT_CONST)
goto loop_end; // Handled in make_join_stat..
j->loosescan_match_tab= NULL; //non-nulls will be set later
j->inside_loosescan_range= FALSE;
j->ref.key = -1;
j->ref.key_parts=0;
if (j->type == JT_SYSTEM)
goto loop_end;
if (!(keyuse= cur_pos->key))
{
if (cur_pos->type == JT_NEXT) // Forced index
{
j->type= JT_NEXT;
j->index= cur_pos->forced_index;
}
else
j->type= JT_ALL;
if (cur_pos->use_join_buffer &&
tablenr != const_tables)
full_join= 1;
}
if ((j->type == JT_REF || j->type == JT_EQ_REF) &&
is_hash_join_key_no(j->ref.key))
hash_join= TRUE;
j->range_rowid_filter_info=
cur_pos->range_rowid_filter_info;
/*
Save records_read in JOIN_TAB so that select_describe()/etc don't have
to access join->best_positions[].
*/
j->records_init= cur_pos->records_init;
j->records_read= cur_pos->records_read;
j->records_out= cur_pos->records_out;
j->join_read_time= cur_pos->read_time;
j->join_loops= cur_pos->loops;
loop_end:
j->cond_selectivity= cur_pos->cond_selectivity;
DBUG_ASSERT(j->cond_selectivity <= 1.0);
crash_if_first_double_is_bigger(j->records_out,
j->records_init *
(j->range_rowid_filter_info ?
j->range_rowid_filter_info->selectivity :
1.0));
map2table[j->table->tablenr]= j;
/* If we've reached the end of sjm nest, switch back to main sequence */
if (j + 1 == sjm_nest_end)
{
j->last_leaf_in_bush= TRUE;
j= sjm_nest_root;
sjm_nest_root= NULL;
sjm_nest_end= NULL;
}
}
root_range->end= j;
used_tables= OUTER_REF_TABLE_BIT; // Outer row is already read
for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
{
if (j->bush_children)
j= j->bush_children->start;
used_tables|= j->table->map;
if (j->type != JT_CONST && j->type != JT_SYSTEM)
{
if ((keyuse= best_positions[tablenr].key) &&
create_ref_for_key(this, j, keyuse, TRUE, used_tables))
goto error; // Something went wrong
}
if (j->last_leaf_in_bush)
j= j->bush_root_tab;
}
top_join_tab_count= (uint)(join_tab_ranges.head()->end -
join_tab_ranges.head()->start);
if (unlikely(thd->trace_started()))
print_final_join_order(this);
update_depend_map(this);
DBUG_RETURN(0);
error:
/* join_tab was not correctly setup. Don't use it */
join_tab= 0;
DBUG_RETURN(1);
}
/**
Create a descriptor of hash join key to access a given join table
@param join join which the join table belongs to
@param join_tab the join table to access
@param org_keyuse beginning of the key uses to join this table
@param used_tables bitmap of the previous tables
@details
This function first finds key uses that can be utilized by the hash join
algorithm to join join_tab to the previous tables marked in the bitmap
used_tables. The tested key uses are taken from the array of all key uses
for 'join' starting from the position org_keyuse. After all interesting key
uses have been found the function builds a descriptor of the corresponding
key that is used by the hash join algorithm would it be chosen to join
the table join_tab.
@retval FALSE the descriptor for a hash join key is successfully created
@retval TRUE otherwise
*/
static bool create_hj_key_for_table(JOIN *join, JOIN_TAB *join_tab,
KEYUSE *org_keyuse, table_map used_tables)
{
KEY *keyinfo;
KEY_PART_INFO *key_part_info;
KEYUSE *keyuse= org_keyuse;
uint key_parts= 0;
THD *thd= join->thd;
TABLE *table= join_tab->table;
bool first_keyuse= TRUE;
DBUG_ENTER("create_hj_key_for_table");
do
{
if (!(~used_tables & keyuse->used_tables) &&
join_tab->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) &&
are_tables_local(join_tab, keyuse->used_tables))
{
if (first_keyuse)
{
key_parts++;
}
else
{
KEYUSE *curr= org_keyuse;
for( ; curr < keyuse; curr++)
{
if (curr->keypart == keyuse->keypart &&
!(~used_tables & curr->used_tables) &&
join_tab->keyuse_is_valid_for_access_in_chosen_plan(join,
curr) &&
are_tables_local(join_tab, curr->used_tables))
break;
}
if (curr == keyuse)
key_parts++;
}
}
first_keyuse= FALSE;
keyuse++;
} while (keyuse->table == table && keyuse->is_for_hash_join());
if (!key_parts)
DBUG_RETURN(TRUE);
/* This memory is allocated only once for the joined table join_tab */
if (!(keyinfo= thd->alloc<KEY>(1)) ||
!(key_part_info = thd->alloc<KEY_PART_INFO>(key_parts)))
DBUG_RETURN(TRUE);
keyinfo->usable_key_parts= keyinfo->user_defined_key_parts = key_parts;
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->key_part= key_part_info;
keyinfo->key_length=0;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->flags= HA_GENERATED_KEY;
keyinfo->is_statistics_from_stat_tables= FALSE;
keyinfo->name.str= "$hj";
keyinfo->name.length= 3;
keyinfo->rec_per_key= thd->calloc<ulong>(key_parts);
if (!keyinfo->rec_per_key)
DBUG_RETURN(TRUE);
keyinfo->key_part= key_part_info;
first_keyuse= TRUE;
keyuse= org_keyuse;
do
{
if (!(~used_tables & keyuse->used_tables) &&
join_tab->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) &&
are_tables_local(join_tab, keyuse->used_tables))
{
bool add_key_part= TRUE;
if (!first_keyuse)
{
for(KEYUSE *curr= org_keyuse; curr < keyuse; curr++)
{
if (curr->keypart == keyuse->keypart &&
!(~used_tables & curr->used_tables) &&
join_tab->keyuse_is_valid_for_access_in_chosen_plan(join,
curr) &&
are_tables_local(join_tab, curr->used_tables))
{
keyuse->keypart= NO_KEYPART;
add_key_part= FALSE;
break;
}
}
}
if (add_key_part)
{
Field *field= table->field[keyuse->keypart];
uint fieldnr= keyuse->keypart+1;
table->create_key_part_by_field(key_part_info, field, fieldnr);
keyinfo->key_length += key_part_info->store_length;
key_part_info++;
}
}
first_keyuse= FALSE;
keyuse++;
} while (keyuse->table == table && keyuse->is_for_hash_join());
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->ext_key_part_map= 0;
join_tab->hj_key= keyinfo;
DBUG_RETURN(FALSE);
}
/*
Check if a set of tables specified by used_tables can be accessed when
we're doing scan on join_tab jtab.
*/
static bool are_tables_local(JOIN_TAB *jtab, table_map used_tables)
{
if (jtab->bush_root_tab)
{
/*
jtab is inside execution join nest. We may not refer to outside tables,
except the const tables.
*/
table_map local_tables= jtab->emb_sj_nest->nested_join->used_tables |
jtab->join->const_table_map |
OUTER_REF_TABLE_BIT;
return !MY_TEST(used_tables & ~local_tables);
}
/*
If we got here then jtab is at top level.
- all other tables at top level are accessible,
- tables in join nests are accessible too, because all their columns that
are needed at top level will be unpacked when scanning the
materialization table.
*/
return TRUE;
}
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j,
KEYUSE *org_keyuse, bool allow_full_scan,
table_map used_tables)
{
uint keyparts, length, key;
TABLE *table;
KEY *keyinfo;
KEYUSE *keyuse= org_keyuse;
bool ftkey= (keyuse->keypart == FT_KEYPART);
THD *thd= join->thd;
DBUG_ENTER("create_ref_for_key");
/* Use best key from find_best */
table= j->table;
key= keyuse->key;
if (!is_hash_join_key_no(key))
keyinfo= table->key_info+key;
else
{
if (create_hj_key_for_table(join, j, org_keyuse, used_tables))
DBUG_RETURN(TRUE);
keyinfo= j->hj_key;
}
if (ftkey)
{
Item_func_match *ifm=(Item_func_match *)keyuse->val;
length=0;
keyparts=1;
ifm->join_key=1;
}
else
{
keyparts=length=0;
uint found_part_ref_or_null= 0;
/*
Calculate length for the used key
Stop if there is a missing key part or when we find second key_part
with KEY_OPTIMIZE_REF_OR_NULL
*/
do
{
if (!(~used_tables & keyuse->used_tables) &&
(!keyuse->validity_ref || *keyuse->validity_ref) &&
j->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse))
{
if (are_tables_local(j, keyuse->val->used_tables()))
{
if ((is_hash_join_key_no(key) && keyuse->keypart != NO_KEYPART) ||
(!is_hash_join_key_no(key) && keyparts == keyuse->keypart &&
!(found_part_ref_or_null & keyuse->optimize)))
{
length+= keyinfo->key_part[keyparts].store_length;
keyparts++;
found_part_ref_or_null|= keyuse->optimize & ~KEY_OPTIMIZE_EQ;
}
}
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key);
if (!keyparts && allow_full_scan)
{
/* It's a LooseIndexScan strategy scanning whole index */
j->type= JT_ALL; // TODO: Check if this should be JT_NEXT
j->index= key;
DBUG_RETURN(FALSE);
}
DBUG_ASSERT(length > 0);
DBUG_ASSERT(keyparts != 0);
} /* not ftkey */
/* set up fieldref */
j->ref.key_parts= keyparts;
j->ref.key_length= length;
j->ref.key= (int) key;
if (!(j->ref.key_buff= thd->calloc<uchar>(ALIGN_SIZE(length)*2)) ||
!(j->ref.key_copy= thd->alloc<store_key*>(keyparts+1)) ||
!(j->ref.items= thd->alloc<Item*>(keyparts)) ||
!(j->ref.cond_guards= thd->alloc<bool*>(keyparts)))
{
DBUG_RETURN(TRUE);
}
j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length);
j->ref.key_err=1;
j->ref.has_record= FALSE;
j->ref.null_rejecting= 0;
j->ref.disable_cache= FALSE;
j->ref.null_ref_part= NO_REF_PART;
j->ref.const_ref_part_map= 0;
j->ref.uses_splitting= FALSE;
keyuse=org_keyuse;
store_key **ref_key= j->ref.key_copy;
uchar *key_buff=j->ref.key_buff, *null_ref_key= 0;
uint null_ref_part= NO_REF_PART;
bool keyuse_uses_no_tables= TRUE;
uint not_null_keyparts= 0;
if (ftkey)
{
j->ref.items[0]=((Item_func*)(keyuse->val))->key_item();
/* Predicates pushed down into subquery can't be used FT access */
j->ref.cond_guards[0]= NULL;
if (keyuse->used_tables)
DBUG_RETURN(TRUE); // not supported yet. SerG
j->type=JT_FT;
}
else
{
uint i;
for (i=0 ; i < keyparts ; keyuse++,i++)
{
while (((~used_tables) & keyuse->used_tables) ||
(keyuse->validity_ref && !(*keyuse->validity_ref)) ||
!j->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) ||
keyuse->keypart == NO_KEYPART ||
(keyuse->keypart !=
(is_hash_join_key_no(key) ?
keyinfo->key_part[i].field->field_index : i)) ||
!are_tables_local(j, keyuse->val->used_tables()))
keyuse++; /* Skip other parts */
uint maybe_null= MY_TEST(keyinfo->key_part[i].null_bit);
j->ref.items[i]=keyuse->val; // Save for cond removal
j->ref.cond_guards[i]= keyuse->cond_guard;
if (!keyuse->val->maybe_null() || keyuse->null_rejecting)
not_null_keyparts++;
/*
Set ref.null_rejecting to true only if we are going to inject a
"keyuse->val IS NOT NULL" predicate.
*/
Item *real= (keyuse->val)->real_item();
if (keyuse->null_rejecting && (real->type() == Item::FIELD_ITEM) &&
((Item_field*)real)->field->maybe_null())
j->ref.null_rejecting|= (key_part_map)1 << i;
keyuse_uses_no_tables= keyuse_uses_no_tables && !keyuse->used_tables;
j->ref.uses_splitting |= (keyuse->validity_ref != NULL);
/*
We don't want to compute heavy expressions in EXPLAIN, an example would
select * from t1 where t1.key=(select thats very heavy);
(select thats very heavy) => is a constant here
eg: (select avg(order_cost) from orders) => constant but expensive
*/
if (!keyuse->val->used_tables() && !thd->lex->describe)
{ // Compare against constant
store_key_item tmp(thd,
keyinfo->key_part[i].field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
keyinfo->key_part[i].length,
keyuse->val,
FALSE);
if (unlikely(thd->is_error()))
DBUG_RETURN(TRUE);
tmp.copy(thd);
j->ref.const_ref_part_map |= key_part_map(1) << i ;
}
else
{
*ref_key++= get_store_key(thd,
keyuse,join->const_table_map,
&keyinfo->key_part[i],
key_buff, maybe_null);
if (!keyuse->val->used_tables())
j->ref.const_ref_part_map |= key_part_map(1) << i ;
}
/*
Remember if we are going to use REF_OR_NULL
But only if field _really_ can be null i.e. we force JT_REF
instead of JT_REF_OR_NULL in case if field can't be null
*/
if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null)
{
null_ref_key= key_buff;
null_ref_part= i;
}
key_buff+= keyinfo->key_part[i].store_length;
}
} /* not ftkey */
*ref_key=0; // end_marker
if (j->type == JT_FT)
DBUG_RETURN(0);
ulong key_flags= j->table->actual_key_flags(keyinfo);
if (j->type == JT_CONST)
j->table->const_table= 1;
else if (!((keyparts == keyinfo->user_defined_key_parts &&
(
(key_flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME ||
/* Unique key and all keyparts are NULL rejecting */
((key_flags & HA_NOSAME) && keyparts == not_null_keyparts)
)) ||
/* true only for extended keys */
(MY_TEST(key_flags & HA_EXT_NOSAME) &&
keyparts == keyinfo->ext_key_parts) ) ||
null_ref_key)
{
/* Must read with repeat */
j->type= null_ref_key ? JT_REF_OR_NULL : JT_REF;
j->ref.null_ref_key= null_ref_key;
j->ref.null_ref_part= null_ref_part;
}
else if (keyuse_uses_no_tables)
{
/*
This happen if we are using a constant expression in the ON part
of an LEFT JOIN.
SELECT * FROM a LEFT JOIN b ON b.key=30
Here we should not mark the table as a 'const' as a field may
have a 'normal' value or a NULL value.
*/
j->type=JT_CONST;
}
else
j->type=JT_EQ_REF;
if (j->type == JT_EQ_REF)
j->read_record.unlock_row= join_read_key_unlock_row;
else if (j->type == JT_CONST)
j->read_record.unlock_row= join_const_unlock_row;
else
j->read_record.unlock_row= rr_unlock_row;
DBUG_RETURN(0);
}
static store_key *
get_store_key(THD *thd, KEYUSE *keyuse, table_map used_tables,
KEY_PART_INFO *key_part, uchar *key_buff, uint maybe_null)
{
if (!((~used_tables) & keyuse->used_tables)) // if const item
{
return new store_key_const_item(thd,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
keyuse->val);
}
else if (keyuse->val->type() == Item::FIELD_ITEM ||
(keyuse->val->type() == Item::REF_ITEM &&
((((Item_ref*)keyuse->val)->ref_type() == Item_ref::OUTER_REF &&
(*(Item_ref**)((Item_ref*)keyuse->val)->ref)->ref_type() ==
Item_ref::DIRECT_REF) ||
((Item_ref*)keyuse->val)->ref_type() == Item_ref::VIEW_REF) &&
keyuse->val->real_item()->type() == Item::FIELD_ITEM))
return new store_key_field(thd,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
((Item_field*) keyuse->val->real_item())->field,
keyuse->val->real_item()->full_name());
return new store_key_item(thd,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
keyuse->val, FALSE);
}
inline void add_cond_and_fix(THD *thd, Item **e1, Item *e2)
{
if (*e1)
{
if (!e2)
return;
Item *res;
if ((res= new (thd->mem_root) Item_cond_and(thd, *e1, e2)))
{
res->fix_fields(thd, 0);
res->update_used_tables();
*e1= res;
}
}
else
*e1= e2;
}
/**
Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions
we've inferred from ref/eq_ref access performed.
This function is a part of "Early NULL-values filtering for ref access"
optimization.
Example of this optimization:
For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
and plan " any-access(t1), ref(t2.key=t1.field) " @n
add "t1.field IS NOT NULL" to t1's table condition. @n
Description of the optimization:
We look through equalities chosen to perform ref/eq_ref access,
pick equalities that have form "tbl.part_of_key = othertbl.field"
(where othertbl is a non-const table and othertbl.field may be NULL)
and add them to conditions on correspoding tables (othertbl in this
example).
Exception from that is the case when referred_tab->join != join.
I.e. don't add NOT NULL constraints from any embedded subquery.
Consider this query:
@code
SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
WHERE A.f3=(SELECT MIN(f3) FROM t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
@endocde
Here condition A.f3 IS NOT NULL is going to be added to the WHERE
condition of the embedding query.
Another example:
SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
WHERE t12.b = t10.a ));
Here condition t10.a IS NOT NULL is going to be added.
In both cases addition of NOT NULL condition will erroneously reject
some rows of the result set.
referred_tab->join != join constraint would disallow such additions.
This optimization doesn't affect the choices that ref, range, or join
optimizer make. This was intentional because this was added after 4.1
was GA.
Implementation overview
1. update_ref_and_keys() accumulates info about null-rejecting
predicates in in KEY_FIELD::null_rejecting
1.1 add_key_part saves these to KEYUSE.
2. create_ref_for_key copies them to TABLE_REF.
3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of
appropiate JOIN_TAB members.
*/
static void add_not_null_conds(JOIN *join)
{
JOIN_TAB *tab;
DBUG_ENTER("add_not_null_conds");
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
if (tab->type == JT_REF || tab->type == JT_EQ_REF ||
tab->type == JT_REF_OR_NULL)
{
for (uint keypart= 0; keypart < tab->ref.key_parts; keypart++)
{
if (tab->ref.null_rejecting & ((key_part_map)1 << keypart))
{
Item *item= tab->ref.items[keypart];
Item *notnull;
Item *real= item->real_item();
if (real->can_eval_in_optimize() && real->type() != Item::FIELD_ITEM)
{
/*
It could be constant instead of field after constant
propagation.
*/
continue;
}
DBUG_ASSERT(real->type() == Item::FIELD_ITEM);
Item_field *not_null_item= (Item_field*)real;
JOIN_TAB *referred_tab= not_null_item->field->table->reginfo.join_tab;
/*
For UPDATE queries such as:
UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
not_null_item is the t1.f1, but it's referred_tab is 0.
*/
if (!(notnull= new (join->thd->mem_root)
Item_func_isnotnull(join->thd, item)))
DBUG_VOID_RETURN;
/*
We need to do full fix_fields() call here in order to have correct
notnull->const_item(). This is needed e.g. by test_quick_select
when it is called from make_join_select after this function is
called.
*/
if (notnull->fix_fields(join->thd, ¬null))
DBUG_VOID_RETURN;
DBUG_EXECUTE("where",print_where(notnull,
(referred_tab ?
referred_tab->table->alias.c_ptr() :
"outer_ref_cond"),
QT_ORDINARY););
if (!tab->first_inner)
{
COND *new_cond= (referred_tab && referred_tab->join == join) ?
referred_tab->select_cond :
join->outer_ref_cond;
add_cond_and_fix(join->thd, &new_cond, notnull);
if (referred_tab && referred_tab->join == join)
referred_tab->set_select_cond(new_cond, __LINE__);
else
join->outer_ref_cond= new_cond;
}
else
add_cond_and_fix(join->thd, tab->first_inner->on_expr_ref, notnull);
}
}
}
}
DBUG_VOID_RETURN;
}
/**
Build a predicate guarded by match variables for embedding outer joins.
The function recursively adds guards for predicate cond
assending from tab to the first inner table next embedding
nested outer join and so on until it reaches root_tab
(root_tab can be 0).
In other words:
add_found_match_trig_cond(tab->first_inner_tab, y, 0) is the way one should
wrap parts of WHERE. The idea is that the part of WHERE should be only
evaluated after we've finished figuring out whether outer joins.
^^^ is the above correct?
@param tab the first inner table for most nested outer join
@param cond the predicate to be guarded (must be set)
@param root_tab the first inner table to stop
@return
- pointer to the guarded predicate, if success
- 0, otherwise
*/
static COND*
add_found_match_trig_cond(THD *thd, JOIN_TAB *tab, COND *cond,
JOIN_TAB *root_tab)
{
COND *tmp;
DBUG_ASSERT(cond != 0);
if (tab == root_tab)
return cond;
if ((tmp= add_found_match_trig_cond(thd, tab->first_upper, cond, root_tab)))
tmp= new (thd->mem_root) Item_func_trig_cond(thd, tmp, &tab->found);
if (tmp)
{
tmp->quick_fix_field();
tmp->update_used_tables();
}
return tmp;
}
bool TABLE_LIST::is_active_sjm()
{
return sj_mat_info && sj_mat_info->is_used;
}
/**
Fill in outer join related info for the execution plan structure.
For each outer join operation left after simplification of the
original query the function set up the following pointers in the linear
structure join->join_tab representing the selected execution plan.
The first inner table t0 for the operation is set to refer to the last
inner table tk through the field t0->last_inner.
Any inner table ti for the operation are set to refer to the first
inner table ti->first_inner.
The first inner table t0 for the operation is set to refer to the
first inner table of the embedding outer join operation, if there is any,
through the field t0->first_upper.
The on expression for the outer join operation is attached to the
corresponding first inner table through the field t0->on_expr_ref.
Here ti are structures of the JOIN_TAB type.
In other words, for each join tab, set
- first_inner
- last_inner
- first_upper
- on_expr_ref, cond_equal
EXAMPLE. For the query:
@code
SELECT * FROM t1
LEFT JOIN
(t2, t3 LEFT JOIN t4 ON t3.a=t4.a)
ON (t1.a=t2.a AND t1.b=t3.b)
WHERE t1.c > 5,
@endcode
given the execution plan with the table order t1,t2,t3,t4
is selected, the following references will be set;
t4->last_inner=[t4], t4->first_inner=[t4], t4->first_upper=[t2]
t2->last_inner=[t4], t2->first_inner=t3->first_inner=[t2],
on expression (t1.a=t2.a AND t1.b=t3.b) will be attached to
*t2->on_expr_ref, while t3.a=t4.a will be attached to *t4->on_expr_ref.
@param join reference to the info fully describing the query
@note
The function assumes that the simplification procedure has been
already applied to the join query (see simplify_joins).
This function can be called only after the execution plan
has been chosen.
*/
static bool
make_outerjoin_info(JOIN *join)
{
DBUG_ENTER("make_outerjoin_info");
/*
Create temp. tables for merged SJ-Materialization nests. We need to do
this now, because further code relies on tab->table and
tab->table->pos_in_table_list being set.
*/
JOIN_TAB *tab;
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
if (tab->bush_children)
{
if (setup_sj_materialization_part1(tab))
DBUG_RETURN(TRUE);
tab->table->reginfo.join_tab= tab;
}
}
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
TABLE *table= tab->table;
TABLE_LIST *tbl= table->pos_in_table_list;
TABLE_LIST *embedding= tbl->embedding;
if (tbl->outer_join & (JOIN_TYPE_LEFT | JOIN_TYPE_RIGHT))
{
/*
Table tab is the only one inner table for outer join.
(Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a
is in the query above.)
*/
tab->last_inner= tab->first_inner= tab;
tab->on_expr_ref= &tbl->on_expr;
tab->cond_equal= tbl->cond_equal;
if (embedding && !embedding->is_active_sjm())
tab->first_upper= embedding->nested_join->first_nested;
}
else if (!embedding)
tab->table->reginfo.not_exists_optimize= 0;
for ( ; embedding ; embedding= embedding->embedding)
{
if (embedding->is_active_sjm())
{
/*
We're trying to walk out of an SJ-Materialization nest.
Don't do this.
*/
break;
}
/* Ignore sj-nests: */
if (!(embedding->on_expr && embedding->outer_join))
{
tab->table->reginfo.not_exists_optimize= 0;
continue;
}
NESTED_JOIN *nested_join= embedding->nested_join;
if (!nested_join->counter)
{
/*
Table tab is the first inner table for nested_join.
Save reference to it in the nested join structure.
*/
nested_join->first_nested= tab;
tab->on_expr_ref= &embedding->on_expr;
tab->cond_equal= tbl->cond_equal;
if (embedding->embedding)
tab->first_upper= embedding->embedding->nested_join->first_nested;
}
if (!tab->first_inner)
tab->first_inner= nested_join->first_nested;
if (++nested_join->counter < nested_join->n_tables)
break;
/* Table tab is the last inner table for nested join. */
nested_join->first_nested->last_inner= tab;
}
}
DBUG_RETURN(FALSE);
}
/*
@brief
Build a temporary join prefix condition for JOIN_TABs up to the last tab
@param ret OUT the condition is returned here
@return
false OK
true Out of memory
@detail
Walk through the join prefix (from the first table to the last_tab) and
build a condition:
join_tab_1_cond AND join_tab_2_cond AND ... AND last_tab_conds
The condition is only intended to be used by the range optimizer, so:
- it is not normalized (can have Item_cond_and inside another
Item_cond_and)
- it does not include join->exec_const_cond and other similar conditions.
*/
bool build_tmp_join_prefix_cond(JOIN *join, JOIN_TAB *last_tab, Item **ret)
{
THD *const thd= join->thd;
Item_cond_and *all_conds= NULL;
Item *res= NULL;
// Pick the ON-expression. Use the same logic as in get_sargable_cond():
if (last_tab->on_expr_ref)
res= *last_tab->on_expr_ref;
else if (last_tab->table->pos_in_table_list &&
last_tab->table->pos_in_table_list->embedding &&
!last_tab->table->pos_in_table_list->embedding->sj_on_expr)
{
res= last_tab->table->pos_in_table_list->embedding->on_expr;
}
for (JOIN_TAB *tab= first_depth_first_tab(join);
tab;
tab= next_depth_first_tab(join, tab))
{
if (tab->select_cond)
{
if (!res)
res= tab->select_cond;
else
{
if (!all_conds)
{
if (!(all_conds= new (thd->mem_root)Item_cond_and(thd, res,
tab->select_cond)))
return true;
res= all_conds;
}
else
all_conds->add(tab->select_cond, thd->mem_root);
}
}
if (tab == last_tab)
break;
}
*ret= all_conds? all_conds: res;
return false;
}
static bool
make_join_select(JOIN *join,SQL_SELECT *select,COND *cond)
{
THD *thd= join->thd;
DBUG_ENTER("make_join_select");
if (select)
{
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_conditions(thd, "attaching_conditions_to_tables");
Json_writer_array trace_attached_comp(thd,
"attached_conditions_computation");
add_not_null_conds(join);
table_map used_tables;
/*
Step #1: Extract constant condition
- Extract and check the constant part of the WHERE
- Extract constant parts of ON expressions from outer
joins and attach them appropriately.
*/
if (cond) /* Because of QUICK_GROUP_MIN_MAX_SELECT */
{ /* there may be a select without a cond. */
if (join->table_count > 1)
cond->update_used_tables(); // Tablenr may have changed
/*
Extract expressions that depend on constant tables
1. Const part of the join's WHERE clause can be checked immediately
and if it is not satisfied then the join has empty result
2. Constant parts of outer joins' ON expressions must be attached
there inside the triggers.
*/
{ // Check const tables
Item* const_cond= NULL;
const_cond= make_cond_for_table(thd, cond,
join->const_table_map,
(table_map) 0, -1, FALSE, FALSE);
if (!const_cond && thd->is_error())
DBUG_RETURN(1);
/* Add conditions added by add_not_null_conds(). */
for (uint i= 0 ; i < join->const_tables ; i++)
add_cond_and_fix(thd, &const_cond,
join->join_tab[i].select_cond);
DBUG_EXECUTE("where",print_where(const_cond,"constants",
QT_ORDINARY););
if (const_cond)
{
Json_writer_object trace_const_cond(thd);
trace_const_cond.add("condition_on_constant_tables", const_cond);
if (const_cond->is_expensive())
{
if (unlikely(trace_const_cond.trace_started()))
trace_const_cond.
add("evalualted", "false").
add("cause", "expensive cond");
}
else
{
bool const_cond_result;
{
Json_writer_array a(thd, "computing_condition");
const_cond_result= const_cond->val_bool() != 0;
}
if (!const_cond_result)
{
DBUG_PRINT("info",("Found impossible WHERE condition"));
if (unlikely(trace_const_cond.trace_started()))
trace_const_cond.
add("evalualted", "true").
add("found", "impossible where");
join->exec_const_cond= NULL;
DBUG_RETURN(1);
}
}
join->exec_const_cond= const_cond;
}
if (join->table_count != join->const_tables)
{
COND *outer_ref_cond= make_cond_for_table(thd, cond,
join->const_table_map |
OUTER_REF_TABLE_BIT,
OUTER_REF_TABLE_BIT,
-1, FALSE, FALSE);
if (outer_ref_cond)
{
add_cond_and_fix(thd, &outer_ref_cond, join->outer_ref_cond);
join->outer_ref_cond= outer_ref_cond;
Json_writer_object trace(thd);
trace.add("outer_ref_cond", outer_ref_cond);
}
else if (thd->is_error())
DBUG_RETURN(1);
}
else
{
COND *pseudo_bits_cond=
make_cond_for_table(thd, cond,
join->const_table_map |
PSEUDO_TABLE_BITS,
PSEUDO_TABLE_BITS,
-1, FALSE, FALSE);
if (pseudo_bits_cond)
{
add_cond_and_fix(thd, &pseudo_bits_cond,
join->pseudo_bits_cond);
join->pseudo_bits_cond= pseudo_bits_cond;
Json_writer_object trace(thd);
trace.add("pseudo_bits_cond", pseudo_bits_cond);
}
else if (thd->is_error())
DBUG_RETURN(1);
}
}
}
/*
Step #2: Extract WHERE/ON parts
*/
uint i;
for (i= join->top_join_tab_count - 1; i >= join->const_tables; i--)
{
if (!join->join_tab[i].bush_children)
break;
}
uint last_top_base_tab_idx= i;
table_map save_used_tables= 0;
used_tables=((select->const_tables=join->const_table_map) |
OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
JOIN_TAB *tab;
table_map current_map;
i= join->const_tables;
for (tab= first_depth_first_tab(join); tab;
tab= next_depth_first_tab(join, tab))
{
bool is_hj;
/*
first_inner is the X in queries like:
SELECT * FROM t1 LEFT OUTER JOIN (t2 JOIN t3) ON X
*/
JOIN_TAB *first_inner_tab= tab->first_inner;
COND *tmp;
if (!tab->bush_children)
current_map= tab->table->map;
else
current_map= tab->bush_children->start->emb_sj_nest->sj_inner_tables;
/*
Tables that are within SJ-Materialization nests cannot have their
conditions referring to preceding non-const tables.
- If we're looking at the first SJM table, reset used_tables
to refer to only allowed tables
*/
if (tab->emb_sj_nest && tab->emb_sj_nest->sj_mat_info &&
tab->emb_sj_nest->sj_mat_info->is_used &&
!(used_tables & tab->emb_sj_nest->sj_inner_tables))
{
save_used_tables= used_tables;
used_tables= join->const_table_map | OUTER_REF_TABLE_BIT |
RAND_TABLE_BIT;
}
used_tables|=current_map;
/*
Change from using ref access to using quick select on the same index
if the quick select uses more key parts.
There are two cases.
A. ref access is ref(const). quick select was also constructed using
equality restrictions that ref used, and so it will scan a subset of
rows that ref access scans.
Example: suppose the index is INDEX(kp1, kp2) and the WHERE has:
kp1='foo' and kp2 <= 10
here, ref access will use kp1='foo' and quick select will use
(foo) <= (kp1,kp2) <=(foo,10)
B. ref access is not constant. In this case, quick select was
constructed from some other restriction and in general will scan
totally different set of rows (it maybe larger or smaller).
Example: for INDEX(kp1, kp2) and the WHERE:
kp1 <='foo' and kp1=prev_table.col and kp2 <= 10
the ref access will use kp1=prev_table.col, while quick select will
use (-inf) < (kp1, kp2) <= ('foo',10).
Because of the above, we perform the rewrite ONLY when ref is
ref(const).
*/
if (tab->type == JT_REF && tab->quick &&
(((uint) tab->ref.key == tab->quick->index &&
tab->ref.key_length < tab->quick->max_used_key_length) ||
(!is_hash_join_key_no(tab->ref.key) &&
tab->table->intersect_keys.is_set(tab->ref.key))) &&
tab->ref.const_ref_part_map == // (ref-is-const)
make_prev_keypart_map(tab->ref.key_parts)) // (ref-is-const)
{
/* Range uses longer key; Use this instead of ref on key */
if (unlikely(thd->trace_started()))
{
Json_writer_object ref_to_range(thd);
ref_to_range.
add("ref_to_range", true).
add("cause", "range uses longer key");
}
tab->type= JT_RANGE;
tab->use_quick=1;
tab->ref.key= -1;
tab->ref.key_parts=0; // Don't use ref key.
join->best_positions[i].records_read= rows2double(tab->quick->records);
/*
We will use join cache here : prevent sorting of the first
table only and sort at the end.
*/
if (i != join->const_tables &&
join->table_count > join->const_tables + 1 &&
join->best_positions[i].use_join_buffer)
join->full_join= 1;
}
tmp= NULL;
if (cond)
{
if (tab->bush_children)
{
// Reached the materialization tab
tmp= make_cond_after_sjm(thd, cond, cond, save_used_tables,
used_tables, /*inside_or_clause=*/FALSE);
used_tables= save_used_tables | used_tables;
save_used_tables= 0;
}
else
{
tmp= make_cond_for_table(thd, cond, used_tables, current_map, i,
FALSE, FALSE);
if (!tmp && thd->is_error())
DBUG_RETURN(1);
if (tab == join->join_tab + last_top_base_tab_idx)
{
/*
This pushes conjunctive conditions of WHERE condition such that:
- their used_tables() contain RAND_TABLE_BIT
- the conditions does not refer to any fields
(such like rand() > 0.5)
*/
table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
COND *rand_cond= make_cond_for_table(thd, cond, used_tables,
rand_table_bit, -1,
FALSE, FALSE);
if (rand_cond)
add_cond_and_fix(thd, &tmp, rand_cond);
else if (thd->is_error())
DBUG_RETURN(1);
}
}
/* Add conditions added by add_not_null_conds(). */
if (tab->select_cond)
add_cond_and_fix(thd, &tmp, tab->select_cond);
}
is_hj= (tab->type == JT_REF || tab->type == JT_EQ_REF) &&
(join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT) &&
((join->max_allowed_join_cache_level+1)/2 == 2 ||
((join->max_allowed_join_cache_level+1)/2 > 2 &&
is_hash_join_key_no(tab->ref.key))) &&
(!tab->emb_sj_nest ||
join->allowed_semijoin_with_cache) &&
(!(tab->table->map & join->outer_join) ||
join->allowed_outer_join_with_cache);
if (cond && !tmp && tab->quick)
{ // Outer join
if ((tab->type != JT_ALL && tab->type != JT_RANGE) && !is_hj)
{
/*
Don't use the quick method
We come here in the case where we have 'key=constant' and
the test is removed by make_cond_for_table()
*/
delete tab->quick;
tab->quick= 0;
}
else
{
/*
Hack to handle the case where we only refer to a table
in the ON part of an OUTER JOIN. In this case we want the code
below to check if we should use 'quick' instead.
*/
DBUG_PRINT("info", ("Item_int"));
tmp= (Item*) Item_true;
}
}
if (tmp || !cond || tab->type == JT_REF || tab->type == JT_REF_OR_NULL ||
tab->type == JT_EQ_REF || first_inner_tab)
{
DBUG_EXECUTE("where",print_where(tmp,
tab->table ?
tab->table->alias.c_ptr() :"sjm-nest",
QT_ORDINARY););
SQL_SELECT *sel= tab->select= ((SQL_SELECT*)
thd->memdup((uchar*) select,
sizeof(*select)));
if (!sel)
DBUG_RETURN(1); // End of memory
/*
If tab is an inner table of an outer join operation,
add a match guard to the pushed down predicate.
The guard will turn the predicate on only after
the first match for outer tables is encountered.
*/
if (cond && tmp)
{
/*
Because of QUICK_GROUP_MIN_MAX_SELECT there may be a select without
a cond, so neutralize the hack above.
*/
COND *tmp_cond;
if (!(tmp_cond= add_found_match_trig_cond(thd, first_inner_tab, tmp,
0)))
DBUG_RETURN(1);
sel->cond= tmp_cond;
tab->set_select_cond(tmp_cond, __LINE__);
/* Push condition to storage engine if this is enabled
and the condition is not guarded */
if (tab->table)
{
tab->table->file->pushed_cond= NULL;
if ((tab->table->file->ha_table_flags() &
HA_CAN_TABLE_CONDITION_PUSHDOWN) &&
!first_inner_tab)
{
Json_writer_object wrap(thd);
Json_writer_object trace_cp(thd, "table_condition_pushdown");
trace_cp.add_table_name(tab->table);
COND *push_cond=
make_cond_for_table(thd, tmp_cond, current_map, current_map,
-1, FALSE, FALSE);
if (push_cond)
{
trace_cp.add("push_cond", push_cond);
/* Push condition to handler */
if (!tab->table->file->cond_push(push_cond))
tab->table->file->pushed_cond= push_cond;
}
else if (thd->is_error())
DBUG_RETURN(1);
}
}
}
else
{
sel->cond= NULL;
tab->set_select_cond(NULL, __LINE__);
}
sel->head=tab->table;
DBUG_EXECUTE("where",
print_where(tmp,
tab->table ? tab->table->alias.c_ptr() :
"(sjm-nest)",
QT_ORDINARY););
if (tab->quick)
{
/* Use quick key read if it's a constant and it's not used
with key reading */
if ((tab->needed_reg.is_clear_all() && tab->type != JT_EQ_REF &&
tab->type != JT_FT &&
((tab->type != JT_CONST && tab->type != JT_REF) ||
(uint) tab->ref.key == tab->quick->index)) || is_hj)
{
DBUG_ASSERT(tab->quick->is_valid());
sel->quick=tab->quick; // Use value from get_quick_...
sel->quick_keys.clear_all();
sel->needed_reg.clear_all();
if (is_hj && tab->rowid_filter)
tab->clear_range_rowid_filter();
}
else
{
delete tab->quick;
}
tab->quick=0;
}
uint ref_key= (sel->head ?
(uint) sel->head->reginfo.join_tab->ref.key+1 :
0);
if (i == join->const_tables && ref_key)
{
if (!tab->const_keys.is_clear_all() &&
tab->table->reginfo.impossible_range)
DBUG_RETURN(1);
}
else if ((tab->type == JT_ALL || tab->type == JT_NEXT))
{
if (!tab->const_keys.is_clear_all() &&
tab->table->reginfo.impossible_range)
DBUG_RETURN(1); // Impossible range
/*
We plan to scan all rows either with table or index scan
Check again if we should use an index.
There are two cases:
1) There could be an index usage the refers to a previous
table that we didn't consider before, but could be consider
now as a "last resort". For example
SELECT * from t1,t2 where t1.a between t2.a and t2.b;
2) If the current table is the first non const table
and there is a limit it still possibly beneficial
to use the index even if the index range is big as
we can stop when we've found limit rows.
(1) - Don't switch the used index if we are using semi-join
LooseScan on this table. Using different index will not
produce the desired ordering and de-duplication.
*/
if (!tab->table->is_filled_at_execution() &&
!tab->loosescan_match_tab && // (1)
((cond && (!tab->keys.is_subset(tab->const_keys) &&
i > join->const_tables)) ||
(!tab->const_keys.is_clear_all() && i == join->const_tables &&
join->unit->lim.get_select_limit() <
join->best_positions[i].records_read &&
!(join->select_options & OPTION_FOUND_ROWS))))
{
/* Join with outer join condition */
COND *orig_cond=sel->cond;
if (build_tmp_join_prefix_cond(join, tab, &sel->cond))
return true;
/*
We can't call sel->cond->fix_fields,
as it will break tab->on_expr if it's AND condition
(fix_fields currently removes extra AND/OR levels).
Yet attributes of the just built condition are not needed.
Thus we call sel->cond->quick_fix_field for safety.
*/
if (sel->cond && !sel->cond->fixed())
sel->cond->quick_fix_field();
quick_select_return res;
if ((res= sel->test_quick_select(thd, tab->keys,
((used_tables & ~ current_map) |
OUTER_REF_TABLE_BIT),
(join->select_options &
OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->lim.get_select_limit()),
0,
FALSE, FALSE, FALSE,
Item_func::BITMAP_ALL)) ==
SQL_SELECT::IMPOSSIBLE_RANGE)
{
/*
Before reporting "Impossible WHERE" for the whole query
we have to check isn't it only "impossible ON" instead
*/
sel->cond=orig_cond;
if (!*tab->on_expr_ref ||
(res= sel->test_quick_select(thd, tab->keys,
used_tables & ~ current_map,
(join->select_options &
OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->lim.get_select_limit()),
0, FALSE, FALSE, FALSE,
Item_func::BITMAP_NONE)) ==
SQL_SELECT::IMPOSSIBLE_RANGE)
DBUG_RETURN(1); // Impossible WHERE
}
else
sel->cond=orig_cond;
if (res == SQL_SELECT::ERROR)
DBUG_RETURN(1); /* Some error in one of test_quick_select calls */
/* Fix for EXPLAIN */
if (sel->quick)
{
join->best_positions[i].records_read=
(double) sel->quick->records;
set_if_smaller(join->best_positions[i].records_out,
rows2double(sel->head->opt_range_condition_rows));
}
else
{
/*
sel->head->opt_range_condition_rows may have been
updated to a smaller number than before by a call to
test_quick_select. This can happen even if the range
optimizer decided to not use the range (sel->quick was
not set).
*/
set_if_smaller(join->best_positions[i].records_out,
rows2double(sel->head->opt_range_condition_rows));
}
}
else
{
sel->needed_reg=tab->needed_reg;
}
sel->quick_keys= tab->table->opt_range_keys;
if (!sel->quick_keys.is_subset(tab->checked_keys) ||
!sel->needed_reg.is_subset(tab->checked_keys))
{
handler *file= tab->table->file;
/*
"Range checked for each record" is a "last resort" access method
that should only be used when the other option is a cross-product
join.
We use the following condition (it's approximate):
1. There are potential keys for (sel->needed_reg)
2. There were no possible ways to construct a quick select, or
the quick select would be more expensive than the full table
scan.
*/
tab->use_quick= (!sel->needed_reg.is_clear_all() &&
(sel->quick_keys.is_clear_all() ||
(sel->quick &&
sel->quick->read_time >
file->cost(file->ha_scan_and_compare_time(tab->table->file-> stats.records))))) ?
2 : 1;
sel->read_tables= used_tables & ~current_map;
sel->quick_keys.clear_all();
}
if (i != join->const_tables && tab->use_quick != 2 &&
!tab->first_inner)
{ /* Read with cache */
/*
TODO: the execution also gets here when we will not be using
join buffer. Review these cases and perhaps, remove this call.
(The final decision whether to use join buffer is made in
check_join_cache_usage, so we should only call make_scan_filter()
there, too).
*/
if (tab->make_scan_filter())
DBUG_RETURN(1);
}
}
}
/*
Push down conditions from all ON expressions.
Each of these conditions are guarded by a variable
that turns if off just before null complemented row for
outer joins is formed. Thus, the condition from an
'on expression' are guaranteed not to be checked for
the null complemented row.
*/
/*
First push down constant conditions from ON expressions.
- Each pushed-down condition is wrapped into trigger which is
enabled only for non-NULL-complemented record
- The condition is attached to the first_inner_table.
With regards to join nests:
- if we start at top level, don't walk into nests
- if we start inside a nest, stay within that nest.
*/
JOIN_TAB *start_from= tab->bush_root_tab?
tab->bush_root_tab->bush_children->start :
join->join_tab + join->const_tables;
JOIN_TAB *end_with= tab->bush_root_tab?
tab->bush_root_tab->bush_children->end :
join->join_tab + join->top_join_tab_count;
for (JOIN_TAB *join_tab= start_from;
join_tab != end_with;
join_tab++)
{
if (*join_tab->on_expr_ref)
{
JOIN_TAB *cond_tab= join_tab->first_inner;
COND *tmp_cond= make_cond_for_table(thd, *join_tab->on_expr_ref,
join->const_table_map,
(table_map) 0, -1, FALSE, FALSE);
if (!tmp_cond)
{
if (!thd->is_error())
continue;
DBUG_RETURN(1);
}
tmp_cond= new (thd->mem_root) Item_func_trig_cond(thd, tmp_cond,
&cond_tab->not_null_compl);
if (!tmp_cond)
DBUG_RETURN(1);
tmp_cond->quick_fix_field();
cond_tab->select_cond= !cond_tab->select_cond ? tmp_cond :
new (thd->mem_root) Item_cond_and(thd, cond_tab->select_cond,
tmp_cond);
if (!cond_tab->select_cond)
DBUG_RETURN(1);
cond_tab->select_cond->quick_fix_field();
cond_tab->select_cond->update_used_tables();
if (cond_tab->select)
cond_tab->select->cond= cond_tab->select_cond;
}
}
/* Push down non-constant conditions from ON expressions */
JOIN_TAB *last_tab= tab;
/*
while we're inside of an outer join and last_tab is
the last of its tables ...
*/
while (first_inner_tab && first_inner_tab->last_inner == last_tab)
{
/*
Table tab is the last inner table of an outer join.
An on expression is always attached to it.
*/
COND *on_expr= *first_inner_tab->on_expr_ref;
table_map used_tables2= (join->const_table_map |
OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
start_from= tab->bush_root_tab?
tab->bush_root_tab->bush_children->start :
join->join_tab + join->const_tables;
for (JOIN_TAB *inner_tab= start_from;
inner_tab <= last_tab;
inner_tab++)
{
DBUG_ASSERT(inner_tab->table);
current_map= inner_tab->table->map;
used_tables2|= current_map;
/*
psergey: have put the -1 below. It's bad, will need to fix it.
*/
COND *tmp_cond= make_cond_for_table(thd, on_expr, used_tables2,
current_map,
/*(inner_tab - first_tab)*/ -1,
FALSE, FALSE);
if (!tmp_cond && thd->is_error())
DBUG_RETURN(1);
if (tab == last_tab)
{
/*
This pushes conjunctive conditions of ON expression of an outer
join such that:
- their used_tables() contain RAND_TABLE_BIT
- the conditions does not refer to any fields
(such like rand() > 0.5)
*/
table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
COND *rand_cond= make_cond_for_table(thd, on_expr, used_tables2,
rand_table_bit, -1,
FALSE, FALSE);
if (rand_cond)
add_cond_and_fix(thd, &tmp_cond, rand_cond);
else if (thd->is_error())
DBUG_RETURN(1);
}
bool is_sjm_lookup_tab= FALSE;
if (inner_tab->bush_children)
{
/*
'inner_tab' is an SJ-Materialization tab, i.e. we have a join
order like this:
ot1 sjm_tab LEFT JOIN ot2 ot3
^ ^
'tab'-+ +--- left join we're adding triggers for
LEFT JOIN's ON expression may not have references to subquery
columns. The subquery was in the WHERE clause, so IN-equality
is in the WHERE clause, also.
However, equality propagation code may have propagated the
IN-equality into ON expression, and we may get things like
subquery_inner_table=const
in the ON expression. We must not check such conditions during
SJM-lookup, because 1) subquery_inner_table has no valid current
row (materialization temp.table has it instead), and 2) they
would be true anyway.
*/
SJ_MATERIALIZATION_INFO *sjm=
inner_tab->bush_children->start->emb_sj_nest->sj_mat_info;
if (sjm->is_used && !sjm->is_sj_scan)
is_sjm_lookup_tab= TRUE;
}
if (inner_tab == first_inner_tab && inner_tab->on_precond &&
!is_sjm_lookup_tab)
add_cond_and_fix(thd, &tmp_cond, inner_tab->on_precond);
if (tmp_cond && !is_sjm_lookup_tab)
{
JOIN_TAB *cond_tab= (inner_tab < first_inner_tab ?
first_inner_tab : inner_tab);
Item **sel_cond_ref= (inner_tab < first_inner_tab ?
&first_inner_tab->on_precond :
&inner_tab->select_cond);
/*
First add the guards for match variables of
all embedding outer join operations.
*/
if (!(tmp_cond= add_found_match_trig_cond(thd,
cond_tab->first_inner,
tmp_cond,
first_inner_tab)))
DBUG_RETURN(1);
/*
Now add the guard turning the predicate off for
the null complemented row.
*/
DBUG_PRINT("info", ("Item_func_trig_cond"));
tmp_cond= new (thd->mem_root) Item_func_trig_cond(thd, tmp_cond,
&first_inner_tab->
not_null_compl);
DBUG_PRINT("info", ("Item_func_trig_cond %p",
tmp_cond));
if (tmp_cond)
tmp_cond->quick_fix_field();
/* Add the predicate to other pushed down predicates */
DBUG_PRINT("info", ("Item_cond_and"));
*sel_cond_ref= !(*sel_cond_ref) ?
tmp_cond :
new (thd->mem_root) Item_cond_and(thd, *sel_cond_ref, tmp_cond);
DBUG_PRINT("info", ("Item_cond_and %p",
(*sel_cond_ref)));
if (!(*sel_cond_ref))
DBUG_RETURN(1);
(*sel_cond_ref)->quick_fix_field();
(*sel_cond_ref)->update_used_tables();
if (cond_tab->select)
cond_tab->select->cond= cond_tab->select_cond;
}
}
first_inner_tab= first_inner_tab->first_upper;
}
if (!tab->bush_children)
i++;
}
if (unlikely(thd->trace_started()))
{
trace_attached_comp.end();
Json_writer_array trace_attached_summary(thd,
"attached_conditions_summary");
for (tab= first_depth_first_tab(join); tab;
tab= next_depth_first_tab(join, tab))
{
if (!tab->table)
continue;
Item *const cond = tab->select_cond;
Json_writer_object trace_one_table(thd);
trace_one_table.add_table_name(tab);
trace_one_table.add("attached_condition", cond);
}
}
}
DBUG_RETURN(0);
}
static
uint get_next_field_for_derived_key(uchar *arg)
{
KEYUSE *keyuse= *(KEYUSE **) arg;
if (!keyuse)
return (uint) (-1);
TABLE *table= keyuse->table;
uint key= keyuse->key;
uint fldno= keyuse->keypart;
uint keypart= keyuse->keypart_map == (key_part_map) 1 ?
0 : (keyuse-1)->keypart+1;
for ( ;
keyuse->table == table && keyuse->key == key && keyuse->keypart == fldno;
keyuse++)
keyuse->keypart= keypart;
if (keyuse->key != key)
keyuse= 0;
*((KEYUSE **) arg)= keyuse;
return fldno;
}
static
uint get_next_field_for_derived_key_simple(uchar *arg)
{
KEYUSE *keyuse= *(KEYUSE **) arg;
if (!keyuse)
return (uint) (-1);
TABLE *table= keyuse->table;
uint key= keyuse->key;
uint fldno= keyuse->keypart;
for ( ;
keyuse->table == table && keyuse->key == key && keyuse->keypart == fldno;
keyuse++)
;
if (keyuse->key != key)
keyuse= 0;
*((KEYUSE **) arg)= keyuse;
return fldno;
}
static
bool generate_derived_keys_for_table(KEYUSE *keyuse, uint count, uint keys)
{
TABLE *table= keyuse->table;
if (table->alloc_keys(keys))
return TRUE;
uint key_count= 0;
KEYUSE *first_keyuse= keyuse;
uint prev_part= keyuse->keypart;
uint parts= 0;
uint i= 0;
for ( ; i < count && key_count < keys; )
{
do
{
keyuse->key= table->s->keys;
keyuse->keypart_map= (key_part_map) (1 << parts);
keyuse++;
i++;
}
while (i < count && keyuse->used_tables == first_keyuse->used_tables &&
keyuse->keypart == prev_part);
parts++;
if (i < count && keyuse->used_tables == first_keyuse->used_tables)
{
prev_part= keyuse->keypart;
}
else
{
KEYUSE *save_first_keyuse= first_keyuse;
if (table->check_tmp_key(table->s->keys, parts,
get_next_field_for_derived_key_simple,
(uchar *) &first_keyuse))
{
JOIN_TAB *tab;
first_keyuse= save_first_keyuse;
if (table->add_tmp_key(table->s->keys, parts,
get_next_field_for_derived_key,
(uchar *) &first_keyuse,
FALSE))
return TRUE;
table->reginfo.join_tab->keys.set_bit(table->s->keys - 1);
tab= table->reginfo.join_tab;
for (uint i=0; i < parts; i++)
tab->key_dependent|= save_first_keyuse[i].used_tables;
}
else
{
/* Mark keyuses for this key to be excluded */
for (KEYUSE *curr=save_first_keyuse; curr < keyuse; curr++)
{
curr->key= MAX_KEY;
}
}
first_keyuse= keyuse;
key_count++;
parts= 0;
prev_part= keyuse->keypart;
}
}
return FALSE;
}
/*
Procedure of keys generation for result tables of materialized derived
tables/views.
A key is generated for each equi-join pair {derived_table, some_other_table}.
Each generated key consists of fields of derived table used in equi-join.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=t1.f3 and tt.f2.=t1.f4;
In this case for the derived table tt one key will be generated. It will
consist of two parts f1 and f2.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=t1.f3 JOIN
t2 ON tt.f2=t2.f4;
In this case for the derived table tt two keys will be generated.
One key over f1 field, and another key over f2 field.
Currently optimizer may choose to use only one such key, thus the second
one will be dropped after range optimizer is finished.
See also JOIN::drop_unused_derived_keys function.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=a_function(t1.f3);
In this case for the derived table tt one key will be generated. It will
consist of one field - f1.
*/
static
bool generate_derived_keys(DYNAMIC_ARRAY *keyuse_array)
{
KEYUSE *keyuse, *end_keyuse;
size_t elements= keyuse_array->elements;
TABLE *prev_table= 0;
DBUG_ASSERT(elements > 0);
/* The last element is an end marker */
DBUG_ASSERT(dynamic_element(keyuse_array, elements-1,
KEYUSE*)[0].table == 0);
for (keyuse= dynamic_element(keyuse_array, 0, KEYUSE*),
end_keyuse= keyuse + elements - 1;
keyuse < end_keyuse;
keyuse++)
{
DBUG_ASSERT(keyuse->table);
KEYUSE *first_table_keyuse= NULL;
table_map last_used_tables= 0;
uint count= 0;
uint keys= 0;
TABLE_LIST *derived= NULL;
if (keyuse->table != prev_table)
derived= keyuse->table->pos_in_table_list;
if (!derived->is_materialized_derived())
continue;
for (;;)
{
if (keyuse->table != prev_table)
{
prev_table= keyuse->table;
while (keyuse->table == prev_table && keyuse->key != MAX_KEY)
keyuse++;
if (keyuse->table != prev_table)
{
keyuse--;
break;
}
first_table_keyuse= keyuse;
last_used_tables= keyuse->used_tables;
count= 0;
keys= 0;
}
else if (keyuse->used_tables != last_used_tables)
{
keys++;
last_used_tables= keyuse->used_tables;
}
count++;
keyuse++;
if (keyuse->table != prev_table)
{
if (generate_derived_keys_for_table(first_table_keyuse, count, ++keys))
return TRUE;
keyuse--;
break;
}
}
}
return FALSE;
}
/*
@brief
Drops unused keys for each materialized derived table/view
@details
For materialized derived tables only ref access can be used, it employs
only one index, thus we don't need the rest. For each materialized derived
table/view call TABLE::use_index to save one index chosen by the optimizer
and free others. No key is chosen then all keys will be dropped.
*/
void JOIN::drop_unused_derived_keys()
{
JOIN_TAB *tab;
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
TABLE *tmp_tbl= tab->table;
/*
Skip placeholders and already created tables (we cannot change keys
for created tables)
*/
if (!tmp_tbl || tmp_tbl->is_created())
continue;
if (!tmp_tbl->pos_in_table_list->is_materialized_derived())
continue;
/*
tmp_tbl->max_keys is the number of keys pre-allocated in
TABLE::alloc_keys(). Can be 0 if alloc_keys() was not called.
tmp_tbl->s->keys is number of keys defined for the table.
Normally 0 or 1 (= unique key)
*/
if (likely(tmp_tbl->s->keys) && tab->ref.key >= 0 &&
!tab->is_ref_for_hash_join())
{
if (tmp_tbl->s->keys > 1)
{
/* remove all keys except the chosen one and unique keys */
tmp_tbl->use_index(tab->ref.key, &tab->keys);
}
/*
We dropped all keys except the chosen one and unique keys.
The chosen one is stored as the first key (number 0).
*/
tab->ref.key= 0;
}
else if (tmp_tbl->s->keys)
{
/* The query cannot use keys, remove all non unique keys */
tmp_tbl->use_index(-1, &tab->keys);
}
}
}
/*
Evaluate the bitmap of used tables for items from the select list
*/
inline void JOIN::eval_select_list_used_tables()
{
select_list_used_tables= 0;
Item *item;
List_iterator_fast<Item> it(fields_list);
while ((item= it++))
{
select_list_used_tables|= item->used_tables();
}
Item_outer_ref *ref;
List_iterator_fast<Item_outer_ref> ref_it(select_lex->inner_refs_list);
while ((ref= ref_it++))
{
item= ref->outer_ref;
select_list_used_tables|= item->used_tables();
}
}
/*
Determine {after which table we'll produce ordered set}
SYNOPSIS
make_join_orderinfo()
join
DESCRIPTION
Determine if the set is already ordered for ORDER BY, so it can
disable join cache because it will change the ordering of the results.
Code handles sort table that is at any location (not only first after
the const tables) despite the fact that it's currently prohibited.
We must disable join cache if the first non-const table alone is
ordered. If there is a temp table the ordering is done as a last
operation and doesn't prevent join cache usage.
RETURN
Number of table after which the set will be ordered
join->tables if we don't need an ordered set
*/
static uint make_join_orderinfo(JOIN *join)
{
/*
This function needs to be fixed to take into account that we now have SJM
nests.
*/
DBUG_ASSERT(0);
JOIN_TAB *tab;
if (join->need_tmp)
return join->table_count;
tab= join->get_sort_by_join_tab();
return tab ? (uint)(tab-join->join_tab) : join->table_count;
}
/*
Deny usage of join buffer for the specified table
SYNOPSIS
set_join_cache_denial()
tab join table for which join buffer usage is to be denied
DESCRIPTION
The function denies usage of join buffer when joining the table 'tab'.
The table is marked as not employing any join buffer. If a join cache
object has been already allocated for the table this object is destroyed.
RETURN
none
*/
static
void set_join_cache_denial(JOIN_TAB *join_tab)
{
if (join_tab->cache)
{
/*
If there is a previous cache linked to this cache through the
next_cache pointer: remove the link.
*/
if (join_tab->cache->prev_cache)
join_tab->cache->prev_cache->next_cache= 0;
/*
Same for the next_cache
*/
if (join_tab->cache->next_cache)
join_tab->cache->next_cache->prev_cache= 0;
join_tab->cache->free();
join_tab->cache= 0;
}
if (join_tab->use_join_cache)
{
join_tab->use_join_cache= FALSE;
join_tab->used_join_cache_level= 0;
/*
It could be only sub_select(). It could not be sub_seject_sjm because we
don't do join buffering for the first table in sjm nest.
*/
join_tab[-1].next_select= sub_select;
join_tab[-1].cached_pfs_batch_update= join_tab[-1].pfs_batch_update();
if (join_tab->type == JT_REF && join_tab->is_ref_for_hash_join())
{
join_tab->type= JT_ALL;
join_tab->ref.key_parts= 0;
}
join_tab->join->return_tab= join_tab;
}
}
/**
The default implementation of unlock-row method of READ_RECORD,
used in all access methods.
*/
void rr_unlock_row(st_join_table *tab)
{
READ_RECORD *info= &tab->read_record;
info->table->file->unlock_row();
}
/**
Pick the appropriate access method functions
Sets the functions for the selected table access method
@param tab Table reference to put access method
*/
static void
pick_table_access_method(JOIN_TAB *tab)
{
switch (tab->type)
{
case JT_REF:
tab->read_first_record= join_read_always_key;
tab->read_record.read_record_func= join_read_next_same;
break;
case JT_REF_OR_NULL:
tab->read_first_record= join_read_always_key_or_null;
tab->read_record.read_record_func= join_read_next_same_or_null;
break;
case JT_CONST:
tab->read_first_record= join_read_const;
tab->read_record.read_record_func= join_no_more_records;
break;
case JT_EQ_REF:
tab->read_first_record= join_read_key;
tab->read_record.read_record_func= join_no_more_records;
break;
case JT_FT:
tab->read_first_record= join_ft_read_first;
tab->read_record.read_record_func= join_ft_read_next;
break;
case JT_SYSTEM:
tab->read_first_record= join_read_system;
tab->read_record.read_record_func= join_no_more_records;
break;
/* keep gcc happy */
default:
break;
}
}
/*
Revise usage of join buffer for the specified table and the whole nest
SYNOPSIS
revise_cache_usage()
tab join table for which join buffer usage is to be revised
DESCRIPTION
The function revise the decision to use a join buffer for the table 'tab'.
If this table happened to be among the inner tables of a nested outer join/
semi-join the functions denies usage of join buffers for all of them
RETURN
none
*/
static
void revise_cache_usage(JOIN_TAB *join_tab)
{
JOIN_TAB *tab;
JOIN_TAB *first_inner;
if (join_tab->first_inner)
{
JOIN_TAB *end_tab= join_tab;
for (first_inner= join_tab->first_inner;
first_inner;
first_inner= first_inner->first_upper)
{
for (tab= end_tab; tab >= first_inner; tab--)
set_join_cache_denial(tab);
end_tab= first_inner;
}
}
else if (join_tab->first_sj_inner_tab)
{
first_inner= join_tab->first_sj_inner_tab;
for (tab= join_tab; tab >= first_inner; tab--)
{
set_join_cache_denial(tab);
}
}
else set_join_cache_denial(join_tab);
}
/*
end_select-compatible function that writes the record into a sjm temptable
SYNOPSIS
end_sj_materialize()
join The join
join_tab Points to right after the last join_tab in materialization bush
end_of_records FALSE <=> This call is made to pass another record
combination
TRUE <=> EOF (no action)
DESCRIPTION
This function is used by semi-join materialization to capture suquery's
resultset and write it into the temptable (that is, materialize it).
NOTE
This function is used only for semi-join materialization. Non-semijoin
materialization uses different mechanism.
RETURN
NESTED_LOOP_OK
NESTED_LOOP_ERROR
*/
enum_nested_loop_state
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
int error;
THD *thd= join->thd;
SJ_MATERIALIZATION_INFO *sjm= join_tab[-1].emb_sj_nest->sj_mat_info;
DBUG_ENTER("end_sj_materialize");
if (!end_of_records)
{
TABLE *table= sjm->table;
List_iterator<Item> it(sjm->sjm_table_cols);
Item *item;
while ((item= it++))
{
if (item->is_null())
DBUG_RETURN(NESTED_LOOP_OK);
}
fill_record(thd, table, table->field, sjm->sjm_table_cols, true, false,
true);
if (unlikely(thd->is_error()))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
if (unlikely((error= table->file->ha_write_tmp_row(table->record[0]))))
{
/* create_myisam_from_heap will generate error if needed */
if (table->file->is_fatal_error(error, HA_CHECK_DUP) &&
create_internal_tmp_table_from_heap(thd, table,
sjm->sjm_table_param.start_recinfo,
&sjm->sjm_table_param.recinfo, error, 1, NULL))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
}
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
Check whether a join buffer can be used to join the specified table
SYNOPSIS
check_join_cache_usage()
tab joined table to check join buffer usage for
options options of the join
no_jbuf_after don't use join buffering after table with this number
prev_tab previous join table
DESCRIPTION
The function finds out whether the table 'tab' can be joined using a join
buffer. This check is performed after the best execution plan for 'join'
has been chosen. If the function decides that a join buffer can be employed
then it selects the most appropriate join cache object that contains this
join buffer.
The result of the check and the type of the the join buffer to be used
depend on:
- the access method to access rows of the joined table
- whether the join table is an inner table of an outer join or semi-join
- whether the optimizer switches
outer_join_with_cache, semijoin_with_cache, join_cache_incremental,
join_cache_hashed, join_cache_bka,
are set on or off
- the join cache level set for the query
- the join 'options'.
In any case join buffer is not used if the number of the joined table is
greater than 'no_jbuf_after'. It's also never used if the value of
join_cache_level is equal to 0.
If the optimizer switch outer_join_with_cache is off no join buffer is
used for outer join operations.
If the optimizer switch semijoin_with_cache is off no join buffer is used
for semi-join operations.
If the optimizer switch join_cache_incremental is off no incremental join
buffers are used.
If the optimizer switch join_cache_hashed is off then the optimizer uses
neither BNLH algorithm, nor BKAH algorithm to perform join operations.
If the optimizer switch join_cache_bka is off then the optimizer uses
neither BKA algorithm, nor BKAH algorithm to perform join operation.
The valid settings for join_cache_level lay in the interval 0..8.
If it set to 0 no join buffers are used to perform join operations.
Currently we differentiate between join caches of 8 levels:
1 : non-incremental join cache used for BNL join algorithm
2 : incremental join cache used for BNL join algorithm
3 : non-incremental join cache used for BNLH join algorithm
4 : incremental join cache used for BNLH join algorithm
5 : non-incremental join cache used for BKA join algorithm
6 : incremental join cache used for BKA join algorithm
7 : non-incremental join cache used for BKAH join algorithm
8 : incremental join cache used for BKAH join algorithm
If the value of join_cache_level is set to n then no join caches of
levels higher than n can be employed.
If the optimizer switches outer_join_with_cache, semijoin_with_cache,
join_cache_incremental, join_cache_hashed, join_cache_bka are all on
the following rules are applied.
If join_cache_level==1|2 then join buffer is used for inner joins, outer
joins and semi-joins with 'JT_ALL' access method. In this case a
JOIN_CACHE_BNL object is employed.
If join_cache_level==3|4 and then join buffer is used for a join operation
(inner join, outer join, semi-join) with 'JT_REF'/'JT_EQREF' access method
then a JOIN_CACHE_BNLH object is employed.
If an index is used to access rows of the joined table and the value of
join_cache_level==5|6 then a JOIN_CACHE_BKA object is employed.
If an index is used to access rows of the joined table and the value of
join_cache_level==7|8 then a JOIN_CACHE_BKAH object is employed.
If the value of join_cache_level is odd then creation of a non-linked
join cache is forced.
Currently for any join operation a join cache of the level of the
highest allowed and applicable level is used.
For example, if join_cache_level is set to 6 and the optimizer switch
join_cache_bka is off, while the optimizer switch join_cache_hashed is
on then for any inner join operation with JT_REF/JT_EQREF access method
to the joined table the BNLH join algorithm will be used, while for
the table accessed by the JT_ALL methods the BNL algorithm will be used.
If the function decides that a join buffer can be used to join the table
'tab' then it sets the value of tab->use_join_buffer to TRUE and assigns
the selected join cache object to the field 'cache' of the previous
join table.
If the function creates a join cache object it tries to initialize it. The
failure to do this results in an invocation of the function that destructs
the created object.
If the function decides that but some reasons no join buffer can be used
for a table it calls the function revise_cache_usage that checks
whether join cache should be denied for some previous tables. In this case
a pointer to the first table for which join cache usage has been denied
is passed in join->return_val (see the function set_join_cache_denial).
The functions changes the value the fields tab->icp_other_tables_ok and
tab->idx_cond_fact_out to FALSE if the chosen join cache algorithm
requires it.
NOTES
An inner table of a nested outer join or a nested semi-join can be currently
joined only when a linked cache object is employed. In these cases setting
join_cache_incremental to 'off' results in denial of usage of any join
buffer when joining the table.
For a nested outer join/semi-join, currently, we either use join buffers for
all inner tables or for none of them.
Some engines (e.g. Falcon) currently allow to use only a join cache
of the type JOIN_CACHE_BKAH when the joined table is accessed through
an index. For these engines setting the value of join_cache_level to 5 or 6
results in that no join buffer is used to join the table.
RETURN VALUE
cache level if cache is used, otherwise returns 0
TODO
Support BKA inside SJ-Materialization nests. When doing this, we'll need
to only store sj-inner tables in the join buffer.
#if 0
JOIN_TAB *first_tab= join->join_tab+join->const_tables;
uint n_tables= i-join->const_tables;
/ *
We normally put all preceding tables into the join buffer, except
for the constant tables.
If we're inside a semi-join materialization nest, e.g.
outer_tbl1 outer_tbl2 ( inner_tbl1, inner_tbl2 ) ...
^-- we're here
then we need to put into the join buffer only the tables from
within the nest.
* /
if (i >= first_sjm_table && i < last_sjm_table)
{
n_tables= i - first_sjm_table; // will be >0 if we got here
first_tab= join->join_tab + first_sjm_table;
}
#endif
*/
static
uint check_join_cache_usage(JOIN_TAB *tab,
ulonglong options,
uint no_jbuf_after,
uint table_index,
JOIN_TAB *prev_tab)
{
uint flags= 0;
ha_rows rows= 0;
uint bufsz= 4096;
JOIN_CACHE *prev_cache=0;
JOIN *join= tab->join;
MEM_ROOT *root= join->thd->mem_root;
uint cache_level= tab->used_join_cache_level;
bool force_unlinked_cache=
!(join->allowed_join_cache_types & JOIN_CACHE_INCREMENTAL_BIT);
bool no_hashed_cache=
!(join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT);
bool no_bka_cache=
!(join->allowed_join_cache_types & JOIN_CACHE_BKA_BIT);
join->return_tab= 0;
if (tab->no_forced_join_cache)
goto no_join_cache;
/*
Don't use join cache if @@join_cache_level==0 or this table is the first
one join suborder (either at top level or inside a bush)
*/
if (cache_level == 0 || !prev_tab)
return 0;
if (force_unlinked_cache && (cache_level%2 == 0))
cache_level--;
if (options & SELECT_NO_JOIN_CACHE)
goto no_join_cache;
if (tab->use_quick == 2)
goto no_join_cache;
if (tab->table->map & join->complex_firstmatch_tables)
goto no_join_cache;
/*
Don't use join cache if we're inside a join tab range covered by LooseScan
strategy (TODO: LooseScan is very similar to FirstMatch so theoretically it
should be possible to use join buffering in the same way we're using it for
multi-table firstmatch ranges).
*/
if (tab->inside_loosescan_range)
goto no_join_cache;
if (tab->is_inner_table_of_semijoin() &&
!join->allowed_semijoin_with_cache)
goto no_join_cache;
if (tab->is_inner_table_of_outer_join() &&
!join->allowed_outer_join_with_cache)
goto no_join_cache;
if (tab->table->pos_in_table_list->table_function &&
!tab->table->pos_in_table_list->table_function->join_cache_allowed())
goto no_join_cache;
/*
Non-linked join buffers can't guarantee one match
*/
if (tab->is_nested_inner())
{
if (force_unlinked_cache || cache_level == 1)
goto no_join_cache;
if (cache_level & 1)
cache_level--;
}
/*
Don't use BKA for materialized tables. We could actually have a
meaningful use of BKA when linked join buffers are used.
The problem is, the temp.table is not filled (actually not even opened
properly) yet, and this doesn't let us call
handler->multi_range_read_info(). It is possible to come up with
estimates, etc. without acessing the table, but it seems not to worth the
effort now.
*/
if (tab->table->pos_in_table_list->is_materialized_derived())
{
no_bka_cache= true;
/*
Don't use hash join algorithm if the temporary table for the rows
of the derived table will be created with an equi-join key.
*/
if (tab->table->s->keys)
no_hashed_cache= true;
}
/*
Don't use join buffering if we're dictated not to by no_jbuf_after
(This is not meaningfully used currently)
*/
if (table_index > no_jbuf_after)
goto no_join_cache;
/*
TODO: BNL join buffer should be perfectly ok with tab->bush_children.
*/
if (tab->loosescan_match_tab || tab->bush_children)
goto no_join_cache;
for (JOIN_TAB *first_inner= tab->first_inner; first_inner;
first_inner= first_inner->first_upper)
{
if (first_inner != tab &&
(!first_inner->use_join_cache || !(tab-1)->use_join_cache))
goto no_join_cache;
}
if (tab->first_sj_inner_tab && tab->first_sj_inner_tab != tab &&
(!tab->first_sj_inner_tab->use_join_cache || !(tab-1)->use_join_cache))
goto no_join_cache;
if (!prev_tab->use_join_cache)
{
/*
Check whether table tab and the previous one belong to the same nest of
inner tables and if so do not use join buffer when joining table tab.
*/
if (tab->first_inner && tab != tab->first_inner)
{
for (JOIN_TAB *first_inner= tab[-1].first_inner;
first_inner;
first_inner= first_inner->first_upper)
{
if (first_inner == tab->first_inner)
goto no_join_cache;
}
}
else if (tab->first_sj_inner_tab && tab != tab->first_sj_inner_tab &&
tab->first_sj_inner_tab == tab[-1].first_sj_inner_tab)
goto no_join_cache;
}
prev_cache= prev_tab->cache;
switch (tab->type) {
case JT_NEXT:
case JT_ALL:
case JT_RANGE:
if (cache_level == 1)
prev_cache= 0;
if ((tab->cache= new (root) JOIN_CACHE_BNL(join, tab, prev_cache)))
{
tab->icp_other_tables_ok= FALSE;
/* If make_join_select() hasn't called make_scan_filter(), do it now */
if (!tab->cache_select && tab->make_scan_filter())
goto no_join_cache;
return (2 - MY_TEST(!prev_cache));
}
goto no_join_cache;
case JT_SYSTEM:
case JT_CONST:
case JT_REF:
case JT_EQ_REF:
if (cache_level <=2 || (no_hashed_cache && no_bka_cache))
goto no_join_cache;
if (tab->ref.is_access_triggered())
goto no_join_cache;
if (!tab->is_ref_for_hash_join() && !no_bka_cache)
{
Cost_estimate cost;
cost.reset();
flags= HA_MRR_NO_NULL_ENDPOINTS | HA_MRR_SINGLE_POINT;
if (tab->table->covering_keys.is_set(tab->ref.key))
flags|= HA_MRR_INDEX_ONLY;
rows= tab->table->file->multi_range_read_info(tab->ref.key, 10, 20,
tab->ref.key_parts,
&bufsz, &flags, &cost);
}
if ((cache_level <=4 && !no_hashed_cache) || no_bka_cache ||
tab->is_ref_for_hash_join() ||
((flags & HA_MRR_NO_ASSOCIATION) && cache_level <=6))
{
if (!tab->hash_join_is_possible() ||
tab->make_scan_filter())
goto no_join_cache;
if (cache_level == 3)
prev_cache= 0;
if ((tab->cache= new (root) JOIN_CACHE_BNLH(join, tab, prev_cache)))
{
tab->icp_other_tables_ok= FALSE;
return (4 - MY_TEST(!prev_cache));
}
goto no_join_cache;
}
if (cache_level < 5 || no_bka_cache)
goto no_join_cache;
if ((flags & HA_MRR_NO_ASSOCIATION) &&
(cache_level <= 6 || no_hashed_cache))
goto no_join_cache;
if ((rows != HA_POS_ERROR) && !(flags & HA_MRR_USE_DEFAULT_IMPL))
{
if (cache_level <= 6 || no_hashed_cache)
{
if (cache_level == 5)
prev_cache= 0;
if ((tab->cache= new (root) JOIN_CACHE_BKA(join, tab, flags, prev_cache)))
return (6 - MY_TEST(!prev_cache));
goto no_join_cache;
}
else
{
if (cache_level == 7)
prev_cache= 0;
if ((tab->cache= new (root) JOIN_CACHE_BKAH(join, tab, flags, prev_cache)))
{
tab->idx_cond_fact_out= FALSE;
return (8 - MY_TEST(!prev_cache));
}
goto no_join_cache;
}
}
goto no_join_cache;
default : ;
}
no_join_cache:
if (tab->type != JT_ALL && tab->type != JT_RANGE && tab->is_ref_for_hash_join())
{
tab->type= JT_ALL;
tab->ref.key_parts= 0;
}
revise_cache_usage(tab);
return 0;
}
/*
Check whether join buffers can be used to join tables of a join
SYNOPSIS
check_join_cache_usage()
join join whose tables are to be checked
options options of the join
no_jbuf_after don't use join buffering after table with this number
(The tables are assumed to be numbered in
first_linear_tab(join, WITHOUT_CONST_TABLES),
next_linear_tab(join, WITH_CONST_TABLES) order).
DESCRIPTION
For each table after the first non-constant table the function checks
whether the table can be joined using a join buffer. If the function decides
that a join buffer can be employed then it selects the most appropriate join
cache object that contains this join buffer whose level is not greater
than join_cache_level set for the join. To make this check the function
calls the function check_join_cache_usage for every non-constant table.
NOTES
In some situations (e.g. for nested outer joins, for nested semi-joins) only
incremental buffers can be used. If it turns out that for some inner table
no join buffer can be used then any inner table of an outer/semi-join nest
cannot use join buffer. In the case when already chosen buffer must be
denied for a table the function recalls check_join_cache_usage()
starting from this table. The pointer to the table from which the check
has to be restarted is returned in join->return_val (see the description
of check_join_cache_usage).
*/
void check_join_cache_usage_for_tables(JOIN *join, ulonglong options,
uint no_jbuf_after)
{
JOIN_TAB *tab;
JOIN_TAB *prev_tab;
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
tab->used_join_cache_level= join->max_allowed_join_cache_level;
}
uint idx= join->const_tables;
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
restart:
tab->icp_other_tables_ok= TRUE;
tab->idx_cond_fact_out= TRUE;
/*
Check if we have a preceding join_tab, as something that will feed us
records that we could buffer. We don't have it, if
- this is the first non-const table in the join order,
- this is the first table inside an SJM nest.
*/
prev_tab= tab - 1;
if (tab == join->join_tab + join->const_tables ||
(tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab))
prev_tab= NULL;
switch (tab->type) {
case JT_SYSTEM:
case JT_CONST:
case JT_EQ_REF:
case JT_REF:
case JT_REF_OR_NULL:
case JT_NEXT:
case JT_ALL:
case JT_RANGE:
tab->used_join_cache_level= check_join_cache_usage(tab, options,
no_jbuf_after,
idx,
prev_tab);
tab->use_join_cache= MY_TEST(tab->used_join_cache_level);
/*
psergey-merge: todo: raise the question that this is really stupid that
we can first allocate a join buffer, then decide not to use it and free
it.
*/
if (join->return_tab)
{
tab= join->return_tab;
goto restart;
}
break;
default:
tab->used_join_cache_level= 0;
}
if (!tab->bush_children)
idx++;
}
}
/**
Remove pushdown conditions that are already checked by the scan phase
of BNL/BNLH joins.
@note
If the single-table condition for this table will be used by a
blocked join to pre-filter this table's rows, there is no need
to re-check the same single-table condition for each joined record.
This method removes from JOIN_TAB::select_cond and JOIN_TAB::select::cond
all top-level conjuncts that also appear in in JOIN_TAB::cache_select::cond.
*/
void JOIN_TAB::remove_redundant_bnl_scan_conds()
{
if (!(select_cond && cache_select && cache &&
(cache->get_join_alg() == JOIN_CACHE::BNL_JOIN_ALG ||
cache->get_join_alg() == JOIN_CACHE::BNLH_JOIN_ALG)))
return;
/*
select->cond is not processed separately. This method assumes it is always
the same as select_cond.
*/
if (select && select->cond != select_cond)
return;
if (is_cond_and(select_cond))
{
List_iterator<Item> pushed_cond_li(*((Item_cond*) select_cond)->argument_list());
Item *pushed_item;
Item_cond_and *reduced_select_cond= new (join->thd->mem_root)
Item_cond_and(join->thd);
if (is_cond_and(cache_select->cond))
{
List_iterator<Item> scan_cond_li(*((Item_cond*) cache_select->cond)->argument_list());
Item *scan_item;
while ((pushed_item= pushed_cond_li++))
{
bool found_cond= false;
scan_cond_li.rewind();
while ((scan_item= scan_cond_li++))
{
if (pushed_item->eq(scan_item, 0))
{
found_cond= true;
break;
}
}
if (!found_cond)
reduced_select_cond->add(pushed_item, join->thd->mem_root);
}
}
else
{
while ((pushed_item= pushed_cond_li++))
{
if (!pushed_item->eq(cache_select->cond, 0))
reduced_select_cond->add(pushed_item, join->thd->mem_root);
}
}
/*
JOIN_CACHE::check_match uses JOIN_TAB::select->cond instead of
JOIN_TAB::select_cond. set_cond() sets both pointers.
*/
if (reduced_select_cond->argument_list()->is_empty())
set_cond(NULL);
else if (reduced_select_cond->argument_list()->elements == 1)
set_cond(reduced_select_cond->argument_list()->head());
else
{
reduced_select_cond->quick_fix_field();
set_cond(reduced_select_cond);
}
}
else if (select_cond->eq(cache_select->cond, 0))
set_cond(NULL);
}
/*
Plan refinement stage: do various setup things for the executor
SYNOPSIS
make_join_readinfo()
join Join being processed
options Join's options (checking for SELECT_DESCRIBE,
SELECT_NO_JOIN_CACHE)
no_jbuf_after Don't use join buffering after table with this number.
DESCRIPTION
Plan refinement stage: do various set ups for the executioner
- set up use of join buffering
- push index conditions
- increment relevant counters
- etc
RETURN
FALSE - OK
TRUE - Out of memory
*/
static bool
make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after)
{
JOIN_TAB *tab;
uint i;
DBUG_ENTER("make_join_readinfo");
Json_writer_object trace_wrapper(join->thd);
Json_writer_array trace_arr(join->thd, "make_join_readinfo");
bool statistics= MY_TEST(!(join->select_options & SELECT_DESCRIBE));
bool sorted= 1;
join->complex_firstmatch_tables= table_map(0);
if (!join->select_lex->sj_nests.is_empty() &&
setup_semijoin_dups_elimination(join, options, no_jbuf_after))
DBUG_RETURN(TRUE); /* purecov: inspected */
/* For const tables, set partial_join_cardinality to 1. */
for (tab= join->join_tab; tab != join->join_tab + join->const_tables; tab++)
tab->partial_join_cardinality= 1;
JOIN_TAB *prev_tab= NULL;
i= join->const_tables;
for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
prev_tab=tab, tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
/*
The approximation below for partial join cardinality is not good because
- it does not take into account some pushdown predicates
- it does not differentiate between inner joins, outer joins and
semi-joins.
Later it should be improved.
*/
if (tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab)
prev_tab= NULL;
DBUG_ASSERT(tab->bush_children ||
tab->table == join->best_positions[i].table->table);
tab->partial_join_cardinality= join->best_positions[i].records_read *
(prev_tab ?
prev_tab->partial_join_cardinality : 1);
if (!tab->bush_children)
i++;
}
check_join_cache_usage_for_tables(join, options, no_jbuf_after);
JOIN_TAB *first_tab;
for (tab= first_tab= first_linear_tab(join,
WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
{
if (tab->bush_children)
{
if (setup_sj_materialization_part2(tab))
return TRUE;
}
TABLE *table=tab->table;
uint jcl= tab->used_join_cache_level;
tab->read_record.table= table;
tab->read_record.unlock_row= rr_unlock_row;
tab->read_record.print_error= true;
tab->sorted= sorted;
sorted= 0; // only first must be sorted
/*
We should not set tab->next_select for the last table in the
SMJ-nest, as setup_sj_materialization() has already set it to
end_sj_materialize.
*/
if (!(tab->bush_root_tab &&
tab->bush_root_tab->bush_children->end == tab + 1))
tab->next_select= sub_select; /* normal select */
if (tab->loosescan_match_tab)
{
if (!(tab->loosescan_buf= join->thd->alloc<uchar>(tab->loosescan_key_len)))
return TRUE; /* purecov: inspected */
tab->sorted= TRUE;
}
table->status=STATUS_NO_RECORD;
pick_table_access_method (tab);
if (jcl)
tab[-1].next_select=sub_select_cache;
if (tab->cache && tab->cache->get_join_alg() == JOIN_CACHE::BNLH_JOIN_ALG)
tab->type= JT_HASH;
switch (tab->type) {
case JT_SYSTEM: // Only happens with left join
case JT_CONST: // Only happens with left join
/* Only happens with outer joins */
tab->read_first_record= tab->type == JT_SYSTEM ? join_read_system
: join_read_const;
tab->read_record.unlock_row= join_const_unlock_row;
if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
(!jcl || jcl > 4) && !tab->ref.is_access_triggered())
push_index_cond(tab, tab->ref.key);
break;
case JT_EQ_REF:
tab->read_record.unlock_row= join_read_key_unlock_row;
/* fall through */
if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
(!jcl || jcl > 4) && !tab->ref.is_access_triggered())
push_index_cond(tab, tab->ref.key);
break;
case JT_REF_OR_NULL:
case JT_REF:
if (tab->select)
{
delete tab->select->quick;
tab->select->quick=0;
}
delete tab->quick;
tab->quick=0;
if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
(!jcl || jcl > 4) && !tab->ref.is_access_triggered())
push_index_cond(tab, tab->ref.key);
break;
case JT_NEXT: // Index scan
DBUG_ASSERT(!tab->quick);
if (tab->select)
{
/*
select->quick may be set if there was a possible range and
it had a higher cost than a table scan.
*/
delete tab->select->quick;
tab->select->quick=0;
}
if (tab->use_quick == 2)
{
join->thd->set_status_no_good_index_used();
tab->read_first_record= join_init_quick_read_record;
if (statistics)
join->thd->inc_status_select_range_check();
}
else
{
tab->read_first_record= join_read_first;
if (statistics)
{
join->thd->inc_status_select_scan();
join->thd->query_plan_flags|= QPLAN_FULL_SCAN;
}
}
break;
case JT_ALL:
case JT_RANGE:
case JT_HASH:
{
bool have_quick_select= tab->select && tab->select->quick;
/*
If previous table use cache
If the incoming data set is already sorted don't use cache.
Also don't use cache if this is the first table in semi-join
materialization nest.
*/
/* These init changes read_record */
if (tab->use_quick == 2)
{
join->thd->set_status_no_good_index_used();
tab->read_first_record= join_init_quick_read_record;
if (statistics)
join->thd->inc_status_select_range_check();
}
else
{
if (!tab->bush_children)
tab->read_first_record= join_init_read_record;
if (tab == first_tab)
{
if (tab->select && tab->select->quick)
{
if (statistics)
join->thd->inc_status_select_range();
}
else
{
join->thd->set_status_no_index_used();
if (statistics)
{
join->thd->inc_status_select_scan();
join->thd->query_plan_flags|= QPLAN_FULL_SCAN;
}
}
}
else
{
if (have_quick_select)
{
if (statistics)
join->thd->inc_status_select_full_range_join();
}
else
{
join->thd->set_status_no_index_used();
if (statistics)
{
join->thd->inc_status_select_full_join();
join->thd->query_plan_flags|= QPLAN_FULL_JOIN;
}
}
}
if (!table->no_keyread)
{
if (!(have_quick_select &&
tab->select->quick->index != MAX_KEY && //not index_merge
table->covering_keys.is_set(tab->select->quick->index)) &&
(!table->covering_keys.is_clear_all() && ! have_quick_select))
{ // Only read index tree
if (tab->loosescan_match_tab)
tab->index= tab->loosescan_key;
else
tab->index= tab->cached_covering_key;
tab->read_first_record= join_read_first;
/* Read with index_first / index_next */
tab->type= tab->type == JT_ALL ? JT_NEXT : JT_HASH_NEXT;
}
}
if (have_quick_select &&
tab->select->quick->index != MAX_KEY &&
!tab->table->covering_keys.is_set(tab->select->quick->index))
push_index_cond(tab, tab->select->quick->index);
}
break;
}
case JT_FT:
break;
/* purecov: begin deadcode */
default:
DBUG_PRINT("error",("Table type %d found",tab->type));
break;
case JT_UNKNOWN:
case JT_MAYBE_REF:
abort();
/* purecov: end */
}
tab->cached_pfs_batch_update= tab->pfs_batch_update();
DBUG_EXECUTE("where",
char buff[256];
String str(buff,sizeof(buff),system_charset_info);
str.length(0);
if (tab->table)
str.append(tab->table->alias);
else
str.append(STRING_WITH_LEN("<no_table_name>"));
str.append(STRING_WITH_LEN(" final_pushdown_cond"));
print_where(tab->select_cond, str.c_ptr_safe(), QT_ORDINARY););
}
uint n_top_tables= (uint)(join->join_tab_ranges.head()->end -
join->join_tab_ranges.head()->start);
join->join_tab[n_top_tables - 1].next_select=0; /* Set by do_select */
/*
If a join buffer is used to join a table the ordering by an index
for the first non-constant table cannot be employed anymore.
*/
for (tab= join->join_tab + join->const_tables ;
tab != join->join_tab + n_top_tables ; tab++)
{
if (tab->use_join_cache)
{
JOIN_TAB *sort_by_tab= join->group && join->simple_group &&
join->group_list ?
join->join_tab+join->const_tables :
join->get_sort_by_join_tab();
/*
It could be that sort_by_tab==NULL, and the plan is to use filesort()
on the first table.
*/
if (join->order)
{
join->simple_order= 0;
join->need_tmp= 1;
}
if (join->group && !join->group_optimized_away)
{
join->need_tmp= 1;
join->simple_group= 0;
}
if (sort_by_tab)
{
join->need_tmp= 1;
join->simple_order= join->simple_group= 0;
if (sort_by_tab->type == JT_NEXT &&
!sort_by_tab->table->covering_keys.is_set(sort_by_tab->index))
{
sort_by_tab->type= JT_ALL;
sort_by_tab->read_first_record= join_init_read_record;
}
else if (sort_by_tab->type == JT_HASH_NEXT &&
!sort_by_tab->table->covering_keys.is_set(sort_by_tab->index))
{
sort_by_tab->type= JT_HASH;
sort_by_tab->read_first_record= join_init_read_record;
}
}
break;
}
}
DBUG_RETURN(FALSE);
}
/**
Give error if we some tables are done with a full join.
This is used by multi_table_update and multi_table_delete when running
in safe mode.
@param join Join condition
@retval
0 ok
@retval
1 Error (full join used)
*/
bool error_if_full_join(JOIN *join)
{
for (JOIN_TAB *tab=first_top_level_tab(join, WITH_CONST_TABLES); tab;
tab= next_top_level_tab(join, tab))
{
if ((tab->type == JT_ALL || tab->type == JT_NEXT))
{
my_message(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
ER_THD(join->thd,
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE), MYF(0));
return(1);
}
}
return(0);
}
/**
build_range_rowid_filter()
Build range rowid filter. This function should only be called if
need_to_build_rowid_filter is true
@retval
0 ok
@retval
1 Error, transaction should be rolled back
*/
bool JOIN_TAB::build_range_rowid_filter()
{
DBUG_ASSERT(need_to_build_rowid_filter && rowid_filter);
/**
The same handler object (table->file) is used to build a filter
and to perfom a primary table access (by the main query).
To estimate the time for filter building tracker should be changed
and after building of the filter has been finished it should be
switched back to the previos tracker.
*/
Exec_time_tracker *table_tracker= table->file->get_time_tracker();
Rowid_filter_tracker *rowid_tracker= rowid_filter->get_tracker();
table->file->set_time_tracker(rowid_tracker->get_time_tracker());
rowid_tracker->start_tracking(join->thd);
Rowid_filter::build_return_code build_rc= rowid_filter->build();
if (build_rc != Rowid_filter::SUCCESS)
{
/* Failed building rowid filter */
clear_range_rowid_filter();
}
need_to_build_rowid_filter= false;
rowid_tracker->stop_tracking(join->thd);
table->file->set_time_tracker(table_tracker);
return (build_rc == Rowid_filter::FATAL_ERROR);
}
/*
Clear used rowid filter
Note that rowid_filter is allocated on mem_root and not really freed!
Only the rowid data is freed.
*/
void JOIN_TAB::clear_range_rowid_filter()
{
delete rowid_filter;
rowid_filter= 0;
need_to_build_rowid_filter= false;
range_rowid_filter_info= 0;
}
/**
cleanup JOIN_TAB.
DESCRIPTION
This is invoked when we've finished all join executions.
*/
void JOIN_TAB::cleanup()
{
DBUG_ENTER("JOIN_TAB::cleanup");
DBUG_PRINT("enter", ("tab: %p table %s.%s",
this,
(table ? table->s->db.str : "?"),
(table ? table->s->table_name.str : "?")));
delete select;
select= 0;
delete quick;
quick= 0;
if (rowid_filter)
clear_range_rowid_filter();
if (cache)
{
cache->free();
cache= 0;
}
limit= 0;
// Free select that was created for filesort outside of create_sort_index
if (filesort && filesort->select && !filesort->own_select)
delete filesort->select;
delete filesort;
filesort= NULL;
if (table)
{
table->file->ha_end_keyread();
if (type == JT_FT)
table->file->ha_ft_end();
else if (table->hlindex && table->hlindex->context)
table->hlindex_read_end();
else
table->file->ha_index_or_rnd_end();
preread_init_done= FALSE;
if (table->pos_in_table_list && table->pos_in_table_list->jtbm_subselect)
{
if (table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
{
/*
Set this to NULL so that cleanup_empty_jtbm_semi_joins() doesn't
attempt to make another free_tmp_table call.
*/
table->pos_in_table_list->table= NULL;
free_tmp_table(join->thd, table);
}
else
{
TABLE_LIST *tmp= table->pos_in_table_list;
end_read_record(&read_record);
tmp->jtbm_subselect->cleanup();
/*
The above call freed the materialized temptable. Set it to NULL so
that we don't attempt to touch it if JOIN_TAB::cleanup() is invoked
multiple times (it may be)
*/
tmp->table= NULL;
}
table= NULL;
DBUG_VOID_RETURN;
}
/*if (table->pos_in_table_list && table->pos_in_table_list->derived)
{
delete table->pos_in_table_list->derived->derived->dt_handler;
}*/
/*
We need to reset this for next select
(Tested in part_of_refkey)
*/
table->reginfo.join_tab= 0;
}
end_read_record(&read_record);
explain_plan= NULL;
DBUG_VOID_RETURN;
}
/**
Estimate the time to get rows of the joined table
Updates found_records, records, cached_covering_key, read_time and
cache_scan_and_compare_time
*/
void JOIN_TAB::estimate_scan_time()
{
THD *thd= join->thd;
handler *file= table->file;
double row_copy_cost, copy_cost;
ALL_READ_COST * const cost= &cached_scan_and_compare_cost;
cost->reset();
cached_covering_key= MAX_KEY;
if (table->is_created())
{
if (table->is_filled_at_execution())
{
get_delayed_table_estimates(table, &records, &read_time,
&startup_cost);
table->opt_range_condition_rows= records;
table->used_stat_records= records;
cost->row_cost.cpu= read_time;
row_copy_cost= file->ROW_COPY_COST;
}
else
{
records= table->stat_records();
/*
table->opt_range_condition_rows has already been set to
table->file->stats.records
*/
DBUG_ASSERT(table->opt_range_condition_rows == records);
if (!table->covering_keys.is_clear_all() && ! table->no_keyread)
{
cached_covering_key= find_shortest_key(table, &table->covering_keys);
cost->index_cost= file->ha_key_scan_time(cached_covering_key, records);
read_time= file->cost(cost->index_cost);
row_copy_cost= 0; // Included in ha_key_scan_time
}
else
{
cost->row_cost= file->ha_scan_time(records);
read_time= file->cost(cost->row_cost);
row_copy_cost= 0; // Included in ha_scan_time
}
}
}
else
{
bool using_heap= 0;
TABLE_SHARE *share= table->s;
handler *tmp_file= file;
records= table->stat_records();
if (share->db_type() == heap_hton)
{
/* Check that the rows will fit into the heap table */
ha_rows max_rows;
max_rows= (ha_rows) (MY_MIN(thd->variables.tmp_memory_table_size,
thd->variables.max_heap_table_size) /
MY_ALIGN(share->reclength, sizeof(char*)));
if (records <= max_rows)
{
/* The rows will fit into the heap table */
using_heap= 1;
}
else if (likely((tmp_file= get_new_handler(share, &table->mem_root,
TMP_ENGINE_HTON))))
{
tmp_file->costs= &tmp_table_optimizer_costs;
}
else
tmp_file= file; // Fallback for OOM
}
/*
The following is same as calling
TABLE_SHARE::update_optimizer_costs, but without locks
*/
if (using_heap)
memcpy(&share->optimizer_costs, &heap_optimizer_costs,
sizeof(heap_optimizer_costs));
else
{
memcpy(&share->optimizer_costs, &tmp_table_optimizer_costs,
sizeof(tmp_table_optimizer_costs));
/* Set data_file_length in case of Aria tmp table */
tmp_file->stats.data_file_length= share->reclength * records;
}
table->s->optimizer_costs_inited=1;
/* Add current WHERE and SCAN SETUP cost to tmp file */
tmp_file->set_optimizer_costs(thd);
DBUG_ASSERT(table->opt_range_condition_rows == records);
cost->row_cost= tmp_file->ha_scan_time(records);
tmp_file->stats.data_file_length= 0;
read_time= tmp_file->cost(cost->row_cost);
row_copy_cost= table->s->optimizer_costs.row_copy_cost;
if (file != tmp_file)
{
delete tmp_file;
file->set_optimizer_costs(thd);
}
}
found_records= records;
copy_cost= (records * (row_copy_cost + WHERE_COST_THD(thd)));
cached_scan_and_compare_time= read_time + copy_cost;
cost->copy_cost+= copy_cost;
/*
Assume we only need to do physical IO once even if we scan the file
multiple times.
*/
cost->max_index_blocks= (longlong) ceil(cost->index_cost.io);
cost->max_row_blocks= (longlong) ceil(cost->row_cost.io);
DBUG_ASSERT(compare_cost(cached_scan_and_compare_time,
file->cost(cost)));
}
/**
Estimate the number of rows that an access method will read from a table.
@todo: why not use JOIN_TAB::found_records or JOIN_TAB::records_read
*/
double JOIN_TAB::get_examined_rows()
{
double examined_rows;
const SQL_SELECT *sel= get_sql_select();
if (sel && sel->quick && use_quick != 2)
{
examined_rows= (double) sel->quick->records;
DBUG_ASSERT(examined_rows == sel->quick->records);
}
else if (type == JT_NEXT || type == JT_ALL || type == JT_RANGE ||
type == JT_HASH || type == JT_HASH_NEXT)
{
if (limit)
{
/*
@todo This estimate is wrong, a LIMIT query may examine much more rows
than the LIMIT itself.
*/
examined_rows= (double)limit;
}
else
{
if (table->is_filled_at_execution())
examined_rows= (double)records;
else
{
/*
handler->info(HA_STATUS_VARIABLE) has been called in
make_join_statistics()
*/
examined_rows= (double)table->stat_records();
}
}
}
else
examined_rows= records_init;
if (examined_rows >= (double) HA_ROWS_MAX)
return (double) HA_ROWS_MAX;
return examined_rows;
}
/**
Initialize the join_tab before reading.
Currently only derived table/view materialization is done here.
TODO: consider moving this together with join_tab_execution_startup
*/
bool JOIN_TAB::preread_init()
{
TABLE_LIST *derived= table->pos_in_table_list;
DBUG_ENTER("JOIN_TAB::preread_init");
if (!derived || !derived->is_materialized_derived())
{
preread_init_done= TRUE;
DBUG_RETURN(FALSE);
}
/* Materialize derived table/view. */
if ((!derived->get_unit()->executed ||
derived->is_recursive_with_table() ||
derived->get_unit()->uncacheable) &&
mysql_handle_single_derived(join->thd->lex,
derived, DT_CREATE | DT_FILL))
DBUG_RETURN(TRUE);
if (!(derived->get_unit()->uncacheable & UNCACHEABLE_DEPENDENT) ||
derived->is_nonrecursive_derived_with_rec_ref() ||
is_split_derived)
preread_init_done= TRUE;
if (select && select->quick)
select->quick->replace_handler(table->file);
DBUG_EXECUTE_IF("show_explain_probe_join_tab_preread",
if (dbug_user_var_equals_int(join->thd,
"show_explain_probe_select_id",
join->select_lex->select_number))
dbug_serve_apcs(join->thd, 1);
);
/* init ftfuns for just initialized derived table */
if (table->fulltext_searched)
if (init_ftfuncs(join->thd, join->select_lex, MY_TEST(join->order)))
DBUG_RETURN(TRUE);
DBUG_RETURN(FALSE);
}
/**
pfs_batch_update()
Check if the used table will do a lot of read calls in a row without
any intervening read calls to any other tables.
@return 0 No
@return 1 Yes
If yes, then the handler will be informed about this with the
start_psi_batch_mode() / end_psi_batch_mode() calls
This is currently used only to speed up performance schema code for
multiple reads.
In the future we may also inform the engine about this. The engine
could use this information to cache the used pages, keep blocks
locked in the page cache and similar things to speed up repeated
reads.
The return value of this function is cached in
JOIN_TAB::cached_pfs_batch_update
*/
bool JOIN_TAB::pfs_batch_update()
{
/*
Use PFS batch mode if
1. tab is an inner-most table, or
2. will read more than one row (not eq_ref or const access type)
3. no subqueries
*/
return join->join_tab + join->table_count - 1 == this && // 1
type != JT_EQ_REF && type != JT_CONST && type != JT_SYSTEM && // 2
(!select_cond || !select_cond->with_subquery()); // 3
}
/**
Build a TABLE_REF structure for index lookup in the temporary table
@param thd Thread handle
@param tmp_key The temporary table key
@param it The iterator of items for lookup in the key
@param skip Number of fields from the beginning to skip
@details
Build TABLE_REF object for lookup in the key 'tmp_key' using items
accessible via item iterator 'it'.
@retval TRUE Error
@retval FALSE OK
*/
bool TABLE_REF::tmp_table_index_lookup_init(THD *thd,
KEY *tmp_key,
Item_iterator &it,
bool value,
uint skip)
{
uint tmp_key_parts= tmp_key->user_defined_key_parts;
uint i;
DBUG_ENTER("TABLE_REF::tmp_table_index_lookup_init");
key= 0; /* The only temp table index. */
key_length= tmp_key->key_length;
if (!(key_buff= thd->calloc<uchar>(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
!(key_copy= thd->alloc<store_key*>(tmp_key_parts + 1)) ||
!(items= thd->alloc<Item*>(tmp_key_parts)))
DBUG_RETURN(TRUE);
key_buff2= key_buff + ALIGN_SIZE(tmp_key->key_length);
KEY_PART_INFO *cur_key_part= tmp_key->key_part;
store_key **ref_key= key_copy;
uchar *cur_ref_buff= key_buff;
it.open();
for (i= 0; i < skip; i++) it.next();
for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
{
Item *item= it.next();
DBUG_ASSERT(item);
items[i]= item;
int null_count= MY_TEST(cur_key_part->field->real_maybe_null());
*ref_key= new store_key_item(thd, cur_key_part->field,
/* TIMOUR:
the NULL byte is taken into account in
cur_key_part->store_length, so instead of
cur_ref_buff + MY_TEST(maybe_null), we could
use that information instead.
*/
cur_ref_buff + null_count,
null_count ? cur_ref_buff : 0,
cur_key_part->length, items[i], value);
cur_ref_buff+= cur_key_part->store_length;
}
*ref_key= NULL; /* End marker. */
key_err= 1;
key_parts= tmp_key_parts;
DBUG_RETURN(FALSE);
}
/*
Check if ref access uses "Full scan on NULL key" (i.e. it actually alternates
between ref access and full table scan)
*/
bool TABLE_REF::is_access_triggered()
{
for (uint i = 0; i < key_parts; i++)
{
if (cond_guards[i])
return TRUE;
}
return FALSE;
}
/**
Partially cleanup JOIN after it has executed: close index or rnd read
(table cursors), free quick selects.
This function is called in the end of execution of a JOIN, before the used
tables are unlocked and closed.
For a join that is resolved using a temporary table, the first sweep is
performed against actual tables and an intermediate result is inserted
into the temprorary table.
The last sweep is performed against the temporary table. Therefore,
the base tables and associated buffers used to fill the temporary table
are no longer needed, and this function is called to free them.
For a join that is performed without a temporary table, this function
is called after all rows are sent, but before EOF packet is sent.
For a simple SELECT with no subqueries this function performs a full
cleanup of the JOIN and calls mysql_unlock_read_tables to free used base
tables.
If a JOIN is executed for a subquery or if it has a subquery, we can't
do the full cleanup and need to do a partial cleanup only.
- If a JOIN is not the top level join, we must not unlock the tables
because the outer select may not have been evaluated yet, and we
can't unlock only selected tables of a query.
- Additionally, if this JOIN corresponds to a correlated subquery, we
should not free quick selects and join buffers because they will be
needed for the next execution of the correlated subquery.
- However, if this is a JOIN for a [sub]select, which is not
a correlated subquery itself, but has subqueries, we can free it
fully and also free JOINs of all its subqueries. The exception
is a subquery in SELECT list, e.g: @n
SELECT a, (select MY_MAX(b) from t1) group by c @n
This subquery will not be evaluated at first sweep and its value will
not be inserted into the temporary table. Instead, it's evaluated
when selecting from the temporary table. Therefore, it can't be freed
here even though it's not correlated.
@todo
Unlock tables even if the join isn't top level select in the tree
*/
void JOIN::join_free()
{
SELECT_LEX_UNIT *tmp_unit;
SELECT_LEX *sl;
/*
Optimization: if not EXPLAIN and we are done with the JOIN,
free all tables.
*/
bool full= !(select_lex->uncacheable) && !(thd->lex->describe);
bool can_unlock= full;
DBUG_ENTER("JOIN::join_free");
cleanup(full);
for (tmp_unit= select_lex->first_inner_unit();
tmp_unit;
tmp_unit= tmp_unit->next_unit())
{
if (tmp_unit->with_element && tmp_unit->with_element->is_recursive)
continue;
for (sl= tmp_unit->first_select(); sl; sl= sl->next_select())
{
Item_subselect *subselect= sl->master_unit()->item;
bool full_local= full && (!subselect || subselect->is_evaluated());
/*
If this join is evaluated, we can fully clean it up and clean up all
its underlying joins even if they are correlated -- they will not be
used any more anyway.
If this join is not yet evaluated, we still must clean it up to
close its table cursors -- it may never get evaluated, as in case of
... HAVING FALSE OR a IN (SELECT ...))
but all table cursors must be closed before the unlock.
*/
sl->cleanup_all_joins(full_local);
/* Can't unlock if at least one JOIN is still needed */
can_unlock= can_unlock && full_local;
}
}
/*
We are not using tables anymore
Unlock all tables. We may be in an INSERT .... SELECT statement.
*/
if (can_unlock && lock && thd->lock && ! thd->locked_tables_mode &&
!(select_options & SELECT_NO_UNLOCK) &&
!select_lex->subquery_in_having &&
(select_lex == (thd->lex->unit.fake_select_lex ?
thd->lex->unit.fake_select_lex :
thd->lex->first_select_lex())))
{
/*
TODO: unlock tables even if the join isn't top level select in the
tree.
*/
mysql_unlock_read_tables(thd, lock); // Don't free join->lock
lock= 0;
}
DBUG_VOID_RETURN;
}
/**
Free resources of given join.
@param full true if we should free all resources, call with full==1
should be last, before it this function can be called with
full==0
@note
With subquery this function definitely will be called several times,
but even for simple query it can be called several times.
*/
void JOIN::cleanup(bool full)
{
DBUG_ENTER("JOIN::cleanup");
DBUG_PRINT("enter", ("select: %d (%p) join: %p full: %u",
select_lex->select_number, select_lex, this,
(uint) full));
if (full)
have_query_plan= QEP_DELETED;
if (original_join_tab)
{
/* Free the original optimized join created for the group_by_handler */
join_tab= original_join_tab;
original_join_tab= 0;
table_count= original_table_count;
}
if (join_tab)
{
JOIN_TAB *tab;
if (full)
{
/*
Call cleanup() on join tabs used by the join optimization
(join->join_tab may now be pointing to result of make_simple_join
reading from the temporary table)
We also need to check table_count to handle various degenerate joins
w/o tables: they don't have some members initialized and
WALK_OPTIMIZATION_TABS may not work correctly for them.
*/
if (top_join_tab_count && tables_list)
{
for (tab= first_breadth_first_tab(); tab;
tab= next_breadth_first_tab(first_breadth_first_tab(),
top_join_tab_count, tab))
{
tab->cleanup();
delete tab->filesort_result;
tab->filesort_result= NULL;
}
}
cleaned= true;
//psergey2: added (Q: why not in the above loop?)
{
JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
for (uint i= 0; i < aggr_tables; i++, curr_tab++)
{
if (curr_tab->aggr)
{
free_tmp_table(thd, curr_tab->table);
curr_tab->table= NULL;
delete curr_tab->tmp_table_param;
curr_tab->tmp_table_param= NULL;
curr_tab->aggr= NULL;
delete curr_tab->filesort_result;
curr_tab->filesort_result= NULL;
}
}
aggr_tables= 0; // psergey3
}
}
else
{
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITH_CONST_TABLES); tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
tab->partial_cleanup();
}
}
}
if (full)
{
cleanup_empty_jtbm_semi_joins(this, join_list);
// Run Cached_item DTORs!
group_fields.delete_elements();
order_fields.delete_elements();
/*
We can't call delete_elements() on copy_funcs as this will cause
problems in free_elements() as some of the elements are then deleted.
*/
tmp_table_param.copy_funcs.empty();
/*
If we have tmp_join and 'this' JOIN is not tmp_join and
tmp_table_param.copy_field's of them are equal then we have to remove
pointer to tmp_table_param.copy_field from tmp_join, because it will
be removed in tmp_table_param.cleanup().
*/
tmp_table_param.cleanup();
delete pushdown_query;
pushdown_query= 0;
if (!join_tab)
{
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *table_ref;
while ((table_ref= li++))
{
if (table_ref->table &&
table_ref->jtbm_subselect &&
table_ref->jtbm_subselect->is_jtbm_const_tab)
{
free_tmp_table(thd, table_ref->table);
table_ref->table= NULL;
}
}
}
free_pushdown_handlers(*join_list);
}
/* Restore ref array to original state */
if (current_ref_ptrs != items0)
{
set_items_ref_array(items0);
}
DBUG_VOID_RETURN;
}
/**
Clean up all derived pushdown handlers in this join.
@detail
Note that dt_handler is picked at the prepare stage (as opposed
to optimization stage where one could expect this).
Because of that, we have to do cleanups in this function that is called
from JOIN::cleanup() and not in JOIN_TAB::cleanup.
*/
void JOIN::free_pushdown_handlers(List<TABLE_LIST>& join_list)
{
List_iterator<TABLE_LIST> li(join_list);
TABLE_LIST *table_ref;
while ((table_ref= li++))
{
if (table_ref->nested_join)
free_pushdown_handlers(table_ref->nested_join->join_list);
if (table_ref->pushdown_derived)
{
delete table_ref->pushdown_derived;
table_ref->pushdown_derived= NULL;
}
delete table_ref->dt_handler;
table_ref->dt_handler= NULL;
}
}
/**
Remove the following expressions from ORDER BY and GROUP BY:
Constant expressions @n
Expression that only uses tables that are of type EQ_REF and the reference
is in the ORDER list or if all refereed tables are of the above type.
In the following, the X field can be removed:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X
SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X
@endcode
These can't be optimized:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a
SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a
@endcode
TODO: this function checks ORDER::used, which can only have a value of 0.
*/
static bool
eq_ref_table(JOIN *join, ORDER *start_order, JOIN_TAB *tab)
{
if (tab->cached_eq_ref_table) // If cached
return tab->eq_ref_table;
tab->cached_eq_ref_table=1;
/* We can skip const tables only if not an outer table */
if (tab->type == JT_CONST && !tab->first_inner)
return (tab->eq_ref_table=1); /* purecov: inspected */
if (tab->type != JT_EQ_REF || tab->table->maybe_null)
return (tab->eq_ref_table=0); // We must use this
Item **ref_item=tab->ref.items;
Item **end=ref_item+tab->ref.key_parts;
uint found=0;
table_map map=tab->table->map;
for (; ref_item != end ; ref_item++)
{
if (! (*ref_item)->const_item())
{ // Not a const ref
ORDER *order;
for (order=start_order ; order ; order=order->next)
{
if ((*ref_item)->eq(order->item[0],0))
break;
}
if (order)
{
if (!(order->used & map))
{
found++;
order->used|= map;
}
continue; // Used in ORDER BY
}
if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables()))
return (tab->eq_ref_table=0);
}
}
/* Check that there was no reference to table before sort order */
for (; found && start_order ; start_order=start_order->next)
{
if (start_order->used & map)
{
found--;
continue;
}
if (start_order->depend_map & map)
return (tab->eq_ref_table=0);
}
return tab->eq_ref_table=1;
}
static bool
only_eq_ref_tables(JOIN *join,ORDER *order,table_map tables)
{
tables&= ~PSEUDO_TABLE_BITS;
for (JOIN_TAB **tab=join->map2table ; tables ; tab++, tables>>=1)
{
if (tables & 1 && !eq_ref_table(join, order, *tab))
return 0;
}
return 1;
}
/** Update the dependency map for the tables. */
static void update_depend_map(JOIN *join)
{
JOIN_TAB *join_tab;
for (join_tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITH_CONST_TABLES);
join_tab;
join_tab= next_linear_tab(join, join_tab, WITH_BUSH_ROOTS))
{
TABLE_REF *ref= &join_tab->ref;
table_map depend_map=0;
Item **item=ref->items;
uint i;
for (i=0 ; i < ref->key_parts ; i++,item++)
depend_map|=(*item)->used_tables();
depend_map&= ~OUTER_REF_TABLE_BIT;
ref->depend_map= depend_map;
for (JOIN_TAB **tab=join->map2table;
depend_map ;
tab++,depend_map>>=1 )
{
if (depend_map & 1)
ref->depend_map|=(*tab)->ref.depend_map;
}
}
}
/** Update the dependency map for the sort order. */
static void update_depend_map_for_order(JOIN *join, ORDER *order)
{
for (; order ; order=order->next)
{
table_map depend_map;
order->item[0]->update_used_tables();
order->depend_map=depend_map=order->item[0]->used_tables();
order->used= 0;
// Not item_sum(), RAND() and no reference to table outside of sub select
if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))
&& !order->item[0]->with_sum_func() &&
join->join_tab)
{
for (JOIN_TAB **tab=join->map2table;
depend_map ;
tab++, depend_map>>=1)
{
if (depend_map & 1)
order->depend_map|=(*tab)->ref.depend_map;
}
}
}
}
/**
Remove all constants from ORDER and check if ORDER only contains simple
expressions.
We also remove all duplicate expressions, keeping only the first one.
simple_order is set to 1 if sort_order only uses fields from head table
and the head table is not a LEFT JOIN table.
@param join Join handler
@param first_order List of SORT or GROUP order
@param cond WHERE statement
@param change_list Set to 1 if we should remove things from list.
If this is not set, then only simple_order is
calculated. This is not set when we
are using ROLLUP
@param simple_order Set to 1 if we are only using simple
expressions.
@return
Returns new sort order
*/
static ORDER *
remove_const(JOIN *join,ORDER *first_order, COND *cond,
bool change_list, bool *simple_order)
{
/*
We can't do ORDER BY using filesort if the select list contains a non
deterministic value like RAND() or ROWNUM().
For example:
SELECT a,ROWNUM() FROM t1 ORDER BY a;
If we would first sort the table 't1', the ROWNUM() column would be
generated during end_send() and the order would be wrong.
Previously we had here also a test of ROLLUP:
'join->rollup.state == ROLLUP::STATE_NONE'
I deleted this because the ROLLUP was never enforced because of a
bug where the inital value of simple_order was ignored. Having
ROLLUP tested now when the code is fixed, causes many test failure
and some wrong results so better to leave the code as it was
related to ROLLUP.
*/
*simple_order= !join->select_lex->rownum_in_field_list;
if (join->only_const_tables())
return change_list ? 0 : first_order; // No need to sort
ORDER *order,**prev_ptr, *tmp_order;
table_map UNINIT_VAR(first_table); /* protected by first_is_base_table */
table_map not_const_tables= ~join->const_table_map;
table_map ref;
bool first_is_base_table= FALSE;
DBUG_ENTER("remove_const");
/*
Join tab is set after make_join_statistics() has been called.
In case of one table with GROUP BY this function is called before
join_tab is set for the GROUP_BY expression
*/
if (join->join_tab)
{
if (join->join_tab[join->const_tables].table)
{
first_table= join->join_tab[join->const_tables].table->map;
first_is_base_table= TRUE;
}
/*
Cleanup to avoid interference of calls of this function for
ORDER BY and GROUP BY
*/
for (JOIN_TAB *tab= join->join_tab + join->const_tables;
tab < join->join_tab + join->top_join_tab_count;
tab++)
tab->cached_eq_ref_table= FALSE;
JOIN_TAB *head= join->join_tab + join->const_tables;
*simple_order&= head->on_expr_ref[0] == NULL;
if (*simple_order && head->table->file->ha_table_flags() & HA_SLOW_RND_POS)
{
uint u1, u2, u3, u4;
/*
normally the condition is (see filesort_use_addons())
length + sortlength <= max_length_for_sort_data
but for HA_SLOW_RND_POS tables we relax it a bit, as the alternative
is to use a temporary table, which is rather expensive.
TODO proper cost estimations
*/
*simple_order= filesort_use_addons(head->table, 0, &u1, &u2, &u3, &u4);
}
}
else
{
first_is_base_table= FALSE;
first_table= 0; // Not used, for gcc
}
prev_ptr= &first_order;
/* NOTE: A variable of not_const_tables ^ first_table; breaks gcc 2.7 */
update_depend_map_for_order(join, first_order);
for (order=first_order; order ; order=order->next)
{
table_map order_tables=order->item[0]->used_tables();
if (order->item[0]->with_sum_func() ||
order->item[0]->with_window_func() ||
/*
If the outer table of an outer join is const (either by itself or
after applying WHERE condition), grouping on a field from such a
table will be optimized away and filesort without temporary table
will be used unless we prevent that now. Filesort is not fit to
handle joins and the join condition is not applied. We can't detect
the case without an expensive test, however, so we force temporary
table for all queries containing more than one table, ROLLUP, and an
outer join.
*/
(join->table_count > 1 && join->rollup.state == ROLLUP::STATE_INITED &&
join->outer_join))
*simple_order=0; // Must do a temp table to sort
else if (!(order_tables & not_const_tables))
{
if (order->item[0]->with_subquery())
{
/*
Delay the evaluation of constant ORDER and/or GROUP expressions that
contain subqueries until the execution phase.
*/
join->exec_const_order_group_cond.push_back(order->item[0],
join->thd->mem_root);
}
DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
continue;
}
else
{
if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))
*simple_order=0;
else
{
if (cond && const_expression_in_where(cond,order->item[0]))
{
DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
continue;
}
if (first_is_base_table &&
(ref=order_tables & (not_const_tables ^ first_table)))
{
if (!(order_tables & first_table) &&
only_eq_ref_tables(join,first_order, ref))
{
DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
continue;
}
/*
UseMultipleEqualitiesToRemoveTempTable:
Can use multiple-equalities here to check that ORDER BY columns
can be used without tmp. table.
*/
bool can_subst_to_first_table= false;
if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_ORDERBY_EQ_PROP) &&
first_is_base_table &&
order->item[0]->real_item()->type() == Item::FIELD_ITEM &&
join->cond_equal)
{
table_map first_table_bit=
join->join_tab[join->const_tables].table->map;
Item *item= order->item[0];
/*
TODO: equality substitution in the context of ORDER BY is
sometimes allowed when it is not allowed in the general case.
We make the below call for its side effect: it will locate the
multiple equality the item belongs to and set item->item_equal
accordingly.
*/
Item *res= item->propagate_equal_fields(join->thd,
Value_source::
Context_identity(),
join->cond_equal);
Item_equal *item_eq;
if ((item_eq= res->get_item_equal()))
{
Item *first= item_eq->get_first(NO_PARTICULAR_TAB, NULL);
if (first->const_item() || first->used_tables() ==
first_table_bit)
{
can_subst_to_first_table= true;
}
}
}
if (!can_subst_to_first_table)
{
*simple_order=0; // Must do a temp table to sort
}
}
}
}
/* Remove ORDER BY entries that we have seen before */
for (tmp_order= first_order;
tmp_order != order;
tmp_order= tmp_order->next)
{
if (tmp_order->item[0]->eq(order->item[0],1))
break;
}
if (tmp_order != order)
continue; // Duplicate order by. Remove
if (change_list)
*prev_ptr= order; // use this entry
prev_ptr= &order->next;
}
if (change_list)
*prev_ptr=0;
if (prev_ptr == &first_order) // Nothing to sort/group
*simple_order=1;
#ifndef DBUG_OFF
if (unlikely(join->thd->is_error()))
DBUG_PRINT("error",("Error from remove_const"));
#endif
DBUG_PRINT("exit",("simple_order: %d",(int) *simple_order));
DBUG_RETURN(first_order);
}
/**
Filter out ORDER items those are equal to constants in WHERE
This function is a limited version of remove_const() for use
with non-JOIN statements (i.e. single-table UPDATE and DELETE).
@param order Linked list of ORDER BY arguments
@param cond WHERE expression
@return pointer to new filtered ORDER list or NULL if whole list eliminated
@note
This function overwrites input order list.
*/
ORDER *simple_remove_const(ORDER *order, COND *where)
{
if (!order || !where)
return order;
ORDER *first= NULL, *prev= NULL;
for (; order; order= order->next)
{
DBUG_ASSERT(!order->item[0]->with_sum_func()); // should never happen
if (!const_expression_in_where(where, order->item[0]))
{
if (!first)
first= order;
if (prev)
prev->next= order;
prev= order;
}
}
if (prev)
prev->next= NULL;
return first;
}
/*
Set all fields in the table to have a null value
@param tables Table list
*/
static void make_tables_null_complemented(List<TABLE_LIST> *tables)
{
List_iterator<TABLE_LIST> ti(*tables);
TABLE_LIST *table;
while ((table= ti++))
{
/*
Don't touch semi-join materialization tables, as the a join_free()
call may have freed them (and HAVING clause can't have references to
them anyway).
*/
if (!table->is_jtbm())
{
TABLE *tbl= table->table;
mark_as_null_row(tbl); // Set fields to NULL
}
}
}
static int
return_zero_rows(JOIN *join, select_result *result, List<TABLE_LIST> *tables,
List<Item> *fields, bool send_row, ulonglong select_options,
const char *info, Item *having, List<Item> *all_fields)
{
DBUG_ENTER("return_zero_rows");
if (select_options & SELECT_DESCRIBE)
{
select_describe(join, FALSE, FALSE, FALSE, info);
DBUG_RETURN(0);
}
if (send_row)
{
/*
Set all tables to have NULL row. This is needed as we will be evaluating
HAVING condition.
*/
make_tables_null_complemented(tables);
List_iterator_fast<Item> it(*all_fields);
Item *item;
/*
Inform all items (especially aggregating) to calculate HAVING correctly,
also we will need it for sending results.
*/
join->no_rows_in_result_called= 1;
while ((item= it++))
item->no_rows_in_result();
if (having && having->val_bool() == false)
send_row=0;
}
/* Update results for FOUND_ROWS */
if (!join->send_row_on_empty_set())
{
join->thd->limit_found_rows= 0;
}
if (!(result->send_result_set_metadata(*fields,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)))
{
bool send_error= FALSE;
if (send_row)
send_error= result->send_data_with_check(*fields, join->unit, 0) > 0;
if (likely(!send_error))
result->send_eof(); // Should be safe
}
/*
JOIN::join_free() must be called after the virtual method
select::send_result_set_metadata() returned control since
implementation of this method could use data strutcures
that are released by the method JOIN::join_free().
*/
join->join_free();
DBUG_RETURN(0);
}
/**
Reset table rows to contain a null-complement row (all fields are null)
Used only in JOIN::clear() and in do_select() if there where no matching rows.
@param join JOIN
@param cleared_tables Used to mark all cleared tables in the map. Needed for
unclear_tables() to know which tables to restore to
their original state.
*/
static void clear_tables(JOIN *join, table_map *cleared_tables)
{
DBUG_ASSERT(cleared_tables);
for (uint i= 0 ; i < join->table_count ; i++)
{
TABLE *table= join->table[i];
if (table->null_row)
continue; // Nothing more to do
(*cleared_tables)|= (((table_map) 1) << i);
if (table->s->null_bytes)
{
/*
Remember null bits for the record so that we can restore the
original const record in unclear_tables()
*/
memcpy(table->record[1], table->null_flags, table->s->null_bytes);
}
mark_as_null_row(table); // All fields are NULL
}
}
/**
Reverse null marking for tables and restore null bits.
This return the tables to the state of before clear_tables().
We have to do this because the tables may be re-used in a sub query
and the subquery will assume that the const tables contains the original
data before clear_tables().
*/
static void unclear_tables(JOIN *join, table_map *cleared_tables)
{
for (uint i= 0 ; i < join->table_count ; i++)
{
if ((*cleared_tables) & (((table_map) 1) << i))
{
TABLE *table= join->table[i];
if (table->s->null_bytes)
memcpy(table->null_flags, table->record[1], table->s->null_bytes);
unmark_as_null_row(table);
}
}
}
/*****************************************************************************
Make som simple condition optimization:
If there is a test 'field = const' change all refs to 'field' to 'const'
Remove all dummy tests 'item = item', 'const op const'.
Remove all 'item is NULL', when item can never be null!
item->marker should be 0 for all items on entry
Return in cond_value FALSE if condition is impossible (1 = 2)
*****************************************************************************/
class COND_CMP :public ilink {
public:
static void *operator new(size_t size, MEM_ROOT *mem_root)
{
return alloc_root(mem_root, size);
}
static void operator delete(void *ptr __attribute__((unused)),
size_t size __attribute__((unused)))
{ TRASH_FREE(ptr, size); }
static void operator delete(void *, MEM_ROOT*) {}
Item *and_level;
Item_bool_func2 *cmp_func;
COND_CMP(Item *a,Item_bool_func2 *b) :and_level(a),cmp_func(b) {}
};
/**
Find the multiple equality predicate containing a field.
The function retrieves the multiple equalities accessed through
the con_equal structure from current level and up looking for
an equality containing field. It stops retrieval as soon as the equality
is found and set up inherited_fl to TRUE if it's found on upper levels.
@param cond_equal multiple equalities to search in
@param field field to look for
@param[out] inherited_fl set up to TRUE if multiple equality is found
on upper levels (not on current level of
cond_equal)
@return
- Item_equal for the found multiple equality predicate if a success;
- NULL otherwise.
*/
Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
bool *inherited_fl)
{
Item_equal *item= 0;
bool in_upper_level= FALSE;
while (cond_equal)
{
List_iterator_fast<Item_equal> li(cond_equal->current_level);
while ((item= li++))
{
if (item->contains(field))
goto finish;
}
in_upper_level= TRUE;
cond_equal= cond_equal->upper_levels;
}
in_upper_level= FALSE;
finish:
*inherited_fl= in_upper_level;
return item;
}
/**
Check whether an equality can be used to build multiple equalities.
This function first checks whether the equality (left_item=right_item)
is a simple equality i.e. the one that equates a field with another field
or a constant (field=field_item or field=const_item).
If this is the case the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds a multiple
equality that covers the predicate, i.e. the predicate can be inferred
from this multiple equality.
The built multiple equality could be obtained in such a way:
create a binary multiple equality equivalent to the predicate, then
merge it, if possible, with one of old multiple equalities.
This guarantees that the set of multiple equalities covering equality
predicates will be minimal.
EXAMPLE:
For the where condition
@code
WHERE a=b AND b=c AND
(b=2 OR f=e)
@endcode
the check_equality will be called for the following equality
predicates a=b, b=c, b=2 and f=e.
- For a=b it will be called with *cond_equal=(0,[]) and will transform
*cond_equal into (0,[Item_equal(a,b)]).
- For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
- For b=2 it will be called with *cond_equal=(ptr(CE),[])
and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
- For f=e it will be called with *cond_equal=(ptr(CE), [])
and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).
@note
Now only fields that have the same type definitions (verified by
the Field::eq_def method) are placed to the same multiple equalities.
Because of this some equality predicates are not eliminated and
can be used in the constant propagation procedure.
We could weeken the equlity test as soon as at least one of the
equal fields is to be equal to a constant. It would require a
more complicated implementation: we would have to store, in
general case, its own constant for each fields from the multiple
equality. But at the same time it would allow us to get rid
of constant propagation completely: it would be done by the call
to cond->build_equal_items().
The implementation does not follow exactly the above rules to
build a new multiple equality for the equality predicate.
If it processes the equality of the form field1=field2, it
looks for multiple equalities me1 containig field1 and me2 containing
field2. If only one of them is found the fuction expands it with
the lacking field. If multiple equalities for both fields are
found they are merged. If both searches fail a new multiple equality
containing just field1 and field2 is added to the existing
multiple equalities.
If the function processes the predicate of the form field1=const,
it looks for a multiple equality containing field1. If found, the
function checks the constant of the multiple equality. If the value
is unknown, it is setup to const. Otherwise the value is compared with
const and the evaluation of the equality predicate is performed.
When expanding/merging equality predicates from the upper levels
the function first copies them for the current level. It looks
acceptable, as this happens rarely. The implementation without
copying would be much more complicated.
For description of how equality propagation works with SJM nests, grep
for EqualityPropagationAndSjmNests.
@param left_item left term of the quality to be checked
@param right_item right term of the equality to be checked
@param item equality item if the equality originates from a condition
predicate, 0 if the equality is the result of row
elimination
@param cond_equal multiple equalities that must hold together with the
equality
@retval
TRUE if the predicate is a simple equality predicate to be used
for building multiple equalities
@retval
FALSE otherwise
*/
bool check_simple_equality(THD *thd, const Item::Context &ctx,
Item *left_item, Item *right_item,
COND_EQUAL *cond_equal)
{
Item *orig_left_item= left_item;
Item *orig_right_item= right_item;
if (left_item->type() == Item::REF_ITEM)
{
Item_ref::Ref_Type left_ref= ((Item_ref*)left_item)->ref_type();
if (left_ref == Item_ref::VIEW_REF ||
left_ref == Item_ref::REF)
{
if (((Item_ref*)left_item)->get_depended_from())
return FALSE;
if (left_ref == Item_ref::VIEW_REF &&
((Item_direct_view_ref*)left_item)->get_null_ref_table() !=
NO_NULL_TABLE &&
!left_item->real_item()->used_tables())
return FALSE;
left_item= left_item->real_item();
}
}
if (right_item->type() == Item::REF_ITEM)
{
Item_ref::Ref_Type right_ref= ((Item_ref*)right_item)->ref_type();
if (right_ref == Item_ref::VIEW_REF ||
(right_ref == Item_ref::REF))
{
if (((Item_ref*)right_item)->get_depended_from())
return FALSE;
if (right_ref == Item_ref::VIEW_REF &&
((Item_direct_view_ref*)right_item)->get_null_ref_table() !=
NO_NULL_TABLE &&
!right_item->real_item()->used_tables())
return FALSE;
right_item= right_item->real_item();
}
}
if (left_item->type() == Item::FIELD_ITEM &&
right_item->type() == Item::FIELD_ITEM &&
!((Item_field*)left_item)->get_depended_from() &&
!((Item_field*)right_item)->get_depended_from())
{
/* The predicate the form field1=field2 is processed */
Field *left_field= ((Item_field*) left_item)->field;
Field *right_field= ((Item_field*) right_item)->field;
if (!left_field->eq_def(right_field) &&
!fields_equal_using_narrowing(thd, left_field, right_field))
return FALSE;
/* Search for multiple equalities containing field1 and/or field2 */
bool left_copyfl, right_copyfl;
Item_equal *left_item_equal=
find_item_equal(cond_equal, left_field, &left_copyfl);
Item_equal *right_item_equal=
find_item_equal(cond_equal, right_field, &right_copyfl);
/* As (NULL=NULL) != TRUE we can't just remove the predicate f=f */
if (left_field->eq(right_field)) /* f = f */
return (!(left_field->maybe_null() && !left_item_equal));
if (left_item_equal && left_item_equal == right_item_equal)
{
/*
The equality predicate is inference of one of the existing
multiple equalities, i.e the condition is already covered
by upper level equalities
*/
return TRUE;
}
/* Copy the found multiple equalities at the current level if needed */
if (left_copyfl)
{
/* left_item_equal of an upper level contains left_item */
left_item_equal= new (thd->mem_root) Item_equal(thd, left_item_equal);
left_item_equal->set_context_field(((Item_field*) left_item));
cond_equal->current_level.push_back(left_item_equal, thd->mem_root);
}
if (right_copyfl)
{
/* right_item_equal of an upper level contains right_item */
right_item_equal= new (thd->mem_root) Item_equal(thd, right_item_equal);
right_item_equal->set_context_field(((Item_field*) right_item));
cond_equal->current_level.push_back(right_item_equal, thd->mem_root);
}
if (left_item_equal)
{
/* left item was found in the current or one of the upper levels */
if (! right_item_equal)
left_item_equal->add(orig_right_item, thd->mem_root);
else
{
/* Merge two multiple equalities forming a new one */
left_item_equal->merge(thd, right_item_equal);
/* Remove the merged multiple equality from the list */
List_iterator<Item_equal> li(cond_equal->current_level);
while ((li++) != right_item_equal) ;
li.remove();
}
}
else
{
/* left item was not found neither the current nor in upper levels */
if (right_item_equal)
right_item_equal->add(orig_left_item, thd->mem_root);
else
{
/* None of the fields was found in multiple equalities */
Type_handler_hybrid_field_type
tmp(orig_left_item->type_handler_for_comparison());
if (tmp.aggregate_for_comparison(orig_right_item->
type_handler_for_comparison()))
return false;
Item_equal *item_equal=
new (thd->mem_root) Item_equal(thd, tmp.type_handler(),
orig_left_item, orig_right_item,
false);
item_equal->set_context_field((Item_field*)left_item);
cond_equal->current_level.push_back(item_equal, thd->mem_root);
}
}
return TRUE;
}
{
/* The predicate of the form field=const/const=field is processed */
Item *const_item= 0;
Item_field *field_item= 0;
Item *orig_field_item= 0;
if (left_item->type() == Item::FIELD_ITEM &&
!((Item_field*)left_item)->get_depended_from() &&
right_item->can_eval_in_optimize())
{
orig_field_item= orig_left_item;
field_item= (Item_field *) left_item;
const_item= right_item;
}
else if (right_item->type() == Item::FIELD_ITEM &&
!((Item_field*)right_item)->get_depended_from() &&
left_item->can_eval_in_optimize())
{
orig_field_item= orig_right_item;
field_item= (Item_field *) right_item;
const_item= left_item;
}
if (const_item &&
field_item->field->test_if_equality_guarantees_uniqueness(const_item))
{
/*
field_item and const_item are arguments of a scalar or a row
comparison function:
WHERE column=constant
WHERE (column, ...) = (constant, ...)
The owner comparison function has previously called fix_fields(),
so field_item and const_item should be directly comparable items,
field_item->cmp_context and const_item->cmp_context should be set.
In case of string comparison, charsets and collations of
field_item and const_item should have already be aggregated
for comparison, all necessary character set converters installed
and fixed.
In case of string comparison, const_item can be either:
- a weaker constant that does not need to be converted to field_item:
WHERE latin1_field = 'latin1_const'
WHERE varbinary_field = 'latin1_const'
WHERE latin1_bin_field = 'latin1_general_ci_const'
- a stronger constant that does not need to be converted to field_item:
WHERE latin1_field = binary 0xDF
WHERE latin1_field = 'a' COLLATE latin1_bin
- a result of conversion (e.g. from the session character set)
to the character set of field_item:
WHERE latin1_field = 'utf8_string_with_latin1_repertoire'
*/
bool copyfl;
Item_equal *item_equal = find_item_equal(cond_equal,
field_item->field, ©fl);
if (copyfl)
{
item_equal= new (thd->mem_root) Item_equal(thd, item_equal);
cond_equal->current_level.push_back(item_equal, thd->mem_root);
item_equal->set_context_field(field_item);
}
Item *const_item2= field_item->field->get_equal_const_item(thd, ctx,
const_item);
if (!const_item2)
return false;
if (item_equal)
{
/*
The flag cond_false will be set to 1 after this, if item_equal
already contains a constant and its value is not equal to
the value of const_item.
*/
item_equal->add_const(thd, const_item2);
}
else
{
Type_handler_hybrid_field_type
tmp(orig_left_item->type_handler_for_comparison());
if (tmp.aggregate_for_comparison(orig_right_item->
type_handler_for_comparison()))
return false;
item_equal= new (thd->mem_root) Item_equal(thd, tmp.type_handler(),
const_item2,
orig_field_item, true);
item_equal->set_context_field(field_item);
cond_equal->current_level.push_back(item_equal, thd->mem_root);
}
return TRUE;
}
}
return FALSE;
}
/**
Convert row equalities into a conjunction of regular equalities.
The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
Ei=E'i the function checks whether it is a simple equality or a row
equality. If it is a simple equality it is used to expand multiple
equalities of cond_equal. If it is a row equality it converted to a
sequence of equalities between row elements. If Ei=E'i is neither a
simple equality nor a row equality the item for this predicate is added
to eq_list.
@param thd thread handle
@param left_row left term of the row equality to be processed
@param right_row right term of the row equality to be processed
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@retval
TRUE if conversion has succeeded (no fatal error)
@retval
FALSE otherwise
*/
static bool check_row_equality(THD *thd, const Arg_comparator *comparators,
Item *left_row, Item_row *right_row,
COND_EQUAL *cond_equal, List<Item>* eq_list)
{
uint n= left_row->cols();
for (uint i= 0 ; i < n; i++)
{
bool is_converted;
Item *left_item= left_row->element_index(i);
Item *right_item= right_row->element_index(i);
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM)
{
/*
Item_splocal for ROW SP variables return Item::ROW_ITEM.
Here we know that left_item and right_item are not Item_splocal,
because ROW SP variables with nested ROWs are not supported yet.
It's safe to cast left_item and right_item to Item_row.
*/
DBUG_ASSERT(!left_item->get_item_splocal());
DBUG_ASSERT(!right_item->get_item_splocal());
is_converted= check_row_equality(thd,
comparators[i].subcomparators(),
(Item_row *) left_item,
(Item_row *) right_item,
cond_equal, eq_list);
}
else
{
const Arg_comparator *tmp= &comparators[i];
is_converted= check_simple_equality(thd,
Item::Context(Item::ANY_SUBST,
tmp->compare_type_handler(),
tmp->compare_collation()),
left_item, right_item,
cond_equal);
}
if (!is_converted)
{
Item_func_eq *eq_item;
if (!(eq_item= new (thd->mem_root) Item_func_eq(thd, left_item, right_item)) ||
eq_item->set_cmp_func(thd))
return FALSE;
eq_item->quick_fix_field();
eq_list->push_back(eq_item, thd->mem_root);
}
}
return TRUE;
}
/**
Eliminate row equalities and form multiple equalities predicates.
This function checks whether the item is a simple equality
i.e. the one that equates a field with another field or a constant
(field=field_item or field=constant_item), or, a row equality.
For a simple equality the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds/expands
multiple equality that covers the predicate.
Row equalities are eliminated substituted for conjunctive regular
equalities which are treated in the same way as original equality
predicates.
@param thd thread handle
@param item predicate to process
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@retval
TRUE if re-writing rules have been applied
@retval
FALSE otherwise, i.e.
if the predicate is not an equality,
or, if the equality is neither a simple one nor a row equality,
or, if the procedure fails by a fatal error.
*/
bool Item_func_eq::check_equality(THD *thd, COND_EQUAL *cond_equal,
List<Item> *eq_list)
{
Item *left_item= arguments()[0];
Item *right_item= arguments()[1];
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM)
{
/*
Item_splocal::type() for ROW variables returns Item::ROW_ITEM.
Distinguish ROW-type Item_splocal from Item_row.
Example query:
SELECT 1 FROM DUAL WHERE row_sp_variable=ROW(100,200);
*/
if (left_item->get_item_splocal() ||
right_item->get_item_splocal())
return false;
return check_row_equality(thd,
cmp.subcomparators(),
(Item_row *) left_item,
(Item_row *) right_item,
cond_equal, eq_list);
}
return check_simple_equality(thd,
Context(ANY_SUBST,
compare_type_handler(),
compare_collation()),
left_item, right_item, cond_equal);
}
/**
Item_xxx::build_equal_items()
Replace all equality predicates in a condition referenced by "this"
by multiple equality items.
At each 'and' level the function detects items for equality predicates
and replaced them by a set of multiple equality items of class Item_equal,
taking into account inherited equalities from upper levels.
If an equality predicate is used not in a conjunction it's just
replaced by a multiple equality predicate.
For each 'and' level the function set a pointer to the inherited
multiple equalities in the cond_equal field of the associated
object of the type Item_cond_and.
The function also traverses the cond tree and and for each field reference
sets a pointer to the multiple equality item containing the field, if there
is any. If this multiple equality equates fields to a constant the
function replaces the field reference by the constant in the cases
when the field is not of a string type or when the field reference is
just an argument of a comparison predicate.
The function also determines the maximum number of members in
equality lists of each Item_cond_and object assigning it to
thd->lex->current_select->max_equal_elems.
@note
Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of
f1=f2, .., fn-1=fn. It substitutes any inference from these
equality predicates that is equivalent to the conjunction.
Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
it is equivalent to ((a1=a2) AND (a2=a3)).
The function always makes a substitution of all equality predicates occurred
in a conjuction for a minimal set of multiple equality predicates.
This set can be considered as a canonical representation of the
sub-conjunction of the equality predicates.
E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by
(=(t1.a,t2.b,t3.c) AND t2.b>5), not by
(=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
(=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
but if additionally =(t4.d,t2.b) is inherited, it
will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)
The function performs the substitution in a recursive descent by
the condtion tree, passing to the next AND level a chain of multiple
equality predicates which have been built at the upper levels.
The Item_equal items built at the level are attached to other
non-equality conjucts as a sublist. The pointer to the inherited
multiple equalities is saved in the and condition object (Item_cond_and).
This chain allows us for any field reference occurrence easily to find a
multiple equality that must be held for this occurrence.
For each AND level we do the following:
- scan it for all equality predicate (=) items
- join them into disjoint Item_equal() groups
- process the included OR conditions recursively to do the same for
lower AND levels.
We need to do things in this order as lower AND levels need to know about
all possible Item_equal objects in upper levels.
@param thd thread handle
@param inherited path to all inherited multiple equality items
@return
pointer to the transformed condition,
whose Used_tables_and_const_cache is up to date,
so no additional update_used_tables() is needed on the result.
*/
COND *Item_cond_and::build_equal_items(THD *thd,
COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
Item_equal *item_equal;
COND_EQUAL cond_equal;
cond_equal.upper_levels= inherited;
if (check_stack_overrun(thd, STACK_MIN_SIZE, NULL))
return this; // Fatal error flag is set!
List<Item> eq_list;
List<Item> *cond_args= argument_list();
List_iterator<Item> li(*cond_args);
Item *item;
DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
/*
Retrieve all conjuncts of this level detecting the equality
that are subject to substitution by multiple equality items and
removing each such predicate from the conjunction after having
found/created a multiple equality whose inference the predicate is.
*/
while ((item= li++))
{
/*
PS/SP note: we can safely remove a node from AND-OR
structure here because it's restored before each
re-execution of any prepared statement/stored procedure.
*/
if (item->check_equality(thd, &cond_equal, &eq_list))
li.remove();
}
/*
Check if we eliminated all the predicates of the level, e.g.
(a=a AND b=b AND a=a).
*/
if (!cond_args->elements &&
!cond_equal.current_level.elements &&
!eq_list.elements)
return (Item*) Item_true;
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal= it++))
{
item_equal->set_link_equal_fields(link_item_fields);
item_equal->fix_fields(thd, NULL);
item_equal->update_used_tables();
set_if_bigger(thd->lex->current_select->max_equal_elems,
item_equal->n_field_items());
}
m_cond_equal.copy(cond_equal);
cond_equal.current_level= m_cond_equal.current_level;
inherited= &m_cond_equal;
/*
Make replacement of equality predicates for lower levels
of the condition expression.
*/
li.rewind();
while ((item= li++))
{
Item *new_item;
if ((new_item= item->build_equal_items(thd, inherited, false, NULL))
!= item)
{
/* This replacement happens only for standalone equalities */
/*
This is ok with PS/SP as the replacement is done for
cond_args of an AND/OR item, which are restored for each
execution of PS/SP.
*/
li.replace(new_item);
}
}
cond_args->append(&eq_list);
cond_args->append((List<Item> *)&cond_equal.current_level);
update_used_tables();
if (cond_equal_ref)
*cond_equal_ref= &m_cond_equal;
return this;
}
COND *Item_cond::build_equal_items(THD *thd,
COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
List<Item> *cond_args= argument_list();
List_iterator<Item> li(*cond_args);
Item *item;
DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
/*
Make replacement of equality predicates for lower levels
of the condition expression.
Update used_tables_cache and const_item_cache on the way.
*/
used_tables_and_const_cache_init();
while ((item= li++))
{
Item *new_item;
if ((new_item= item->build_equal_items(thd, inherited, false, NULL))
!= item)
{
/* This replacement happens only for standalone equalities */
/*
This is ok with PS/SP as the replacement is done for
arguments of an AND/OR item, which are restored for each
execution of PS/SP.
*/
li.replace(new_item);
}
used_tables_and_const_cache_join(new_item);
}
return this;
}
COND *Item_func_eq::build_equal_items(THD *thd,
COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
COND_EQUAL cond_equal;
cond_equal.upper_levels= inherited;
List<Item> eq_list;
DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
/*
If an equality predicate forms the whole and level,
we call it standalone equality and it's processed here.
E.g. in the following where condition
WHERE a=5 AND (b=5 or a=c)
(b=5) and (a=c) are standalone equalities.
In general we can't leave alone standalone eqalities:
for WHERE a=b AND c=d AND (b=c OR d=5)
b=c is replaced by =(a,b,c,d).
*/
if (Item_func_eq::check_equality(thd, &cond_equal, &eq_list))
{
Item_equal *item_equal;
int n= cond_equal.current_level.elements + eq_list.elements;
if (n == 0)
return (Item*) Item_true;
else if (n == 1)
{
if ((item_equal= cond_equal.current_level.pop()))
{
item_equal->fix_fields(thd, NULL);
item_equal->update_used_tables();
set_if_bigger(thd->lex->current_select->max_equal_elems,
item_equal->n_field_items());
item_equal->upper_levels= inherited;
if (cond_equal_ref)
*cond_equal_ref= new (thd->mem_root) COND_EQUAL(item_equal,
thd->mem_root);
return item_equal;
}
Item *res= eq_list.pop();
res->update_used_tables();
DBUG_ASSERT(res->type() == FUNC_ITEM);
return res;
}
else
{
/*
Here a new AND level must be created. It can happen only
when a row equality is processed as a standalone predicate.
*/
Item_cond_and *and_cond= new (thd->mem_root) Item_cond_and(thd, eq_list);
and_cond->quick_fix_field();
List<Item> *cond_args= and_cond->argument_list();
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal= it++))
{
if (item_equal->fix_length_and_dec(thd))
return NULL;
item_equal->update_used_tables();
set_if_bigger(thd->lex->current_select->max_equal_elems,
item_equal->n_field_items());
}
and_cond->m_cond_equal.copy(cond_equal);
cond_equal.current_level= and_cond->m_cond_equal.current_level;
cond_args->append((List<Item> *)&cond_equal.current_level);
and_cond->update_used_tables();
if (cond_equal_ref)
*cond_equal_ref= &and_cond->m_cond_equal;
return and_cond;
}
}
return Item_func::build_equal_items(thd, inherited, link_item_fields,
cond_equal_ref);
}
COND *Item_func::build_equal_items(THD *thd, COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
/*
For each field reference in cond, not from equal item predicates,
set a pointer to the multiple equality it belongs to (if there is any)
as soon the field is not of a string type or the field reference is
an argument of a comparison predicate.
*/
COND *cond= propagate_equal_fields(thd, Context_boolean(), inherited);
cond->update_used_tables();
DBUG_ASSERT(cond == this);
DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
return cond;
}
COND *Item_equal::build_equal_items(THD *thd, COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
COND *cond= Item_func::build_equal_items(thd, inherited, link_item_fields,
cond_equal_ref);
if (cond_equal_ref)
*cond_equal_ref= new (thd->mem_root) COND_EQUAL(this, thd->mem_root);
return cond;
}
/**
Build multiple equalities for a condition and all on expressions that
inherit these multiple equalities.
The function first applies the cond->build_equal_items() method
to build all multiple equalities for condition cond utilizing equalities
referred through the parameter inherited. The extended set of
equalities is returned in the structure referred by the cond_equal_ref
parameter. After this the function calls itself recursively for
all on expressions whose direct references can be found in join_list
and who inherit directly the multiple equalities just having built.
@note
The on expression used in an outer join operation inherits all equalities
from the on expression of the embedding join, if there is any, or
otherwise - from the where condition.
This fact is not obvious, but presumably can be proved.
Consider the following query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
WHERE t1.a=t2.a;
@endcode
If the on expression in the query inherits =(t1.a,t2.a), then we
can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
the equality t3.a=t4.a. Although the on expression
t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
in the query the latter can be replaced by the former: the new query
will return the same result set as the original one.
Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
to use t1.a=t3.a AND t3.a=t4.a under the on condition:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
This query equivalent to:
@code
SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
WHERE t1.a=t2.a
@endcode
Similarly the original query can be rewritten to the query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
that is equivalent to:
@code
SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
WHERE t1.a=t2.a
@endcode
Thus, applying equalities from the where condition we basically
can get more freedom in performing join operations.
Although we don't use this property now, it probably makes sense to use
it in the future.
@param thd Thread handler
@param cond condition to build the multiple equalities for
@param inherited path to all inherited multiple equality items
@param join_list list of join tables to which the condition
refers to
@ignore_on_conds TRUE <-> do not build multiple equalities
for on expressions
@param[out] cond_equal_ref pointer to the structure to place built
equalities in
@param link_equal_items equal fields are to be linked
@return
pointer to the transformed condition containing multiple equalities
*/
static COND *build_equal_items(JOIN *join, COND *cond,
COND_EQUAL *inherited,
List<TABLE_LIST> *join_list,
bool ignore_on_conds,
COND_EQUAL **cond_equal_ref,
bool link_equal_fields)
{
THD *thd= join->thd;
*cond_equal_ref= NULL;
if (cond)
{
cond= cond->build_equal_items(thd, inherited, link_equal_fields,
cond_equal_ref);
if (*cond_equal_ref)
{
(*cond_equal_ref)->upper_levels= inherited;
inherited= *cond_equal_ref;
}
}
if (join_list && !ignore_on_conds)
{
TABLE_LIST *table;
List_iterator<TABLE_LIST> li(*join_list);
while ((table= li++))
{
if (table->on_expr)
{
List<TABLE_LIST> *nested_join_list= table->nested_join ?
&table->nested_join->join_list : NULL;
/*
We can modify table->on_expr because its old value will
be restored before re-execution of PS/SP.
*/
table->on_expr= build_equal_items(join, table->on_expr, inherited,
nested_join_list, ignore_on_conds,
&table->cond_equal);
if (unlikely(thd->trace_started()))
{
const char *table_name;
if (table->nested_join)
table_name= table->nested_join->join_list.head()->alias.str;
else
table_name= table->alias.str;
trace_condition(join->thd, "ON expr", "build_equal_items",
table->on_expr, table_name);
}
}
}
}
return cond;
}
/**
Compare field items by table order in the execution plan.
If field1 and field2 belong to different tables then
field1 considered as better than field2 if the table containing
field1 is accessed earlier than the table containing field2.
The function finds out what of two fields is better according
this criteria.
If field1 and field2 belong to the same table then the result
of comparison depends on whether the fields are parts of
the key that are used to access this table.
@param field1 first field item to compare
@param field2 second field item to compare
@param table_join_idx index to tables determining table order
@retval
1 if field1 is better than field2
@retval
-1 if field2 is better than field1
@retval
0 otherwise
*/
static int compare_fields_by_table_order(Item *field1,
Item *field2,
void *table_join_idx)
{
int cmp= 0;
bool outer_ref= 0;
Item *field1_real= field1->real_item();
Item *field2_real= field2->real_item();
if (field1->const_item() || field1_real->const_item())
return -1;
if (field2->const_item() || field2_real->const_item())
return 1;
Item_field *f1= (Item_field *) field1_real;
Item_field *f2= (Item_field *) field2_real;
if (f1->used_tables() & OUTER_REF_TABLE_BIT)
{
outer_ref= 1;
cmp= -1;
}
if (f2->used_tables() & OUTER_REF_TABLE_BIT)
{
outer_ref= 1;
cmp++;
}
if (outer_ref)
return cmp;
JOIN_TAB **idx= (JOIN_TAB **) table_join_idx;
JOIN_TAB *tab1= idx[f1->field->table->tablenr];
JOIN_TAB *tab2= idx[f2->field->table->tablenr];
/*
if one of the table is inside a merged SJM nest and another one isn't,
compare SJM bush roots of the tables.
*/
if (tab1->bush_root_tab != tab2->bush_root_tab)
{
if (tab1->bush_root_tab)
tab1= tab1->bush_root_tab;
if (tab2->bush_root_tab)
tab2= tab2->bush_root_tab;
}
cmp= (int)(tab1 - tab2);
if (!cmp)
{
/* Fields f1, f2 belong to the same table */
JOIN_TAB *tab= idx[f1->field->table->tablenr];
uint keyno= MAX_KEY;
if (tab->ref.key_parts)
keyno= tab->ref.key;
else if (tab->select && tab->select->quick)
keyno = tab->select->quick->index;
if (keyno != MAX_KEY)
{
if (f1->field->part_of_key.is_set(keyno))
cmp= -1;
if (f2->field->part_of_key.is_set(keyno))
cmp++;
/*
Here:
if both f1, f2 are components of the key tab->ref.key then cmp==0,
if only f1 is a component of the key then cmp==-1 (f1 is better),
if only f2 is a component of the key then cmp==1, (f2 is better),
if none of f1,f1 is component of the key cmp==0.
*/
if (!cmp)
{
KEY *key_info= tab->table->key_info + keyno;
for (uint i= 0; i < key_info->user_defined_key_parts; i++)
{
Field *fld= key_info->key_part[i].field;
if (fld->eq(f1->field))
{
cmp= -1; // f1 is better
break;
}
if (fld->eq(f2->field))
{
cmp= 1; // f2 is better
break;
}
}
}
}
if (!cmp)
cmp= f1->field->field_index-f2->field->field_index;
}
return cmp < 0 ? -1 : (cmp ? 1 : 0);
}
static TABLE_LIST* embedding_sjm(Item *item)
{
Item_field *item_field= (Item_field *) (item->real_item());
TABLE_LIST *nest= item_field->field->table->pos_in_table_list->embedding;
if (nest && nest->sj_mat_info && nest->sj_mat_info->is_used)
return nest;
else
return NULL;
}
/**
Generate minimal set of simple equalities equivalent to a multiple equality.
The function retrieves the fields of the multiple equality item
item_equal and for each field f:
- if item_equal contains const it generates the equality f=const_item;
- otherwise, if f is not the first field, generates the equality
f=item_equal->get_first().
All generated equality are added to the cond conjunction.
@param cond condition to add the generated equality to
@param upper_levels structure to access multiple equality of upper levels
@param item_equal multiple equality to generate simple equality from
@note
Before generating an equality function checks that it has not
been generated for multiple equalities of the upper levels.
E.g. for the following where condition
WHERE a=5 AND ((a=b AND b=c) OR c>4)
the upper level AND condition will contain =(5,a),
while the lower level AND condition will contain =(5,a,b,c).
When splitting =(5,a,b,c) into a separate equality predicates
we should omit 5=a, as we have it already in the upper level.
The following where condition gives us a more complicated case:
WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
Given the tables are accessed in the order t1->t2->t3->t4 for
the selected query execution plan the lower level multiple
equality =(t1.a,t2.b,t3.c,t4.d) formally should be converted to
t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
generated for the upper level. Also t3.c=t4.d will be generated there.
So only t1.a=t3.c should be left in the lower level.
If cond is equal to 0, then not more then one equality is generated
and a pointer to it is returned as the result of the function.
Equality substutution and semi-join materialization nests:
In case join order looks like this:
outer_tbl1 outer_tbl2 SJM (inner_tbl1 inner_tbl2) outer_tbl3
We must not construct equalities like
outer_tbl1.col = inner_tbl1.col
because they would get attached to inner_tbl1 and will get evaluated
during materialization phase, when we don't have current value of
outer_tbl1.col.
Item_equal::get_first() also takes similar measures for dealing with
equality substitution in presense of SJM nests.
Grep for EqualityPropagationAndSjmNests for a more verbose description.
@return
- The condition with generated simple equalities or
a pointer to the simple generated equality, if success.
- 0, otherwise.
*/
Item *eliminate_item_equal(THD *thd, COND *cond, COND_EQUAL *upper_levels,
Item_equal *item_equal)
{
List<Item> eq_list;
Item_func_eq *eq_item= 0;
if (((Item *) item_equal)->const_item() && !item_equal->val_bool())
return (Item*) Item_false;
Item *item_const= item_equal->get_const();
Item_equal_fields_iterator it(*item_equal);
Item *head;
TABLE_LIST *current_sjm= NULL;
Item *current_sjm_head= NULL;
DBUG_ASSERT(!cond ||
cond->is_bool_literal() ||
(cond->type() == Item::FUNC_ITEM &&
((Item_func *) cond)->functype() == Item_func::EQ_FUNC) ||
(cond->type() == Item::COND_ITEM &&
((Item_func *) cond)->functype() == Item_func::COND_AND_FUNC));
/*
Pick the "head" item: the constant one or the first in the join order
(if the first in the join order happends to be inside an SJM nest, that's
ok, because this is where the value will be unpacked after
materialization).
*/
if (item_const)
head= item_const;
else
{
TABLE_LIST *emb_nest;
head= item_equal->get_first(NO_PARTICULAR_TAB, NULL);
it++;
if ((emb_nest= embedding_sjm(head)))
{
current_sjm= emb_nest;
current_sjm_head= head;
}
}
Item *field_item;
/*
For each other item, generate "item=head" equality (except the tables that
are within SJ-Materialization nests, for those "head" is defined
differently)
*/
while ((field_item= it++))
{
Item_equal *upper= field_item->find_item_equal(upper_levels);
Item *item= field_item;
TABLE_LIST *field_sjm= embedding_sjm(field_item);
if (!field_sjm)
{
current_sjm= NULL;
current_sjm_head= NULL;
}
/*
Check if "field_item=head" equality is already guaranteed to be true
on upper AND-levels.
*/
if (upper)
{
TABLE_LIST *native_sjm= embedding_sjm(item_equal->context_field);
Item *upper_const= upper->get_const();
if (item_const && upper_const)
{
/*
Upper item also has "field_item=const".
Don't produce equality if const is equal to item_const.
*/
Item_func_eq *func= new (thd->mem_root) Item_func_eq(thd, item_const, upper_const);
func->set_cmp_func(thd);
func->quick_fix_field();
if (func->val_bool())
item= 0;
}
else
{
Item_equal_fields_iterator li(*item_equal);
while ((item= li++) != field_item)
{
if (embedding_sjm(item) == field_sjm &&
item->find_item_equal(upper_levels) == upper)
break;
}
}
if (embedding_sjm(field_item) != native_sjm)
item= NULL; /* Don't produce equality */
}
bool produce_equality= MY_TEST(item == field_item);
if (!item_const && field_sjm && field_sjm != current_sjm)
{
/* Entering an SJM nest */
current_sjm_head= field_item;
if (!field_sjm->sj_mat_info->is_sj_scan)
produce_equality= FALSE;
}
if (produce_equality)
{
if (eq_item && eq_list.push_back(eq_item, thd->mem_root))
return 0;
/*
If we're inside an SJM-nest (current_sjm!=NULL), and the multi-equality
doesn't include a constant, we should produce equality with the first
of the equal items in this SJM (except for the first element inside the
SJM. For that, we produce the equality with the "head" item).
In other cases, get the "head" item, which is either first of the
equals on top level, or the constant.
*/
Item *head_item= (!item_const && current_sjm &&
current_sjm_head != field_item) ? current_sjm_head: head;
eq_item= new (thd->mem_root) Item_func_eq(thd, field_item, head_item);
if (!eq_item || eq_item->set_cmp_func(thd))
return 0;
eq_item->eval_not_null_tables(0);
eq_item->quick_fix_field();
eq_item->base_flags|= item_base_t::IS_COND;
}
current_sjm= field_sjm;
}
/*
We have produced zero, one, or more pair-wise equalities eq_i. We want to
return an expression in form:
cond AND eq_1 AND eq_2 AND eq_3 AND ...
'cond' is a parameter for this function, which may be NULL, an Item_bool(1),
or an Item_func_eq or an Item_cond_and.
We want to return a well-formed condition: no nested Item_cond_and objects,
or Item_cond_and with a single child:
- if 'cond' is an Item_cond_and, we add eq_i as its tail
- if 'cond' is Item_bool(1), we return eq_i
- otherwise, we create our own Item_cond_and and put 'cond' at the front of
it.
- if we have only one condition to return, we don't create an Item_cond_and
*/
if (eq_item && eq_list.push_back(eq_item, thd->mem_root))
return 0;
COND *res= 0;
switch (eq_list.elements)
{
case 0:
res= cond ? cond : (Item*) Item_true;
break;
case 1:
if (!cond || cond->is_bool_literal())
res= eq_item;
break;
default:
break;
}
if (!res)
{
if (cond)
{
if (cond->type() == Item::COND_ITEM)
{
res= cond;
((Item_cond *) res)->add_at_end(&eq_list);
}
else if (eq_list.push_front(cond, thd->mem_root))
return 0;
}
}
if (!res)
res= new (thd->mem_root) Item_cond_and(thd, eq_list);
if (res)
{
res->quick_fix_field();
res->update_used_tables();
res->eval_not_null_tables(0);
}
return res;
}
/**
Substitute every field reference in a condition by the best equal field
and eliminate all multiple equality predicates.
The function retrieves the cond condition and for each encountered
multiple equality predicate it sorts the field references in it
according to the order of tables specified by the table_join_idx
parameter. Then it eliminates the multiple equality predicate it
replacing it by the conjunction of simple equality predicates
equating every field from the multiple equality to the first
field in it, or to the constant, if there is any.
After this the function retrieves all other conjuncted
predicates substitute every field reference by the field reference
to the first equal field or equal constant if there are any.
@param context_tab Join tab that 'cond' will be attached to, or
NO_PARTICULAR_TAB. See notes above.
@param cond condition to process
@param cond_equal multiple equalities to take into consideration
@param table_join_idx index to tables determining field preference
@param do_substitution if false: do not do any field substitution
@note
At the first glance full sort of fields in multiple equality
seems to be an overkill. Yet it's not the case due to possible
new fields in multiple equality item of lower levels. We want
the order in them to comply with the order of upper levels.
context_tab may be used to specify which join tab `cond` will be
attached to. There are two possible cases:
1. context_tab != NO_PARTICULAR_TAB
We're doing substitution for an Item which will be evaluated in the
context of a particular item. For example, if the optimizer does a
ref access on "tbl1.key= expr" then
= equality substitution will be perfomed on 'expr'
= it is known in advance that 'expr' will be evaluated when
table t1 is accessed.
Note that in this kind of substution we never have to replace Item_equal
objects. For example, for
t.key= func(col1=col2 AND col2=const)
we will not build Item_equal or do equality substution (if we decide to,
this function will need to be fixed to handle it)
2. context_tab == NO_PARTICULAR_TAB
We're doing substitution in WHERE/ON condition, which is not yet
attached to any particular join_tab. We will use information about the
chosen join order to make "optimal" substitions, i.e. those that allow
to apply filtering as soon as possible. See eliminate_item_equal() and
Item_equal::get_first() for details.
@return
The transformed condition, or NULL in case of error
*/
static COND* substitute_for_best_equal_field(THD *thd, JOIN_TAB *context_tab,
COND *cond,
COND_EQUAL *cond_equal,
void *table_join_idx,
bool do_substitution)
{
Item_equal *item_equal;
COND *org_cond= cond; // Return this in case of fatal error
if (cond->type() == Item::COND_ITEM)
{
List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
if (and_level)
{
cond_equal= &((Item_cond_and *) cond)->m_cond_equal;
cond_list->disjoin((List<Item> *) &cond_equal->current_level);/* remove Item_equal objects from the AND. */
List_iterator_fast<Item_equal> it(cond_equal->current_level);
while ((item_equal= it++))
{
item_equal->sort(&compare_fields_by_table_order, table_join_idx);
}
}
List_iterator<Item> li(*cond_list);
Item *item;
while ((item= li++))
{
Item *new_item= substitute_for_best_equal_field(thd, context_tab,
item, cond_equal,
table_join_idx,
do_substitution);
/*
This works OK with PS/SP re-execution as changes are made to
the arguments of AND/OR items only
*/
if (new_item && new_item != item)
li.replace(new_item);
}
if (and_level)
{
COND *eq_cond= 0;
List_iterator_fast<Item_equal> it(cond_equal->current_level);
bool false_eq_cond= FALSE;
bool all_deleted= true;
while ((item_equal= it++))
{
if (item_equal->get_extraction_flag() == MARKER_DELETION)
continue;
all_deleted= false;
eq_cond= eliminate_item_equal(thd, eq_cond, cond_equal->upper_levels,
item_equal);
if (!eq_cond)
{
eq_cond= 0;
break;
}
else if (eq_cond->is_bool_literal() && !eq_cond->val_bool())
{
/*
This occurs when eliminate_item_equal() founds that cond is
always false and substitutes it with Item_int 0.
Due to this, value of item_equal will be 0, so just return it.
*/
cond= eq_cond;
false_eq_cond= TRUE;
break;
}
}
if (eq_cond && !false_eq_cond)
{
/* Insert the generated equalities before all other conditions */
if (eq_cond->type() == Item::COND_ITEM)
((Item_cond *) cond)->add_at_head(
((Item_cond *) eq_cond)->argument_list());
else
{
if (cond_list->is_empty())
cond= eq_cond;
else
{
/* Do not add an equality condition if it's always true */
if (!eq_cond->is_bool_literal() &&
cond_list->push_front(eq_cond, thd->mem_root))
eq_cond= 0;
}
}
}
if (!eq_cond && !all_deleted)
{
/*
We are out of memory doing the transformation.
This is a fatal error now. However we bail out by returning the
original condition that we had before we started the transformation.
*/
cond_list->append((List<Item> *) &cond_equal->current_level);
}
}
}
else if (cond->type() == Item::FUNC_ITEM &&
((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
item_equal= (Item_equal *) cond;
item_equal->sort(&compare_fields_by_table_order, table_join_idx);
cond_equal= item_equal->upper_levels;
if (cond_equal && cond_equal->current_level.head() == item_equal)
cond_equal= cond_equal->upper_levels;
if (item_equal->get_extraction_flag() == MARKER_DELETION)
return 0;
cond= eliminate_item_equal(thd, 0, cond_equal, item_equal);
return cond ? cond : org_cond;
}
else if (do_substitution)
{
while (cond_equal)
{
List_iterator_fast<Item_equal> it(cond_equal->current_level);
while((item_equal= it++))
{
REPLACE_EQUAL_FIELD_ARG arg= {item_equal, context_tab};
if (!(cond= cond->transform(thd, &Item::replace_equal_field,
(uchar *) &arg)))
return 0;
}
cond_equal= cond_equal->upper_levels;
}
}
return cond;
}
/**
Check appearance of new constant items in multiple equalities
of a condition after reading a constant table.
The function retrieves the cond condition and for each encountered
multiple equality checks whether new constants have appeared after
reading the constant (single row) table tab. If so it adjusts
the multiple equality appropriately.
@param cond condition whose multiple equalities are to be checked
@param table constant table that has been read
@param const_key mark key parts as constant
*/
static void update_const_equal_items(THD *thd, COND *cond, JOIN_TAB *tab,
bool const_key)
{
if (!(cond->used_tables() & tab->table->map))
return;
if (cond->type() == Item::COND_ITEM)
{
List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
List_iterator_fast<Item> li(*cond_list);
Item *item;
while ((item= li++))
update_const_equal_items(thd, item, tab,
cond->is_top_level_item() &&
((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC);
}
else if (cond->type() == Item::FUNC_ITEM &&
((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
Item_equal *item_equal= (Item_equal *) cond;
bool contained_const= item_equal->get_const() != NULL;
item_equal->update_const(thd);
if (!contained_const && item_equal->get_const())
{
/* Update keys for range analysis */
Item_equal_fields_iterator it(*item_equal);
while (it++)
{
Field *field= it.get_curr_field();
JOIN_TAB *stat= field->table->reginfo.join_tab;
key_map possible_keys= field->key_start;
possible_keys.intersect(field->table->keys_in_use_for_query);
stat[0].const_keys.merge(possible_keys);
/*
For each field in the multiple equality (for which we know that it
is a constant) we have to find its corresponding key part, and set
that key part in const_key_parts.
*/
if (!possible_keys.is_clear_all())
{
TABLE *field_tab= field->table;
KEYUSE *use;
for (use= stat->keyuse; use && use->table == field_tab; use++)
if (const_key &&
!use->is_for_hash_join() && possible_keys.is_set(use->key) &&
field_tab->key_info[use->key].key_part[use->keypart].field ==
field)
field_tab->const_key_parts[use->key]|= use->keypart_map;
}
}
}
}
}
/**
Check if
WHERE expr=value AND expr=const
can be rewritten as:
WHERE const=value AND expr=const
@param target - the target operator whose "expr" argument will be
replaced to "const".
@param target_expr - the target's "expr" which will be replaced to "const".
@param target_value - the target's second argument, it will remain unchanged.
@param source - the equality expression ("=" or "<=>") that
can be used to rewrite the "target" part
(under certain conditions, see the code).
@param source_expr - the source's "expr". It should be exactly equal to
the target's "expr" to make condition rewrite possible.
@param source_const - the source's "const" argument, it will be inserted
into "target" instead of "expr".
*/
static bool
can_change_cond_ref_to_const(Item_bool_func2 *target,
Item *target_expr, Item *target_value,
Item_bool_func2 *source,
Item *source_expr, Item *source_const)
{
return target_expr->eq(source_expr,0) &&
target_value != source_const &&
target->compare_type_handler()->
can_change_cond_ref_to_const(target, target_expr, target_value,
source, source_expr, source_const);
}
/*
change field = field to field = const for each found field = const in the
and_level
*/
static void
change_cond_ref_to_const(THD *thd, I_List<COND_CMP> *save_list,
Item *and_father, Item *cond,
Item_bool_func2 *field_value_owner,
Item *field, Item *value)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
change_cond_ref_to_const(thd, save_list,and_level ? cond : item, item,
field_value_owner, field, value);
return;
}
if (cond->eq_cmp_result() == Item::COND_OK)
return; // Not a boolean function
Item_bool_func2 *func= (Item_bool_func2*) cond;
Item **args= func->arguments();
Item *left_item= args[0];
Item *right_item= args[1];
Item_func::Functype functype= func->functype();
if (can_change_cond_ref_to_const(func, right_item, left_item,
field_value_owner, field, value))
{
Item *tmp=value->clone_item(thd);
if (tmp)
{
tmp->collation.set(right_item->collation);
thd->change_item_tree(args + 1, tmp);
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
&& and_father != cond && !left_item->const_item())
{
cond->marker= MARKER_CHANGE_COND;
COND_CMP *tmp2;
/* Will work, even if malloc would fail */
if ((tmp2= new (thd->mem_root) COND_CMP(and_father, func)))
save_list->push_back(tmp2);
}
/*
LIKE can be optimized for BINARY/VARBINARY/BLOB columns, e.g.:
from: WHERE CONCAT(c1)='const1' AND CONCAT(c1) LIKE 'const2'
to: WHERE CONCAT(c1)='const1' AND 'const1' LIKE 'const2'
So make sure to use set_cmp_func() only for non-LIKE operators.
*/
if (functype != Item_func::LIKE_FUNC)
((Item_bool_rowready_func2*) func)->set_cmp_func(thd);
}
}
else if (can_change_cond_ref_to_const(func, left_item, right_item,
field_value_owner, field, value))
{
Item *tmp= value->clone_item(thd);
if (tmp)
{
tmp->collation.set(left_item->collation);
thd->change_item_tree(args, tmp);
value= tmp;
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
&& and_father != cond && !right_item->const_item())
{
args[0]= args[1]; // For easy check
thd->change_item_tree(args + 1, value);
cond->marker= MARKER_CHANGE_COND;
COND_CMP *tmp2;
/* Will work, even if malloc would fail */
if ((tmp2=new (thd->mem_root) COND_CMP(and_father, func)))
save_list->push_back(tmp2);
}
if (functype != Item_func::LIKE_FUNC)
((Item_bool_rowready_func2*) func)->set_cmp_func(thd);
}
}
}
static void
propagate_cond_constants(THD *thd, I_List<COND_CMP> *save_list,
COND *and_father, COND *cond)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
I_List<COND_CMP> save;
while ((item=li++))
{
propagate_cond_constants(thd, &save,and_level ? cond : item, item);
}
if (and_level)
{ // Handle other found items
I_List_iterator<COND_CMP> cond_itr(save);
COND_CMP *cond_cmp;
while ((cond_cmp=cond_itr++))
{
Item **args= cond_cmp->cmp_func->arguments();
if (!args[0]->const_item())
change_cond_ref_to_const(thd, &save,cond_cmp->and_level,
cond_cmp->and_level,
cond_cmp->cmp_func, args[0], args[1]);
}
}
}
else if (and_father != cond && cond->marker == MARKER_UNUSED) // In a AND group
{
if (cond->type() == Item::FUNC_ITEM &&
(((Item_func*) cond)->functype() == Item_func::EQ_FUNC ||
((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC))
{
Item_bool_func2 *func= dynamic_cast<Item_bool_func2*>(cond);
Item **args= func->arguments();
bool left_const= args[0]->can_eval_in_optimize();
bool right_const= args[1]->can_eval_in_optimize();
if (!(left_const && right_const) &&
args[0]->cmp_type() == args[1]->cmp_type())
{
if (right_const)
{
resolve_const_item(thd, &args[1], args[0]);
func->update_used_tables();
change_cond_ref_to_const(thd, save_list, and_father, and_father,
func, args[0], args[1]);
}
else if (left_const)
{
resolve_const_item(thd, &args[0], args[1]);
func->update_used_tables();
change_cond_ref_to_const(thd, save_list, and_father, and_father,
func, args[1], args[0]);
}
}
}
}
}
/**
Simplify joins replacing outer joins by inner joins whenever it's
possible.
The function, during a retrieval of join_list, eliminates those
outer joins that can be converted into inner join, possibly nested.
It also moves the on expressions for the converted outer joins
and from inner joins to conds.
The function also calculates some attributes for nested joins:
- used_tables
- not_null_tables
- dep_tables.
- on_expr_dep_tables
The first two attributes are used to test whether an outer join can
be substituted for an inner join. The third attribute represents the
relation 'to be dependent on' for tables. If table t2 is dependent
on table t1, then in any evaluated execution plan table access to
table t2 must precede access to table t2. This relation is used also
to check whether the query contains invalid cross-references.
The forth attribute is an auxiliary one and is used to calculate
dep_tables.
As the attribute dep_tables qualifies possibles orders of tables in the
execution plan, the dependencies required by the straight join
modifiers are reflected in this attribute as well.
The function also removes all braces that can be removed from the join
expression without changing its meaning.
@note
An outer join can be replaced by an inner join if the where condition
or the on expression for an embedding nested join contains a conjunctive
predicate rejecting null values for some attribute of the inner tables.
E.g. in the query:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
the predicate t2.b < 5 rejects nulls.
The query is converted first to:
@code
SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
then to the equivalent form:
@code
SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a
@endcode
Similarly the following query:
@code
SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b
WHERE t2.c < 5
@endcode
is converted to:
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b
@endcode
One conversion might trigger another:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a
LEFT JOIN t3 ON t3.b=t2.b
WHERE t3 IS NOT NULL =>
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b =>
SELECT * FROM t1, t2, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a
@endcode
The function removes all unnecessary braces from the expression
produced by the conversions.
E.g.
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
finally is converted to:
@code
SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
It also will remove braces from the following queries:
@code
SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b
SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b.
@endcode
The benefit of this simplification procedure is that it might return
a query for which the optimizer can evaluate execution plan with more
join orders. With a left join operation the optimizer does not
consider any plan where one of the inner tables is before some of outer
tables.
IMPLEMENTATION
The function is implemented by a recursive procedure. On the recursive
ascent all attributes are calculated, all outer joins that can be
converted are replaced and then all unnecessary braces are removed.
As join list contains join tables in the reverse order sequential
elimination of outer joins does not require extra recursive calls.
SEMI-JOIN NOTES
Remove all semi-joins that have are within another semi-join (i.e. have
an "ancestor" semi-join nest)
EXAMPLES
Here is an example of a join query with invalid cross references:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b
@endcode
@param join reference to the query info
@param join_list list representation of the join to be converted
@param conds conditions to add on expressions for converted joins
@param top true <=> conds is the where condition
@param in_sj TRUE <=> processing semi-join nest's children
@return
- The new condition, if success
- 0, otherwise
*/
static COND *
simplify_joins(JOIN *join, List<TABLE_LIST> *join_list, COND *conds, bool top,
bool in_sj)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
TABLE_LIST *prev_table= 0;
List_iterator<TABLE_LIST> li(*join_list);
bool straight_join= MY_TEST(join->select_options & SELECT_STRAIGHT_JOIN);
DBUG_ENTER("simplify_joins");
/*
Try to simplify join operations from join_list.
The most outer join operation is checked for conversion first.
*/
while ((table= li++))
{
table_map used_tables;
table_map not_null_tables= (table_map) 0;
if ((nested_join= table->nested_join))
{
/*
If the element of join_list is a nested join apply
the procedure to its nested join list first.
*/
if (table->on_expr)
{
Item *expr= table->on_expr;
/*
If an on expression E is attached to the table,
check all null rejected predicates in this expression.
If such a predicate over an attribute belonging to
an inner table of an embedded outer join is found,
the outer join is converted to an inner join and
the corresponding on expression is added to E.
*/
expr= simplify_joins(join, &nested_join->join_list,
expr, FALSE, in_sj || table->sj_on_expr);
if (!table->prep_on_expr || expr != table->on_expr)
{
DBUG_ASSERT(expr);
table->on_expr= expr;
table->prep_on_expr= expr->copy_andor_structure(join->thd);
}
}
nested_join->used_tables= (table_map) 0;
nested_join->not_null_tables=(table_map) 0;
conds= simplify_joins(join, &nested_join->join_list, conds, top,
in_sj || table->sj_on_expr);
used_tables= nested_join->used_tables;
not_null_tables= nested_join->not_null_tables;
/* The following two might become unequal after table elimination: */
nested_join->n_tables= nested_join->join_list.elements;
}
else
{
if (!table->prep_on_expr)
table->prep_on_expr= table->on_expr;
used_tables= table->get_map();
if (conds)
not_null_tables= conds->not_null_tables();
}
if (table->embedding)
{
table->embedding->nested_join->used_tables|= used_tables;
table->embedding->nested_join->not_null_tables|= not_null_tables;
}
if (!(table->outer_join & (JOIN_TYPE_LEFT | JOIN_TYPE_RIGHT)) ||
(used_tables & not_null_tables))
{
/*
For some of the inner tables there are conjunctive predicates
that reject nulls => the outer join can be replaced by an inner join.
*/
if (table->outer_join && !table->embedding && table->table)
table->table->maybe_null= FALSE;
table->outer_join= 0;
if (!(straight_join || table->straight))
{
table->dep_tables= 0;
TABLE_LIST *embedding= table->embedding;
while (embedding)
{
if (embedding->nested_join->join_list.head()->outer_join)
{
if (!embedding->sj_subq_pred)
table->dep_tables= embedding->dep_tables;
break;
}
embedding= embedding->embedding;
}
}
if (table->on_expr)
{
/* Add ON expression to the WHERE or upper-level ON condition. */
if (conds)
{
conds= and_conds(join->thd, conds, table->on_expr);
conds->top_level_item();
/* conds is always a new item as both cond and on_expr existed */
DBUG_ASSERT(!conds->fixed());
conds->fix_fields(join->thd, &conds);
}
else
conds= table->on_expr;
table->prep_on_expr= table->on_expr= 0;
}
}
/*
Only inner tables of non-convertible outer joins
remain with on_expr.
*/
if (table->on_expr)
{
table_map table_on_expr_used_tables= table->on_expr->used_tables();
table->dep_tables|= table_on_expr_used_tables;
if (table->embedding)
{
table->dep_tables&= ~table->embedding->nested_join->used_tables;
/*
Embedding table depends on tables used
in embedded on expressions.
*/
table->embedding->on_expr_dep_tables|= table_on_expr_used_tables;
}
else
table->dep_tables&= ~table->get_map();
}
if (prev_table)
{
/* The order of tables is reverse: prev_table follows table */
if (prev_table->straight || straight_join)
prev_table->dep_tables|= used_tables;
if (prev_table->on_expr)
{
/* If the ON expression is still there, it's an outer join */
DBUG_ASSERT(prev_table->outer_join);
prev_table->dep_tables|= table->on_expr_dep_tables;
table_map prev_used_tables= prev_table->nested_join ?
prev_table->nested_join->used_tables :
prev_table->get_map();
/*
If on expression contains only references to inner tables
we still make the inner tables dependent on the outer tables.
It would be enough to set dependency only on one outer table
for them. Yet this is really a rare case.
Note:
RAND_TABLE_BIT mask should not be counted as it
prevents update of inner table dependences.
For example it might happen if RAND() function
is used in JOIN ON clause.
*/
table_map prev_on_expr_deps= prev_table->on_expr->used_tables() &
~(OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
prev_on_expr_deps&= ~prev_used_tables;
if (!prev_on_expr_deps)
prev_table->dep_tables|= used_tables;
else
{
/*
Another possible case is when prev_on_expr_deps!=0 but it depends
on a table outside this join nest. SQL name resolution don't allow
this but it is possible when LEFT JOIN is inside a subquery which
is converted into a semi-join nest, Example:
t1 SEMI JOIN (
t2
LEFT JOIN (t3 LEFT JOIN t4 ON t4.col=t1.col) ON expr
) ON ...
here, we would have prev_table=t4, table=t3. The condition
"ON t4.col=t1.col" depends on tables {t1, t4}. To make sure the
optimizer puts t3 before t4 we need to make sure t4.dep_tables
includes t3.
*/
DBUG_ASSERT(table->embedding == prev_table->embedding);
if (table->embedding)
{
/*
Find what are the "peers" of "table" in the join nest. Normally,
it is table->embedding->nested_join->used_tables, but here we are
in the process of recomputing that value.
So, we walk the join list and collect the bitmap of peers:
*/
table_map peers= 0;
List_iterator_fast<TABLE_LIST> li(*join_list);
TABLE_LIST *peer;
while ((peer= li++))
{
table_map curmap= peer->nested_join
? peer->nested_join->used_tables
: peer->get_map();
peers|= curmap;
}
/*
If prev_table doesn't depend on any of its peers, add a
dependency on nearest peer, that is, on 'table'.
*/
if (!(prev_on_expr_deps & peers))
prev_table->dep_tables|= used_tables;
}
}
}
}
prev_table= table;
}
/*
Flatten nested joins that can be flattened.
no ON expression and not a semi-join => can be flattened.
*/
li.rewind();
while ((table= li++))
{
nested_join= table->nested_join;
if (table->sj_on_expr && !in_sj)
{
/*
If this is a semi-join that is not contained within another semi-join
leave it intact (otherwise it is flattened)
*/
/*
Make sure that any semi-join appear in
the join->select_lex->sj_nests list only once
*/
List_iterator_fast<TABLE_LIST> sj_it(join->select_lex->sj_nests);
TABLE_LIST *sj_nest;
while ((sj_nest= sj_it++))
{
if (table == sj_nest)
break;
}
if (sj_nest)
continue;
join->select_lex->sj_nests.push_back(table, join->thd->mem_root);
/*
Also, walk through semi-join children and mark those that are now
top-level
*/
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(nested_join->join_list);
while ((tbl= it++))
{
if (!tbl->on_expr && tbl->table)
tbl->table->maybe_null= FALSE;
}
}
else if (nested_join && !table->on_expr)
{
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(nested_join->join_list);
List<TABLE_LIST> repl_list;
while ((tbl= it++))
{
tbl->embedding= table->embedding;
if (!tbl->embedding && !tbl->on_expr && tbl->table)
tbl->table->maybe_null= FALSE;
tbl->join_list= table->join_list;
repl_list.push_back(tbl, join->thd->mem_root);
tbl->dep_tables|= table->dep_tables;
}
li.replace(repl_list);
}
}
DBUG_RETURN(conds);
}
/**
Assign each nested join structure a bit in nested_join_map.
Assign each nested join structure (except ones that embed only one element
and so are redundant) a bit in nested_join_map.
@param join Join being processed
@param join_list List of tables
@param first_unused Number of first unused bit in nested_join_map before the
call
@note
This function is called after simplify_joins(), when there are no
redundant nested joins, #non_redundant_nested_joins <= #tables_in_join so
we will not run out of bits in nested_join_map.
@return
First unused bit in nested_join_map after the call.
*/
static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list,
uint first_unused)
{
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *table;
DBUG_ENTER("build_bitmap_for_nested_joins");
while ((table= li++))
{
NESTED_JOIN *nested_join;
if ((nested_join= table->nested_join))
{
/*
It is guaranteed by simplify_joins() function that a nested join
that has only one child represents a single table VIEW (and the child
is an underlying table). We don't assign bits to such nested join
structures because
1. it is redundant (a "sequence" of one table cannot be interleaved
with anything)
2. we could run out bits in nested_join_map otherwise.
*/
if (nested_join->n_tables != 1)
{
/* Don't assign bits to sj-nests */
if (table->on_expr)
nested_join->nj_map= (nested_join_map) 1 << first_unused++;
first_unused= build_bitmap_for_nested_joins(&nested_join->join_list,
first_unused);
}
}
}
DBUG_RETURN(first_unused);
}
/**
Set NESTED_JOIN::counter and n_tables in all nested joins in passed list.
For all nested joins contained in the passed join_list (including its
children), set:
- nested_join->counter=0
- nested_join->n_tables= {number of non-degenerate direct children}.
Non-degenerate means non-const base table or a join nest that has a
non-degenerate child.
@param join_list List of nested joins to process. It may also contain base
tables which will be ignored.
*/
static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list)
{
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *table;
DBUG_ENTER("reset_nj_counters");
uint n=0;
while ((table= li++))
{
NESTED_JOIN *nested_join;
bool is_eliminated_nest= FALSE;
if ((nested_join= table->nested_join))
{
nested_join->counter= 0;
nested_join->n_tables= reset_nj_counters(join, &nested_join->join_list);
if (!nested_join->n_tables)
is_eliminated_nest= TRUE;
}
const table_map removed_tables= join->eliminated_tables |
join->const_table_map;
if ((table->nested_join && !is_eliminated_nest) ||
(!table->nested_join && (table->table->map & ~removed_tables)))
n++;
}
DBUG_RETURN(n);
}
/**
Check interleaving with an inner tables of an outer join for
extension table.
Check if table next_tab can be added to current partial join order, and
if yes, record that it has been added.
The function assumes that both current partial join order and its
extension with next_tab are valid wrt table dependencies.
@verbatim
IMPLEMENTATION
LIMITATIONS ON JOIN ORDER
The nested [outer] joins executioner algorithm imposes these
limitations on join order:
1. "Outer tables first" - any "outer" table must be before any
corresponding "inner" table.
2. "No interleaving" - tables inside a nested join must form a
continuous sequence in join order (i.e. the sequence must not be
interrupted by tables that are outside of this nested join).
#1 is checked elsewhere, this function checks #2 provided that #1 has
been already checked.
WHY NEED NON-INTERLEAVING
Consider an example:
select * from t0 join t1 left join (t2 join t3) on cond1
The join order "t1 t2 t0 t3" is invalid:
table t0 is outside of the nested join, so WHERE condition
for t0 is attached directly to t0 (without triggers, and it
may be used to access t0). Applying WHERE(t0) to (t2,t0,t3)
record is invalid as we may miss combinations of (t1, t2, t3)
that satisfy condition cond1, and produce a null-complemented
(t1, t2.NULLs, t3.NULLs) row, which should not have been
produced.
If table t0 is not between t2 and t3, the problem doesn't exist:
If t0 is located after (t2,t3), WHERE(t0) is applied after nested
join processing has finished.
If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2)
are wrapped into condition triggers, which takes care of correct
nested join processing.
HOW IT IS IMPLEMENTED
The limitations on join order can be rephrased as follows: for valid
join order one must be able to:
1. write down the used tables in the join order on one line.
2. for each nested join, put one '(' and one ')' on the said line
3. write "LEFT JOIN" and "ON (...)" where appropriate
4. get a query equivalent to the query we're trying to execute.
Calls to check_interleaving_with_nj() are equivalent to writing the
above described line from left to right.
A single check_interleaving_with_nj(A,B) call is equivalent
to writing table B and appropriate brackets on condition that
table A and appropriate brackets is the last what was
written. Graphically the transition is as follows:
+---- current position
|
... last_tab ))) | ( next_tab ) )..) | ...
X Y Z |
+- need to move to this
position.
Notes about the position:
The caller guarantees that there is no more then one X-bracket by
checking "!(remaining_tables & s->dependent)" before calling this
function. X-bracket may have a pair in Y-bracket.
When "writing" we store/update this auxilary info about the current
position:
1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested
joins) we've opened but didn't close.
2. {each NESTED_JOIN structure not simplified away}->counter - number
of this nested join's children that have already been added to to
the partial join order.
@endverbatim
@param next_tab Table we're going to extend the current partial join with
@retval
FALSE Join order extended, nested joins info about current join
order (see NOTE section) updated.
@retval
TRUE Requested join order extension not allowed.
*/
static bool check_interleaving_with_nj(JOIN_TAB *next_tab)
{
JOIN *join= next_tab->join;
if (join->cur_embedding_map & ~next_tab->embedding_map)
{
/*
next_tab is outside of the "pair of brackets" we're currently in.
Cannot add it.
*/
return TRUE;
}
TABLE_LIST *next_emb= next_tab->table->pos_in_table_list->embedding;
/*
Do update counters for "pairs of brackets" that we've left (marked as
X,Y,Z in the above picture)
*/
for (;next_emb && next_emb != join->emb_sjm_nest;
next_emb= next_emb->embedding)
{
if (!next_emb->sj_on_expr)
{
next_emb->nested_join->counter++;
if (next_emb->nested_join->counter == 1)
{
/*
next_emb is the first table inside a nested join we've "entered". In
the picture above, we're looking at the 'X' bracket. Don't exit yet
as X bracket might have Y pair bracket.
*/
join->cur_embedding_map |= next_emb->nested_join->nj_map;
}
DBUG_ASSERT(next_emb->nested_join->n_tables >=
next_emb->nested_join->counter);
if (next_emb->nested_join->n_tables !=
next_emb->nested_join->counter)
break;
/*
We're currently at Y or Z-bracket as depicted in the above picture.
Mark that we've left it and continue walking up the brackets hierarchy.
*/
join->cur_embedding_map &= ~next_emb->nested_join->nj_map;
}
}
return FALSE;
}
/**
Nested joins perspective: Remove the last table from the join order.
The algorithm is the reciprocal of check_interleaving_with_nj(), hence
parent join nest nodes are updated only when the last table in its child
node is removed. The ASCII graphic below will clarify.
%A table nesting such as <tt> t1 x [ ( t2 x t3 ) x ( t4 x t5 ) ] </tt>is
represented by the below join nest tree.
@verbatim
NJ1
_/ / \
_/ / NJ2
_/ / / \
/ / / \
t1 x [ (t2 x t3) x (t4 x t5) ]
@endverbatim
At the point in time when check_interleaving_with_nj() adds the table t5 to
the query execution plan, QEP, it also directs the node named NJ2 to mark
the table as covered. NJ2 does so by incrementing its @c counter
member. Since all of NJ2's tables are now covered by the QEP, the algorithm
proceeds up the tree to NJ1, incrementing its counter as well. All join
nests are now completely covered by the QEP.
restore_prev_nj_state() does the above in reverse. As seen above, the node
NJ1 contains the nodes t2, t3, and NJ2. Its counter being equal to 3 means
that the plan covers t2, t3, and NJ2, @e and that the sub-plan (t4 x t5)
completely covers NJ2. The removal of t5 from the partial plan will first
decrement NJ2's counter to 1. It will then detect that NJ2 went from being
completely to partially covered, and hence the algorithm must continue
upwards to NJ1 and decrement its counter to 2. %A subsequent removal of t4
will however not influence NJ1 since it did not un-cover the last table in
NJ2.
SYNOPSIS
restore_prev_nj_state()
last join table to remove, it is assumed to be the last in current
partial join order.
DESCRIPTION
Remove the last table from the partial join order and update the nested
joins counters and join->cur_embedding_map. It is ok to call this
function for the first table in join order (for which
check_interleaving_with_nj has not been called)
@param last join table to remove, it is assumed to be the last in current
partial join order.
*/
static void restore_prev_nj_state(JOIN_TAB *last)
{
TABLE_LIST *last_emb= last->table->pos_in_table_list->embedding;
JOIN *join= last->join;
for (;last_emb != NULL && last_emb != join->emb_sjm_nest;
last_emb= last_emb->embedding)
{
if (!last_emb->sj_on_expr)
{
NESTED_JOIN *nest= last_emb->nested_join;
DBUG_ASSERT(nest->counter > 0);
bool was_fully_covered= nest->is_fully_covered();
join->cur_embedding_map|= nest->nj_map;
if (--nest->counter == 0)
join->cur_embedding_map&= ~nest->nj_map;
if (!was_fully_covered)
break;
}
}
}
/*
Compute allowed_top_level_tables - a bitmap of tables one can put into the
join order if the last table in the join prefix is not inside any outer
join nest.
NESTED_JOIN::direct_children_map - a bitmap of tables ... if the last
table in the join prefix is inside the join nest.
Note: it looks like a sensible way to do this is a top-down descent on
JOIN::join_list, but apparently that list is missing I_S tables.
e.g. for SHOW TABLES WHERE col IN (SELECT ...) it will just have a
semi-join nest.
*/
void JOIN::calc_allowed_top_level_tables(SELECT_LEX *lex)
{
TABLE_LIST *tl;
List_iterator<TABLE_LIST> ti(lex->leaf_tables);
DBUG_ENTER("JOIN::calc_allowed_top_level_tables");
DBUG_ASSERT(allowed_top_level_tables == 0); // Should only be called once
while ((tl= ti++))
{
table_map map;
TABLE_LIST *embedding= tl->embedding;
if (tl->table)
map= tl->table->map;
else
{
DBUG_ASSERT(tl->jtbm_subselect);
map= table_map(1) << tl->jtbm_table_no;
}
if (!(embedding= tl->embedding))
{
allowed_top_level_tables |= map;
continue;
}
// Walk out of any semi-join nests
while (embedding && !embedding->on_expr)
{
// semi-join nest or an INSERT-INTO view...
embedding->nested_join->direct_children_map |= map;
embedding= embedding->embedding;
}
// Ok we are in the parent nested outer join nest.
if (!embedding)
{
allowed_top_level_tables |= map;
continue;
}
embedding->nested_join->direct_children_map |= map;
// Walk to grand-parent join nest.
embedding= embedding->embedding;
// Walk out of any semi-join nests
while (embedding && !embedding->on_expr)
{
DBUG_ASSERT(embedding->sj_on_expr);
embedding->nested_join->direct_children_map |= map;
embedding= embedding->embedding;
}
if (embedding)
{
DBUG_ASSERT(embedding->on_expr); // Impossible, see above
embedding->nested_join->direct_children_map |= map;
}
else
allowed_top_level_tables |= map;
}
DBUG_VOID_RETURN;
}
/*
Get the tables that one is allowed to have as the next table in the
current plan
*/
table_map JOIN::get_allowed_nj_tables(uint idx)
{
TABLE_LIST *last_emb;
if (idx > const_tables &&
(last_emb= positions[idx-1].table->table->pos_in_table_list->embedding))
{
for (;last_emb && last_emb != emb_sjm_nest;
last_emb= last_emb->embedding)
{
if (!last_emb->sj_on_expr)
{
NESTED_JOIN *nest= last_emb->nested_join;
if (!nest->is_fully_covered())
{
// Return tables that are direct members of this join nest
return nest->direct_children_map;
}
}
}
}
// Return bitmap of tables not in any join nest
if (emb_sjm_nest)
return emb_sjm_nest->nested_join->direct_children_map;
return allowed_top_level_tables;
}
/*
Change access methods not to use join buffering and adjust costs accordingly
SYNOPSIS
optimize_wo_join_buffering()
join
first_tab The first tab to do re-optimization for
last_tab The last tab to do re-optimization for
last_remaining_tables Bitmap of tables that are not in the
[0...last_tab] join prefix
first_alt TRUE <=> Use the LooseScan plan for the first_tab
no_jbuf_before Don't allow to use join buffering before this
table
outer_rec_count OUT New output record count
reopt_cost OUT New join prefix cost
DESCRIPTION
Given a join prefix [0; ... first_tab], change the access to the tables
in the [first_tab; last_tab] not to use join buffering. This is needed
because some semi-join strategies cannot be used together with the join
buffering.
In general case the best table order in [first_tab; last_tab] range with
join buffering is different from the best order without join buffering but
we don't try finding a better join order. (TODO ask Igor why did we
chose not to do this in the end. that's actually the difference from the
forking approach)
*/
void optimize_wo_join_buffering(JOIN *join, uint first_tab, uint last_tab,
table_map last_remaining_tables,
bool first_alt, uint no_jbuf_before,
double *outer_rec_count, double *reopt_cost)
{
double cost, rec_count;
table_map reopt_remaining_tables= last_remaining_tables;
uint i;
THD *thd= join->thd;
Json_writer_temp_disable trace_wo_join_buffering(thd);
if (first_tab > join->const_tables)
{
cost= join->positions[first_tab - 1].prefix_cost;
rec_count= join->positions[first_tab - 1].prefix_record_count;
}
else
{
cost= 0.0;
rec_count= 1;
}
*outer_rec_count= rec_count;
for (i= first_tab; i <= last_tab; i++)
reopt_remaining_tables |= join->positions[i].table->table->map;
/*
best_access_path() optimization depends on the value of
join->cur_sj_inner_tables. Our goal in this function is to do a
re-optimization with disabled join buffering, but no other changes.
In order to achieve this, cur_sj_inner_tables needs have the same
value it had during the original invocations of best_access_path.
We know that this function, optimize_wo_join_buffering() is called to
re-optimize semi-join join order range, which allows to conclude that
the "original" value of cur_sj_inner_tables was 0.
*/
table_map save_cur_sj_inner_tables= join->cur_sj_inner_tables;
join->cur_sj_inner_tables= 0;
double inner_fanout= 1.0;
for (i= first_tab; i <= last_tab; i++)
{
JOIN_TAB *rs= join->positions[i].table;
POSITION pos, loose_scan_pos;
if ((i == first_tab && first_alt) || join->positions[i].use_join_buffer)
{
/* Find the best access method that would not use join buffering */
best_access_path(join, rs, reopt_remaining_tables,
join->positions, i,
TRUE, rec_count,
&pos, &loose_scan_pos);
if ((i == first_tab && first_alt))
pos= loose_scan_pos;
}
else
pos= join->positions[i];
reopt_remaining_tables &= ~rs->table->map;
cost= COST_ADD(cost, pos.read_time);
double records_out= pos.records_out;
/*
The (i != last_tab) is here to mimic what
best_extension_by_limited_search() does: do not call
table_after_join_selectivity() for the join_tab where the semi-join
strategy is applied
*/
if (i != last_tab &&
join->thd->variables.optimizer_use_condition_selectivity > 1)
{
table_map real_table_bit= rs->table->map;
double __attribute__((unused)) pushdown_cond_selectivity;
pushdown_cond_selectivity=
table_after_join_selectivity(join, i, rs,
reopt_remaining_tables &
~real_table_bit, &records_out);
join->positions[i].partial_join_cardinality= rec_count * pushdown_cond_selectivity;
}
else
join->positions[i].partial_join_cardinality= COST_MULT(rec_count, records_out);
rec_count= COST_MULT(rec_count, records_out);
*outer_rec_count= COST_MULT(*outer_rec_count, records_out);
if (rs->emb_sj_nest)
inner_fanout= COST_MULT(inner_fanout, records_out);
}
/* Discount the fanout produced by the subquery */
if (inner_fanout > 1.0)
*outer_rec_count /= inner_fanout;
join->cur_sj_inner_tables= save_cur_sj_inner_tables;
*reopt_cost= cost;
if (rec_count < *outer_rec_count)
{
/*
The tables inside the subquery produce smaller fanout than outer tables.
This can happen in edge cases.
*/
*outer_rec_count= rec_count;
}
}
static COND *
optimize_cond(JOIN *join, COND *conds,
List<TABLE_LIST> *join_list, bool ignore_on_conds,
Item::cond_result *cond_value, COND_EQUAL **cond_equal,
int flags)
{
THD *thd= join->thd;
DBUG_ENTER("optimize_cond");
if (!conds)
{
*cond_value= Item::COND_TRUE;
if (!ignore_on_conds)
build_equal_items(join, NULL, NULL, join_list, ignore_on_conds,
cond_equal);
}
else
{
/*
Build all multiple equality predicates and eliminate equality
predicates that can be inferred from these multiple equalities.
For each reference of a field included into a multiple equality
that occurs in a function set a pointer to the multiple equality
predicate. Substitute a constant instead of this field if the
multiple equality contains a constant.
*/
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_cond(thd, "condition_processing");
if (unlikely(trace_cond.trace_started()))
trace_cond.
add("condition", join->conds == conds ? "WHERE" : "HAVING").
add("original_condition", conds);
Json_writer_array trace_steps(thd, "steps");
DBUG_EXECUTE("where", print_where(conds, "original", QT_ORDINARY););
conds= build_equal_items(join, conds, NULL, join_list,
ignore_on_conds, cond_equal,
MY_TEST(flags & OPT_LINK_EQUAL_FIELDS));
DBUG_EXECUTE("where",print_where(conds,"after equal_items", QT_ORDINARY););
if (unlikely(thd->trace_started()))
{
Json_writer_object equal_prop_wrapper(thd);
equal_prop_wrapper.
add("transformation", "equality_propagation").
add("resulting_condition", conds);
}
/* change field = field to field = const for each found field = const */
propagate_cond_constants(thd, (I_List<COND_CMP> *) 0, conds, conds);
/*
Remove all instances of item == item
Remove all and-levels where CONST item != CONST item
*/
DBUG_EXECUTE("where",print_where(conds,"after const change", QT_ORDINARY););
if (unlikely(thd->trace_started()))
{
Json_writer_object const_prop_wrapper(thd);
const_prop_wrapper.
add("transformation", "constant_propagation").
add("resulting_condition", conds);
}
conds= conds->remove_eq_conds(thd, cond_value, true);
if (conds && conds->type() == Item::COND_ITEM &&
((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
*cond_equal= &((Item_cond_and*) conds)->m_cond_equal;
if (unlikely(thd->trace_started()))
{
Json_writer_object cond_removal_wrapper(thd);
cond_removal_wrapper.
add("transformation", "trivial_condition_removal").
add("resulting_condition", conds);
}
DBUG_EXECUTE("info",print_where(conds,"after remove", QT_ORDINARY););
}
DBUG_RETURN(conds);
}
/**
@brief
Propagate multiple equalities to the sub-expressions of a condition
@param thd thread handle
@param cond the condition where equalities are to be propagated
@param *new_equalities the multiple equalities to be propagated
@param inherited path to all inherited multiple equality items
@param[out] is_simplifiable_cond 'cond' may be simplified after the
propagation of the equalities
@details
The function recursively traverses the tree of the condition 'cond' and
for each its AND sub-level of any depth the function merges the multiple
equalities from the list 'new_equalities' into the multiple equalities
attached to the AND item created for this sub-level.
The function also [re]sets references to the equalities formed by the
merges of multiple equalities in all field items occurred in 'cond'
that are encountered in the equalities.
If the result of any merge of multiple equalities is an impossible
condition the function returns TRUE in the parameter is_simplifiable_cond.
*/
void propagate_new_equalities(THD *thd, Item *cond,
List<Item_equal> *new_equalities,
COND_EQUAL *inherited,
bool *is_simplifiable_cond)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC;
if (and_level)
{
Item_cond_and *cond_and= (Item_cond_and *) cond;
List<Item_equal> *cond_equalities= &cond_and->m_cond_equal.current_level;
cond_and->m_cond_equal.upper_levels= inherited;
if (!cond_equalities->is_empty() && cond_equalities != new_equalities)
{
Item_equal *equal_item;
List_iterator<Item_equal> it(*new_equalities);
while ((equal_item= it++))
{
equal_item->merge_into_list(thd, cond_equalities, true, true);
}
List_iterator<Item_equal> ei(*cond_equalities);
while ((equal_item= ei++))
{
if (equal_item->const_item() && !equal_item->val_bool())
{
*is_simplifiable_cond= true;
return;
}
}
}
}
Item *item;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
while ((item= li++))
{
COND_EQUAL *new_inherited= and_level && item->type() == Item::COND_ITEM ?
&((Item_cond_and *) cond)->m_cond_equal :
inherited;
propagate_new_equalities(thd, item, new_equalities, new_inherited,
is_simplifiable_cond);
}
}
else if (cond->type() == Item::FUNC_ITEM &&
((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
Item_equal *equal_item;
List_iterator<Item_equal> it(*new_equalities);
Item_equal *equality= (Item_equal *) cond;
equality->upper_levels= inherited;
while ((equal_item= it++))
{
equality->merge_with_check(thd, equal_item, true);
}
if (equality->const_item() && !equality->val_bool())
*is_simplifiable_cond= true;
}
else
{
cond= cond->propagate_equal_fields(thd,
Item::Context_boolean(), inherited);
cond->update_used_tables();
}
}
/*
Check if cond_is_datetime_is_null() is true for the condition cond, or
for any of its AND/OR-children
*/
bool cond_has_datetime_is_null(Item *cond)
{
if (cond_is_datetime_is_null(cond))
return true;
if (cond->type() == Item::COND_ITEM)
{
List<Item> *cond_arg_list= ((Item_cond*) cond)->argument_list();
List_iterator<Item> li(*cond_arg_list);
Item *item;
while ((item= li++))
{
if (cond_has_datetime_is_null(item))
return true;
}
}
return false;
}
/*
Check if passed condtition has for of
not_null_date_col IS NULL
where not_null_date_col has a datte or datetime type
*/
bool cond_is_datetime_is_null(Item *cond)
{
if (cond->type() == Item::FUNC_ITEM &&
((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC)
{
return ((Item_func_isnull*) cond)->arg_is_datetime_notnull_field();
}
return false;
}
/**
@brief
Evaluate all constant boolean sub-expressions in a condition
@param thd thread handle
@param cond condition where where to evaluate constant sub-expressions
@param[out] cond_value : the returned value of the condition
(TRUE/FALSE/UNKNOWN:
Item::COND_TRUE/Item::COND_FALSE/Item::COND_OK)
@return
the item that is the result of the substitution of all inexpensive constant
boolean sub-expressions into cond, or,
NULL if the condition is constant and is evaluated to FALSE.
@details
This function looks for all inexpensive constant boolean sub-expressions in
the given condition 'cond' and substitutes them for their values.
For example, the condition 2 > (5 + 1) or a < (10 / 2)
will be transformed to the condition a < (10 / 2).
Note that a constant sub-expression is evaluated only if it is constant and
inexpensive. A sub-expression with an uncorrelated subquery may be evaluated
only if the subquery is considered as inexpensive.
The function does not evaluate a constant sub-expression if it is not on one
of AND/OR levels of the condition 'cond'. For example, the subquery in the
condition a > (select max(b) from t1 where b > 5) will never be evaluated
by this function.
If a constant boolean sub-expression is evaluated to TRUE then:
- when the sub-expression is a conjunct of an AND formula it is simply
removed from this formula
- when the sub-expression is a disjunct of an OR formula the whole OR
formula is converted to TRUE
If a constant boolean sub-expression is evaluated to FALSE then:
- when the sub-expression is a disjunct of an OR formula it is simply
removed from this formula
- when the sub-expression is a conjuct of an AND formula the whole AND
formula is converted to FALSE
When a disjunct/conjunct is removed from an OR/AND formula it might happen
that there is only one conjunct/disjunct remaining. In this case this
remaining disjunct/conjunct must be merged into underlying AND/OR formula,
because AND/OR levels must alternate in the same way as they alternate
after fix_fields() is called for the original condition.
The specifics of merging a formula f into an AND formula A appears
when A contains multiple equalities and f contains multiple equalities.
In this case the multiple equalities from f and A have to be merged.
After this the resulting multiple equalities have to be propagated into
the all AND/OR levels of the formula A (see propagate_new_equalities()).
The propagation of multiple equalities might result in forming multiple
equalities that are always FALSE. This, in its turn, might trigger further
simplification of the condition.
@note
EXAMPLE 1:
SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5 AND a = 5 OR 1 != 1);
First 1 != 1 will be removed from the second conjunct:
=> SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5 AND a = 5);
Then (b = 5 AND a = 5) will be merged into the top level condition:
=> SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5) AND (a = 5);
Then (b = 5), (a = 5) will be propagated into the disjuncs of
(b = 1 OR a = 1):
=> SELECT * FROM t1 WHERE ((b = 1) AND (b = 5) AND (a = 5) OR
(a = 1) AND (b = 5) AND (a = 5)) AND
(b = 5) AND (a = 5)
=> SELECT * FROM t1 WHERE ((FALSE AND (a = 5)) OR
(FALSE AND (b = 5))) AND
(b = 5) AND (a = 5)
After this an additional call of remove_eq_conds() converts it
to FALSE
EXAMPLE 2:
SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5 AND a = 5 OR 1 != 1);
=> SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5 AND a = 5);
=> SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5) AND (a = 5);
=> SELECT * FROM t1 WHERE ((b = 1) AND (b = 5) AND (a = 5) OR
(a = 5) AND (b = 5) AND (a = 5)) AND
(b = 5) AND (a = 5)
=> SELECT * FROM t1 WHERE ((FALSE AND (a = 5)) OR
((b = 5) AND (a = 5))) AND
(b = 5) AND (a = 5)
After this an additional call of remove_eq_conds() converts it to
=> SELECT * FROM t1 WHERE (b = 5) AND (a = 5)
*/
COND *
Item_cond::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
bool top_level_arg)
{
bool and_level= functype() == Item_func::COND_AND_FUNC;
List<Item> *cond_arg_list= argument_list();
if (check_stack_overrun(thd, STACK_MIN_SIZE, NULL))
{
*cond_value= Item::COND_FALSE;
return (COND*) 0; // Fatal error flag is set!
}
if (and_level)
{
/*
Remove multiple equalities that became always true (e.g. after
constant row substitution).
They would be removed later in the function anyway, but the list of
them cond_equal.current_level also must be adjusted correspondingly.
So it's easier to do it at one pass through the list of the equalities.
*/
List<Item_equal> *cond_equalities=
&((Item_cond_and *) this)->m_cond_equal.current_level;
cond_arg_list->disjoin((List<Item> *) cond_equalities);
List_iterator<Item_equal> it(*cond_equalities);
Item_equal *eq_item;
while ((eq_item= it++))
{
if (eq_item->const_item() && eq_item->val_bool())
it.remove();
}
cond_arg_list->append((List<Item> *) cond_equalities);
}
List<Item_equal> new_equalities;
List_iterator<Item> li(*cond_arg_list);
bool should_fix_fields= 0;
Item::cond_result tmp_cond_value;
Item *item;
/*
If the list cond_arg_list became empty then it consisted only
of always true multiple equalities.
*/
*cond_value= cond_arg_list->elements ? Item::COND_UNDEF : Item::COND_TRUE;
while ((item=li++))
{
Item *new_item= item->remove_eq_conds(thd, &tmp_cond_value, false);
if (!new_item)
{
/* This can happen only when item is converted to TRUE or FALSE */
li.remove();
}
else if (item != new_item)
{
/*
This can happen when:
- item was an OR formula converted to one disjunct
- item was an AND formula converted to one conjunct
In these cases the disjunct/conjunct must be merged into the
argument list of cond.
*/
if (new_item->type() == Item::COND_ITEM &&
item->type() == Item::COND_ITEM)
{
DBUG_ASSERT(functype() == ((Item_cond *) new_item)->functype());
List<Item> *new_item_arg_list=
((Item_cond *) new_item)->argument_list();
if (and_level)
{
/*
If new_item is an AND formula then multiple equalities
of new_item_arg_list must merged into multiple equalities
of cond_arg_list.
*/
List<Item_equal> *new_item_equalities=
&((Item_cond_and *) new_item)->m_cond_equal.current_level;
if (!new_item_equalities->is_empty())
{
/*
Cut the multiple equalities from the new_item_arg_list and
append them on the list new_equalities. Later the equalities
from this list will be merged into the multiple equalities
of cond_arg_list all together.
*/
new_item_arg_list->disjoin((List<Item> *) new_item_equalities);
new_equalities.append(new_item_equalities);
}
}
if (new_item_arg_list->is_empty())
li.remove();
else
{
uint cnt= new_item_arg_list->elements;
li.replace(*new_item_arg_list);
/* Make iterator li ignore new items */
for (cnt--; cnt; cnt--)
li++;
should_fix_fields= 1;
}
}
else if (and_level &&
new_item->type() == Item::FUNC_ITEM &&
((Item_func*) new_item)->functype() ==
Item_func::MULT_EQUAL_FUNC)
{
li.remove();
new_equalities.push_back((Item_equal *) new_item, thd->mem_root);
}
else
{
if (new_item->type() == Item::COND_ITEM &&
((Item_cond*) new_item)->functype() == functype())
{
List<Item> *new_item_arg_list=
((Item_cond *) new_item)->argument_list();
uint cnt= new_item_arg_list->elements;
li.replace(*new_item_arg_list);
/* Make iterator li ignore new items */
for (cnt--; cnt; cnt--)
li++;
}
else
li.replace(new_item);
should_fix_fields= 1;
}
}
if (*cond_value == Item::COND_UNDEF)
*cond_value= tmp_cond_value;
switch (tmp_cond_value) {
case Item::COND_OK: // Not TRUE or FALSE
if (and_level || *cond_value == Item::COND_FALSE)
*cond_value=tmp_cond_value;
break;
case Item::COND_FALSE:
if (and_level)
{
*cond_value= tmp_cond_value;
return (COND*) 0; // Always false
}
break;
case Item::COND_TRUE:
if (!and_level)
{
*cond_value= tmp_cond_value;
return (COND*) 0; // Always true
}
break;
case Item::COND_UNDEF: // Impossible
break; /* purecov: deadcode */
}
}
COND *cond= this;
if (!new_equalities.is_empty())
{
DBUG_ASSERT(and_level);
/*
Merge multiple equalities that were cut from the results of
simplification of OR formulas converted into AND formulas.
These multiple equalities are to be merged into the
multiple equalities of cond_arg_list.
*/
COND_EQUAL *cond_equal= &((Item_cond_and *) this)->m_cond_equal;
List<Item_equal> *cond_equalities= &cond_equal->current_level;
cond_arg_list->disjoin((List<Item> *) cond_equalities);
Item_equal *equality;
List_iterator_fast<Item_equal> it(new_equalities);
while ((equality= it++))
{
equality->upper_levels= cond_equal->upper_levels;
equality->merge_into_list(thd, cond_equalities, false, false);
List_iterator_fast<Item_equal> ei(*cond_equalities);
while ((equality= ei++))
{
if (equality->const_item() && !equality->val_bool())
{
*cond_value= Item::COND_FALSE;
return (COND*) 0;
}
}
}
cond_arg_list->append((List<Item> *) cond_equalities);
/*
Propagate the newly formed multiple equalities to
the all AND/OR levels of cond
*/
bool is_simplifiable_cond= false;
propagate_new_equalities(thd, this, cond_equalities,
cond_equal->upper_levels,
&is_simplifiable_cond);
/*
If the above propagation of multiple equalities brings us
to multiple equalities that are always FALSE then try to
simplify the condition with remove_eq_cond() again.
*/
if (is_simplifiable_cond)
{
if (!(cond= cond->remove_eq_conds(thd, cond_value, false)))
return cond;
}
should_fix_fields= 1;
}
if (should_fix_fields)
cond->update_used_tables();
if (!((Item_cond*) cond)->argument_list()->elements ||
*cond_value != Item::COND_OK)
return (COND*) 0;
if (((Item_cond*) cond)->argument_list()->elements == 1)
{ // Remove list
item= ((Item_cond*) cond)->argument_list()->head();
((Item_cond*) cond)->argument_list()->empty();
return item;
}
*cond_value= Item::COND_OK;
return cond;
}
COND *
Item::remove_eq_conds(THD *thd, Item::cond_result *cond_value, bool top_level_arg)
{
if (can_eval_in_optimize())
{
*cond_value= eval_const_cond() ? Item::COND_TRUE : Item::COND_FALSE;
return (COND*) 0;
}
*cond_value= Item::COND_OK;
return this; // Point at next and level
}
COND *
Item_bool_func2::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
bool top_level_arg)
{
if (can_eval_in_optimize())
{
*cond_value= eval_const_cond() ? Item::COND_TRUE : Item::COND_FALSE;
return (COND*) 0;
}
if ((*cond_value= eq_cmp_result()) != Item::COND_OK)
{
if (args[0]->eq(args[1], true))
{
if (*cond_value == Item::COND_FALSE ||
!args[0]->maybe_null() || functype() == Item_func::EQUAL_FUNC)
return (COND*) 0; // Compare of identical items
}
}
*cond_value= Item::COND_OK;
return this; // Point at next and level
}
/**
Remove const and eq items. Return new item, or NULL if no condition
cond_value is set to according:
COND_OK query is possible (field = constant)
COND_TRUE always true ( 1 = 1 )
COND_FALSE always false ( 1 = 2 )
SYNPOSIS
remove_eq_conds()
thd THD environment
cond the condition to handle
cond_value the resulting value of the condition
NOTES
calls the inner_remove_eq_conds to check all the tree reqursively
RETURN
*COND with the simplified condition
*/
COND *
Item_func_isnull::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
bool top_level_arg)
{
Item *real_item= args[0]->real_item();
if (real_item->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field*) real_item)->field;
if ((field->flags & NOT_NULL_FLAG) &&
field->type_handler()->cond_notnull_field_isnull_to_field_eq_zero())
{
/* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */
/*
See BUG#12594011
Documentation says that
SELECT datetime_notnull d FROM t1 WHERE d IS NULL
shall return rows where d=='0000-00-00'
Thus, for DATE and DATETIME columns defined as NOT NULL,
"date_notnull IS NULL" has to be modified to
"date_notnull IS NULL OR date_notnull == 0" (if outer join)
"date_notnull == 0" (otherwise)
*/
Item *item0= (Item*) Item_false;
Item *eq_cond= new(thd->mem_root) Item_func_eq(thd, args[0], item0);
if (!eq_cond)
return this;
COND *cond= this;
if (field->table->pos_in_table_list->is_inner_table_of_outer_join())
{
// outer join: transform "col IS NULL" to "col IS NULL or col=0"
Item *or_cond= new(thd->mem_root) Item_cond_or(thd, eq_cond, this);
if (!or_cond)
return this;
cond= or_cond;
}
else
{
// not outer join: transform "col IS NULL" to "col=0"
cond= eq_cond;
}
cond->fix_fields(thd, &cond);
/*
Note: although args[0] is a field, cond can still be a constant
(in case field is a part of a dependent subquery).
Note: we call cond->Item::remove_eq_conds() non-virtually (statically)
for performance purpose.
A non-qualified call, i.e. just cond->remove_eq_conds(),
would call Item_bool_func2::remove_eq_conds() instead, which would
try to do some extra job to detect if args[0] and args[1] are
equivalent items. We know they are not (we have field=0 here).
*/
return cond->Item::remove_eq_conds(thd, cond_value, false);
}
/*
Handles this special case for some ODBC applications:
The are requesting the row that was just updated with a auto_increment
value with this construct:
SELECT * from table_name where auto_increment_column IS NULL
This will be changed to:
SELECT * from table_name where auto_increment_column = LAST_INSERT_ID
Note, this substitution is done if the NULL test is the only condition!
If the NULL test is a part of a more complex condition, it is not
substituted and is treated normally:
WHERE auto_increment IS NULL AND something_else
*/
if (top_level_arg) // "auto_increment_column IS NULL" is the only condition
{
if (field->flags & AUTO_INCREMENT_FLAG && !field->table->maybe_null &&
(thd->variables.option_bits & OPTION_AUTO_IS_NULL) &&
(thd->first_successful_insert_id_in_prev_stmt > 0 &&
thd->substitute_null_with_insert_id))
{
query_cache_abort(thd, &thd->query_cache_tls);
COND *new_cond, *cond= this;
/* If this fails, we will catch it later before executing query */
if ((new_cond= new (thd->mem_root) Item_func_eq(thd, args[0],
new (thd->mem_root) Item_int(thd, "last_insert_id()",
thd->read_first_successful_insert_id_in_prev_stmt(),
MY_INT64_NUM_DECIMAL_DIGITS))))
{
cond= new_cond;
/*
Item_func_eq can't be fixed after creation so we do not check
cond->fixed(), also it do not need tables so we use 0 as second
argument.
*/
cond->fix_fields(thd, &cond);
}
/*
IS NULL should be mapped to LAST_INSERT_ID only for first row, so
clear for next row
*/
thd->substitute_null_with_insert_id= FALSE;
*cond_value= Item::COND_OK;
return cond;
}
}
}
return Item::remove_eq_conds(thd, cond_value, top_level_arg);
}
/**
Check if equality can be used in removing components of GROUP BY/DISTINCT
@param l the left comparison argument (a field if any)
@param r the right comparison argument (a const of any)
@details
Checks if an equality predicate can be used to take away
DISTINCT/GROUP BY because it is known to be true for exactly one
distinct value (e.g. <expr> == <const>).
Arguments must be compared in the native type of the left argument
and (for strings) in the native collation of the left argument.
Otherwise, for example,
<string_field> = <int_const> may match more than 1 distinct value or
the <string_field>.
@note We don't need to aggregate l and r collations here, because r -
the constant item - has already been converted to a proper collation
for comparison. We only need to compare this collation with field's collation.
@retval true can be used
@retval false cannot be used
*/
/*
psergey-todo: this returns false for int_column='1234' (here '1234' is a
constant. Need to discuss this with Bar).
See also Field::test_if_equality_guaranees_uniqueness(const Item *item);
*/
static bool
test_if_equality_guarantees_uniqueness(Item *l, Item *r)
{
return (r->const_item() || !(r->used_tables() & ~OUTER_REF_TABLE_BIT)) &&
item_cmp_type(l, r) == l->cmp_type() &&
(l->cmp_type() != STRING_RESULT ||
l->collation.collation == r->collation.collation);
}
/*
Return TRUE if i1 and i2 (if any) are equal items,
or if i1 is a wrapper item around the f2 field.
*/
static bool equal(Item *i1, Item *i2, Field *f2)
{
DBUG_ASSERT((i2 == NULL) ^ (f2 == NULL));
if (i2 != NULL)
return i1->eq(i2, 1);
else if (i1->type() == Item::FIELD_ITEM)
return f2->eq(((Item_field *) i1)->field);
else
return FALSE;
}
/**
Test if a field or an item is equal to a constant value in WHERE
@param cond WHERE clause expression
@param comp_item Item to find in WHERE expression
(if comp_field != NULL)
@param comp_field Field to find in WHERE expression
(if comp_item != NULL)
@param[out] const_item intermediate arg, set to Item pointer to NULL
@return TRUE if the field is a constant value in WHERE
@note
comp_item and comp_field parameters are mutually exclusive.
*/
bool
const_expression_in_where(COND *cond, Item *comp_item, Field *comp_field,
Item **const_item)
{
DBUG_ASSERT((comp_item == NULL) ^ (comp_field == NULL));
Item *intermediate= NULL;
if (const_item == NULL)
const_item= &intermediate;
if (cond->type() == Item::COND_ITEM)
{
bool and_level= (((Item_cond*) cond)->functype()
== Item_func::COND_AND_FUNC);
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
bool res=const_expression_in_where(item, comp_item, comp_field,
const_item);
if (res) // Is a const value
{
if (and_level)
return 1;
}
else if (!and_level)
return 0;
}
return and_level ? 0 : 1;
}
else if (cond->eq_cmp_result() != Item::COND_OK)
{ // boolean compare function
Item_func* func= (Item_func*) cond;
if (func->functype() != Item_func::EQUAL_FUNC &&
func->functype() != Item_func::EQ_FUNC)
return 0;
Item *left_item= ((Item_func*) cond)->arguments()[0];
Item *right_item= ((Item_func*) cond)->arguments()[1];
if (equal(left_item, comp_item, comp_field))
{
if (test_if_equality_guarantees_uniqueness (left_item, right_item))
{
if (*const_item)
return right_item->eq(*const_item, 1);
*const_item=right_item;
return 1;
}
}
else if (equal(right_item, comp_item, comp_field))
{
if (test_if_equality_guarantees_uniqueness (right_item, left_item))
{
if (*const_item)
return left_item->eq(*const_item, 1);
*const_item=left_item;
return 1;
}
}
}
return 0;
}
/****************************************************************************
Create internal temporary table
****************************************************************************/
Field *Item::create_tmp_field_int(MEM_ROOT *root, TABLE *table,
uint convert_int_length)
{
const Type_handler *h= &type_handler_slong;
if (max_char_length() > convert_int_length)
h= &type_handler_slonglong;
if (unsigned_flag)
h= h->type_handler_unsigned();
return h->make_and_init_table_field(root, &name, Record_addr(maybe_null()),
*this, table);
}
Field *Item::tmp_table_field_from_field_type_maybe_null(MEM_ROOT *root,
TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param,
bool is_explicit_null)
{
/*
item->type() == CONST_ITEM excluded due to making fields for counter
With help of Item_uint
*/
DBUG_ASSERT(!param->make_copy_field() || type() == CONST_ITEM);
DBUG_ASSERT(!is_result_field());
Field *result;
if ((result= tmp_table_field_from_field_type(root, table)))
{
if (result && is_explicit_null)
result->is_created_from_null_item= true;
}
return result;
}
Field *Item_sum::create_tmp_field(MEM_ROOT *root, bool group, TABLE *table)
{
Field *UNINIT_VAR(new_field);
switch (cmp_type()) {
case REAL_RESULT:
{
new_field= new (root)
Field_double(max_char_length(), maybe_null(), &name, decimals, TRUE);
break;
}
case INT_RESULT:
case TIME_RESULT:
case DECIMAL_RESULT:
case STRING_RESULT:
new_field= tmp_table_field_from_field_type(root, table);
break;
case ROW_RESULT:
// This case should never be chosen
DBUG_ASSERT(0);
new_field= 0;
break;
}
if (new_field)
new_field->init(table);
return new_field;
}
/**
Create a temporary field for Item_field (or its descendant),
either direct or referenced by an Item_ref.
param->modify_item is set when we create a field for an internal temporary
table. In this case we have to ensure the new field name is identical to
the original field name as the field will info will be sent to the client.
In other cases, the field name is set from orig_item or name if org_item is
not set.
*/
Field *
Item_field::create_tmp_field_from_item_field(MEM_ROOT *root, TABLE *new_table,
Item_ref *orig_item,
const Tmp_field_param *param)
{
DBUG_ASSERT(!is_result_field());
Field *result;
const Lex_ident_column *new_name= (orig_item ? &orig_item->name :
!param->modify_item() ? &name :
&field->field_name);
/*
If item have to be able to store NULLs but underlaid field can't do it,
create_tmp_field_from_field() can't be used for tmp field creation.
*/
if (((maybe_null() && in_rollup()) ||
(new_table->in_use->create_tmp_table_for_derived && /* for mat. view/dt */
orig_item && orig_item->maybe_null())) &&
!field->maybe_null())
{
/*
The item the ref points to may have maybe_null flag set while
the ref doesn't have it. This may happen for outer fields
when the outer query decided at some point after name resolution phase
that this field might be null. Take this into account here.
*/
Record_addr rec(orig_item ? orig_item->maybe_null() : maybe_null());
const Type_handler *handler= type_handler()->
type_handler_for_tmp_table(this);
result= handler->make_and_init_table_field(root, new_name,
rec, *this, new_table);
}
else if (param->table_cant_handle_bit_fields() &&
field->type() == MYSQL_TYPE_BIT)
{
const Type_handler *handler=
Type_handler::type_handler_long_or_longlong(max_char_length(), true);
result= handler->make_and_init_table_field(root, new_name,
Record_addr(maybe_null()),
*this, new_table);
}
else
{
bool tmp_maybe_null= param->modify_item() ? maybe_null() :
field->maybe_null();
result= field->create_tmp_field(root, new_table, tmp_maybe_null);
if (result && ! param->modify_item())
result->field_name= *new_name;
}
if (result && param->modify_item())
result_field= result;
return result;
}
Field *Item_field::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param)
{
DBUG_ASSERT(!is_result_field());
Field *result;
src->set_field(field);
if (!(result= create_tmp_field_from_item_field(root, table, NULL, param)))
return NULL;
if (!(field->flags & NO_DEFAULT_VALUE_FLAG) &&
field->eq_def(result))
src->set_default_field(field);
return result;
}
Field *Item_default_value::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param)
{
if (field->default_value || (field->flags & BLOB_FLAG))
{
/*
We have to use a copy function when using a blob with default value
as the we have to calculate the default value before we can use it.
*/
get_tmp_field_src(src, param);
Field *result= tmp_table_field_from_field_type(root, table);
if (result && param->modify_item())
result_field= result;
return result;
}
/*
Same code as in Item_field::create_tmp_field_ex, except no default field
handling
*/
src->set_field(field);
return create_tmp_field_from_item_field(root, table, nullptr, param);
}
Field *Item_ref::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param)
{
Item *item= real_item();
DBUG_ASSERT(is_result_field());
if (item->type() == Item::FIELD_ITEM)
{
Field *result;
Item_field *field= (Item_field*) item;
Tmp_field_param prm2(*param);
prm2.set_modify_item(false);
src->set_field(field->field);
if (!(result= field->create_tmp_field_from_item_field(root, table,
this, &prm2)))
return NULL;
if (param->modify_item())
result_field= result;
return result;
}
return Item_result_field::create_tmp_field_ex(root, table, src, param);
}
void Item_result_field::get_tmp_field_src(Tmp_field_src *src,
const Tmp_field_param *param)
{
if (param->make_copy_field())
{
DBUG_ASSERT(result_field);
src->set_field(result_field);
}
else
{
src->set_item_result_field(this); // Save for copy_funcs
}
}
Field *
Item_result_field::create_tmp_field_ex_from_handler(
MEM_ROOT *root,
TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param,
const Type_handler *h)
{
/*
Possible Item types:
- Item_cache_wrapper (only for CREATE..SELECT ?)
- Item_func
- Item_subselect
*/
DBUG_ASSERT(fixed());
DBUG_ASSERT(is_result_field());
DBUG_ASSERT(type() != NULL_ITEM);
get_tmp_field_src(src, param);
Field *result;
if ((result= h->make_and_init_table_field(root, &name,
Record_addr(maybe_null()),
*this, table)) &&
param->modify_item())
result_field= result;
return result;
}
Field *Item_func_sp::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
Tmp_field_src *src,
const Tmp_field_param *param)
{
Field *result;
get_tmp_field_src(src, param);
if ((result= sp_result_field->create_tmp_field(root, table)))
{
result->field_name= name;
if (param->modify_item())
result_field= result;
}
return result;
}
static bool make_json_valid_expr(TABLE *table, Field *field)
{
THD *thd= table->in_use;
Query_arena backup_arena;
Item *expr, *item_field;
if (!table->expr_arena && table->init_expr_arena(thd->mem_root))
return 1;
thd->set_n_backup_active_arena(table->expr_arena, &backup_arena);
if ((item_field= new (thd->mem_root) Item_field(thd, field)) &&
(expr= new (thd->mem_root) Item_func_json_valid(thd, item_field)))
field->check_constraint= add_virtual_expression(thd, expr);
thd->restore_active_arena(table->expr_arena, &backup_arena);
return field->check_constraint == NULL;
}
/**
Create field for temporary table.
@param table Temporary table
@param item Item to create a field for
@param type Type of item (normally item->type)
@param copy_func If set and item is a function, store copy of item
in this array
@param from_field if field will be created using other field as example,
pointer example field will be written here
@param default_field If field has a default value field, store it here
@param group 1 if we are going to do a relative group by on result
@param modify_item 1 if item->result_field should point to new item.
This is relevent for how fill_record() is going to
work:
If modify_item is 1 then fill_record() will update
the record in the original table.
If modify_item is 0 then fill_record() will update
the temporary table
@param table_cant_handle_bit_fields
Set to 1 if the temporary table cannot handle bit
fields. Only set for heap tables when the bit field
is part of an index.
@param make_copy_field
Set when using with rollup when we want to have
an exact copy of the field.
@retval
0 on error
@retval
new_created field
Create a temporary field for Item_field (or its descendant),
either direct or referenced by an Item_ref.
*/
Field *create_tmp_field(TABLE *table, Item *item,
Item ***copy_func, Field **from_field,
Field **default_field,
bool group, bool modify_item,
bool table_cant_handle_bit_fields,
bool make_copy_field)
{
Tmp_field_src src;
Tmp_field_param prm(group, modify_item, table_cant_handle_bit_fields,
make_copy_field);
Field *result= item->create_tmp_field_ex(table->in_use->mem_root,
table, &src, &prm);
if (is_json_type(item) && make_json_valid_expr(table, result))
result= NULL;
*from_field= src.field();
*default_field= src.default_field();
if (src.item_result_field())
*((*copy_func)++)= src.item_result_field();
return result;
}
/*
Set up column usage bitmaps for a temporary table
IMPLEMENTATION
For temporary tables, we need one bitmap with all columns set and
a tmp_set bitmap to be used by things like filesort.
*/
void
setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps, uint field_count)
{
uint bitmap_size= bitmap_buffer_size(field_count);
DBUG_ASSERT(table->s->virtual_fields == 0);
my_bitmap_init(&table->def_read_set, (my_bitmap_map*) bitmaps, field_count);
bitmaps+= bitmap_size;
my_bitmap_init(&table->tmp_set,
(my_bitmap_map*) bitmaps, field_count);
bitmaps+= bitmap_size;
my_bitmap_init(&table->eq_join_set,
(my_bitmap_map*) bitmaps, field_count);
bitmaps+= bitmap_size;
my_bitmap_init(&table->cond_set,
(my_bitmap_map*) bitmaps, field_count);
bitmaps+= bitmap_size;
my_bitmap_init(&table->has_value_set,
(my_bitmap_map*) bitmaps, field_count);
/* write_set and all_set are copies of read_set */
table->def_write_set= table->def_read_set;
table->s->all_set= table->def_read_set;
bitmap_set_all(&table->s->all_set);
table->default_column_bitmaps();
}
Create_tmp_table::Create_tmp_table(ORDER *group, bool distinct,
bool save_sum_fields,
ulonglong select_options,
ha_rows rows_limit)
:m_alloced_field_count(0),
m_using_unique_constraint(false),
m_temp_pool_slot(MY_BIT_NONE),
m_group(group),
m_distinct(distinct),
m_save_sum_fields(save_sum_fields),
m_with_cycle(false),
m_select_options(select_options),
m_rows_limit(rows_limit),
m_group_null_items(0),
current_counter(other)
{
m_field_count[Create_tmp_table::distinct]= 0;
m_field_count[Create_tmp_table::other]= 0;
m_null_count[Create_tmp_table::distinct]= 0;
m_null_count[Create_tmp_table::other]= 0;
m_blobs_count[Create_tmp_table::distinct]= 0;
m_blobs_count[Create_tmp_table::other]= 0;
m_uneven_bit[Create_tmp_table::distinct]= 0;
m_uneven_bit[Create_tmp_table::other]= 0;
}
void Create_tmp_table::add_field(TABLE *table, Field *field, uint fieldnr,
bool force_not_null_cols)
{
DBUG_ASSERT(!field->field_name.str ||
strlen(field->field_name.str) == field->field_name.length);
if (force_not_null_cols)
{
field->flags|= NOT_NULL_FLAG;
field->null_ptr= NULL;
}
if (!(field->flags & NOT_NULL_FLAG))
m_null_count[current_counter]++;
table->s->reclength+= field->pack_length();
// Assign it here, before update_data_type_statistics() changes m_blob_count
if (field->flags & BLOB_FLAG)
{
table->s->blob_field[m_blob_count]= fieldnr;
m_blobs_count[current_counter]++;
}
table->field[fieldnr]= field;
field->field_index= fieldnr;
field->update_data_type_statistics(this);
}
/**
Create a temp table according to a field list.
Given field pointers are changed to point at tmp_table for
send_result_set_metadata. The table object is self contained: it's
allocated in its own memory root, as well as Field objects
created for table columns.
This function will replace Item_sum items in 'fields' list with
corresponding Item_field items, pointing at the fields in the
temporary table, unless this was prohibited by TRUE
value of argument save_sum_fields. The Item_field objects
are created in THD memory root.
@param thd thread handle
@param param a description used as input to create the table
@param fields list of items that will be used to define
column types of the table (also see NOTES)
@param group Create an unique key over all group by fields.
This is used to retrive the row during
end_write_group() and update them.
@param distinct should table rows be distinct
@param save_sum_fields see NOTES
@param select_options Optiions for how the select is run.
See sql_priv.h for a list of options.
@param rows_limit Maximum number of rows to insert into the
temporary table
@param table_alias possible name of the temporary table that can
be used for name resolving; can be "".
@param do_not_open only create the TABLE object, do not
open the table in the engine
@param keep_row_order rows need to be read in the order they were
inserted, the engine should preserve this order
*/
TABLE *Create_tmp_table::start(THD *thd,
TMP_TABLE_PARAM *param,
const LEX_CSTRING *table_alias)
{
MEM_ROOT *mem_root_save, own_root;
TABLE *table;
TABLE_SHARE *share;
uint copy_func_count= param->func_count;
char *tmpname,path[FN_REFLEN];
Field **reg_field;
uint *blob_field;
key_part_map *const_key_parts;
/* Treat sum functions as normal ones when loose index scan is used. */
m_save_sum_fields|= param->precomputed_group_by;
DBUG_ENTER("Create_tmp_table::start");
DBUG_PRINT("enter",
("table_alias: '%s' distinct: %d save_sum_fields: %d "
"rows_limit: %lu group: %d", table_alias->str,
(int) m_distinct, (int) m_save_sum_fields,
(ulong) m_rows_limit, MY_TEST(m_group)));
if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
m_temp_pool_slot = temp_pool_set_next();
if (m_temp_pool_slot != MY_BIT_NONE) // we got a slot
sprintf(path, "%s-%s-%lx-%i", tmp_file_prefix, param->tmp_name,
current_pid, m_temp_pool_slot);
else
{
/* if we run out of slots or we are not using tempool */
sprintf(path, "%s-%s-%lx-%llx-%x", tmp_file_prefix, param->tmp_name,
current_pid, thd->thread_id, thd->tmp_table++);
}
/*
No need to change table name to lower case as we are only creating
MyISAM, Aria or HEAP tables here
*/
fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);
if (m_group)
{
ORDER **prev= &m_group;
if (!param->quick_group)
m_group= 0; // Can't use group key
else for (ORDER *tmp= m_group ; tmp ; tmp= tmp->next)
{
/* Exclude found constant from the list */
if ((*tmp->item)->const_item())
{
*prev= tmp->next;
param->group_parts--;
continue;
}
else
prev= &(tmp->next);
/*
marker == 4 means two things:
- store NULLs in the key, and
- convert BIT fields to 64-bit long, needed because MEMORY tables
can't index BIT fields.
*/
(*tmp->item)->marker= MARKER_NULL_KEY; // Store null in key
if ((*tmp->item)->too_big_for_varchar())
m_using_unique_constraint= true;
}
if (param->group_length >= MAX_BLOB_WIDTH)
m_using_unique_constraint= true;
if (m_group)
m_distinct= 0; // Can't use distinct
}
m_alloced_field_count= param->field_count+param->func_count+param->sum_func_count;
DBUG_ASSERT(m_alloced_field_count);
const uint field_count= m_alloced_field_count;
/*
When loose index scan is employed as access method, it already
computes all groups and the result of all aggregate functions. We
make space for the items of the aggregate function in the list of
functions TMP_TABLE_PARAM::items_to_copy, so that the values of
these items are stored in the temporary table.
*/
if (param->precomputed_group_by)
copy_func_count+= param->sum_func_count;
param->copy_func_count= copy_func_count;
init_sql_alloc(key_memory_TABLE, &own_root, TMP_TABLE_BLOCK_SIZE,
TMP_TABLE_PREALLOC_SIZE, MYF(MY_THREAD_SPECIFIC));
if (!multi_alloc_root(&own_root,
&table, sizeof(*table),
&share, sizeof(*share),
®_field, sizeof(Field*) * (field_count+1),
&m_default_field, sizeof(Field*) * (field_count),
&blob_field, sizeof(uint)*(field_count+1),
&m_from_field, sizeof(Field*)*field_count,
¶m->items_to_copy,
sizeof(param->items_to_copy[0])*(copy_func_count+1),
¶m->keyinfo, sizeof(*param->keyinfo),
&m_key_part_info,
sizeof(*m_key_part_info)*(param->group_parts+1),
¶m->start_recinfo,
sizeof(*param->start_recinfo)*(field_count*2+4),
¶m->rec_per_key, sizeof(ulong)*param->group_parts,
&tmpname, (uint) strlen(path)+1,
&m_group_buff, (m_group && ! m_using_unique_constraint ?
param->group_length : 0),
&m_bitmaps, bitmap_buffer_size(field_count)*6,
&const_key_parts, sizeof(*const_key_parts),
NullS))
{
DBUG_RETURN(NULL); /* purecov: inspected */
}
/* Copy_field belongs to TMP_TABLE_PARAM, allocate it in THD mem_root */
if (!(param->copy_field= new (thd->mem_root) Copy_field[field_count]))
{
free_root(&own_root, MYF(0)); /* purecov: inspected */
DBUG_RETURN(NULL); /* purecov: inspected */
}
strmov(tmpname, path);
/* make table according to fields */
bzero((char*) table,sizeof(*table));
bzero((char*) reg_field, sizeof(Field*) * (field_count+1));
bzero((char*) m_default_field, sizeof(Field*) * (field_count));
bzero((char*) m_from_field, sizeof(Field*) * field_count);
/* const_key_parts is used in sort_and_filter_keyuse */
bzero((char*) const_key_parts, sizeof(*const_key_parts));
table->mem_root= own_root;
mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
table->field=reg_field;
table->const_key_parts= const_key_parts;
table->alias.set(table_alias->str, table_alias->length, table_alias_charset);
table->reginfo.lock_type=TL_WRITE; /* Will be updated */
table->map=1;
table->temp_pool_slot= m_temp_pool_slot;
table->copy_blobs= 1;
table->in_use= thd;
table->no_rows_with_nulls= param->force_not_null_cols;
table->group_concat= param->group_concat;
table->expr_arena= thd;
table->s= share;
init_tmp_table_share(thd, share, "", 0, "(temporary)", tmpname, true);
share->blob_field= blob_field;
share->table_charset= param->table_charset;
share->primary_key= MAX_KEY; // Indicate no primary key
if (param->schema_table)
share->db= Lex_ident_db(INFORMATION_SCHEMA_NAME);
param->using_outer_summary_function= 0;
thd->mem_root= mem_root_save;
DBUG_RETURN(table);
}
bool Create_tmp_table::add_fields(THD *thd,
TABLE *table,
TMP_TABLE_PARAM *param,
List<Item> &fields)
{
DBUG_ENTER("Create_tmp_table::add_fields");
DBUG_ASSERT(table);
DBUG_ASSERT(table->field);
DBUG_ASSERT(table->s->blob_field);
DBUG_ASSERT(table->s->reclength == 0);
DBUG_ASSERT(table->s->fields == 0);
DBUG_ASSERT(table->s->blob_fields == 0);
const bool not_all_columns= !(m_select_options & TMP_TABLE_ALL_COLUMNS);
bool distinct_record_structure= m_distinct;
uint fieldnr= 0;
TABLE_SHARE *share= table->s;
Item **copy_func= param->items_to_copy;
MEM_ROOT *mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
List_iterator_fast<Item> li(fields);
Item *item;
Field **tmp_from_field= m_from_field;
while (!m_with_cycle && (item= li++))
if (item->is_in_with_cycle())
{
m_with_cycle= true;
/*
Following distinct_record_structure is (m_distinct || m_with_cycle)
Note: distinct_record_structure can be true even if m_distinct is
false, for example for incr_table in recursive CTE
(see select_union_recursive::create_result_table)
*/
distinct_record_structure= true;
}
li.rewind();
while ((item=li++))
{
uint uneven_delta;
current_counter= (((param->hidden_field_count < (fieldnr + 1)) &&
distinct_record_structure &&
(!m_with_cycle || item->is_in_with_cycle())) ?
distinct :
other);
Item::Type type= item->type();
if (type == Item::COPY_STR_ITEM)
{
item= ((Item_copy *)item)->get_item();
type= item->type();
}
if (not_all_columns)
{
if (item->with_sum_func() && type != Item::SUM_FUNC_ITEM)
{
if (item->used_tables() & OUTER_REF_TABLE_BIT)
item->update_used_tables();
if ((item->real_type() == Item::SUBSELECT_ITEM) ||
(item->used_tables() & ~OUTER_REF_TABLE_BIT))
{
/*
Mark that the we have ignored an item that refers to a summary
function. We need to know this if someone is going to use
DISTINCT on the result.
*/
param->using_outer_summary_function=1;
continue;
}
}
if (item->const_item() &&
param->hidden_field_count < (fieldnr + 1))
continue; // We don't have to store this
}
if (type == Item::SUM_FUNC_ITEM && !m_group && !m_save_sum_fields)
{ /* Can't calc group yet */
Item_sum *sum_item= (Item_sum *) item;
sum_item->result_field=0;
for (uint i= 0 ; i < sum_item->get_arg_count() ; i++)
{
Item *arg= sum_item->get_arg(i);
if (!arg->const_item())
{
Item *tmp_item;
Field *new_field=
create_tmp_field(table, arg, ©_func,
tmp_from_field, &m_default_field[fieldnr],
m_group != 0, not_all_columns,
distinct_record_structure , false);
if (!new_field)
goto err; // Should be OOM
tmp_from_field++;
thd->mem_root= mem_root_save;
if (!(tmp_item= new (thd->mem_root)
Item_field(thd, new_field)))
goto err;
((Item_field*) tmp_item)->set_refers_to_temp_table();
arg= sum_item->set_arg(i, thd, tmp_item);
thd->mem_root= &table->mem_root;
uneven_delta= m_uneven_bit_length;
add_field(table, new_field, fieldnr++, param->force_not_null_cols);
m_field_count[current_counter]++;
m_uneven_bit[current_counter]+= (m_uneven_bit_length - uneven_delta);
if (!(new_field->flags & NOT_NULL_FLAG))
{
/*
new_field->maybe_null() is still false, it will be
changed below. But we have to setup Item_field correctly
*/
arg->set_maybe_null();
}
if (current_counter == distinct)
new_field->flags|= FIELD_PART_OF_TMP_UNIQUE;
}
}
}
else
{
/*
The last parameter to create_tmp_field_ex() is a bit tricky:
We need to set it to 0 in union, to get fill_record() to modify the
temporary table.
We need to set it to 1 on multi-table-update and in select to
write rows to the temporary table.
We here distinguish between UNION and multi-table-updates by the fact
that in the later case group is set to the row pointer.
The test for item->marker == MARKER_NULL_KEY is ensure we
don't create a group-by key over a bit field as heap tables
can't handle that.
*/
DBUG_ASSERT(!param->schema_table);
Field *new_field=
create_tmp_field(table, item, ©_func,
tmp_from_field, &m_default_field[fieldnr],
m_group != 0,
!param->force_copy_fields &&
(not_all_columns || m_group !=0),
/*
If item->marker == MARKER_NULL_KEY then we
force create_tmp_field to create a 64-bit
longs for BIT fields because HEAP tables
can't index BIT fields directly. We do the
same for distinct, as we want the distinct
index to be usable in this case too.
*/
item->marker == MARKER_NULL_KEY ||
param->bit_fields_as_long,
param->force_copy_fields);
if (unlikely(!new_field))
{
if (unlikely(thd->is_fatal_error))
goto err; // Got OOM
continue; // Some kind of const item
}
if (type == Item::SUM_FUNC_ITEM)
{
Item_sum *agg_item= (Item_sum *) item;
/*
Update the result field only if it has never been set, or if the
created temporary table is not to be used for subquery
materialization.
The reason is that for subqueries that require
materialization as part of their plan, we create the
'external' temporary table needed for IN execution, after
the 'internal' temporary table needed for grouping. Since
both the external and the internal temporary tables are
created for the same list of SELECT fields of the subquery,
setting 'result_field' for each invocation of
create_tmp_table overrides the previous value of
'result_field'.
The condition below prevents the creation of the external
temp table to override the 'result_field' that was set for
the internal temp table.
*/
if (!agg_item->result_field || !param->materialized_subquery)
agg_item->result_field= new_field;
}
tmp_from_field++;
uneven_delta= m_uneven_bit_length;
add_field(table, new_field, fieldnr++, param->force_not_null_cols);
m_field_count[current_counter]++;
m_uneven_bit[current_counter]+= (m_uneven_bit_length - uneven_delta);
if (item->marker == MARKER_NULL_KEY && item->maybe_null())
{
m_group_null_items++;
new_field->flags|= GROUP_FLAG;
}
if (current_counter == distinct)
new_field->flags|= FIELD_PART_OF_TMP_UNIQUE;
}
}
DBUG_ASSERT(fieldnr == m_field_count[other] + m_field_count[distinct]);
DBUG_ASSERT(m_blob_count == m_blobs_count[other] + m_blobs_count[distinct]);
share->fields= fieldnr;
share->blob_fields= m_blob_count;
table->field[fieldnr]= 0; // End marker
share->blob_field[m_blob_count]= 0; // End marker
copy_func[0]= 0; // End marker
param->func_count= (uint) (copy_func - param->items_to_copy);
DBUG_ASSERT(param->func_count <= param->copy_func_count);
share->column_bitmap_size= bitmap_buffer_size(share->fields);
thd->mem_root= mem_root_save;
DBUG_RETURN(false);
err:
thd->mem_root= mem_root_save;
DBUG_RETURN(true);
}
bool Create_tmp_table::choose_engine(THD *thd, TABLE *table,
TMP_TABLE_PARAM *param)
{
TABLE_SHARE *share= table->s;
DBUG_ENTER("Create_tmp_table::choose_engine");
/*
If result table is small; use a heap, otherwise TMP_TABLE_HTON (Aria)
In the future we should try making storage engine selection more dynamic
*/
if (share->blob_fields || m_using_unique_constraint ||
(thd->variables.big_tables &&
!(m_select_options & SELECT_SMALL_RESULT)) ||
(m_select_options & TMP_TABLE_FORCE_MYISAM) ||
thd->variables.tmp_memory_table_size == 0)
{
share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
if (m_group &&
(param->group_parts > table->file->max_key_parts() ||
param->group_length > table->file->max_key_length()))
m_using_unique_constraint= true;
}
else
{
share->db_plugin= ha_lock_engine(0, heap_hton);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
}
DBUG_RETURN(!table->file);
}
bool Create_tmp_table::finalize(THD *thd,
TABLE *table,
TMP_TABLE_PARAM *param,
bool do_not_open, bool keep_row_order)
{
DBUG_ENTER("Create_tmp_table::finalize");
DBUG_ASSERT(table);
uint null_pack_length[2];
uint null_pack_base[2];
uint null_counter[2]= {0, 0};
uint whole_null_pack_length;
bool use_packed_rows= false;
bool save_abort_on_warning;
uchar *pos;
uchar *null_flags;
KEY *keyinfo= param->keyinfo;
TMP_ENGINE_COLUMNDEF *recinfo;
TABLE_SHARE *share= table->s;
Copy_field *copy= param->copy_field;
MEM_ROOT *mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
DBUG_ASSERT(m_alloced_field_count >= share->fields);
DBUG_ASSERT(m_alloced_field_count >= share->blob_fields);
if (choose_engine(thd, table, param))
goto err;
if (table->file->set_ha_share_ref(&share->ha_share))
{
delete table->file;
table->file= 0;
goto err;
}
table->file->set_table(table);
if (!m_using_unique_constraint)
share->reclength+= m_group_null_items; // null flag is stored separately
if (share->blob_fields == 0)
{
/* We need to ensure that first byte is not 0 for the delete link */
if (m_field_count[other])
m_null_count[other]++;
else
m_null_count[distinct]++;
}
null_pack_length[other]= (m_null_count[other] + 7 +
m_uneven_bit[other]) / 8;
null_pack_base[other]= 0;
null_pack_length[distinct]= (m_null_count[distinct] + 7 +
m_uneven_bit[distinct]) / 8;
null_pack_base[distinct]= null_pack_length[other];
whole_null_pack_length= null_pack_length[other] +
null_pack_length[distinct];
share->reclength+= whole_null_pack_length;
if (!share->reclength)
share->reclength= 1; // Dummy select
share->stored_rec_length= share->reclength;
/* Use packed rows if there is blobs or a lot of space to gain */
if (share->blob_fields ||
(string_total_length() >= STRING_TOTAL_LENGTH_TO_PACK_ROWS &&
(share->reclength / string_total_length() <= RATIO_TO_PACK_ROWS ||
string_total_length() / string_count() >= AVG_STRING_LENGTH_TO_PACK_ROWS)))
use_packed_rows= 1;
{
uint alloc_length= ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
share->rec_buff_length= alloc_length;
if (!(table->record[0]= (uchar*)
alloc_root(&table->mem_root, alloc_length*3)))
goto err;
table->record[1]= table->record[0]+alloc_length;
share->default_values= table->record[1]+alloc_length;
}
setup_tmp_table_column_bitmaps(table, m_bitmaps, table->s->fields);
recinfo=param->start_recinfo;
null_flags=(uchar*) table->record[0];
pos=table->record[0]+ whole_null_pack_length;
if (whole_null_pack_length)
{
bzero((uchar*) recinfo,sizeof(*recinfo));
recinfo->type=FIELD_NORMAL;
recinfo->length= whole_null_pack_length;
recinfo++;
bfill(null_flags, whole_null_pack_length, 255); // Set null fields
table->null_flags= (uchar*) table->record[0];
share->null_fields= m_null_count[other] + m_null_count[distinct];
share->null_bytes= share->null_bytes_for_compare= whole_null_pack_length;
}
if (share->blob_fields == 0)
{
null_counter[(m_field_count[other] ? other : distinct)]++;
}
/* Protect against warnings in field_conv() in the next loop*/
save_abort_on_warning= thd->abort_on_warning;
thd->abort_on_warning= 0;
for (uint i= 0; i < share->fields; i++, recinfo++)
{
Field *field= table->field[i];
uint length;
bzero((uchar*) recinfo,sizeof(*recinfo));
current_counter= ((field->flags & FIELD_PART_OF_TMP_UNIQUE) ?
distinct :
other);
if (!(field->flags & NOT_NULL_FLAG))
{
recinfo->null_bit= (uint8)1 << (null_counter[current_counter] & 7);
recinfo->null_pos= (null_pack_base[current_counter] +
null_counter[current_counter]/8);
field->move_field(pos, null_flags + recinfo->null_pos, recinfo->null_bit);
null_counter[current_counter]++;
}
else
field->move_field(pos,(uchar*) 0,0);
if (field->type() == MYSQL_TYPE_BIT)
{
/* We have to reserve place for extra bits among null bits */
((Field_bit*) field)->set_bit_ptr(null_flags +
null_pack_base[current_counter] +
null_counter[current_counter]/8,
null_counter[current_counter] & 7);
null_counter[current_counter]+= (field->field_length & 7);
}
field->reset();
/*
Test if there is a default field value. The test for ->ptr is to skip
'offset' fields generated by initialize_tables
*/
if (m_default_field[i] && m_default_field[i]->ptr)
{
/*
default_field[i] is set only in the cases when 'field' can
inherit the default value that is defined for the field referred
by the Item_field object from which 'field' has been created.
*/
Field *orig_field= m_default_field[i];
/* Get the value from default_values */
if (orig_field->is_null_in_record(orig_field->table->s->default_values))
field->set_null();
else
{
/*
Copy default value. We have to use field_conv() for copy, instead of
memcpy(), because bit_fields may be stored differently.
But otherwise we copy as is, in particular, ignore NO_ZERO_DATE, etc
*/
Use_relaxed_field_copy urfc(thd);
my_ptrdiff_t ptr_diff= (orig_field->table->s->default_values -
orig_field->table->record[0]);
field->set_notnull();
orig_field->move_field_offset(ptr_diff);
field_conv(field, orig_field);
orig_field->move_field_offset(-ptr_diff);
}
}
if (m_from_field[i])
{ /* Not a table Item */
copy->set(field, m_from_field[i], m_save_sum_fields);
copy++;
}
length=field->pack_length_in_rec();
pos+= length;
/* Make entry for create table */
recinfo->length=length;
recinfo->type= field->tmp_engine_column_type(use_packed_rows);
// fix table name in field entry
field->set_table_name(&table->alias);
}
/* Handle group_null_items */
bzero(pos, table->s->reclength - (pos - table->record[0]));
MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
thd->abort_on_warning= save_abort_on_warning;
param->copy_field_end= copy;
param->recinfo= recinfo; // Pointer to after last field
store_record(table,s->default_values); // Make empty default record
if (thd->variables.tmp_memory_table_size == ~ (ulonglong) 0) // No limit
share->max_rows= ~(ha_rows) 0;
else
share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
MY_MIN(thd->variables.tmp_memory_table_size,
thd->variables.max_heap_table_size) :
thd->variables.tmp_disk_table_size) /
MY_ALIGN(share->reclength, sizeof(char*)));
set_if_bigger(share->max_rows,1); // For dummy start options
/*
Push the LIMIT clause to the temporary table creation, so that we
materialize only up to 'rows_limit' records instead of all result records.
*/
set_if_smaller(share->max_rows, m_rows_limit);
param->end_write_records= m_rows_limit;
if (m_group)
{
DBUG_PRINT("info",("Creating group key in temporary table"));
table->group= m_group; /* Table is grouped by key */
param->group_buff= m_group_buff;
share->total_keys= share->keys= 1;
table->key_info= table->s->key_info= keyinfo;
table->keys_in_use_for_query.set_bit(0);
share->keys_in_use.set_bit(0);
keyinfo->key_part= m_key_part_info;
keyinfo->flags=HA_NOSAME | HA_BINARY_PACK_KEY | HA_PACK_KEY;
if (m_using_unique_constraint)
keyinfo->flags|= HA_UNIQUE_HASH;
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->usable_key_parts=keyinfo->user_defined_key_parts=
param->group_parts;
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
share->ext_key_parts= share->key_parts= keyinfo->ext_key_parts;
keyinfo->key_length=0;
keyinfo->rec_per_key= param->rec_per_key;
keyinfo->read_stats= NULL;
keyinfo->collected_stats= NULL;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->is_statistics_from_stat_tables= FALSE;
keyinfo->name= group_key;
keyinfo->comment.str= 0;
ORDER *cur_group= m_group;
for (; cur_group ; cur_group= cur_group->next, m_key_part_info++)
{
Field *field=(*cur_group->item)->get_tmp_table_field();
DBUG_ASSERT(field->table == table);
bool maybe_null=(*cur_group->item)->maybe_null();
m_key_part_info->null_bit=0;
m_key_part_info->field= field;
m_key_part_info->fieldnr= field->field_index + 1;
if (cur_group == m_group)
field->key_start.set_bit(0);
m_key_part_info->offset= field->offset(table->record[0]);
m_key_part_info->length= (uint16) field->key_length();
m_key_part_info->type= (uint8) field->key_type();
m_key_part_info->key_type =
((ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_TEXT ||
(ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
(ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
0 : FIELDFLAG_BINARY;
m_key_part_info->key_part_flag= 0;
if (!m_using_unique_constraint)
{
cur_group->buff=(char*) m_group_buff;
if (maybe_null && !field->null_bit)
{
/*
This can only happen in the unusual case where an outer join
table was found to be not-nullable by the optimizer and we
the item can't really be null.
We solve this by marking the item as !maybe_null to ensure
that the key,field and item definition match.
*/
maybe_null= 0;
(*cur_group->item)->base_flags&= ~item_base_t::MAYBE_NULL;
}
if (!(cur_group->field= field->new_key_field(thd->mem_root,table,
m_group_buff +
MY_TEST(maybe_null),
m_key_part_info->length,
field->null_ptr,
field->null_bit)))
goto err; /* purecov: inspected */
if (maybe_null)
{
/*
To be able to group on NULL, we reserved place in group_buff
for the NULL flag just before the column. (see above).
The field data is after this flag.
The NULL flag is updated in 'end_update()' and 'end_write()'
*/
keyinfo->flags|= HA_NULL_ARE_EQUAL; // def. that NULL == NULL
m_key_part_info->null_bit=field->null_bit;
m_key_part_info->null_offset= (uint) (field->null_ptr -
(uchar*) table->record[0]);
cur_group->buff++; // Pointer to field data
m_group_buff++; // Skipp null flag
}
m_group_buff+= cur_group->field->pack_length();
}
keyinfo->key_length+= m_key_part_info->length;
}
/*
Ensure we didn't overrun the group buffer. The < is only true when
some maybe_null fields was changed to be not null fields.
*/
DBUG_ASSERT(m_using_unique_constraint ||
m_group_buff <= param->group_buff + param->group_length);
}
if (m_distinct && (share->fields != param->hidden_field_count ||
m_with_cycle))
{
uint i;
Field **reg_field;
/*
Create an unique key or an unique constraint over all columns
that should be in the result. In the temporary table, there are
'param->hidden_field_count' extra columns, whose null bits are stored
in the first 'hidden_null_pack_length' bytes of the row.
*/
DBUG_PRINT("info",("hidden_field_count: %d", param->hidden_field_count));
keyinfo->flags= 0;
if (m_blobs_count[distinct])
{
/*
Special mode for index creation in MyISAM used to support unique
indexes on blobs with arbitrary length. Such indexes cannot be
used for lookups.
*/
keyinfo->flags|= HA_UNIQUE_HASH;
}
keyinfo->user_defined_key_parts= m_field_count[distinct] +
((keyinfo->flags & HA_UNIQUE_HASH) ?
MY_TEST(null_pack_length[distinct]) : 0);
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->usable_key_parts= keyinfo->user_defined_key_parts;
table->distinct= 1;
share->total_keys= share->keys= 1;
share->ext_key_parts= share->key_parts= keyinfo->ext_key_parts;
if (!(m_key_part_info= (KEY_PART_INFO*)
alloc_root(&table->mem_root,
keyinfo->user_defined_key_parts * sizeof(KEY_PART_INFO))))
goto err;
bzero((void*) m_key_part_info, keyinfo->user_defined_key_parts * sizeof(KEY_PART_INFO));
table->keys_in_use_for_query.set_bit(0);
share->keys_in_use.set_bit(0);
table->key_info= table->s->key_info= keyinfo;
keyinfo->key_part= m_key_part_info;
keyinfo->flags|= (HA_NOSAME | HA_NULL_ARE_EQUAL | HA_BINARY_PACK_KEY |
HA_PACK_KEY);
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->key_length= 0; // Will compute the sum of the parts below.
keyinfo->name= distinct_key;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->is_statistics_from_stat_tables= FALSE;
keyinfo->read_stats= NULL;
keyinfo->collected_stats= NULL;
/*
Needed by non-merged semi-joins: SJ-Materialized table must have a valid
rec_per_key array, because it participates in join optimization. Since
the table has no data, the only statistics we can provide is "unknown",
i.e. zero values.
(For table record count, we calculate and set JOIN_TAB::found_records,
see get_delayed_table_estimates()).
*/
size_t rpk_size= keyinfo->user_defined_key_parts * sizeof(keyinfo->rec_per_key[0]);
if (!(keyinfo->rec_per_key= (ulong*) alloc_root(&table->mem_root,
rpk_size)))
goto err;
bzero(keyinfo->rec_per_key, rpk_size);
/*
Create an extra field to hold NULL bits so that unique indexes on
blobs can distinguish NULL from 0. This extra field is not needed
when we do not use UNIQUE indexes for blobs.
*/
if (null_pack_length[distinct] && (keyinfo->flags & HA_UNIQUE_HASH))
{
m_key_part_info->null_bit=0;
m_key_part_info->offset= null_pack_base[distinct];
m_key_part_info->length= null_pack_length[distinct];
m_key_part_info->field= new Field_string(table->record[0],
(uint32) m_key_part_info->length,
(uchar*) 0,
(uint) 0,
Field::NONE,
&null_clex_str, &my_charset_bin);
if (!m_key_part_info->field)
goto err;
m_key_part_info->field->init(table);
m_key_part_info->key_type=FIELDFLAG_BINARY;
m_key_part_info->type= HA_KEYTYPE_BINARY;
m_key_part_info->fieldnr= m_key_part_info->field->field_index + 1;
m_key_part_info++;
}
/* Create a distinct key over the columns we are going to return */
for (i= param->hidden_field_count, reg_field= table->field + i ;
i < share->fields;
i++, reg_field++)
{
if (!((*reg_field)->flags & FIELD_PART_OF_TMP_UNIQUE))
continue;
m_key_part_info->field= *reg_field;
(*reg_field)->flags |= PART_KEY_FLAG;
if (m_key_part_info == keyinfo->key_part)
(*reg_field)->key_start.set_bit(0);
m_key_part_info->null_bit= (*reg_field)->null_bit;
m_key_part_info->null_offset= (uint) ((*reg_field)->null_ptr -
(uchar*) table->record[0]);
m_key_part_info->offset= (*reg_field)->offset(table->record[0]);
m_key_part_info->length= (uint16) (*reg_field)->pack_length();
m_key_part_info->fieldnr= (*reg_field)->field_index + 1;
/* TODO:
The below method of computing the key format length of the
key part is a copy/paste from opt_range.cc, and table.cc.
This should be factored out, e.g. as a method of Field.
In addition it is not clear if any of the Field::*_length
methods is supposed to compute the same length. If so, it
might be reused.
*/
m_key_part_info->store_length= m_key_part_info->length;
if ((*reg_field)->real_maybe_null())
{
m_key_part_info->store_length+= HA_KEY_NULL_LENGTH;
m_key_part_info->key_part_flag |= HA_NULL_PART;
}
m_key_part_info->key_part_flag|= (*reg_field)->key_part_flag();
m_key_part_info->store_length+= (*reg_field)->key_part_length_bytes();
keyinfo->key_length+= m_key_part_info->store_length;
m_key_part_info->type= (uint8) (*reg_field)->key_type();
m_key_part_info->key_type =
((ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_TEXT ||
(ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
(ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
0 : FIELDFLAG_BINARY;
m_key_part_info++;
}
}
if (share->keys)
keyinfo->index_flags= table->file->index_flags(0, 0, 1);
if (unlikely(thd->is_fatal_error)) // If end of memory
goto err; /* purecov: inspected */
share->db_record_offset= 1;
table->used_for_duplicate_elimination= (param->sum_func_count == 0 &&
(table->group || table->distinct));
table->keep_row_order= keep_row_order;
if (!do_not_open)
{
if (instantiate_tmp_table(table, param->keyinfo, param->start_recinfo,
¶m->recinfo, m_select_options))
goto err;
}
/* record[0] and share->default_values should now have been set up */
MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
MEM_CHECK_DEFINED(share->default_values, table->s->reclength);
empty_record(table);
table->status= STATUS_NO_RECORD;
thd->mem_root= mem_root_save;
DBUG_RETURN(false);
err:
thd->mem_root= mem_root_save;
DBUG_RETURN(true); /* purecov: inspected */
}
bool Create_tmp_table::add_schema_fields(THD *thd, TABLE *table,
TMP_TABLE_PARAM *param,
const ST_SCHEMA_TABLE &schema_table)
{
DBUG_ENTER("Create_tmp_table::add_schema_fields");
DBUG_ASSERT(table);
DBUG_ASSERT(table->field);
DBUG_ASSERT(table->s->blob_field);
DBUG_ASSERT(table->s->reclength == 0);
DBUG_ASSERT(table->s->fields == 0);
DBUG_ASSERT(table->s->blob_fields == 0);
TABLE_SHARE *share= table->s;
ST_FIELD_INFO *defs= schema_table.fields_info;
uint fieldnr;
MEM_ROOT *mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
for (fieldnr= 0; !defs[fieldnr].end_marker(); fieldnr++)
{
const ST_FIELD_INFO &def= defs[fieldnr];
Record_addr addr(def.nullable());
const Type_handler *h= def.type_handler();
Field *field= h->make_schema_field(&table->mem_root, table, addr, def);
if (!field)
{
thd->mem_root= mem_root_save;
DBUG_RETURN(true); // EOM
}
field->init(table);
field->flags|= NO_DEFAULT_VALUE_FLAG;
add_field(table, field, fieldnr, param->force_not_null_cols);
}
share->fields= fieldnr;
share->blob_fields= m_blob_count;
table->field[fieldnr]= 0; // End marker
share->blob_field[m_blob_count]= 0; // End marker
param->func_count= 0;
share->column_bitmap_size= bitmap_buffer_size(share->fields);
thd->mem_root= mem_root_save;
DBUG_RETURN(false);
}
void Create_tmp_table::cleanup_on_failure(THD *thd, TABLE *table)
{
if (table)
free_tmp_table(thd, table);
if (m_temp_pool_slot != MY_BIT_NONE)
temp_pool_clear_bit(m_temp_pool_slot);
}
TABLE *create_tmp_table(THD *thd, TMP_TABLE_PARAM *param, List<Item> &fields,
ORDER *group, bool distinct, bool save_sum_fields,
ulonglong select_options, ha_rows rows_limit,
const LEX_CSTRING *table_alias, bool do_not_open,
bool keep_row_order)
{
TABLE *table;
Create_tmp_table maker(group, distinct, save_sum_fields, select_options,
rows_limit);
if (!(table= maker.start(thd, param, table_alias)) ||
maker.add_fields(thd, table, param, fields) ||
maker.finalize(thd, table, param, do_not_open, keep_row_order))
{
maker.cleanup_on_failure(thd, table);
return NULL;
}
return table;
}
TABLE *create_tmp_table_for_schema(THD *thd, TMP_TABLE_PARAM *param,
const ST_SCHEMA_TABLE &schema_table,
longlong select_options,
const LEX_CSTRING &table_alias,
bool do_not_open, bool keep_row_order)
{
TABLE *table;
Create_tmp_table maker((ORDER *) NULL, false, false,
select_options, HA_ROWS_MAX);
if (!(table= maker.start(thd, param, &table_alias)) ||
maker.add_schema_fields(thd, table, param, schema_table) ||
maker.finalize(thd, table, param, do_not_open, keep_row_order))
{
maker.cleanup_on_failure(thd, table);
return NULL;
}
return table;
}
/****************************************************************************/
void *Virtual_tmp_table::operator new(size_t size, THD *thd) throw()
{
return (Virtual_tmp_table *) alloc_root(thd->mem_root, size);
}
bool Virtual_tmp_table::init(uint field_count)
{
uint *blob_field;
uchar *bitmaps;
DBUG_ENTER("Virtual_tmp_table::init");
if (!multi_alloc_root(in_use->mem_root,
&s, sizeof(*s),
&field, (field_count + 1) * sizeof(Field*),
&blob_field, (field_count + 1) * sizeof(uint),
&bitmaps, bitmap_buffer_size(field_count) * 6,
NullS))
DBUG_RETURN(true);
s->reset();
s->blob_field= blob_field;
setup_tmp_table_column_bitmaps(this, bitmaps, field_count);
m_alloced_field_count= field_count;
DBUG_RETURN(false);
};
bool Virtual_tmp_table::add(List<Spvar_definition> &field_list)
{
/* Create all fields and calculate the total length of record */
Spvar_definition *cdef; /* column definition */
List_iterator_fast<Spvar_definition> it(field_list);
DBUG_ENTER("Virtual_tmp_table::add");
while ((cdef= it++))
{
Field *tmp;
Record_addr addr(f_maybe_null(cdef->pack_flag));
if (!(tmp= cdef->make_field(s, in_use->mem_root, &addr, &cdef->field_name)))
DBUG_RETURN(true);
add(tmp);
}
DBUG_RETURN(false);
}
void Virtual_tmp_table::setup_field_pointers()
{
uchar *null_pos= record[0];
uchar *field_pos= null_pos + s->null_bytes;
uint null_bit= 1;
for (Field **cur_ptr= field; *cur_ptr; ++cur_ptr)
{
Field *cur_field= *cur_ptr;
if ((cur_field->flags & NOT_NULL_FLAG))
cur_field->move_field(field_pos);
else
{
cur_field->move_field(field_pos, (uchar*) null_pos, null_bit);
null_bit<<= 1;
if (null_bit == (uint)1 << 8)
{
++null_pos;
null_bit= 1;
}
}
if (cur_field->key_type() == HA_KEYTYPE_BIT)
{
/* This is a Field_bit since key_type is HA_KEYTYPE_BIT */
DBUG_ASSERT(cur_field->type() == MYSQL_TYPE_BIT);
static_cast<Field_bit*>(cur_field)->set_bit_ptr(null_pos, null_bit);
null_bit+= cur_field->field_length & 7;
if (null_bit > 7)
{
null_pos++;
null_bit-= 8;
}
}
cur_field->reset();
field_pos+= cur_field->pack_length();
}
}
bool Virtual_tmp_table::open()
{
// Make sure that we added all the fields we planned to:
DBUG_ASSERT(s->fields == m_alloced_field_count);
field[s->fields]= NULL; // mark the end of the list
s->blob_field[s->blob_fields]= 0; // mark the end of the list
uint null_pack_length= (s->null_fields + 7) / 8; // NULL-bit array length
s->reclength+= null_pack_length;
s->rec_buff_length= ALIGN_SIZE(s->reclength + 1);
if (!(record[0]= in_use->alloc<uchar>(s->rec_buff_length)))
return true;
if (null_pack_length)
{
null_flags= (uchar*) record[0];
s->null_bytes= s->null_bytes_for_compare= null_pack_length;
}
setup_field_pointers();
return false;
}
bool Virtual_tmp_table::sp_find_field_by_name(uint *idx,
const LEX_CSTRING &name) const
{
Field *f;
for (uint i= 0; (f= field[i]); i++)
{
// Use the same comparison style with sp_context::find_variable()
if (f->field_name.streq(name))
{
*idx= i;
return false;
}
}
return true;
}
bool
Virtual_tmp_table::sp_find_field_by_name_or_error(uint *idx,
const LEX_CSTRING &var_name,
const LEX_CSTRING &field_name)
const
{
if (sp_find_field_by_name(idx, field_name))
{
my_error(ER_ROW_VARIABLE_DOES_NOT_HAVE_FIELD, MYF(0),
var_name.str, field_name.str);
return true;
}
return false;
}
bool Virtual_tmp_table::sp_set_all_fields_from_item_list(THD *thd,
List<Item> &items)
{
DBUG_ASSERT(s->fields == items.elements);
List_iterator<Item> it(items);
Item *item;
for (uint i= 0 ; (item= it++) ; i++)
{
if (field[i]->sp_prepare_and_store_item(thd, &item))
return true;
}
return false;
}
bool Virtual_tmp_table::sp_set_all_fields_from_item(THD *thd, Item *value)
{
DBUG_ASSERT(value->fixed());
DBUG_ASSERT(value->cols() == s->fields);
for (uint i= 0; i < value->cols(); i++)
{
if (field[i]->sp_prepare_and_store_item(thd, value->addr(i)))
return true;
}
return false;
}
bool open_tmp_table(TABLE *table)
{
int error;
if (unlikely((error= table->file->ha_open(table, table->s->path.str, O_RDWR,
HA_OPEN_TMP_TABLE |
HA_OPEN_INTERNAL_TABLE |
HA_OPEN_SIZE_TRACKING))))
{
table->file->print_error(error, MYF(0)); /* purecov: inspected */
table->db_stat= 0;
return 1;
}
table->db_stat= HA_OPEN_KEYFILE;
(void) table->file->extra(HA_EXTRA_QUICK); /* Faster */
table->file->set_optimizer_costs(table->in_use);
if (!table->is_created())
{
table->set_created();
table->in_use->inc_status_created_tmp_tables();
}
return 0;
}
#ifdef USE_ARIA_FOR_TMP_TABLES
/*
Create internal (MyISAM or Maria) temporary table
SYNOPSIS
create_internal_tmp_table()
table Table object that descrimes the table to be created
keyinfo Description of the index (there is always one index)
start_recinfo engine's column descriptions
recinfo INOUT End of engine's column descriptions
options Option bits
DESCRIPTION
Create an internal emporary table according to passed description. The is
assumed to have one unique index or constraint.
The passed array or TMP_ENGINE_COLUMNDEF structures must have this form:
1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
when there are many nullable columns)
2. Table columns
3. One free TMP_ENGINE_COLUMNDEF element (*recinfo points here)
This function may use the free element to create hash column for unique
constraint.
RETURN
FALSE - OK
TRUE - Error. my_error() have been called
*/
bool create_internal_tmp_table(TABLE *table, KEY *org_keyinfo,
TMP_ENGINE_COLUMNDEF *start_recinfo,
TMP_ENGINE_COLUMNDEF **recinfo,
ulonglong options)
{
int error;
MARIA_KEYDEF *keydefs= 0, *keydef;
MARIA_UNIQUEDEF uniquedef;
TABLE_SHARE *share= table->s;
MARIA_CREATE_INFO create_info;
bool use_unique= false;
DBUG_ENTER("create_internal_tmp_table");
if (share->keys)
{ // Get keys for ni_create
HA_KEYSEG *seg;
DBUG_ASSERT(share->key_parts);
if (!(multi_alloc_root(&table->mem_root,
&seg, sizeof(*seg) * share->key_parts,
&keydefs, sizeof(*keydefs) * share->keys,
NullS)))
goto err;
keydef= keydefs;
bzero(seg, sizeof(*seg) * share->key_parts);
/* Note that share->keys may change in the loop ! */
for (KEY *keyinfo= org_keyinfo, *end_keyinfo= keyinfo + share->keys;
keyinfo < end_keyinfo ;
keyinfo++)
{
/*
Note that a similar check is performed during
subquery_types_allow_materialization. See MDEV-7122 for more details as
to why. Whenever this changes, it must be updated there as well, for
all tmp_table engines.
*/
if (keyinfo->key_length > table->file->max_key_length() ||
keyinfo->user_defined_key_parts > table->file->max_key_parts() ||
(keyinfo->flags & HA_UNIQUE_HASH))
{
if (!(keyinfo->flags & (HA_NOSAME | HA_UNIQUE_HASH)))
{
my_error(ER_INTERNAL_ERROR, MYF(0),
"Using too big key for internal temp tables");
DBUG_RETURN(1);
}
/* Can't create a key; Make a unique constraint instead of a key */
share->total_keys= --share->keys;
share->key_parts-= keyinfo->user_defined_key_parts;
share->ext_key_parts-= keyinfo->ext_key_parts;
use_unique= true;
bzero((char*) &uniquedef,sizeof(uniquedef));
uniquedef.keysegs= keyinfo->user_defined_key_parts;
uniquedef.seg=seg;
uniquedef.null_are_equal=1;
keyinfo->flags|= HA_UNIQUE_HASH;
keyinfo->algorithm= HA_KEY_ALG_UNIQUE_HASH;
/* Create extra column for hash value */
bzero((uchar*) *recinfo,sizeof(**recinfo));
(*recinfo)->type= FIELD_CHECK;
(*recinfo)->length= MARIA_UNIQUE_HASH_LENGTH;
(*recinfo)++;
/* Avoid warnings from valgrind */
bzero(table->record[0]+ share->reclength, MARIA_UNIQUE_HASH_LENGTH);
bzero(share->default_values+ share->reclength,
MARIA_UNIQUE_HASH_LENGTH);
share->reclength+= MARIA_UNIQUE_HASH_LENGTH;
}
else
{
/* Create a key */
bzero((char*) keydef,sizeof(*keydef));
/*
We are using a GROUP BY on something that contains NULL
In this case we have to tell Aria that two NULL should
on INSERT be regarded at the same value.
*/
keydef->flag= (keyinfo->flags & HA_NOSAME) | HA_NULL_ARE_EQUAL;
keydef->keysegs= keyinfo->user_defined_key_parts;
keydef->seg= seg;
keydef++;
}
for (uint i=0; i < keyinfo->user_defined_key_parts ; i++,seg++)
{
Field *field=keyinfo->key_part[i].field;
seg->flag= 0;
seg->language= field->charset()->number;
seg->length= keyinfo->key_part[i].length;
seg->start= keyinfo->key_part[i].offset;
if (field->flags & BLOB_FLAG)
{
seg->type=
((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
seg->bit_start= (uint8)(field->pack_length() -
portable_sizeof_char_ptr);
seg->flag= HA_BLOB_PART;
seg->length=0; // Whole blob in unique constraint
}
else
{
seg->type= keyinfo->key_part[i].type;
/* Tell handler if it can do suffic space compression */
if (field->real_type() == MYSQL_TYPE_STRING &&
keyinfo->key_part[i].length > 32)
seg->flag|= HA_SPACE_PACK;
}
if (!(field->flags & NOT_NULL_FLAG))
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
}
}
keyinfo->index_flags= table->file->index_flags(0, 0, 1);
}
}
bzero((char*) &create_info,sizeof(create_info));
create_info.data_file_length= table->in_use->variables.tmp_disk_table_size;
/*
The logic for choosing the record format:
The STATIC_RECORD format is the fastest one, because it's so simple,
so we use this by default for short rows.
BLOCK_RECORD caches both row and data, so this is generally faster than
DYNAMIC_RECORD. The one exception is when we write to tmp table and
want to use keys for duplicate elimination as with BLOCK RECORD
we first write the row, then check for key conflicts and then we have to
delete the row. The cases when this can happen is when there is
a group by and no sum functions or if distinct is used.
*/
{
enum data_file_type file_type= table->no_rows ? NO_RECORD :
(share->reclength < 64 && !share->blob_fields ? STATIC_RECORD :
table->used_for_duplicate_elimination ? DYNAMIC_RECORD : BLOCK_RECORD);
uint create_flags= HA_CREATE_TMP_TABLE | HA_CREATE_INTERNAL_TABLE |
(table->keep_row_order ? HA_PRESERVE_INSERT_ORDER : 0);
if (file_type != NO_RECORD && encrypt_tmp_disk_tables)
{
/* encryption is only supported for BLOCK_RECORD */
file_type= BLOCK_RECORD;
if (table->used_for_duplicate_elimination)
{
/*
sql-layer expect the last column to be stored/restored also
when it's null.
This is probably a bug (that sql-layer doesn't annotate
the column as not-null) but both heap, aria-static, aria-dynamic and
myisam has this property. aria-block_record does not since it
does not store null-columns at all.
Emulate behaviour by making column not-nullable when creating the
table.
*/
uint cols= (uint)(*recinfo-start_recinfo);
start_recinfo[cols-1].null_bit= 0;
}
}
if (unlikely((error= maria_create(share->path.str, file_type, share->keys,
keydefs, (uint) (*recinfo-start_recinfo),
start_recinfo, use_unique, &uniquedef,
&create_info, create_flags))))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
table->db_stat=0;
goto err;
}
}
table->in_use->inc_status_created_tmp_disk_tables();
table->in_use->inc_status_created_tmp_tables();
share->db_record_offset= 1;
table->set_created();
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
#else
/*
Create internal (MyISAM or Maria) temporary table
SYNOPSIS
create_internal_tmp_table()
table Table object that descrimes the table to be created
keyinfo Description of the index (there is always one index)
start_recinfo engine's column descriptions
recinfo INOUT End of engine's column descriptions
options Option bits
DESCRIPTION
Create an internal emporary table according to passed description. The is
assumed to have one unique index or constraint.
The passed array or TMP_ENGINE_COLUMNDEF structures must have this form:
1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
when there are many nullable columns)
2. Table columns
3. One free TMP_ENGINE_COLUMNDEF element (*recinfo points here)
This function may use the free element to create hash column for unique
constraint.
RETURN
FALSE - OK
TRUE - Error ; my_error() has been called.
*/
/* Create internal MyISAM temporary table */
bool create_internal_tmp_table(TABLE *table, KEY *org_keyinfo,
TMP_ENGINE_COLUMNDEF *start_recinfo,
TMP_ENGINE_COLUMNDEF **recinfo,
ulonglong options)
{
int error;
MI_KEYDEF keydef;
MI_UNIQUEDEF uniquedef;
TABLE_SHARE *share= table->s;
DBUG_ENTER("create_internal_tmp_table");
if (share->keys)
{ // Get keys for ni_create
bool using_unique_constraint=0;
HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root,
sizeof(*seg) *
share->user_defined_key_parts);
if (!seg)
goto err;
bzero(seg, sizeof(*seg) * share->user_defined_key_parts);
/*
Note that a similar check is performed during
subquery_types_allow_materialization. See MDEV-7122 for more details as
to why. Whenever this changes, it must be updated there as well, for
all tmp_table engines.
*/
if (keyinfo->key_length > table->file->max_key_length() ||
keyinfo->user_defined_key_parts > table->file->max_key_parts() ||
share->uniques)
{
/* Can't create a key; Make a unique constraint instead of a key */
share->keys= 0;
share->key_parts= share->ext_key_parts= 0;
share->uniques= 1;
using_unique_constraint=1;
bzero((char*) &uniquedef,sizeof(uniquedef));
uniquedef.keysegs=keyinfo->user_defined_key_parts;
uniquedef.seg=seg;
uniquedef.null_are_equal=1;
/* Create extra column for hash value */
bzero((uchar*) *recinfo,sizeof(**recinfo));
(*recinfo)->type= FIELD_CHECK;
(*recinfo)->length=MI_UNIQUE_HASH_LENGTH;
(*recinfo)++;
/* Avoid warnings from valgrind */
bzero(table->record[0]+ share->reclength, MI_UNIQUE_HASH_LENGTH);
bzero(share->default_values+ share->reclength, MI_UNIQUE_HASH_LENGTH);
share->reclength+= MI_UNIQUE_HASH_LENGTH;
}
else
{
/* Create an unique key */
bzero((char*) &keydef,sizeof(keydef));
keydef.flag= ((keyinfo->flags & HA_NOSAME) | HA_BINARY_PACK_KEY |
HA_PACK_KEY);
keydef.keysegs= keyinfo->user_defined_key_parts;
keydef.seg= seg;
}
for (uint i=0; i < keyinfo->user_defined_key_parts ; i++,seg++)
{
Field *field=keyinfo->key_part[i].field;
seg->flag= 0;
seg->language= field->charset()->number;
seg->length= keyinfo->key_part[i].length;
seg->start= keyinfo->key_part[i].offset;
if (field->flags & BLOB_FLAG)
{
seg->type=
((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
seg->bit_start= (uint8)(field->pack_length() - portable_sizeof_char_ptr);
seg->flag= HA_BLOB_PART;
seg->length=0; // Whole blob in unique constraint
}
else
{
seg->type= keyinfo->key_part[i].type;
/* Tell handler if it can do suffic space compression */
if (field->real_type() == MYSQL_TYPE_STRING &&
keyinfo->key_part[i].length > 4)
seg->flag|= HA_SPACE_PACK;
}
if (!(field->flags & NOT_NULL_FLAG))
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
/*
We are using a GROUP BY on something that contains NULL
In this case we have to tell MyISAM that two NULL should
on INSERT be regarded at the same value
*/
if (!using_unique_constraint)
keydef.flag|= HA_NULL_ARE_EQUAL;
}
}
if (share->keys)
keyinfo->index_flags= table->file->index_flags(0, 0, 1);
}
MI_CREATE_INFO create_info;
bzero((char*) &create_info,sizeof(create_info));
create_info.data_file_length= table->in_use->variables.tmp_disk_table_size;
if (unlikely((error= mi_create(share->path.str, share->keys, &keydef,
(uint) (*recinfo-start_recinfo),
start_recinfo,
share->uniques, &uniquedef,
&create_info,
HA_CREATE_TMP_TABLE |
HA_CREATE_INTERNAL_TABLE |
((share->db_create_options &
HA_OPTION_PACK_RECORD) ?
HA_PACK_RECORD : 0)
))))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
table->db_stat=0;
goto err;
}
table->in_use->inc_status_created_tmp_disk_tables();
table->in_use->inc_status_created_tmp_tables();
share->db_record_offset= 1;
table->set_created();
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
#endif /* USE_ARIA_FOR_TMP_TABLES */
/*
If a HEAP table gets full, create a internal table in MyISAM or Maria
and copy all rows to this
In case of error, my_error() or handler::print_error() will be called.
Note that in case of error, table->file->ha_rnd_end() may have been called!
*/
bool
create_internal_tmp_table_from_heap(THD *thd, TABLE *table,
TMP_ENGINE_COLUMNDEF *start_recinfo,
TMP_ENGINE_COLUMNDEF **recinfo,
int error,
bool ignore_last_dupp_key_error,
bool *is_duplicate)
{
TABLE new_table;
TABLE_SHARE share;
const char *save_proc_info;
int write_err= 0;
String tmp_alias;
DBUG_ENTER("create_internal_tmp_table_from_heap");
if (is_duplicate)
*is_duplicate= FALSE;
if (table->s->db_type() != heap_hton || error != HA_ERR_RECORD_FILE_FULL)
{
/*
We don't want this error to be converted to a warning, e.g. in case of
INSERT IGNORE ... SELECT.
*/
table->file->print_error(error, MYF(ME_FATAL));
DBUG_RETURN(1);
}
new_table= *table;
share= *table->s;
new_table.s= &share;
new_table.s->db_plugin= ha_lock_engine(thd, TMP_ENGINE_HTON);
if (unlikely(!(new_table.file= get_new_handler(&share, &new_table.mem_root,
TMP_ENGINE_HTON))))
DBUG_RETURN(1); // End of memory
if (unlikely(new_table.file->set_ha_share_ref(&share.ha_share)))
{
delete new_table.file;
DBUG_RETURN(1);
}
save_proc_info=thd->proc_info;
THD_STAGE_INFO(thd, stage_converting_heap_to_myisam);
new_table.no_rows= table->no_rows;
if (create_internal_tmp_table(&new_table, table->key_info, start_recinfo,
recinfo,
thd->lex->first_select_lex()->options |
thd->variables.option_bits))
goto err2;
if (open_tmp_table(&new_table))
{
TMP_ENGINE_HTON->drop_table(TMP_ENGINE_HTON, new_table.s->path.str);
goto err2;
}
if (table->file->indexes_are_disabled())
new_table.file->ha_disable_indexes(key_map(0), false);
table->file->ha_index_or_rnd_end();
if (table->file->ha_rnd_init_with_error(1))
DBUG_RETURN(1);
if (new_table.no_rows)
new_table.file->extra(HA_EXTRA_NO_ROWS);
else
{
/* update table->file->stats.records */
table->file->info(HA_STATUS_VARIABLE);
new_table.file->ha_start_bulk_insert(table->file->stats.records);
}
/*
copy all old rows from heap table to MyISAM table
This is the only code that uses record[1] to read/write but this
is safe as this is a temporary MyISAM table without timestamp/autoincrement
or partitioning.
*/
while (!table->file->ha_rnd_next(new_table.record[1]))
{
write_err= new_table.file->ha_write_tmp_row(new_table.record[1]);
DBUG_EXECUTE_IF("raise_error", write_err= HA_ERR_FOUND_DUPP_KEY ;);
if (write_err)
goto err;
if (unlikely(thd->check_killed()))
goto err_killed;
}
if (!new_table.no_rows && (write_err= new_table.file->ha_end_bulk_insert()))
goto err;
/* copy row that filled HEAP table */
if (unlikely((write_err=new_table.file->ha_write_tmp_row(table->record[0]))))
{
if (new_table.file->is_fatal_error(write_err, HA_CHECK_DUP) ||
!ignore_last_dupp_key_error)
goto err;
if (is_duplicate)
*is_duplicate= TRUE;
}
else
{
if (is_duplicate)
*is_duplicate= FALSE;
}
/* remove heap table and change to use myisam table */
(void) table->file->ha_rnd_end();
(void) table->file->ha_close(); // This deletes the table !
delete table->file;
table->file=0;
plugin_unlock(0, table->s->db_plugin);
share.db_plugin= my_plugin_lock(0, share.db_plugin);
new_table.s= table->s; // Keep old share
/*
The following work with alias has to be done as new_table.alias() may have
been reallocated and we want to keep the original one.
*/
tmp_alias.move(table->alias);
*table= new_table;
table->alias.move(tmp_alias);
new_table.alias.free();
/* Get the new share */
*table->s= share;
table->file->change_table_ptr(table, table->s);
table->use_all_columns();
if (save_proc_info)
thd_proc_info(thd, (!strcmp(save_proc_info,"Copying to tmp table") ?
"Copying to tmp table on disk" : save_proc_info));
DBUG_RETURN(0);
err:
DBUG_PRINT("error",("Got error: %d",write_err));
table->file->print_error(write_err, MYF(0));
err_killed:
(void) table->file->ha_rnd_end();
(void) new_table.file->drop_table(new_table.s->path.str);
err2:
delete new_table.file;
thd_proc_info(thd, save_proc_info);
table->mem_root= new_table.mem_root;
DBUG_RETURN(1);
}
void
free_tmp_table(THD *thd, TABLE *entry)
{
MEM_ROOT own_root= entry->mem_root;
const char *save_proc_info;
DBUG_ENTER("free_tmp_table");
DBUG_PRINT("enter",("table: %s alias: %s",entry->s->table_name.str,
entry->alias.c_ptr()));
save_proc_info=thd->proc_info;
THD_STAGE_INFO(thd, stage_removing_tmp_table);
if (entry->file && entry->is_created())
{
if (entry->db_stat)
{
/* The table was properly opened in open_tmp_table() */
entry->file->ha_index_or_rnd_end();
entry->file->info(HA_STATUS_VARIABLE);
thd->tmp_tables_size+= (entry->file->stats.data_file_length +
entry->file->stats.index_file_length);
}
/*
This is an internal temporary table, we should not call ha_drop_table()
as it will mark the transaction read/write
*/
DBUG_ASSERT(entry->s->tmp_table == SYSTEM_TMP_TABLE ||
entry->s->tmp_table == INTERNAL_TMP_TABLE);
entry->file->drop_table(entry->s->path.str);
delete entry->file;
entry->file= NULL;
entry->reset_created();
}
/* free blobs */
for (Field **ptr=entry->field ; *ptr ; ptr++)
(*ptr)->free();
if (entry->temp_pool_slot != MY_BIT_NONE)
temp_pool_clear_bit(entry->temp_pool_slot);
plugin_unlock(0, entry->s->db_plugin);
entry->alias.free();
if (entry->pos_in_table_list && entry->pos_in_table_list->table)
{
DBUG_ASSERT(entry->pos_in_table_list->table == entry);
entry->pos_in_table_list->table= NULL;
}
free_root(&own_root, MYF(0)); /* the table is allocated in its own root */
thd_proc_info(thd, save_proc_info);
DBUG_VOID_RETURN;
}
/**
@brief
Set write_func of AGGR_OP object
@param join_tab JOIN_TAB of the corresponding tmp table
@details
Function sets up write_func according to how AGGR_OP object that
is attached to the given join_tab will be used in the query.
*/
void set_postjoin_aggr_write_func(JOIN_TAB *tab)
{
JOIN *join= tab->join;
TABLE *table= tab->table;
AGGR_OP *aggr= tab->aggr;
TMP_TABLE_PARAM *tmp_tbl= tab->tmp_table_param;
DBUG_ASSERT(table && aggr);
if (table->group && tmp_tbl->sum_func_count &&
!tmp_tbl->precomputed_group_by)
{
/*
Note for MyISAM tmp tables: if uniques is true keys won't be
created.
*/
if (table->s->keys && !table->s->have_unique_constraint())
{
DBUG_PRINT("info",("Using end_update"));
aggr->set_write_func(end_update);
}
else
{
DBUG_PRINT("info",("Using end_unique_update"));
aggr->set_write_func(end_unique_update);
}
}
else if (join->sort_and_group && !tmp_tbl->precomputed_group_by &&
!join->sort_and_group_aggr_tab && join->tables_list &&
join->top_join_tab_count)
{
DBUG_PRINT("info",("Using end_write_group"));
aggr->set_write_func(end_write_group);
join->sort_and_group_aggr_tab= tab;
}
else
{
DBUG_PRINT("info",("Using end_write"));
aggr->set_write_func(end_write);
if (tmp_tbl->precomputed_group_by)
{
/*
A preceding call to create_tmp_table in the case when loose
index scan is used guarantees that
TMP_TABLE_PARAM::items_to_copy has enough space for the group
by functions. It is OK here to use memcpy since we copy
Item_sum pointers into an array of Item pointers.
*/
memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count,
join->sum_funcs,
sizeof(Item*)*tmp_tbl->sum_func_count);
tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0;
}
}
}
/**
@details
Rows produced by a join sweep may end up in a temporary table or be sent
to a client. Set the function of the nested loop join algorithm which
handles final fully constructed and matched records.
@param join join to setup the function for.
@return
end_select function to use. This function can't fail.
*/
Next_select_func setup_end_select_func(JOIN *join)
{
TMP_TABLE_PARAM *tmp_tbl= &join->tmp_table_param;
/*
Choose method for presenting result to user. Use end_send_group
if the query requires grouping (has a GROUP BY clause and/or one or
more aggregate functions). Use end_send if the query should not
be grouped.
*/
if (join->sort_and_group && !tmp_tbl->precomputed_group_by)
{
DBUG_PRINT("info",("Using end_send_group"));
return end_send_group;
}
DBUG_PRINT("info",("Using end_send"));
return end_send;
}
/**
Make a join of all tables and write it on socket or to table.
@retval
0 if ok
@retval
1 if error is sent
@retval
-1 if error should be sent
*/
static int
do_select(JOIN *join, Procedure *procedure)
{
int rc= 0;
enum_nested_loop_state error= NESTED_LOOP_OK;
uint top_level_tables= join->exec_join_tab_cnt();
DBUG_ENTER("do_select");
if (join->pushdown_query)
{
/* Select fields are in the temporary table */
join->fields= &join->tmp_fields_list1;
/* Setup HAVING to work with fields in temporary table */
join->set_items_ref_array(join->items1);
/* The storage engine will take care of the group by query result */
int res= join->pushdown_query->execute(join);
if (res)
DBUG_RETURN(res);
if (join->pushdown_query->store_data_in_temp_table)
{
JOIN_TAB *last_tab= join->join_tab + top_level_tables;
last_tab->next_select= end_send;
last_tab->cached_pfs_batch_update= last_tab->pfs_batch_update();
enum_nested_loop_state state= last_tab->aggr->end_send();
if (state >= NESTED_LOOP_OK)
state= sub_select(join, last_tab, true);
if (state < NESTED_LOOP_OK)
res= 1;
if (join->result->send_eof())
res= 1;
}
DBUG_RETURN(res);
}
join->procedure= procedure;
join->duplicate_rows= join->send_records=0;
if (join->only_const_tables() && !join->need_tmp)
{
Next_select_func end_select= setup_end_select_func(join);
/*
HAVING will be checked after processing aggregate functions,
But WHERE should checked here (we alredy have read tables).
Notice that make_join_select() splits all conditions in this case
into two groups exec_const_cond and outer_ref_cond.
If join->table_count == join->const_tables then it is
sufficient to check only the condition pseudo_bits_cond.
*/
DBUG_ASSERT(join->outer_ref_cond == NULL);
if (!join->pseudo_bits_cond || join->pseudo_bits_cond->val_bool())
{
// HAVING will be checked by end_select
error= (*end_select)(join, 0, 0);
if (error >= NESTED_LOOP_OK)
error= (*end_select)(join, 0, 1);
/*
If we don't go through evaluate_join_record(), do the counting
here. join->send_records is increased on success in end_send(),
so we don't touch it here.
*/
join->thd->inc_examined_row_count_fast();
}
else if (join->send_row_on_empty_set())
{
table_map cleared_tables= (table_map) 0;
if (end_select == end_send_group)
{
/*
Was a grouping query but we did not find any rows. In this case
we clear all tables to get null in any referenced fields,
like in case of:
SELECT MAX(a) AS f1, a AS f2 FROM t1 WHERE VALUE(a) IS NOT NULL
*/
clear_tables(join, &cleared_tables);
}
if (join->tmp_table_param.copy_funcs.elements)
copy_fields(&join->tmp_table_param);
if (!join->having || join->having->val_bool())
{
List<Item> *columns_list= (procedure ? &join->procedure_fields_list :
join->fields);
rc= join->result->send_data_with_check(*columns_list,
join->unit, 0) > 0;
}
/*
We have to remove the null markings from the tables as this table
may be part of a sub query that is re-evaluated
*/
if (cleared_tables)
unclear_tables(join, &cleared_tables);
}
/*
An error can happen when evaluating the conds
(the join condition and piece of where clause
relevant to this join table).
*/
if (unlikely(join->thd->is_error()))
error= NESTED_LOOP_ERROR;
}
else
{
DBUG_EXECUTE_IF("show_explain_probe_do_select",
if (dbug_user_var_equals_int(join->thd,
"show_explain_probe_select_id",
join->select_lex->select_number))
dbug_serve_apcs(join->thd, 1);
);
/*
We have to update the cached_pfs_batch_update as
join_tab->select_cond may have changed.
This can happen in case of group by where some sub queries are not
needed anymore. This is checked by main.ps
*/
if (top_level_tables)
join->join_tab[top_level_tables-1].cached_pfs_batch_update=
join->join_tab[top_level_tables-1].pfs_batch_update();
JOIN_TAB *join_tab= join->join_tab +
(join->tables_list ? join->const_tables : 0);
if (join->outer_ref_cond && !join->outer_ref_cond->val_bool())
error= NESTED_LOOP_NO_MORE_ROWS;
else
error= join->first_select(join,join_tab,0);
if (error >= NESTED_LOOP_OK && likely(join->thd->killed != ABORT_QUERY))
error= join->first_select(join,join_tab,1);
}
join->thd->limit_found_rows= join->send_records - join->duplicate_rows;
if (error == NESTED_LOOP_NO_MORE_ROWS ||
unlikely(join->thd->killed == ABORT_QUERY))
error= NESTED_LOOP_OK;
/*
For "order by with limit", we cannot rely on send_records, but need
to use the rowcount read originally into the join_tab applying the
filesort. There cannot be any post-filtering conditions, nor any
following join_tabs in this case, so this rowcount properly represents
the correct number of qualifying rows.
*/
if (join->order)
{
// Save # of found records prior to cleanup
JOIN_TAB *sort_tab;
JOIN_TAB *join_tab= join->join_tab;
uint const_tables= join->const_tables;
// Take record count from first non constant table or from last tmp table
if (join->aggr_tables > 0)
sort_tab= join_tab + join->top_join_tab_count + join->aggr_tables - 1;
else
{
DBUG_ASSERT(!join->only_const_tables());
sort_tab= join_tab + const_tables;
}
if (sort_tab->filesort &&
join->select_options & OPTION_FOUND_ROWS &&
sort_tab->filesort->sortorder &&
sort_tab->filesort->limit != HA_POS_ERROR)
{
join->thd->limit_found_rows= sort_tab->records;
}
}
{
/*
The following will unlock all cursors if the command wasn't an
update command
*/
join->join_free(); // Unlock all cursors
}
if (error == NESTED_LOOP_OK)
{
/*
Sic: this branch works even if rc != 0, e.g. when
send_data above returns an error.
*/
if (unlikely(join->result->send_eof()))
rc= 1; // Don't send error
DBUG_PRINT("info",("%ld records output", (long) join->send_records));
}
else
rc= -1;
#ifndef DBUG_OFF
if (rc)
{
DBUG_PRINT("error",("Error: do_select() failed"));
}
#endif
rc= join->thd->is_error() ? -1 : rc;
DBUG_RETURN(rc);
}
/**
@brief
Instantiates temporary table
@param table Table object that describes the table to be
instantiated
@param keyinfo Description of the index (there is always one index)
@param start_recinfo Column descriptions
@param recinfo INOUT End of column descriptions
@param options Option bits
@details
Creates tmp table and opens it.
@return
FALSE - OK
TRUE - Error
*/
bool instantiate_tmp_table(TABLE *table, KEY *keyinfo,
TMP_ENGINE_COLUMNDEF *start_recinfo,
TMP_ENGINE_COLUMNDEF **recinfo,
ulonglong options)
{
DBUG_ASSERT(table->s->keys == 0 || table->key_info == keyinfo);
DBUG_ASSERT(table->s->keys <= 1);
if (table->s->db_type() == TMP_ENGINE_HTON)
{
/*
If it is not heap (in-memory) table then convert index to unique
constrain.
*/
MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
if (create_internal_tmp_table(table, keyinfo, start_recinfo, recinfo,
options))
return TRUE;
// Make empty record so random data is not written to disk
empty_record(table);
table->status= STATUS_NO_RECORD;
}
if (open_tmp_table(table))
return TRUE;
return FALSE;
}
/**
@brief
Accumulate rows of the result of an aggregation operation in a tmp table
@param join pointer to the structure providing all context info for the query
@param join_tab the JOIN_TAB object to which the operation is attached
@param end_records TRUE <=> all records were accumulated, send them further
@details
This function accumulates records of the aggreagation operation for
the node join_tab from the execution plan in a tmp table. To add a new
record the function calls join_tab->aggr->put_records.
When there is no more records to save, in this
case the end_of_records argument == true, function tells the operation to
send records further by calling aggr->send_records().
When all records are sent this function passes 'end_of_records' signal
further by calling sub_select() with end_of_records argument set to
true. After that aggr->end_send() is called to tell the operation that
it could end internal buffer scan.
@note
This function is not expected to be called when dynamic range scan is
used to scan join_tab because range scans aren't used for tmp tables.
@return
return one of enum_nested_loop_state.
*/
enum_nested_loop_state
sub_select_postjoin_aggr(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
enum_nested_loop_state rc;
AGGR_OP *aggr= join_tab->aggr;
/* This function cannot be called if join_tab has no associated aggregation */
DBUG_ASSERT(aggr != NULL);
DBUG_ENTER("sub_select_aggr_tab");
if (join->thd->killed)
{
/* The user has aborted the execution of the query */
join->thd->send_kill_message();
DBUG_RETURN(NESTED_LOOP_KILLED);
}
if (end_of_records)
{
rc= aggr->end_send();
if (rc >= NESTED_LOOP_OK)
rc= sub_select(join, join_tab, end_of_records);
DBUG_RETURN(rc);
}
rc= aggr->put_record();
DBUG_RETURN(rc);
}
/*
Fill the join buffer with partial records, retrieve all full matches for
them
SYNOPSIS
sub_select_cache()
join pointer to the structure providing all context info for the
query
join_tab the first next table of the execution plan to be retrieved
end_records true when we need to perform final steps of the retrieval
DESCRIPTION
For a given table Ti= join_tab from the sequence of tables of the chosen
execution plan T1,...,Ti,...,Tn the function just put the partial record
t1,...,t[i-1] into the join buffer associated with table Ti unless this
is the last record added into the buffer. In this case, the function
additionally finds all matching full records for all partial
records accumulated in the buffer, after which it cleans the buffer up.
If a partial join record t1,...,ti is extended utilizing a dynamic
range scan then it is not put into the join buffer. Rather all matching
records are found for it at once by the function sub_select.
NOTES
The function implements the algorithmic schema for both Blocked Nested
Loop Join and Batched Key Access Join. The difference can be seen only at
the level of of the implementation of the put_record and join_records
virtual methods for the cache object associated with the join_tab.
The put_record method accumulates records in the cache, while the
join_records method builds all matching join records and send them into
the output stream.
RETURN
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/
enum_nested_loop_state
sub_select_cache(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
enum_nested_loop_state rc;
JOIN_CACHE *cache= join_tab->cache;
int err;
DBUG_ENTER("sub_select_cache");
/*
This function cannot be called if join_tab has no associated join
buffer
*/
DBUG_ASSERT(cache != NULL);
join_tab->cache->reset_join(join);
if (end_of_records)
{
rc= cache->join_records(FALSE);
if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS ||
rc == NESTED_LOOP_QUERY_LIMIT)
rc= sub_select(join, join_tab, end_of_records);
DBUG_RETURN(rc);
}
if (unlikely(join->thd->check_killed()))
{
/* The user has aborted the execution of the query */
DBUG_RETURN(NESTED_LOOP_KILLED);
}
join_tab->jbuf_loops_tracker->on_scan_init();
if (!(err= test_if_use_dynamic_range_scan(join_tab)))
{
if (!cache->put_record())
DBUG_RETURN(NESTED_LOOP_OK);
/*
We has decided that after the record we've just put into the buffer
won't add any more records. Now try to find all the matching
extensions for all records in the buffer.
*/
rc= cache->join_records(FALSE);
DBUG_RETURN(rc);
}
if (err < 0)
DBUG_RETURN(NESTED_LOOP_ERROR);
/*
TODO: Check whether we really need the call below and we can't do
without it. If it's not the case remove it.
*/
rc= cache->join_records(TRUE);
if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS ||
rc == NESTED_LOOP_QUERY_LIMIT)
rc= sub_select(join, join_tab, end_of_records);
DBUG_RETURN(rc);
}
/**
Retrieve records ends with a given beginning from the result of a join.
For a given partial join record consisting of records from the tables
preceding the table join_tab in the execution plan, the function
retrieves all matching full records from the result set and
send them to the result set stream.
@note
The function effectively implements the final (n-k) nested loops
of nested loops join algorithm, where k is the ordinal number of
the join_tab table and n is the total number of tables in the join query.
It performs nested loops joins with all conjunctive predicates from
the where condition pushed as low to the tables as possible.
E.g. for the query
@code
SELECT * FROM t1,t2,t3
WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9
@endcode
the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1,
given the selected plan prescribes to nest retrievals of the
joined tables in the following order: t1,t2,t3.
A pushed down predicate are attached to the table which it pushed to,
at the field join_tab->select_cond.
When executing a nested loop of level k the function runs through
the rows of 'join_tab' and for each row checks the pushed condition
attached to the table.
If it is false the function moves to the next row of the
table. If the condition is true the function recursively executes (n-k-1)
remaining embedded nested loops.
The situation becomes more complicated if outer joins are involved in
the execution plan. In this case the pushed down predicates can be
checked only at certain conditions.
Suppose for the query
@code
SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a
WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL)
@endcode
the optimizer has chosen a plan with the table order t1,t2,t3.
The predicate P1=t1>2 will be pushed down to the table t1, while the
predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table
t2. But the second predicate can not be unconditionally tested right
after a row from t2 has been read. This can be done only after the
first row with t3.a=t1.a has been encountered.
Thus, the second predicate P2 is supplied with a guarded value that are
stored in the field 'found' of the first inner table for the outer join
(table t2). When the first row with t3.a=t1.a for the current row
of table t1 appears, the value becomes true. For now on the predicate
is evaluated immediately after the row of table t2 has been read.
When the first row with t3.a=t1.a has been encountered all
conditions attached to the inner tables t2,t3 must be evaluated.
Only when all of them are true the row is sent to the output stream.
If not, the function returns to the lowest nest level that has a false
attached condition.
The predicates from on expressions are also pushed down. If in the
the above example the on expression were (t3.a=t1.a AND t2.a=t1.a),
then t1.a=t2.a would be pushed down to table t2, and without any
guard.
If after the run through all rows of table t2, the first inner table
for the outer join operation, it turns out that no matches are
found for the current row of t1, then current row from table t1
is complemented by nulls for t2 and t3. Then the pushed down predicates
are checked for the composed row almost in the same way as it had
been done for the first row with a match. The only difference is
the predicates from on expressions are not checked.
@par
@b IMPLEMENTATION
@par
The function forms output rows for a current partial join of k
tables tables recursively.
For each partial join record ending with a certain row from
join_tab it calls sub_select that builds all possible matching
tails from the result set.
To be able check predicates conditionally items of the class
Item_func_trig_cond are employed.
An object of this class is constructed from an item of class COND
and a pointer to a guarding boolean variable.
When the value of the guard variable is true the value of the object
is the same as the value of the predicate, otherwise it's just returns
true.
To carry out a return to a nested loop level of join table t the pointer
to t is remembered in the field 'return_rtab' of the join structure.
Consider the following query:
@code
SELECT * FROM t1,
LEFT JOIN
(t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a)
ON t4.a=t2.a
WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL)
@endcode
Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5
and suppose for a given joined rows from tables t1,t2,t3 there are
no rows in the result set yet.
When first row from t5 that satisfies the on condition
t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL
becomes 'activated', as well the predicate t4.a=t2.a. But
the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until
t4.a=t2.a becomes true.
In order not to re-evaluate the predicates that were already evaluated
as attached pushed down predicates, a pointer to the the first
most inner unmatched table is maintained in join_tab->first_unmatched.
Thus, when the first row from t5 with t5.a=t3.a is found
this pointer for t5 is changed from t4 to t2.
@par
@b STRUCTURE @b NOTES
@par
join_tab->first_unmatched points always backwards to the first inner
table of the embedding nested join, if any.
@param join pointer to the structure providing all context info for
the query
@param join_tab the first next table of the execution plan to be retrieved
@param end_records true when we need to perform final steps of retrival
@return
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/
enum_nested_loop_state
sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
{
int error;
enum_nested_loop_state rc;
DBUG_ENTER("sub_select");
if (join_tab->split_derived_to_update && !end_of_records)
{
table_map tab_map= join_tab->split_derived_to_update;
for (uint i= 0; tab_map; i++, tab_map>>= 1)
{
if (tab_map & 1)
join->map2table[i]->preread_init_done= false;
}
}
/* Restore state if mark_as_null_row() have been called */
if (join_tab->last_inner)
{
JOIN_TAB *last_inner_tab= join_tab->last_inner;
for (JOIN_TAB *jt= join_tab; jt <= last_inner_tab; jt++)
jt->table->null_row= 0;
}
else
join_tab->table->null_row=0;
if (end_of_records)
{
enum_nested_loop_state nls=
(*join_tab->next_select)(join,join_tab+1,end_of_records);
DBUG_RETURN(nls);
}
join_tab->tracker->r_scans++;
rc= NESTED_LOOP_OK;
for (SJ_TMP_TABLE *flush_dups_table= join_tab->flush_weedout_table;
flush_dups_table;
flush_dups_table= flush_dups_table->next_flush_table)
{
flush_dups_table->sj_weedout_delete_rows();
}
if (!join_tab->preread_init_done && join_tab->preread_init())
DBUG_RETURN(NESTED_LOOP_ERROR);
if (unlikely(join_tab->rowid_filter))
{
if (unlikely(join_tab->need_to_build_rowid_filter))
{
if (join_tab->build_range_rowid_filter())
DBUG_RETURN(NESTED_LOOP_ERROR);
/*
We have to check join_tab->rowid_filter again as the above
function may have cleared it in case of errors.
*/
if (join_tab->rowid_filter && join_tab->rowid_filter->is_empty())
rc= NESTED_LOOP_NO_MORE_ROWS;
}
else if (join_tab->rowid_filter->is_empty())
rc= NESTED_LOOP_NO_MORE_ROWS;
}
join->return_tab= join_tab;
if (join_tab->last_inner)
{
/* join_tab is the first inner table for an outer join operation. */
/* Set initial state of guard variables for this table.*/
join_tab->found=0;
join_tab->not_null_compl= 1;
/* Set first_unmatched for the last inner table of this group */
join_tab->last_inner->first_unmatched= join_tab;
if (join_tab->on_precond && !join_tab->on_precond->val_bool())
rc= NESTED_LOOP_NO_MORE_ROWS;
}
join->thd->get_stmt_da()->reset_current_row_for_warning(1);
if (rc != NESTED_LOOP_NO_MORE_ROWS &&
(rc= join_tab_execution_startup(join_tab)) < 0)
DBUG_RETURN(rc);
if (join_tab->loosescan_match_tab)
join_tab->loosescan_match_tab->found_match= FALSE;
DBUG_ASSERT(join_tab->cached_pfs_batch_update == join_tab->pfs_batch_update());
if (join_tab->cached_pfs_batch_update)
join_tab->table->file->start_psi_batch_mode();
if (rc != NESTED_LOOP_NO_MORE_ROWS)
{
error= (*join_tab->read_first_record)(join_tab);
if (!error && join_tab->keep_current_rowid)
join_tab->table->file->position(join_tab->table->record[0]);
rc= evaluate_join_record(join, join_tab, error);
}
bool skip_over= FALSE;
READ_RECORD *info= &join_tab->read_record;
while (rc == NESTED_LOOP_OK && join->return_tab >= join_tab)
{
if (join_tab->loosescan_match_tab &&
join_tab->loosescan_match_tab->found_match)
{
KEY *key= join_tab->table->key_info + join_tab->loosescan_key;
key_copy(join_tab->loosescan_buf, join_tab->table->record[0], key,
join_tab->loosescan_key_len);
skip_over= TRUE;
}
error= info->read_record();
if (skip_over && likely(!error))
{
if (!key_cmp(join_tab->table->key_info[join_tab->loosescan_key].key_part,
join_tab->loosescan_buf, join_tab->loosescan_key_len))
{
/*
This is the LooseScan action: skip over records with the same key
value if we already had a match for them.
*/
continue;
}
join_tab->loosescan_match_tab->found_match= FALSE;
skip_over= FALSE;
}
if (join_tab->keep_current_rowid && likely(!error))
join_tab->table->file->position(join_tab->table->record[0]);
rc= evaluate_join_record(join, join_tab, error);
}
if (rc == NESTED_LOOP_NO_MORE_ROWS)
{
if (join_tab->last_inner && !join_tab->found)
{
rc= evaluate_null_complemented_join_record(join, join_tab);
if (rc == NESTED_LOOP_NO_MORE_ROWS)
rc= NESTED_LOOP_OK;
}
else
rc= NESTED_LOOP_OK;
}
if (join_tab->cached_pfs_batch_update)
join_tab->table->file->end_psi_batch_mode();
DBUG_RETURN(rc);
}
/**
@brief Process one row of the nested loop join.
This function will evaluate parts of WHERE/ON clauses that are
applicable to the partial row on hand and in case of success
submit this row to the next level of the nested loop.
@param join - The join object
@param join_tab - The most inner join_tab being processed
@param error > 0: Error, terminate processing
= 0: (Partial) row is available
< 0: No more rows available at this level
@return Nested loop state (Ok, No_more_rows, Error, Killed)
*/
static enum_nested_loop_state
evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
int error)
{
bool shortcut_for_distinct= join_tab->shortcut_for_distinct;
ha_rows found_records=join->found_records;
COND *select_cond= join_tab->select_cond;
bool select_cond_result= TRUE;
DBUG_ENTER("evaluate_join_record");
DBUG_PRINT("enter",
("evaluate_join_record join: %p join_tab: %p "
"cond: %p abort: %d alias %s",
join, join_tab, select_cond, error,
join_tab->table->alias.ptr()));
if (error > 0 || unlikely(join->thd->is_error())) // Fatal error
DBUG_RETURN(NESTED_LOOP_ERROR);
if (error < 0)
DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
if (unlikely(join->thd->check_killed())) // Aborted by user
{
DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
}
join_tab->tracker->r_rows++;
if (select_cond)
{
select_cond_result= MY_TEST(select_cond->val_bool());
/* check for errors evaluating the condition */
if (unlikely(join->thd->is_error()))
DBUG_RETURN(NESTED_LOOP_ERROR);
}
if (select_cond_result)
{
/*
There is no select condition or the attached pushed down
condition is true => a match is found.
*/
join_tab->tracker->r_rows_after_where++;
bool found= 1;
while (join_tab->first_unmatched && found)
{
/*
The while condition is always false if join_tab is not
the last inner join table of an outer join operation.
*/
JOIN_TAB *first_unmatched= join_tab->first_unmatched;
/*
Mark that a match for current outer table is found.
This activates push down conditional predicates attached
to the all inner tables of the outer join.
*/
first_unmatched->found= 1;
for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
{
/*
Check whether 'not exists' optimization can be used here.
If tab->table->reginfo.not_exists_optimize is set to true
then WHERE contains a conjunctive predicate IS NULL over
a non-nullable field of tab. When activated this predicate
will filter out all records with matches for the left part
of the outer join whose inner tables start from the
first_unmatched table and include table tab. To safely use
'not exists' optimization we have to check that the
IS NULL predicate is really activated, i.e. all guards
that wrap it are in the 'open' state.
*/
bool not_exists_opt_is_applicable=
tab->table->reginfo.not_exists_optimize;
for (JOIN_TAB *first_upper= first_unmatched->first_upper;
not_exists_opt_is_applicable && first_upper;
first_upper= first_upper->first_upper)
{
if (!first_upper->found)
not_exists_opt_is_applicable= false;
}
/* Check all predicates that has just been activated. */
/*
Actually all predicates non-guarded by first_unmatched->found
will be re-evaluated again. It could be fixed, but, probably,
it's not worth doing now.
*/
if (tab->select_cond)
{
const longlong res= tab->select_cond->val_bool();
if (join->thd->is_error())
DBUG_RETURN(NESTED_LOOP_ERROR);
if (!res)
{
/* The condition attached to table tab is false */
if (tab == join_tab)
{
found= 0;
if (not_exists_opt_is_applicable)
DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
}
else
{
/*
Set a return point if rejected predicate is attached
not to the last table of the current nest level.
*/
join->return_tab= tab;
if (not_exists_opt_is_applicable)
DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
else
DBUG_RETURN(NESTED_LOOP_OK);
}
}
}
}
/*
Check whether join_tab is not the last inner table
for another embedding outer join.
*/
if ((first_unmatched= first_unmatched->first_upper) &&
first_unmatched->last_inner != join_tab)
first_unmatched= 0;
join_tab->first_unmatched= first_unmatched;
}
JOIN_TAB *return_tab= join->return_tab;
join_tab->found_match= TRUE;
if (join_tab->check_weed_out_table && found)
{
int res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd);
DBUG_PRINT("info", ("weedout_check: %d", res));
if (res == -1)
DBUG_RETURN(NESTED_LOOP_ERROR);
else if (res == 1)
found= FALSE;
}
else if (join_tab->do_firstmatch)
{
/*
We should return to the join_tab->do_firstmatch after we have
enumerated all the suffixes for current prefix row combination
*/
return_tab= join_tab->do_firstmatch;
}
/*
It was not just a return to lower loop level when one
of the newly activated predicates is evaluated as false
(See above join->return_tab= tab).
*/
join->thd->inc_examined_row_count_fast();
DBUG_PRINT("counts", ("examined_rows: %llu found: %d",
(ulonglong) join->thd->m_examined_row_count, (int) found));
if (found)
{
enum enum_nested_loop_state rc;
/* A match from join_tab is found for the current partial join. */
rc= (*join_tab->next_select)(join, join_tab+1, 0);
join->thd->get_stmt_da()->inc_current_row_for_warning();
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
DBUG_RETURN(rc);
if (return_tab < join->return_tab)
join->return_tab= return_tab;
/* check for errors evaluating the condition */
if (unlikely(join->thd->is_error()))
DBUG_RETURN(NESTED_LOOP_ERROR);
if (join->return_tab < join_tab)
DBUG_RETURN(NESTED_LOOP_OK);
/*
Test if this was a SELECT DISTINCT query on a table that
was not in the field list; In this case we can abort if
we found a row, as no new rows can be added to the result.
*/
if (shortcut_for_distinct && found_records != join->found_records)
DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
DBUG_RETURN(NESTED_LOOP_OK);
}
}
else
{
/*
The condition pushed down to the table join_tab rejects all rows
with the beginning coinciding with the current partial join.
*/
join->thd->inc_examined_row_count_fast();
}
join->thd->get_stmt_da()->inc_current_row_for_warning();
join_tab->read_record.unlock_row(join_tab);
DBUG_RETURN(NESTED_LOOP_OK);
}
/**
@details
Construct a NULL complimented partial join record and feed it to the next
level of the nested loop. This function is used in case we have
an OUTER join and no matching record was found.
*/
static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab)
{
/*
The table join_tab is the first inner table of a outer join operation
and no matches has been found for the current outer row.
*/
JOIN_TAB *last_inner_tab= join_tab->last_inner;
/* Cache variables for faster loop */
COND *select_cond;
for ( ; join_tab <= last_inner_tab ; join_tab++)
{
/* Change the the values of guard predicate variables. */
join_tab->found= 1;
join_tab->not_null_compl= 0;
/* The outer row is complemented by nulls for each inner tables */
restore_record(join_tab->table,s->default_values); // Make empty record
mark_as_null_row(join_tab->table); // For group by without error
select_cond= join_tab->select_cond;
/* Check all attached conditions for inner table rows. */
if (select_cond && !select_cond->val_bool())
return NESTED_LOOP_OK;
}
join_tab--;
/*
The row complemented by nulls might be the first row
of embedding outer joins.
If so, perform the same actions as in the code
for the first regular outer join row above.
*/
for ( ; ; )
{
JOIN_TAB *first_unmatched= join_tab->first_unmatched;
if ((first_unmatched= first_unmatched->first_upper) &&
first_unmatched->last_inner != join_tab)
first_unmatched= 0;
join_tab->first_unmatched= first_unmatched;
if (!first_unmatched)
break;
first_unmatched->found= 1;
for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
{
if (tab->select_cond && !tab->select_cond->val_bool())
{
join->return_tab= tab;
return NESTED_LOOP_OK;
}
}
}
/*
The row complemented by nulls satisfies all conditions
attached to inner tables.
*/
if (join_tab->check_weed_out_table)
{
int res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd);
if (res == -1)
return NESTED_LOOP_ERROR;
else if (res == 1)
return NESTED_LOOP_OK;
}
else if (join_tab->do_firstmatch)
{
/*
We should return to the join_tab->do_firstmatch after we have
enumerated all the suffixes for current prefix row combination
*/
if (join_tab->do_firstmatch < join->return_tab)
join->return_tab= join_tab->do_firstmatch;
}
/*
Send the row complemented by nulls to be joined with the
remaining tables.
*/
return (*join_tab->next_select)(join, join_tab+1, 0);
}
/*****************************************************************************
The different ways to read a record
Returns -1 if row was not found, 0 if row was found and 1 on errors
*****************************************************************************/
/** Help function when we get some an error from the table handler. */
int report_error(TABLE *table, int error)
{
if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND)
{
table->status= STATUS_GARBAGE;
return -1; // key not found; ok
}
/*
Locking reads can legally return also these errors, do not
print them to the .err log
*/
if (error != HA_ERR_LOCK_DEADLOCK && error != HA_ERR_LOCK_WAIT_TIMEOUT
&& error != HA_ERR_TABLE_DEF_CHANGED && !table->in_use->killed)
sql_print_error("Got error %d when reading table '%s'",
error, table->s->path.str);
table->file->print_error(error,MYF(0));
return 1;
}
int safe_index_read(JOIN_TAB *tab)
{
int error;
TABLE *table= tab->table;
if (unlikely((error=
table->file->ha_index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT))))
return report_error(table, error);
return 0;
}
/**
Reads content of constant table
@param tab table
@param pos position of table in query plan
@retval 0 ok, one row was found or one NULL-complemented row was created
@retval -1 ok, no row was found and no NULL-complemented row was created
@retval 1 error
*/
static int
join_read_const_table(THD *thd, JOIN_TAB *tab, POSITION *pos)
{
int error;
TABLE_LIST *tbl;
DBUG_ENTER("join_read_const_table");
TABLE *table=tab->table;
table->const_table=1;
table->null_row=0;
table->status=STATUS_NO_RECORD;
if (tab->table->pos_in_table_list->is_materialized_derived() &&
!tab->table->pos_in_table_list->fill_me)
{
DBUG_ASSERT(0);
//TODO: don't get here at all
/*
Skip materialized derived tables/views as they temporary table is not
opened yet.
*/
DBUG_RETURN(0);
}
else if (tab->table->pos_in_table_list->jtbm_subselect &&
tab->table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
{
/* Row will not be found */
int res;
if (tab->table->pos_in_table_list->jtbm_subselect->jtbm_const_row_found)
res= 0;
else
res= -1;
DBUG_RETURN(res);
}
else if (tab->type == JT_SYSTEM)
{
if (unlikely((error=join_read_system(tab))))
{ // Info for DESCRIBE
tab->info= ET_CONST_ROW_NOT_FOUND;
/* Mark for EXPLAIN that the row was not found */
pos->records_read= pos->records_out= 0.0;
pos->ref_depend_map= 0;
if (!table->pos_in_table_list->outer_join || error > 0)
DBUG_RETURN(error);
}
/*
The optimizer trust the engine that when stats.records is 0, there
was no found rows
*/
DBUG_ASSERT(table->file->stats.records > 0 || error);
}
else
{
error=join_read_const(tab);
if (unlikely(error))
{
tab->info= ET_UNIQUE_ROW_NOT_FOUND;
/* Mark for EXPLAIN that the row was not found */
pos->records_read= pos->records_out= 0.0;
pos->ref_depend_map= 0;
if (!table->pos_in_table_list->outer_join || error > 0)
DBUG_RETURN(error);
}
}
/*
Evaluate an on-expression only if it is not considered expensive.
This mainly prevents executing subqueries in optimization phase.
This is necessary since proper setup for such execution has not been
done at this stage.
*/
if (*tab->on_expr_ref && !table->null_row &&
!(*tab->on_expr_ref)->is_expensive())
{
#if !defined(DBUG_OFF) && defined(NOT_USING_ITEM_EQUAL)
/*
This test could be very useful to find bugs in the optimizer
where we would call this function with an expression that can't be
evaluated yet. We can't have this enabled by default as long as
have items like Item_equal, that doesn't report they are const but
they can still be called even if they contain not const items.
*/
(*tab->on_expr_ref)->update_used_tables();
DBUG_ASSERT((*tab->on_expr_ref)->const_item());
#endif
if ((table->null_row= MY_TEST((*tab->on_expr_ref)->val_bool() == 0)))
mark_as_null_row(table);
}
if (!table->null_row && ! tab->join->mixed_implicit_grouping)
table->maybe_null= 0;
{
JOIN *join= tab->join;
List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
/* Check appearance of new constant items in Item_equal objects */
if (join->conds)
update_const_equal_items(thd, join->conds, tab, TRUE);
while ((tbl= ti++))
{
TABLE_LIST *embedded;
TABLE_LIST *embedding= tbl;
do
{
embedded= embedding;
if (embedded->on_expr)
update_const_equal_items(thd, embedded->on_expr, tab, TRUE);
embedding= embedded->embedding;
}
while (embedding &&
embedding->nested_join->join_list.head() == embedded);
}
}
DBUG_RETURN(0);
}
/**
Read a constant table when there is at most one matching row, using a table
scan.
@param tab Table to read
@retval 0 Row was found
@retval -1 Row was not found
@retval 1 Got an error (other than row not found) during read
*/
static int
join_read_system(JOIN_TAB *tab)
{
TABLE *table= tab->table;
int error;
if (table->status & STATUS_GARBAGE) // If first read
{
if (unlikely((error=
table->file->ha_read_first_row(table->record[0],
table->s->primary_key))))
{
if (error != HA_ERR_END_OF_FILE)
return report_error(table, error);
table->const_table= 1;
mark_as_null_row(tab->table);
empty_record(table); // Make empty record
return -1;
}
store_record(table,record[1]);
}
else if (!table->status) // Only happens with left join
restore_record(table,record[1]); // restore old record
table->null_row=0;
return table->status ? -1 : 0;
}
/**
Read a table when there is at most one matching row.
@param tab Table to read
@retval 0 Row was found
@retval -1 Row was not found
@retval 1 Got an error (other than row not found) during read
*/
static int
join_read_const(JOIN_TAB *tab)
{
int error;
TABLE *table= tab->table;
if (table->status & STATUS_GARBAGE) // If first read
{
table->status= 0;
if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
error=HA_ERR_KEY_NOT_FOUND;
else
{
handler *file= table->file;
if (table->covering_keys.is_set(tab->ref.key) && !table->no_keyread &&
(int) table->reginfo.lock_type <= (int) TL_READ_HIGH_PRIORITY)
{
file->ha_start_keyread(tab->ref.key);
/* This is probably needed for analyze table */
tab->index= tab->ref.key;
}
error= file->
ha_index_read_idx_map(table->record[0],tab->ref.key,
(uchar*) tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT);
file->ha_end_keyread();
}
if (unlikely(error))
{
table->status= STATUS_NOT_FOUND;
mark_as_null_row(tab->table);
empty_record(table);
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return report_error(table, error);
return -1;
}
store_record(table,record[1]);
}
else if (!(table->status & ~STATUS_NULL_ROW)) // Only happens with left join
{
table->status=0;
restore_record(table,record[1]); // restore old record
}
table->null_row=0;
return table->status ? -1 : 0;
}
/*
eq_ref access method implementation: "read_first" function
SYNOPSIS
join_read_key()
tab JOIN_TAB of the accessed table
DESCRIPTION
This is "read_fist" function for the eq_ref access method. The difference
from ref access function is that is that it has a one-element lookup
cache (see cmp_buffer_with_ref)
RETURN
0 - Ok
-1 - Row not found
1 - Error
*/
static int
join_read_key(JOIN_TAB *tab)
{
return join_read_key2(tab->join->thd, tab, tab->table, &tab->ref);
}
/*
eq_ref access handler but generalized a bit to support TABLE and TABLE_REF
not from the join_tab. See join_read_key for detailed synopsis.
*/
int join_read_key2(THD *thd, JOIN_TAB *tab, TABLE *table, TABLE_REF *table_ref)
{
int error;
if (!table->file->inited)
{
error= table->file->ha_index_init(table_ref->key, tab ? tab->sorted : TRUE);
if (unlikely(error))
{
(void) report_error(table, error);
return 1;
}
}
/*
The following is needed when one makes ref (or eq_ref) access from row
comparisons: one must call row->bring_value() to get the new values.
*/
if (tab && tab->bush_children)
{
TABLE_LIST *emb_sj_nest= tab->bush_children->start->emb_sj_nest;
emb_sj_nest->sj_subq_pred->left_exp()->bring_value();
}
/* TODO: Why don't we do "Late NULLs Filtering" here? */
if (cmp_buffer_with_ref(thd, table, table_ref) ||
(table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW)))
{
if (table_ref->key_err)
{
table->status=STATUS_NOT_FOUND;
return -1;
}
/*
Moving away from the current record. Unlock the row
in the handler if it did not match the partial WHERE.
*/
if (tab && tab->ref.has_record && tab->ref.use_count == 0)
{
tab->read_record.table->file->unlock_row();
table_ref->has_record= FALSE;
}
error=table->file->ha_index_read_map(table->record[0],
table_ref->key_buff,
make_prev_keypart_map(table_ref->key_parts),
HA_READ_KEY_EXACT);
if (unlikely(error) &&
error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return report_error(table, error);
if (likely(!error))
{
table_ref->has_record= TRUE;
table_ref->use_count= 1;
}
}
else if (table->status == 0)
{
DBUG_ASSERT(table_ref->has_record);
table_ref->use_count++;
}
table->null_row=0;
return table->status ? -1 : 0;
}
/**
Since join_read_key may buffer a record, do not unlock
it if it was not used in this invocation of join_read_key().
Only count locks, thus remembering if the record was left unused,
and unlock already when pruning the current value of
TABLE_REF buffer.
@sa join_read_key()
*/
static void
join_read_key_unlock_row(st_join_table *tab)
{
DBUG_ASSERT(tab->ref.use_count);
if (tab->ref.use_count)
tab->ref.use_count--;
}
/**
Rows from const tables are read once but potentially used
multiple times during execution of a query.
Ensure such rows are never unlocked during query execution.
*/
void
join_const_unlock_row(JOIN_TAB *tab)
{
DBUG_ASSERT(tab->type == JT_CONST);
}
/*
ref access method implementation: "read_first" function
SYNOPSIS
join_read_always_key()
tab JOIN_TAB of the accessed table
DESCRIPTION
This is "read_fist" function for the "ref" access method.
The functon must leave the index initialized when it returns.
ref_or_null access implementation depends on that.
RETURN
0 - Ok
-1 - Row not found
1 - Error
*/
static int
join_read_always_key(JOIN_TAB *tab)
{
int error;
TABLE *table= tab->table;
/* Initialize the index first */
if (!table->file->inited)
{
if (unlikely((error= table->file->ha_index_init(tab->ref.key,
tab->sorted))))
{
(void) report_error(table, error);
return 1;
}
}
if (unlikely(cp_buffer_from_ref(tab->join->thd, table, &tab->ref)))
return -1;
if (unlikely((error=
table->file->prepare_index_key_scan_map(tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts)))))
{
report_error(table,error);
return -1;
}
if ((error= table->file->ha_index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT)))
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return report_error(table, error);
return -1; /* purecov: inspected */
}
return 0;
}
/**
This function is used when optimizing away ORDER BY in
SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC.
*/
static int
join_read_last_key(JOIN_TAB *tab)
{
int error;
TABLE *table= tab->table;
if (!table->file->inited &&
unlikely((error= table->file->ha_index_init(tab->ref.key, tab->sorted))))
{
(void) report_error(table, error);
return 1;
}
if (unlikely(cp_buffer_from_ref(tab->join->thd, table, &tab->ref)))
return -1;
if (unlikely((error=
table->file->prepare_index_key_scan_map(tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts)))) )
{
report_error(table,error);
return -1;
}
if (unlikely((error=
table->file->ha_index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_PREFIX_LAST))))
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return report_error(table, error);
return -1; /* purecov: inspected */
}
return 0;
}
/* ARGSUSED */
static int
join_no_more_records(READ_RECORD *info __attribute__((unused)))
{
return -1;
}
static int
join_read_next_same(READ_RECORD *info)
{
int error;
TABLE *table= info->table;
JOIN_TAB *tab=table->reginfo.join_tab;
if (unlikely((error= table->file->ha_index_next_same(table->record[0],
tab->ref.key_buff,
tab->ref.key_length))))
{
if (error != HA_ERR_END_OF_FILE)
return report_error(table, error);
table->status= STATUS_GARBAGE;
return -1;
}
return 0;
}
static int
join_read_prev_same(READ_RECORD *info)
{
int error;
TABLE *table= info->table;
JOIN_TAB *tab=table->reginfo.join_tab;
if (unlikely((error= table->file->ha_index_prev(table->record[0]))))
return report_error(table, error);
if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key,
tab->ref.key_length))
{
table->status=STATUS_NOT_FOUND;
error= -1;
}
return error;
}
static int
join_init_quick_read_record(JOIN_TAB *tab)
{
quick_select_return res= test_if_quick_select(tab);
if (res == SQL_SELECT::ERROR)
return 1; /* Fatal error */
if (res == SQL_SELECT::IMPOSSIBLE_RANGE)
return -1; /* No possible records */
/*
Proceed to read rows. If we've created a quick select, use it, otherwise
do a full scan.
*/
return join_init_read_record(tab);
}
int read_first_record_seq(JOIN_TAB *tab)
{
if (unlikely(tab->read_record.table->file->ha_rnd_init_with_error(1)))
return 1;
return tab->read_record.read_record();
}
/*
@brief
Create a new (dynamic) quick select.
*/
static quick_select_return
test_if_quick_select(JOIN_TAB *tab)
{
DBUG_EXECUTE_IF("show_explain_probe_test_if_quick_select",
if (dbug_user_var_equals_int(tab->join->thd,
"show_explain_probe_select_id",
tab->join->select_lex->select_number))
dbug_serve_apcs(tab->join->thd, 1);
);
delete tab->select->quick;
tab->select->quick=0;
if (tab->table->file->inited != handler::NONE)
tab->table->file->ha_index_or_rnd_end();
quick_select_return res;
Json_writer_object wrapper(tab->join->thd);
Json_writer_object range_fer(tab->join->thd,
"range-checked-for-each-record");
range_fer.add_select_number(tab->join->select_lex->select_number);
range_fer.add("loop", tab->join->explain->time_tracker.get_loops());
Json_writer_array rows_est(tab->join->thd, "rows_estimation");
res= tab->select->test_quick_select(tab->join->thd, tab->keys,
(table_map) 0, HA_POS_ERROR, 0,
FALSE, /*remove where parts*/FALSE,
FALSE,
/* no unusable key notes */
Item_func::BITMAP_NONE);
if (tab->explain_plan && tab->explain_plan->range_checked_fer)
tab->explain_plan->range_checked_fer->collect_data(tab->select->quick);
return res;
}
/*
@return
1 - Yes, use dynamically built range
0 - No, don't use dynamic range (but there's no error)
-1 - Fatal error
*/
static
int test_if_use_dynamic_range_scan(JOIN_TAB *join_tab)
{
if (unlikely(join_tab->use_quick == 2))
{
quick_select_return res= test_if_quick_select(join_tab);
if (res == SQL_SELECT::ERROR)
return -1;
else
{
/* Both OK and IMPOSSIBLE_RANGE go here */
return join_tab->select->quick ? 1 : 0;
}
}
else
return 0;
}
int join_init_read_record(JOIN_TAB *tab)
{
bool need_unpacking= FALSE;
JOIN *join= tab->join;
/*
Note: the query plan tree for the below operations is constructed in
save_agg_explain_data.
*/
if (tab->distinct && tab->remove_duplicates()) // Remove duplicates.
return 1;
if (join->top_join_tab_count != join->const_tables)
{
TABLE_LIST *tbl= tab->table->pos_in_table_list;
need_unpacking= tbl ? tbl->is_sjm_scan_table() : FALSE;
}
if (tab->need_to_build_rowid_filter)
{
if (tab->build_range_rowid_filter())
return 1; /* Fatal error */
}
if (tab->filesort && tab->sort_table()) // Sort table.
return 1;
DBUG_EXECUTE_IF("kill_join_init_read_record",
tab->join->thd->set_killed(KILL_QUERY););
if (!tab->preread_init_done && tab->preread_init())
return 1;
if (tab->select && tab->select->quick && tab->select->quick->reset())
{
/* Ensures error status is propagated back to client */
report_error(tab->table,
tab->join->thd->killed ? HA_ERR_QUERY_INTERRUPTED : HA_ERR_OUT_OF_MEM);
return 1;
}
/* make sure we won't get ER_QUERY_INTERRUPTED from any code below */
DBUG_EXECUTE_IF("kill_join_init_read_record",
tab->join->thd->reset_killed(););
Copy_field *save_copy, *save_copy_end;
/*
init_read_record resets all elements of tab->read_record().
Remember things that we don't want to have reset.
*/
save_copy= tab->read_record.copy_field;
save_copy_end= tab->read_record.copy_field_end;
/*
JT_NEXT means that we should use an index scan on index 'tab->index'
However if filesort is set, the table was already sorted above
and now have to retrive the rows from the tmp file or by rnd_pos()
If !(tab->select && tab->select->quick)) it means that we are
in "Range checked for each record" and we better let the normal
init_read_record() handle this case
*/
if (tab->type == JT_NEXT && ! tab->filesort &&
!(tab->select && tab->select->quick))
{
/* Used with covered_index scan or force index */
if (init_read_record_idx(&tab->read_record, tab->join->thd, tab->table,
1, tab->index, 0))
return 1;
}
else
{
if (init_read_record(&tab->read_record, tab->join->thd, tab->table,
tab->select, tab->filesort_result, 1, 1, FALSE))
return 1;
}
tab->read_record.copy_field= save_copy;
tab->read_record.copy_field_end= save_copy_end;
if (need_unpacking)
{
tab->read_record.read_record_func_and_unpack_calls=
tab->read_record.read_record_func;
tab->read_record.read_record_func = read_record_func_for_rr_and_unpack;
}
return tab->read_record.read_record();
}
/*
Helper function for sorting table with filesort.
*/
bool
JOIN_TAB::sort_table()
{
int rc;
DBUG_PRINT("info",("Sorting for index"));
THD_STAGE_INFO(join->thd, stage_creating_sort_index);
DBUG_ASSERT(join->ordered_index_usage != (filesort->order == join->order ?
JOIN::ordered_index_order_by :
JOIN::ordered_index_group_by));
rc= create_sort_index(join->thd, join, this, NULL);
/* Disactivate rowid filter if it was used when creating sort index */
if (rowid_filter)
table->file->rowid_filter_is_active= false;
return (rc != 0);
}
static int
join_read_first(JOIN_TAB *tab)
{
int error= 0;
TABLE *table=tab->table;
DBUG_ENTER("join_read_first");
DBUG_ASSERT(table->no_keyread ||
!table->covering_keys.is_set(tab->index) ||
table->file->keyread == tab->index);
tab->table->status=0;
tab->read_record.table=table;
if (tab->index >= table->s->keys)
{
ORDER *order= tab->full_index_scan_order;
DBUG_ASSERT(tab->index < table->s->total_keys);
DBUG_ASSERT(tab->index == table->s->keys);
DBUG_ASSERT(tab->sorted);
DBUG_ASSERT(order);
DBUG_ASSERT(order->next == NULL);
DBUG_ASSERT(order->item[0]->real_item()->type() == Item::FUNC_ITEM);
tab->read_record.read_record_func= join_hlindex_read_next;
error= tab->table->hlindex_read_first(tab->index, *order->item,
tab->join->select_limit);
}
else
{
tab->read_record.read_record_func= join_read_next;
if (!table->file->inited)
error= table->file->ha_index_init(tab->index, tab->sorted);
if (!error)
error= table->file->prepare_index_scan();
if (!error)
error= tab->table->file->ha_index_first(tab->table->record[0]);
}
if (error)
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
report_error(table, error);
DBUG_RETURN(-1);
}
DBUG_RETURN(0);
}
static int
join_read_next(READ_RECORD *info)
{
int error;
if (unlikely((error= info->table->file->ha_index_next(info->record()))))
return report_error(info->table, error);
return 0;
}
static int join_hlindex_read_next(READ_RECORD *info)
{
if (int error= info->table->hlindex_read_next())
return report_error(info->table, error);
return 0;
}
static int
join_read_last(JOIN_TAB *tab)
{
TABLE *table=tab->table;
int error= 0;
DBUG_ENTER("join_read_last");
DBUG_ASSERT(table->no_keyread ||
!table->covering_keys.is_set(tab->index) ||
table->file->keyread == tab->index);
tab->table->status=0;
tab->read_record.read_record_func= join_read_prev;
tab->read_record.table=table;
if (!table->file->inited)
error= table->file->ha_index_init(tab->index, 1);
if (likely(!error))
error= table->file->prepare_index_scan();
if (unlikely(error) ||
unlikely(error= tab->table->file->ha_index_last(tab->table->record[0])))
DBUG_RETURN(report_error(table, error));
DBUG_RETURN(0);
}
static int
join_read_prev(READ_RECORD *info)
{
int error;
if (unlikely((error= info->table->file->ha_index_prev(info->record()))))
return report_error(info->table, error);
return 0;
}
static int
join_ft_read_first(JOIN_TAB *tab)
{
int error;
TABLE *table= tab->table;
if (!table->file->inited &&
(error= table->file->ha_index_init(tab->ref.key, 1)))
{
(void) report_error(table, error);
return 1;
}
table->file->ft_init();
if (unlikely((error= table->file->ha_ft_read(table->record[0]))))
return report_error(table, error);
return 0;
}
static int
join_ft_read_next(READ_RECORD *info)
{
int error;
if (unlikely((error= info->table->file->ha_ft_read(info->record()))))
return report_error(info->table, error);
return 0;
}
/**
Reading of key with key reference and one part that may be NULL.
*/
int
join_read_always_key_or_null(JOIN_TAB *tab)
{
int res;
/* First read according to key which is NOT NULL */
*tab->ref.null_ref_key= 0; // Clear null byte
if ((res= join_read_always_key(tab)) >= 0)
return res;
/* Then read key with null value */
*tab->ref.null_ref_key= 1; // Set null byte
return safe_index_read(tab);
}
int
join_read_next_same_or_null(READ_RECORD *info)
{
int error;
if (unlikely((error= join_read_next_same(info)) >= 0))
return error;
JOIN_TAB *tab= info->table->reginfo.join_tab;
/* Test if we have already done a read after null key */
if (*tab->ref.null_ref_key)
return -1; // All keys read
*tab->ref.null_ref_key= 1; // Set null byte
return safe_index_read(tab); // then read null keys
}
/*****************************************************************************
DESCRIPTION
Functions that end one nested loop iteration. Different functions
are used to support GROUP BY clause and to redirect records
to a table (e.g. in case of SELECT into a temporary table) or to the
network client.
RETURN VALUES
NESTED_LOOP_OK - the record has been successfully handled
NESTED_LOOP_ERROR - a fatal error (like table corruption)
was detected
NESTED_LOOP_KILLED - thread shutdown was requested while processing
the record
NESTED_LOOP_QUERY_LIMIT - the record has been successfully handled;
additionally, the nested loop produced the
number of rows specified in the LIMIT clause
for the query
NESTED_LOOP_CURSOR_LIMIT - the record has been successfully handled;
additionally, there is a cursor and the nested
loop algorithm produced the number of rows
that is specified for current cursor fetch
operation.
All return values except NESTED_LOOP_OK abort the nested loop.
*****************************************************************************/
/* ARGSUSED */
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
DBUG_ENTER("end_send");
/*
When all tables are const this function is called with jointab == NULL.
This function shouldn't be called for the first join_tab as it needs
to get fields from previous tab.
*/
DBUG_ASSERT(join_tab == NULL || join_tab != join->join_tab);
//TODO pass fields via argument
List<Item> *fields= join_tab ? (join_tab-1)->fields : join->fields;
if (end_of_records)
{
if (join->procedure && join->procedure->end_of_records())
DBUG_RETURN(NESTED_LOOP_ERROR);
DBUG_RETURN(NESTED_LOOP_OK);
}
if (join->table_count &&
join->join_tab->is_using_loose_index_scan())
{
/* Copy non-aggregated fields when loose index scan is used. */
copy_fields(&join->tmp_table_param);
}
if (join->having && join->having->val_bool() == 0)
DBUG_RETURN(NESTED_LOOP_OK); // Didn't match having
if (join->procedure)
{
if (join->procedure->send_row(join->procedure_fields_list))
DBUG_RETURN(NESTED_LOOP_ERROR);
DBUG_RETURN(NESTED_LOOP_OK);
}
if (join->send_records >= join->unit->lim.get_select_limit() &&
join->unit->lim.is_with_ties())
{
/*
Stop sending rows if the order fields corresponding to WITH TIES
have changed.
*/
int idx= test_if_item_cache_changed(join->order_fields);
if (idx >= 0)
join->do_send_rows= false;
}
if (join->do_send_rows)
{
int error;
/* result < 0 if row was not accepted and should not be counted */
if (unlikely((error= join->result->send_data_with_check(*fields,
join->unit,
join->send_records))))
{
if (error > 0)
DBUG_RETURN(NESTED_LOOP_ERROR);
// error < 0 => duplicate row
join->duplicate_rows++;
}
}
join->send_records++;
join->accepted_rows++;
if (join->send_records >= join->unit->lim.get_select_limit())
{
if (!join->do_send_rows)
{
/*
If we have used Priority Queue for optimizing order by with limit,
then stop here, there are no more records to consume.
When this optimization is used, end_send is called on the next
join_tab.
*/
if (join->order &&
join->select_options & OPTION_FOUND_ROWS &&
join_tab > join->join_tab &&
(join_tab - 1)->filesort && (join_tab - 1)->filesort->using_pq)
{
DBUG_PRINT("info", ("filesort NESTED_LOOP_QUERY_LIMIT"));
DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/* For WITH TIES we keep sending rows until a group has changed. */
if (join->unit->lim.is_with_ties())
{
/* Prepare the order_fields comparison for with ties. */
if (join->send_records == join->unit->lim.get_select_limit())
(void) test_if_group_changed(join->order_fields);
/* One more loop, to check if the next row matches with_ties or not. */
DBUG_RETURN(NESTED_LOOP_OK);
}
if (join->select_options & OPTION_FOUND_ROWS)
{
JOIN_TAB *jt=join->join_tab;
if ((join->table_count == 1) && !join->sort_and_group
&& !join->send_group_parts && !join->having && !jt->select_cond &&
!(jt->select && jt->select->quick) &&
(jt->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
(jt->ref.key < 0))
{
/* Join over all rows in table; Return number of found rows */
TABLE *table=jt->table;
if (jt->filesort_result) // If filesort was used
{
join->send_records= jt->filesort_result->found_rows;
}
else
{
table->file->info(HA_STATUS_VARIABLE);
join->send_records= table->file->stats.records;
}
}
else
{
join->do_send_rows= 0;
if (join->unit->fake_select_lex)
join->unit->fake_select_lex->limit_params.select_limit= 0;
DBUG_RETURN(NESTED_LOOP_OK);
}
}
DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
}
else if (join->send_records >= join->fetch_limit)
{
/*
There is a server side cursor and all rows for
this fetch request are sent.
*/
DBUG_RETURN(NESTED_LOOP_CURSOR_LIMIT);
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
@brief
Perform OrderedGroupBy operation and write the output into join->result.
@detail
The input stream is ordered by the GROUP BY expression, so groups come
one after another. We only need to accumulate the aggregate value, when
a GROUP BY group ends, check the HAVING and send the group.
Note that the output comes in the GROUP BY order, which is required by
the MySQL's GROUP BY semantics. No further sorting is needed.
@seealso end_write_group() also implements SortAndGroup
*/
enum_nested_loop_state
end_send_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
int idx= -1;
enum_nested_loop_state ok_code= NESTED_LOOP_OK;
/*
join_tab can be 0 in the case all tables are const tables and we did not
need a temporary table to store the result.
In this case we use the original given fields, which is stored in
join->fields.
*/
List<Item> *fields= join_tab ? (join_tab-1)->fields : join->fields;
DBUG_ENTER("end_send_group");
if (!join->items3.is_null() && join->current_ref_ptrs != join->items3)
join->set_items_ref_array(join->items3);
if (!join->first_record || end_of_records ||
(idx=test_if_group_changed(join->group_fields)) >= 0)
{
if (!join->group_sent &&
(join->first_record ||
(end_of_records && !join->group && !join->group_optimized_away)))
{
table_map cleared_tables= (table_map) 0;
if (join->procedure)
join->procedure->end_group();
/* Test if there was a group change. */
if (idx < (int) join->send_group_parts)
{
int error=0;
if (join->procedure)
{
if (join->having && !join->having->val_bool())
error= -1; // Didn't satisfy having
else
{
if (join->do_send_rows)
error=join->procedure->send_row(*fields) ? 1 : 0;
join->send_records++;
}
if (end_of_records && join->procedure->end_of_records())
error= 1; // Fatal error
}
else
{
/* Reset all sum functions on group change. */
if (!join->first_record)
{
/* No matching rows for group function */
List_iterator_fast<Item> it(*fields);
Item *item;
join->no_rows_in_result_called= 1;
join->clear(&cleared_tables);
while ((item= it++))
item->no_rows_in_result();
}
if (join->having && join->having->val_bool() == 0)// TODO: tests
error= -1; // Didn't satisfy having
else
{
if (join->do_send_rows)
{
error= join->result->send_data_with_check(*fields,
join->unit,
join->send_records);
if (unlikely(error < 0))
{
/* Duplicate row, don't count */
join->duplicate_rows++;
error= 0;
}
}
join->send_records++;
join->group_sent= true;
}
if (unlikely(join->rollup.state != ROLLUP::STATE_NONE && error <= 0))
{
if (join->rollup_send_data((uint) (idx+1)))
error= 1;
}
if (join->no_rows_in_result_called)
{
/* Restore null tables to original state */
join->no_rows_in_result_called= 0;
if (cleared_tables)
unclear_tables(join, &cleared_tables);
}
}
if (unlikely(error > 0))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
if (end_of_records)
DBUG_RETURN(NESTED_LOOP_OK);
if (join->send_records >= join->unit->lim.get_select_limit() &&
join->do_send_rows)
{
/* WITH TIES can be computed during end_send_group if
the order by is a subset of group by and we had an index
available to compute group by order directly. */
if (!join->unit->lim.is_with_ties() ||
idx < (int)join->with_ties_order_count)
{
if (!(join->select_options & OPTION_FOUND_ROWS))
DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
join->do_send_rows= 0;
join->unit->lim.set_unlimited();
}
}
else if (join->send_records >= join->fetch_limit)
{
/*
There is a server side cursor and all rows
for this fetch request are sent.
Preventing code duplication. When finished with the group reset
the group functions and copy_fields. We fall through. bug #11904
*/
ok_code= NESTED_LOOP_CURSOR_LIMIT;
}
}
}
else
{
if (end_of_records)
DBUG_RETURN(NESTED_LOOP_OK);
join->first_record=1;
(void) test_if_group_changed(join->group_fields);
}
if (idx < (int) join->send_group_parts)
{
/*
This branch is executed also for cursors which have finished their
fetch limit - the reason for ok_code.
*/
copy_fields(&join->tmp_table_param);
if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
DBUG_RETURN(NESTED_LOOP_ERROR);
if (join->procedure)
join->procedure->add();
join->group_sent= false;
join->accepted_rows++;
DBUG_RETURN(ok_code);
}
}
if (update_sum_func(join->sum_funcs))
DBUG_RETURN(NESTED_LOOP_ERROR);
join->accepted_rows++;
if (join->procedure)
join->procedure->add();
DBUG_RETURN(NESTED_LOOP_OK);
}
/* ARGSUSED */
static enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
bool end_of_records)
{
TABLE *const table= join_tab->table;
DBUG_ENTER("end_write");
if (!end_of_records)
{
copy_fields(join_tab->tmp_table_param);
if (copy_funcs(join_tab->tmp_table_param->items_to_copy, join->thd))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
if (likely(!join_tab->having || join_tab->having->val_bool()))
{
int error;
join->found_records++;
join->accepted_rows++;
if ((error= table->file->ha_write_tmp_row(table->record[0])))
{
if (likely(!table->file->is_fatal_error(error, HA_CHECK_DUP)))
goto end; // Ignore duplicate keys
bool is_duplicate;
if (create_internal_tmp_table_from_heap(join->thd, table,
join_tab->tmp_table_param->start_recinfo,
&join_tab->tmp_table_param->recinfo,
error, 1, &is_duplicate))
DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error
if (is_duplicate)
goto end;
}
if (++join_tab->send_records >=
join_tab->tmp_table_param->end_write_records &&
join->do_send_rows)
{
if (!(join->select_options & OPTION_FOUND_ROWS))
DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);
join->do_send_rows=0;
join->unit->lim.set_unlimited();
}
}
}
end:
if (unlikely(join->thd->check_killed()))
{
DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
@brief
Perform GROUP BY operation over rows coming in arbitrary order: use
TemporaryTableWithPartialSums algorithm.
@detail
The TemporaryTableWithPartialSums algorithm is:
CREATE TEMPORARY TABLE tmp (
group_by_columns PRIMARY KEY,
partial_sum
);
for each row R in join output {
INSERT INTO tmp (R.group_by_columns, R.sum_value)
ON DUPLICATE KEY UPDATE partial_sum=partial_sum + R.sum_value;
}
@detail
Also applies HAVING, etc.
@seealso end_unique_update()
*/
static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
bool end_of_records)
{
TABLE *const table= join_tab->table;
ORDER *group;
int error;
DBUG_ENTER("end_update");
if (end_of_records)
DBUG_RETURN(NESTED_LOOP_OK);
join->found_records++;
copy_fields(join_tab->tmp_table_param); // Groups are copied twice.
/* Make a key of group index */
for (group=table->group ; group ; group=group->next)
{
Item *item= *group->item;
if (group->fast_field_copier_setup != group->field)
{
DBUG_PRINT("info", ("new setup %p -> %p",
group->fast_field_copier_setup,
group->field));
group->fast_field_copier_setup= group->field;
group->fast_field_copier_func=
item->setup_fast_field_copier(group->field);
}
item->save_org_in_field(group->field, group->fast_field_copier_func);
/* Store in the used key if the field was 0 */
if (item->maybe_null())
group->buff[-1]= (char) group->field->is_null();
}
if (!table->file->ha_index_read_map(table->record[1],
join_tab->tmp_table_param->group_buff,
HA_WHOLE_KEY,
HA_READ_KEY_EXACT))
{ /* Update old record */
restore_record(table,record[1]);
update_tmptable_sum_func(join->sum_funcs,table);
if (unlikely((error= table->file->ha_update_tmp_row(table->record[1],
table->record[0]))))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
}
goto end;
}
init_tmptable_sum_functions(join->sum_funcs);
if (unlikely(copy_funcs(join_tab->tmp_table_param->items_to_copy,
join->thd)))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
if (unlikely((error= table->file->ha_write_tmp_row(table->record[0]))))
{
if (create_internal_tmp_table_from_heap(join->thd, table,
join_tab->tmp_table_param->start_recinfo,
&join_tab->tmp_table_param->recinfo,
error, 0, NULL))
DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error
/* Change method to update rows */
if (unlikely((error= table->file->ha_index_init(0, 0))))
{
table->file->print_error(error, MYF(0));
DBUG_RETURN(NESTED_LOOP_ERROR);
}
join_tab->aggr->set_write_func(end_unique_update);
}
join_tab->send_records++;
end:
join->accepted_rows++; // For rownum()
if (unlikely(join->thd->check_killed()))
{
DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/**
Like end_update, but this is done with unique constraints instead of keys.
*/
static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
bool end_of_records)
{
TABLE *table= join_tab->table;
int error;
DBUG_ENTER("end_unique_update");
if (end_of_records)
DBUG_RETURN(NESTED_LOOP_OK);
init_tmptable_sum_functions(join->sum_funcs);
copy_fields(join_tab->tmp_table_param); // Groups are copied twice.
if (copy_funcs(join_tab->tmp_table_param->items_to_copy, join->thd))
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
join->accepted_rows++;
if (likely(!(error= table->file->ha_write_tmp_row(table->record[0]))))
join_tab->send_records++; // New group
else
{
if (unlikely((int) table->file->get_dup_key(error) < 0))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
}
/* Prepare table for random positioning */
bool rnd_inited= (table->file->inited == handler::RND);
if (!rnd_inited &&
((error= table->file->ha_index_end()) ||
(error= table->file->ha_rnd_init(0))))
{
table->file->print_error(error, MYF(0));
DBUG_RETURN(NESTED_LOOP_ERROR);
}
if (unlikely(table->file->ha_rnd_pos(table->record[1],table->file->dup_ref)))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
}
restore_record(table,record[1]);
update_tmptable_sum_func(join->sum_funcs,table);
if (unlikely((error= table->file->ha_update_tmp_row(table->record[1],
table->record[0]))))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
}
if (!rnd_inited &&
((error= table->file->ha_rnd_end()) ||
(error= table->file->ha_index_init(0, 0))))
{
table->file->print_error(error, MYF(0));
DBUG_RETURN(NESTED_LOOP_ERROR);
}
}
if (unlikely(join->thd->check_killed()))
{
DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
}
join->accepted_rows++; // For rownum()
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
@brief
Perform OrderedGroupBy operation and write the output into the temporary
table (join_tab->table).
@detail
The input stream is ordered by the GROUP BY expression, so groups come
one after another. We only need to accumulate the aggregate value, when
a GROUP BY group ends, check the HAVING and write the group.
@seealso end_send_group() also implements OrderedGroupBy
*/
enum_nested_loop_state
end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
bool end_of_records)
{
TABLE *table= join_tab->table;
int idx= -1;
DBUG_ENTER("end_write_group");
join->accepted_rows++;
if (!join->first_record || end_of_records ||
(idx=test_if_group_changed(join->group_fields)) >= 0)
{
if (join->first_record || (end_of_records && !join->group))
{
table_map cleared_tables= (table_map) 0;
if (join->procedure)
join->procedure->end_group();
int send_group_parts= join->send_group_parts;
if (idx < send_group_parts)
{
if (!join->first_record)
{
/* No matching rows for group function */
join->clear(&cleared_tables);
}
copy_sum_funcs(join->sum_funcs,
join->sum_funcs_end[send_group_parts]);
if (!join_tab->having || join_tab->having->val_bool())
{
int error= table->file->ha_write_tmp_row(table->record[0]);
if (unlikely(error) &&
create_internal_tmp_table_from_heap(join->thd, table,
join_tab->tmp_table_param->start_recinfo,
&join_tab->tmp_table_param->recinfo,
error, 0, NULL))
DBUG_RETURN(NESTED_LOOP_ERROR);
}
if (unlikely(join->rollup.state != ROLLUP::STATE_NONE))
{
if (unlikely(join->rollup_write_data((uint) (idx+1),
join_tab->tmp_table_param,
table)))
{
DBUG_RETURN(NESTED_LOOP_ERROR);
}
}
if (cleared_tables)
unclear_tables(join, &cleared_tables);
if (end_of_records)
goto end;
}
}
else
{
if (end_of_records)
goto end;
join->first_record=1;
(void) test_if_group_changed(join->group_fields);
}
if (idx < (int) join->send_group_parts)
{
copy_fields(join_tab->tmp_table_param);
if (unlikely(copy_funcs(join_tab->tmp_table_param->items_to_copy,
join->thd)))
DBUG_RETURN(NESTED_LOOP_ERROR);
if (unlikely(init_sum_functions(join->sum_funcs,
join->sum_funcs_end[idx+1])))
DBUG_RETURN(NESTED_LOOP_ERROR);
if (unlikely(join->procedure))
join->procedure->add();
goto end;
}
}
if (unlikely(update_sum_func(join->sum_funcs)))
DBUG_RETURN(NESTED_LOOP_ERROR);
if (unlikely(join->procedure))
join->procedure->add();
end:
if (unlikely(join->thd->check_killed()))
{
DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*****************************************************************************
Remove calculation with tables that aren't yet read. Remove also tests
against fields that are read through key where the table is not a
outer join table.
We can't remove tests that are made against columns which are stored
in sorted order.
*****************************************************************************/
/**
Check if "left_item=right_item" equality is guaranteed to be true by use of
[eq]ref access on left_item->field->table.
SYNOPSIS
test_if_ref()
root_cond
left_item
right_item
DESCRIPTION
Check if the given "left_item = right_item" equality is guaranteed to be
true by use of [eq_]ref access method.
We need root_cond as we can't remove ON expressions even if employed ref
access guarantees that they are true. This is because TODO
RETURN
TRUE if right_item is used removable reference key on left_item
FALSE Otherwise
*/
bool test_if_ref(Item *root_cond, Item_field *left_item,Item *right_item)
{
Field *field=left_item->field;
JOIN_TAB *join_tab= field->table->reginfo.join_tab;
// No need to change const test
if (!field->table->const_table && join_tab &&
!join_tab->is_ref_for_hash_join() &&
(!join_tab->first_inner ||
*join_tab->first_inner->on_expr_ref == root_cond))
{
/*
If ref access uses "Full scan on NULL key" (i.e. it actually alternates
between ref access and full table scan), then no equality can be
guaranteed to be true.
*/
if (join_tab->ref.is_access_triggered())
return FALSE;
Item *ref_item=part_of_refkey(field->table,field);
if (ref_item && (ref_item->eq(right_item,1) ||
ref_item->real_item()->eq(right_item,1)))
{
right_item= right_item->real_item();
if (right_item->type() == Item::FIELD_ITEM)
return (field->eq_def(((Item_field *) right_item)->field));
/* remove equalities injected by IN->EXISTS transformation */
else if (right_item->type() == Item::CACHE_ITEM)
return ((Item_cache *)right_item)->eq_def (field);
if (right_item->const_item() && !(right_item->is_null()))
{
/*
We can remove binary fields and numerical fields except float,
as float comparison isn't 100 % safe
We have to keep normal strings to be able to check for end spaces
*/
if (field->binary() &&
field->real_type() != MYSQL_TYPE_STRING &&
field->real_type() != MYSQL_TYPE_VARCHAR &&
(field->type() != MYSQL_TYPE_FLOAT || field->decimals() == 0))
{
return !right_item->save_in_field_no_warnings(field, 1);
}
}
}
}
return 0; // keep test
}
/**
Extract a condition that can be checked after reading given table
@fn make_cond_for_table()
@param cond Condition to analyze
@param tables Tables for which "current field values" are available
Tables for which "current field values" are available (this
includes used_table)
(may also include PSEUDO_TABLE_BITS, and may be zero)
@param used_table Table that we're extracting the condition for
@param join_tab_idx_arg
The index of the JOIN_TAB this Item is being extracted
for. MAX_TABLES if there is no corresponding JOIN_TAB.
@param exclude_expensive_cond
Do not push expensive conditions
@param retain_ref_cond
Retain ref conditions
@retval <>NULL Generated condition
@retval =NULL Already checked, OR error
@details
Extract the condition that can be checked after reading the table
specified in 'used_table', given that current-field values for tables
specified in 'tables' bitmap are available.
If 'used_table' is 0
- extract conditions for all tables in 'tables'.
- extract conditions are unrelated to any tables
in the same query block/level(i.e. conditions
which have used_tables == 0).
The function assumes that
- Constant parts of the condition has already been checked.
- Condition that could be checked for tables in 'tables' has already
been checked.
The function takes into account that some parts of the condition are
guaranteed to be true by employed 'ref' access methods (the code that
does this is located at the end, search down for "EQ_FUNC").
@note
Make sure to keep the implementations of make_cond_for_table() and
make_cond_after_sjm() synchronized.
make_cond_for_info_schema() uses similar algorithm as well.
*/
static Item *
make_cond_for_table(THD *thd, Item *cond, table_map tables,
table_map used_table,
int join_tab_idx_arg,
bool exclude_expensive_cond __attribute__((unused)),
bool retain_ref_cond)
{
return make_cond_for_table_from_pred(thd, cond, cond, tables, used_table,
join_tab_idx_arg,
exclude_expensive_cond,
retain_ref_cond, true);
}
static Item *
make_cond_for_table_from_pred(THD *thd, Item *root_cond, Item *cond,
table_map tables, table_map used_table,
int join_tab_idx_arg,
bool exclude_expensive_cond __attribute__
((unused)),
bool retain_ref_cond,
bool is_top_and_level)
{
table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
if (used_table && !(cond->used_tables() & used_table))
return (COND*) 0; // Already checked
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
/* Create new top level AND item */
Item_cond_and *new_cond=new (thd->mem_root) Item_cond_and(thd);
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
/*
Special handling of top level conjuncts with RAND_TABLE_BIT:
if such a conjunct contains a reference to a field that is not
an outer field then it is pushed to the corresponding table by
the same rule as all other conjuncts. Otherwise, if the conjunct
is used in WHERE is is pushed to the last joined table, if is it
is used in ON condition of an outer join it is pushed into the
last inner table of the outer join. Such conjuncts are pushed in
a call of make_cond_for_table_from_pred() with the
parameter 'used_table' equal to PSEUDO_TABLE_BITS.
*/
if (is_top_and_level && used_table == rand_table_bit &&
(item->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
{
/* The conjunct with RAND_TABLE_BIT has been allready pushed */
continue;
}
Item *fix=make_cond_for_table_from_pred(thd, root_cond, item,
tables, used_table,
join_tab_idx_arg,
exclude_expensive_cond,
retain_ref_cond, false);
if (fix)
new_cond->argument_list()->push_back(fix, thd->mem_root);
else if (thd->is_error())
return ((COND*) 0);
}
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0; // Always true
case 1:
return new_cond->argument_list()->head();
default:
/*
Call fix_fields to propagate all properties of the children to
the new parent Item. This should not be expensive because all
children of Item_cond_and should be fixed by now.
*/
if (new_cond->fix_fields(thd, 0))
return (COND*) 0;
new_cond->used_tables_cache=
((Item_cond_and*) cond)->used_tables_cache &
tables;
return new_cond;
}
}
else
{ // Or list
if (is_top_and_level && used_table == rand_table_bit &&
(cond->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
{
/* This top level formula with RAND_TABLE_BIT has been already pushed */
return (COND*) 0;
}
Item_cond_or *new_cond=new (thd->mem_root) Item_cond_or(thd);
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix=make_cond_for_table_from_pred(thd, root_cond, item,
tables, 0L,
join_tab_idx_arg,
exclude_expensive_cond,
retain_ref_cond, false);
if (!fix)
return (COND*) 0; // Always true or error
new_cond->argument_list()->push_back(fix, thd->mem_root);
}
/*
Call fix_fields to propagate all properties of the children to
the new parent Item. This should not be expensive because all
children of Item_cond_and should be fixed by now.
*/
if (new_cond->fix_fields(thd, 0))
return (COND*) 0;
new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
new_cond->top_level_item();
return new_cond;
}
}
else if (cond->basic_const_item())
return cond;
if (is_top_and_level && used_table == rand_table_bit &&
(cond->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
{
/* This top level formula with RAND_TABLE_BIT has been already pushed */
return (COND*) 0;
}
/*
Because the following test takes a while and it can be done
table_count times, we mark each item that we have examined with the result
of the test
*/
if ((cond->marker == MARKER_CHECK_ON_READ && !retain_ref_cond) ||
(cond->used_tables() & ~tables))
return (COND*) 0; // Can't check this yet
if (cond->marker == MARKER_PROCESSED || cond->eq_cmp_result() == Item::COND_OK)
{
cond->set_join_tab_idx((uint8) join_tab_idx_arg);
return cond; // Not boolean op
}
if (cond->type() == Item::FUNC_ITEM &&
((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
{
Item *left_item= ((Item_func*) cond)->arguments()[0]->real_item();
Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
if (left_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
test_if_ref(root_cond, (Item_field*) left_item,right_item))
{
cond->marker= MARKER_CHECK_ON_READ; // Checked when read
return (COND*) 0;
}
if (right_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
test_if_ref(root_cond, (Item_field*) right_item,left_item))
{
cond->marker= MARKER_CHECK_ON_READ; // Checked when read
return (COND*) 0;
}
}
cond->marker= MARKER_PROCESSED;
cond->set_join_tab_idx((uint8) join_tab_idx_arg);
return cond;
}
/*
The difference of this from make_cond_for_table() is that we're in the
following state:
1. conditions referring to 'tables' have been checked
2. conditions referring to sjm_tables have been checked, too
3. We need condition that couldn't be checked in #1 or #2 but
can be checked when we get both (tables | sjm_tables).
*/
static COND *
make_cond_after_sjm(THD *thd, Item *root_cond, Item *cond, table_map tables,
table_map sjm_tables, bool inside_or_clause)
{
/*
We assume that conditions that refer to only join prefix tables or
sjm_tables have already been checked.
*/
if (!inside_or_clause)
{
table_map cond_used_tables= cond->used_tables();
if((!(cond_used_tables & ~tables) ||
!(cond_used_tables & ~sjm_tables)))
return (COND*) 0; // Already checked
}
/* AND/OR recursive descent */
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
/* Create new top level AND item */
Item_cond_and *new_cond= new (thd->mem_root) Item_cond_and(thd);
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix=make_cond_after_sjm(thd, root_cond, item, tables, sjm_tables,
inside_or_clause);
if (fix)
new_cond->argument_list()->push_back(fix, thd->mem_root);
}
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0; // Always true
case 1:
return new_cond->argument_list()->head();
default:
/*
Item_cond_and do not need fix_fields for execution, its parameters
are fixed or do not need fix_fields, too
*/
new_cond->quick_fix_field();
new_cond->used_tables_cache=
((Item_cond_and*) cond)->used_tables_cache &
tables;
return new_cond;
}
}
else
{ // Or list
Item_cond_or *new_cond= new (thd->mem_root) Item_cond_or(thd);
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_after_sjm(thd, root_cond, item, tables, sjm_tables,
/*inside_or_clause= */TRUE);
if (!fix)
return (COND*) 0; // Always true
new_cond->argument_list()->push_back(fix, thd->mem_root);
}
/*
Item_cond_or do not need fix_fields for execution, its parameters
are fixed or do not need fix_fields, too
*/
new_cond->quick_fix_field();
new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
new_cond->top_level_item();
return new_cond;
}
}
/*
Because the following test takes a while and it can be done
table_count times, we mark each item that we have examined with the result
of the test
*/
if (cond->marker == MARKER_CHECK_ON_READ ||
(cond->used_tables() & ~(tables | sjm_tables)))
return (COND*) 0; // Can't check this yet
if (cond->marker == MARKER_PROCESSED || cond->eq_cmp_result() == Item::COND_OK)
return cond; // Not boolean op
/*
Remove equalities that are guaranteed to be true by use of 'ref' access
method
*/
if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
{
Item *left_item= ((Item_func*) cond)->arguments()[0]->real_item();
Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
if (left_item->type() == Item::FIELD_ITEM &&
test_if_ref(root_cond, (Item_field*) left_item,right_item))
{
cond->marker= MARKER_CHECK_ON_READ;
return (COND*) 0;
}
if (right_item->type() == Item::FIELD_ITEM &&
test_if_ref(root_cond, (Item_field*) right_item,left_item))
{
cond->marker= MARKER_CHECK_ON_READ;
return (COND*) 0;
}
}
cond->marker= MARKER_PROCESSED;
return cond;
}
/*
@brief
Check if
- @table uses "ref"-like access
- it is based on "@field=certain_item" equality
- the equality will be true for any record returned by the access method
and return the certain_item if yes.
@detail
Equality won't necessarily hold if:
- the used index covers only part of the @field.
Suppose, we have a CHAR(5) field and INDEX(field(3)). if you make a lookup
for 'abc', you will get both record with 'abc' and with 'abcde'.
- The type of access is actually ref_or_null, and so @field can be either
a value or NULL.
@return
Item that the field will be equal to
NULL if no such item
*/
static Item *
part_of_refkey(TABLE *table,Field *field)
{
JOIN_TAB *join_tab= table->reginfo.join_tab;
if (!join_tab)
return (Item*) 0; // field from outer non-select (UPDATE,...)
uint ref_parts= join_tab->ref.key_parts;
if (ref_parts) /* if it's ref/eq_ref/ref_or_null */
{
uint key= join_tab->ref.key;
KEY *key_info= join_tab->get_keyinfo_by_key_no(key);
KEY_PART_INFO *key_part= key_info->key_part;
for (uint part=0 ; part < ref_parts ; part++,key_part++)
{
if (field->eq(key_part->field))
{
/*
Found the field in the key. Check that
1. ref_or_null doesn't alternate this component between a value and
a NULL
2. index fully covers the key
*/
if (part != join_tab->ref.null_ref_part && // (1)
!(key_part->key_part_flag & HA_PART_KEY_SEG)) // (2)
{
return join_tab->ref.items[part];
}
break;
}
}
}
return (Item*) 0;
}
/**
Test if one can use the key to resolve ORDER BY.
@param join if not NULL, can use the join's top-level
multiple-equalities.
@param order Sort order
@param table Table to sort
@param idx Index to check
@param used_key_parts [out] NULL by default, otherwise return value for
used key parts.
@note
used_key_parts is set to correct key parts used if return value != 0
(On other cases, used_key_part may be changed)
Note that the value may actually be greater than the number of index
key parts. This can happen for storage engines that have the primary
key parts as a suffix for every secondary key.
@retval
1 key is ok.
@retval
0 Key can't be used
@retval
-1 Reverse key can be used
*/
static int test_if_order_by_key(JOIN *join, ORDER *order, TABLE *table,
uint idx, uint *used_key_parts)
{
KEY_PART_INFO *key_part,*key_part_end;
key_part=table->key_info[idx].key_part;
key_part_end=key_part + table->key_info[idx].ext_key_parts;
key_part_map const_key_parts=table->const_key_parts[idx];
uint user_defined_kp= table->key_info[idx].user_defined_key_parts;
int reverse=0;
uint key_parts;
bool have_pk_suffix= false;
uint pk= table->s->primary_key;
ORDER::enum_order keypart_order;
DBUG_ENTER("test_if_order_by_key");
if ((table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
idx < table->s->keys &&
table->key_info[idx].ext_key_part_map && pk != MAX_KEY && pk != idx)
{
have_pk_suffix= true;
}
if ((*order->item)->real_item()->type() != Item::FIELD_ITEM)
{
if (order->next || order->direction != ORDER::ORDER_ASC)
DBUG_RETURN(0);
DBUG_RETURN((*order->item)->part_of_sortkey().is_set(idx));
}
for (; order ; order=order->next, const_key_parts>>=1)
{
Item_field *item_field= ((Item_field*) (*order->item)->real_item());
int flag;
/*
Skip key parts that are constants in the WHERE clause.
These are already skipped in the ORDER BY by const_expression_in_where()
for top level queries.
*/
for (; const_key_parts & 1 ; const_key_parts>>= 1)
{
if (item_field->contains(key_part->field))
{
/* Subquery with ORDER BY, continue with next field */
goto next_order_field;
}
key_part++;
}
/*
This check was in this function historically (although I think it's
better to check it outside of this function):
"Test if the primary key parts were all const (i.e. there's one row).
The sorting doesn't matter"
So, we're checking that
(1) this is an extended key
(2) we've reached its end
*/
key_parts= (uint)(key_part - table->key_info[idx].key_part);
if (have_pk_suffix &&
reverse == 0 && // all were =const so far
key_parts == table->key_info[idx].ext_key_parts &&
table->const_key_parts[pk] == PREV_BITS(key_part_map,
table->key_info[pk].
user_defined_key_parts))
{
key_parts= 0;
reverse= 1; // Key is ok to use
goto ok;
}
if (key_part == key_part_end ||
!key_part->field->part_of_sortkey.is_set(idx))
{
/*
There are some items left in ORDER BY that we don't have in the key
*/
DBUG_RETURN(0);
}
if (!item_field->contains(key_part->field))
DBUG_RETURN(0);
keypart_order= ((key_part->key_part_flag & HA_REVERSE_SORT) ?
ORDER::ORDER_DESC : ORDER::ORDER_ASC);
/* set flag to 1 if we can use read-next on key, else to -1 */
flag= (order->direction == keypart_order) ? 1 : -1;
if (reverse && flag != reverse)
DBUG_RETURN(0);
reverse=flag; // Remember if reverse
next_order_field:
if (key_part < key_part_end)
key_part++;
}
key_parts= (uint) (key_part - table->key_info[idx].key_part);
if (reverse == -1 &&
!(table->file->index_flags(idx, user_defined_kp-1, 1) & HA_READ_PREV))
reverse= 0; // Index can't be used
if (have_pk_suffix && reverse == -1)
{
uint pk_parts= table->key_info[pk].user_defined_key_parts;
if (!(table->file->index_flags(pk, pk_parts-1, 1) & HA_READ_PREV))
reverse= 0; // Index can't be used
}
ok:
*used_key_parts= key_parts;
DBUG_RETURN(reverse);
}
/**
Find shortest key suitable for full table scan.
@param table Table to scan
@param usable_keys Allowed keys
@return
MAX_KEY no suitable key found
key index otherwise
@notes
We should not use keyread_time() as in the case of disk_read_cost= 0
all keys would be regarded equal.
*/
uint find_shortest_key(TABLE *table, const key_map *usable_keys)
{
size_t min_length= INT_MAX32;
uint best= MAX_KEY;
uint possible_keys= usable_keys->bits_set();
if (possible_keys)
{
if (possible_keys == 1)
return usable_keys->find_first_bit();
for (uint nr=0; nr < table->s->keys ; nr++)
{
if (usable_keys->is_set(nr))
{
size_t length= table->key_storage_length(nr);
if (length < min_length)
{
min_length= length;
best= nr;
}
}
}
}
return best;
}
/**
Test if a second key is the subkey of the first one.
@param key_part First key parts
@param ref_key_part Second key parts
@param ref_key_part_end Last+1 part of the second key
@note
Second key MUST be shorter than the first one.
@retval
1 is a subkey
@retval
0 no sub key
*/
inline bool
is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part,
KEY_PART_INFO *ref_key_part_end)
{
for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
if (!key_part->field->eq(ref_key_part->field))
return 0;
return 1;
}
/**
Test if we can use one of the 'usable_keys' instead of 'ref' key
for sorting.
@param ref Number of key, used for WHERE clause
@param usable_keys Keys for testing
@return
- MAX_KEY If we can't use other key
- the number of found key Otherwise
*/
static uint
test_if_subkey(ORDER *order, TABLE *table, uint ref, uint ref_key_parts,
const key_map *usable_keys)
{
uint nr;
uint min_length= (uint) ~0;
uint best= MAX_KEY;
KEY_PART_INFO *ref_key_part= table->key_info[ref].key_part;
KEY_PART_INFO *ref_key_part_end= ref_key_part + ref_key_parts;
/*
Find the shortest key that
- produces the required ordering
- has key #ref (up to ref_key_parts) as its subkey.
*/
for (nr= 0 ; nr < table->s->keys ; nr++)
{
uint not_used;
if (usable_keys->is_set(nr) &&
table->key_info[nr].key_length < min_length &&
table->key_info[nr].user_defined_key_parts >= ref_key_parts &&
is_subkey(table->key_info[nr].key_part, ref_key_part,
ref_key_part_end) &&
test_if_order_by_key(NULL, order, table, nr, ¬_used))
{
min_length= table->key_info[nr].key_length;
best= nr;
}
}
return best;
}
/**
Check if GROUP BY/DISTINCT can be optimized away because the set is
already known to be distinct.
Used in removing the GROUP BY/DISTINCT of the following types of
statements:
@code
SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
[GROUP BY <unique_key_cols>,...]
@endcode
If (a,b,c is distinct)
then <any combination of a,b,c>,{whatever} is also distinct
This function checks if all the key parts of any of the unique keys
of the table are referenced by a list : either the select list
through find_field_in_item_list or GROUP BY list through
find_field_in_order_list.
If the above holds and the key parts cannot contain NULLs then we
can safely remove the GROUP BY/DISTINCT,
as no result set can be more distinct than an unique key.
@param table The table to operate on.
@param find_func function to iterate over the list and search
for a field
@retval
1 found
@retval
0 not found.
*/
static bool
list_contains_unique_index(TABLE *table,
bool (*find_func) (Field *, void *), void *data)
{
for (uint keynr= 0; keynr < table->s->keys; keynr++)
{
if (keynr == table->s->primary_key ||
(table->key_info[keynr].flags & HA_NOSAME))
{
KEY *keyinfo= table->key_info + keynr;
KEY_PART_INFO *key_part, *key_part_end;
for (key_part=keyinfo->key_part,
key_part_end=key_part+ keyinfo->user_defined_key_parts;
key_part < key_part_end;
key_part++)
{
if (key_part->field->maybe_null() ||
!find_func(key_part->field, data))
break;
}
if (key_part == key_part_end)
return 1;
}
}
return 0;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a list of ORDER structures.
Finds a direct reference of the Field in the list.
@param field The field to search for.
@param data ORDER *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool
find_field_in_order_list (Field *field, void *data)
{
ORDER *group= (ORDER *) data;
bool part_found= 0;
for (ORDER *tmp_group= group; tmp_group; tmp_group=tmp_group->next)
{
Item *item= (*tmp_group->item)->real_item();
if (item->type() == Item::FIELD_ITEM &&
((Item_field*) item)->field->eq(field))
{
part_found= 1;
break;
}
}
return part_found;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a dynamic list of Items.
Finds a direct reference of the Field in the list.
@param[in] field The field to search for.
@param[in] data List<Item> *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool
find_field_in_item_list (Field *field, void *data)
{
List<Item> *fields= (List<Item> *) data;
bool part_found= 0;
List_iterator<Item> li(*fields);
Item *item;
while ((item= li++))
{
if (item->real_item()->type() == Item::FIELD_ITEM &&
((Item_field*) (item->real_item()))->field->eq(field))
{
part_found= 1;
break;
}
}
return part_found;
}
/*
Fill *col_keys with a union of Field::part_of_sortkey of all fields
that belong to 'table' and are equal to 'item_field'.
*/
static
void compute_part_of_sort_key_for_equals(JOIN *join, TABLE *table,
key_map *col_keys, Item *item)
{
if (item->type() != Item::FIELD_ITEM ||
!optimizer_flag(join->thd, OPTIMIZER_SWITCH_ORDERBY_EQ_PROP))
return;
Item_field *item_field= (Item_field*)item;
Item_equal *item_eq= NULL;
if (item_field->item_equal)
{
/*
The item_field is from ORDER structure, but it already has an item_equal
pointer set (UseMultipleEqualitiesToRemoveTempTable code have set it)
*/
item_eq= item_field->item_equal;
}
else
{
/*
Walk through join's muliple equalities and find the one that contains
item_field.
*/
if (!join->cond_equal)
return;
table_map needed_tbl_map= item_field->used_tables() | table->map;
List_iterator<Item_equal> li(join->cond_equal->current_level);
Item_equal *cur_item_eq;
while ((cur_item_eq= li++))
{
if ((cur_item_eq->used_tables() & needed_tbl_map) &&
cur_item_eq->contains(item_field->field))
{
item_eq= cur_item_eq;
item_field->item_equal= item_eq; // Save the pointer to our Item_equal.
break;
}
}
}
if (item_eq)
{
Item_equal_fields_iterator it(*item_eq);
Item *item;
/* Loop through other members that belong to table table */
while ((item= it++))
{
if (item->type() == Item::FIELD_ITEM &&
((Item_field*)item)->field->table == table)
{
col_keys->merge(((Item_field*)item)->field->part_of_sortkey);
}
}
}
}
/*
@brief
This is called when switching table access to produce records
in reverse order.
@detail
- Disable "Range checked for each record" (Is this strictly necessary
here?)
- Disable Index Condition Pushdown and Rowid Filtering.
IndexConditionPushdownAndReverseScans, RowidFilteringAndReverseScans:
Suppose we're computing
select * from t1
where
key1 between 10 and 20 and extra_condition
order by key1 desc
here the range access uses a reverse-ordered scan on (1 <= key1 <= 10) and
extra_condition is checked by either ICP or Rowid Filtering.
Also suppose that extra_condition happens to be false for rows of t1 that
do not satisfy the "10 <= key1 <= 20" condition.
For forward ordered range scan, the SQL layer will make these calls:
h->read_range_first(RANGE(10 <= key1 <= 20));
while (h->read_range_next()) { ... }
The storage engine sees the end endpoint of "key1<=20" and can stop scanning
as soon as it encounters a row with key1>20.
For backward-ordered range scan, the SQL layer will make these calls:
h->index_read_map(key1=20, HA_READ_PREFIX_LAST_OR_PREV);
while (h->index_prev()) {
if (cmp_key(h->record, "key1=10" )<0)
break; // end of range
...
}
Note that the check whether we've walked beyond the key=10 endpoint is
made at the SQL layer. The storage engine has no information about the left
endpoint of the interval we're scanning. If all rows before that endpoint
do not satisfy ICP condition or do not pass the Rowid Filter, the storage
engine will enumerate the records until the table start.
In MySQL, the API is extended with set_end_range() call so that the storage
engine "knows" when to stop scanning.
*/
static void prepare_for_reverse_ordered_access(JOIN_TAB *tab)
{
/* Cancel "Range checked for each record" */
if (tab->use_quick == 2)
{
tab->use_quick= 1;
tab->read_first_record= join_init_read_record;
}
/*
Cancel Pushed Index Condition, as it doesn't work for reverse scans.
*/
if (tab->select && tab->select->pre_idx_push_select_cond)
{
tab->set_cond(tab->select->pre_idx_push_select_cond);
tab->table->file->cancel_pushed_idx_cond();
}
/*
The same with Rowid Filter: it doesn't work with reverse scans so cancel
it, too.
*/
{
/*
Rowid Filter is initialized at a later stage. It is not pushed to
the storage engine yet:
*/
DBUG_ASSERT(!tab->table->file->pushed_rowid_filter);
tab->range_rowid_filter_info= NULL;
delete tab->rowid_filter;
tab->rowid_filter= NULL;
}
}
/*
@brief
Given a table and order, find indexes that produce rows in the order
@param usable_keys IN Bitmap of keys we can use
OUT Bitmap of indexes that produce rows in order.
@return
false Some indexes were found
true No indexes found
*/
static
bool find_indexes_matching_order(JOIN *join, TABLE *table, ORDER *order,
key_map *usable_keys)
{
/* Find indexes that cover all ORDER/GROUP BY fields */
for (ORDER *tmp_order=order; tmp_order ; tmp_order=tmp_order->next)
{
key_map col_keys= (*tmp_order->item)->part_of_sortkey();
/*
Take multiple-equalities into account. Suppose we have
ORDER BY col1, col10
and there are
multiple-equal(col1, col2, col3),
multiple-equal(col10, col11).
Then,
- when item=col1, we find the set of indexes that cover one of {col1,
col2, col3}
- when item=col10, we find the set of indexes that cover one of {col10,
col11}
And we compute an intersection of these sets to find set of indexes that
cover all ORDER BY components.
*/
compute_part_of_sort_key_for_equals(join, table, &col_keys,
(*tmp_order->item)->real_item());
usable_keys->intersect(col_keys);
if (usable_keys->is_clear_all())
return true; // No usable keys
}
return false;
}
/**
Test if we can skip the ORDER BY by using an index.
If we can use an index, the JOIN_TAB / tab->select struct
is changed to use the index.
The index must cover all fields in <order>, or it will not be considered.
@param no_changes No changes will be made to the query plan.
@param fatal_error OUT A fatal error occurred
@todo
- sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
@retval
0 We have to use filesort to do the sorting
@retval
1 We can use an index.
*/
static bool
test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,ha_rows select_limit,
bool no_changes, const key_map *map, bool *fatal_error)
{
int ref_key;
uint UNINIT_VAR(ref_key_parts);
int order_direction= 0;
uint used_key_parts= 0;
TABLE *table=tab->table;
SQL_SELECT *select=tab->select;
key_map usable_keys;
QUICK_SELECT_I *save_quick= select ? select->quick : 0;
Item *orig_cond= 0;
bool orig_cond_saved= false;
int best_key= -1;
bool changed_key= false;
THD *thd= tab->join->thd;
ORDER *best_key_order= 0;
Json_writer_object trace_wrapper(thd);
Json_writer_array trace_arr(thd, "test_if_skip_sort_order");
DBUG_ENTER("test_if_skip_sort_order");
*fatal_error= false;
/* Check that we are always called with first non-const table */
DBUG_ASSERT(tab == tab->join->join_tab + tab->join->const_tables);
/* Sorting a single row can always be skipped */
if (tab->type == JT_EQ_REF ||
tab->type == JT_CONST ||
tab->type == JT_SYSTEM)
{
Json_writer_object trace_skip(thd);
trace_skip.add("skipped", "single row access method");
DBUG_RETURN(1);
}
/*
Keys disabled by ALTER TABLE ... DISABLE KEYS should have already
been taken into account.
*/
usable_keys= *map;
// Step #1: Find indexes that produce the required ordering.
if (find_indexes_matching_order(tab->join, table, order, &usable_keys))
DBUG_RETURN(false); // Cannot skip sorting
/*
Step #2: Analyze the current access method. Note the used index as ref_key
and #used keyparts in ref_key_parts.
*/
ref_key= -1;
/* Test if constant range in WHERE */
if (tab->ref.key >= 0 && tab->ref.key_parts)
{
ref_key= tab->ref.key;
ref_key_parts= tab->ref.key_parts;
/*
todo: why does JT_REF_OR_NULL mean filesort? We could find another index
that satisfies the ordering. I would just set ref_key=MAX_KEY here...
*/
if (tab->type == JT_REF_OR_NULL || tab->type == JT_FT ||
tab->ref.uses_splitting)
goto use_filesort;
}
else if (select && select->quick) // Range found by opt_range
{
int quick_type= select->quick->get_type();
/*
assume results are not ordered when index merge is used
TODO: sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
*/
if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT)
{
/*
we set ref_key=MAX_KEY instead of -1, because test_if_cheaper_ordering()
assumes that "ref_key==-1" means doing full index scan.
(This is not very straightforward and we got into this situation for
historical reasons. Should be fixed at some point).
*/
ref_key= MAX_KEY;
}
else
{
ref_key= select->quick->index;
ref_key_parts= select->quick->used_key_parts;
}
}
/*
Step #3: Check if index ref_key that we're using produces the required
ordering or if there is another index new_ref_key such that
- ref_key is a prefix of new_ref_key (so, access method can be reused)
- new_ref_key produces the required ordering
*/
if (ref_key >= 0 && ref_key != MAX_KEY)
{
/* Current access method uses index ref_key with ref_key_parts parts */
if (!usable_keys.is_set(ref_key))
{
/* However, ref_key doesn't match the needed ordering */
uint new_ref_key;
/*
If using index only read, only consider other possible index only
keys
*/
if (table->covering_keys.is_set(ref_key))
usable_keys.intersect(table->covering_keys);
if (tab->pre_idx_push_select_cond)
{
orig_cond= tab->set_cond(tab->pre_idx_push_select_cond);
orig_cond_saved= true;
}
if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts,
&usable_keys)) < MAX_KEY)
{
/*
Index new_ref_key
- produces the required ordering,
- also has the same columns as ref_key for #ref_key_parts (this
means we will read the same number of rows as with ref_key).
*/
/*
If new_ref_key allows to construct a quick select which uses more key
parts than ref(new_ref_key) would, do that.
Otherwise, construct a ref access (todo: it's not clear what is the
win in using ref access when we could use quick select also?)
*/
if ((table->opt_range_keys.is_set(new_ref_key) &&
table->opt_range[new_ref_key].key_parts > ref_key_parts) ||
!(tab->ref.key >= 0))
{
/*
The range optimizer constructed QUICK_RANGE for ref_key, and
we want to use instead new_ref_key as the index. We can't
just change the index of the quick select, because this may
result in an inconsistent QUICK_SELECT object. Below we
create a new QUICK_SELECT from scratch so that all its
parameters are set correctly by the range optimizer.
*/
key_map new_ref_key_map;
COND *save_cond;
quick_select_return res;
new_ref_key_map.clear_all(); // Force the creation of quick select
new_ref_key_map.set_bit(new_ref_key); // only for new_ref_key.
/* Reset quick; This will be restored in 'use_filesort' if needed */
select->quick= 0;
save_cond= select->cond;
if (select->pre_idx_push_select_cond)
select->cond= select->pre_idx_push_select_cond;
res= select->test_quick_select(tab->join->thd, new_ref_key_map, 0,
(tab->join->select_options &
OPTION_FOUND_ROWS) ?
HA_POS_ERROR :
tab->join->unit->
lim.get_select_limit(),
TRUE, TRUE, FALSE, FALSE,
Item_func::BITMAP_ALL);
// if we cannot use quick select
if (res != SQL_SELECT::OK || !tab->select->quick)
{
if (res == SQL_SELECT::ERROR)
*fatal_error= true;
select->cond= save_cond;
goto use_filesort;
}
tab->type= JT_RANGE;
tab->ref.key= -1;
tab->ref.key_parts= 0;
tab->use_quick= 1;
best_key= new_ref_key;
/*
We don't restore select->cond as we want to use the
original condition as index condition pushdown is not
active for the new index.
todo: why not perform index condition pushdown for the new index?
*/
}
else
{
/*
We'll use ref access method on key new_ref_key. In general case
the index search tuple for new_ref_key will be different (e.g.
when one index is defined as (part1, part2, ...) and another as
(part1, part2(N), ...) and the WHERE clause contains
"part1 = const1 AND part2=const2".
So we build tab->ref from scratch here.
*/
KEYUSE *keyuse= tab->keyuse;
while (keyuse->key != new_ref_key && keyuse->table == tab->table)
keyuse++;
if (create_ref_for_key(tab->join, tab, keyuse, FALSE,
(tab->join->const_table_map |
OUTER_REF_TABLE_BIT)))
goto use_filesort;
pick_table_access_method(tab);
}
ref_key= new_ref_key;
changed_key= true;
}
}
/* Check if we get the rows in requested sorted order by using the key */
if (usable_keys.is_set(ref_key) &&
(order_direction= test_if_order_by_key(tab->join, order,table,ref_key,
&used_key_parts)))
goto check_reverse_order;
}
/*
Step #4: Go through all indexes that produce required ordering (in
usable_keys) and check if any of them is cheaper than ref_key
*/
{
uint UNINIT_VAR(best_key_parts);
uint saved_best_key_parts= 0;
int best_key_direction= 0;
JOIN *join= tab->join;
ha_rows table_records= table->stat_records();
double new_read_time_dummy;
test_if_cheaper_ordering(FALSE, tab, order, table, usable_keys,
ref_key, select_limit,
&best_key, &best_key_direction,
&select_limit, &new_read_time_dummy,
&best_key_parts,
&saved_best_key_parts);
/*
filesort() and join cache are usually faster than reading in
index order and not using join cache, except in case that chosen
index is clustered key.
*/
if (best_key < 0 ||
((select_limit >= table_records) &&
((tab->type == JT_ALL || tab->type == JT_RANGE) &&
tab->join->table_count > tab->join->const_tables + 1) &&
!table->is_clustering_key(best_key)))
goto use_filesort;
best_key_order= order;
if (select && table->opt_range_keys.is_set(best_key) && best_key != ref_key)
{
key_map tmp_map;
tmp_map.clear_all(); // Force the creation of quick select
tmp_map.set_bit(best_key); // only best_key.
select->quick= 0;
bool cond_saved= false;
Item *saved_cond;
/*
Index Condition Pushdown may have removed parts of the condition for
this table. Temporarily put them back because we want the whole
condition for the range analysis.
*/
if (select->pre_idx_push_select_cond)
{
saved_cond= select->cond;
select->cond= select->pre_idx_push_select_cond;
cond_saved= true;
}
quick_select_return res;
res = select->test_quick_select(join->thd, tmp_map, 0,
join->select_options & OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->lim.get_select_limit(),
TRUE, FALSE, FALSE, FALSE,
Item_func::BITMAP_ALL);
if (res == SQL_SELECT::ERROR)
{
*fatal_error= true;
goto use_filesort;
}
if (cond_saved)
select->cond= saved_cond;
}
order_direction= best_key_direction;
/*
saved_best_key_parts is actual number of used keyparts found by
the test_if_order_by_key function. It could differ from
keyinfo->user_defined_key_parts, thus we have to restore it in
case of desc order as it affects QUICK_SELECT_DESC behaviour.
*/
used_key_parts= (order_direction == -1) ?
saved_best_key_parts : best_key_parts;
changed_key= true;
}
check_reverse_order:
DBUG_ASSERT(order_direction != 0);
if (order_direction == -1) // If ORDER BY ... DESC
{
int quick_type;
if (select && select->quick)
{
/*
Don't reverse the sort order, if it's already done.
(In some cases test_if_order_by_key() can be called multiple times
*/
if (select->quick->reverse_sorted())
goto skipped_filesort;
quick_type= select->quick->get_type();
if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
{
tab->limit= 0;
goto use_filesort; // Use filesort
}
}
}
/*
Update query plan with access pattern for doing ordered access
according to what we have decided above.
*/
if (!no_changes) // We are allowed to update QEP
{
if (best_key >= 0)
{
bool quick_created=
(select && select->quick && select->quick!=save_quick);
if (!quick_created)
{
if (select) // Throw any existing quick select
select->quick= 0; // Cleanup either reset to save_quick,
// or 'delete save_quick'
tab->index= best_key;
tab->read_first_record= (order_direction > 0 ?
join_read_first:
join_read_last);
tab->type=JT_NEXT; // Read with index_first(), index_next()
tab->full_index_scan_order= best_key_order;
/*
Currently usage of rowid filters is not supported in InnoDB
if the table is accessed by the primary key
*/
if (tab->rowid_filter &&
(table->file->is_clustering_key(tab->index) ||
table->covering_keys.is_set(best_key)))
tab->clear_range_rowid_filter();
if (tab->pre_idx_push_select_cond)
{
tab->set_cond(tab->pre_idx_push_select_cond);
/*
orig_cond is a part of pre_idx_push_cond,
no need to restore it.
*/
orig_cond= 0;
orig_cond_saved= false;
}
table->file->ha_index_or_rnd_end();
if (tab->join->select_options & SELECT_DESCRIBE)
{
tab->ref.key= -1;
tab->ref.key_parts= 0;
if (select_limit < table->stat_records())
tab->limit= select_limit;
}
}
else if (tab->type != JT_ALL || tab->select->quick)
{
/*
We're about to use a quick access to the table.
We need to change the access method so as the quick access
method is actually used.
*/
DBUG_ASSERT(tab->select->quick);
tab->type= JT_RANGE;
tab->use_quick=1;
tab->ref.key= -1;
tab->ref.key_parts=0; // Don't use ref key.
if (tab->rowid_filter)
tab->clear_range_rowid_filter();
tab->read_first_record= join_init_read_record;
if (tab->is_using_loose_index_scan())
tab->join->tmp_table_param.precomputed_group_by= TRUE;
/*
Restore the original condition as changes done by pushdown
condition are not relevant anymore
*/
if (tab->select && tab->select->pre_idx_push_select_cond)
{
tab->set_cond(tab->select->pre_idx_push_select_cond);
tab->table->file->cancel_pushed_idx_cond();
}
/*
TODO: update the number of records in join->best_positions[tablenr]
*/
}
} // best_key >= 0
if (order_direction == -1) // If ORDER BY ... DESC
{
if (select && select->quick)
{
/* ORDER BY range_key DESC */
QUICK_SELECT_I *tmp= select->quick->make_reverse(used_key_parts);
if (!tmp)
{
tab->limit= 0;
goto use_filesort; // Reverse sort failed -> filesort
}
prepare_for_reverse_ordered_access(tab);
if (select->quick == save_quick)
save_quick= 0; // make_reverse() consumed it
select->set_quick(tmp);
}
else if (tab->type != JT_NEXT && tab->type != JT_REF_OR_NULL &&
tab->ref.key >= 0 && tab->ref.key_parts <= used_key_parts)
{
/*
SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC
Use a traversal function that starts by reading the last row
with key part (A) and then traverse the index backwards.
*/
tab->read_first_record= join_read_last_key;
tab->read_record.read_record_func= join_read_prev_same;
prepare_for_reverse_ordered_access(tab);
}
}
else if (select && select->quick)
{
/* Cancel "Range checked for each record" */
if (tab->use_quick == 2)
{
tab->use_quick= 1;
tab->read_first_record= join_init_read_record;
}
select->quick->need_sorted_output();
}
if (tab->type == JT_EQ_REF)
tab->read_record.unlock_row= join_read_key_unlock_row;
else if (tab->type == JT_CONST)
tab->read_record.unlock_row= join_const_unlock_row;
else
tab->read_record.unlock_row= rr_unlock_row;
} // QEP has been modified
/*
Cleanup:
We may have both a 'select->quick' and 'save_quick' (original)
at this point. Delete the one that we wan't use.
*/
skipped_filesort:
// Keep current (ordered) select->quick
if (select && save_quick != select->quick)
{
delete save_quick;
save_quick= NULL;
}
if (orig_cond_saved && !changed_key)
tab->set_cond(orig_cond);
if (!no_changes && changed_key && table->file->pushed_idx_cond)
table->file->cancel_pushed_idx_cond();
DBUG_RETURN(1);
use_filesort:
// Restore original save_quick
if (select && select->quick != save_quick)
{
delete select->quick;
select->quick= save_quick;
}
if (orig_cond_saved)
tab->set_cond(orig_cond);
DBUG_RETURN(0);
}
/*
If not selecting by given key, create an index how records should be read
SYNOPSIS
create_sort_index()
thd Thread handler
join Join with table to sort
join_tab What table to sort
fsort Filesort object. NULL means "use tab->filesort".
IMPLEMENTATION
- If there is an index that can be used, the first non-const join_tab in
'join' is modified to use this index.
- If no index, create with filesort() an index file that can be used to
retrieve rows in order (should be done with 'read_record').
The sorted data is stored in tab->filesort
RETURN VALUES
0 ok
-1 Some fatal error
1 No records
*/
int
create_sort_index(THD *thd, JOIN *join, JOIN_TAB *tab, Filesort *fsort)
{
TABLE *table;
SQL_SELECT *select;
bool quick_created= FALSE;
SORT_INFO *file_sort= 0;
DBUG_ENTER("create_sort_index");
if (fsort == NULL)
fsort= tab->filesort;
table= tab->table;
select= fsort->select;
table->status=0; // May be wrong if quick_select
if (!tab->preread_init_done && tab->preread_init())
goto err;
// If table has a range, move it to select
if (select && tab->ref.key >= 0)
{
if (!select->quick)
{
if (tab->quick)
{
select->quick= tab->quick;
tab->quick= NULL;
/*
We can only use 'Only index' if quick key is same as ref_key
and in index_merge 'Only index' cannot be used
*/
if (((uint) tab->ref.key != select->quick->index))
table->file->ha_end_keyread();
}
else
{
/*
We have a ref on a const; Change this to a range that filesort
can use.
For impossible ranges (like when doing a lookup on NULL on a NOT NULL
field, quick will contain an empty record set.
*/
if (!(select->quick= (tab->type == JT_FT ?
get_ft_select(thd, table, tab->ref.key) :
get_quick_select_for_ref(thd, table, &tab->ref,
tab->found_records))))
goto err;
quick_created= TRUE;
}
fsort->own_select= true;
}
else
{
fsort->own_select= false;
DBUG_ASSERT(tab->type == JT_REF || tab->type == JT_EQ_REF);
// Update ref value
if (unlikely(cp_buffer_from_ref(thd, table, &tab->ref) &&
thd->is_error()))
goto err; // out of memory
}
}
/* Fill schema tables with data before filesort if it's necessary */
if ((join->select_lex->options & OPTION_SCHEMA_TABLE) &&
unlikely(get_schema_tables_result(join, PROCESSED_BY_CREATE_SORT_INDEX)))
goto err;
if (table->s->tmp_table)
table->file->info(HA_STATUS_VARIABLE); // Get record count
fsort->accepted_rows= &join->accepted_rows; // For ROWNUM
file_sort= filesort(thd, table, fsort, fsort->tracker, join, tab->table->map);
DBUG_ASSERT(tab->filesort_result == 0);
tab->filesort_result= file_sort;
tab->records= 0;
if (file_sort)
{
tab->records= join->select_options & OPTION_FOUND_ROWS ?
file_sort->found_rows : file_sort->return_rows;
}
if (quick_created)
{
/* This will delete the quick select. */
select->cleanup();
}
table->file->ha_end_keyread();
if (tab->type == JT_FT)
table->file->ha_ft_end();
else
table->file->ha_index_or_rnd_end();
DBUG_RETURN(file_sort == 0);
err:
DBUG_RETURN(-1);
}
/**
Compare fields from table->record[0] and table->record[1],
possibly skipping few first fields.
@param table
@param ptr field to start the comparison from,
somewhere in the table->field[] array
@retval 1 different
@retval 0 identical
*/
static bool compare_record(TABLE *table, Field **ptr)
{
for (; *ptr ; ptr++)
{
Field *f= *ptr;
if (f->is_null() != f->is_null(table->s->rec_buff_length) ||
(!f->is_null() && f->cmp_offset(table->s->rec_buff_length)))
return 1;
}
return 0;
}
static bool copy_blobs(Field **ptr)
{
for (; *ptr ; ptr++)
{
if ((*ptr)->flags & BLOB_FLAG)
if (((Field_blob *) (*ptr))->copy())
return 1; // Error
}
return 0;
}
static void free_blobs(Field **ptr)
{
for (; *ptr ; ptr++)
{
if ((*ptr)->flags & BLOB_FLAG)
((Field_blob *) (*ptr))->free();
}
}
/*
@brief
Remove duplicates from a temporary table.
@detail
Remove duplicate rows from a temporary table. This is used for e.g. queries
like
select distinct count(*) as CNT from tbl group by col
Here, we get a group table with count(*) values. It is not possible to
prevent duplicates from appearing in the table (as we don't know the values
before we've done the grouping). Because of that, we have this function to
scan the temptable (maybe, multiple times) and remove the duplicate rows
Rows that do not satisfy 'having' condition are also removed.
*/
bool
JOIN_TAB::remove_duplicates()
{
bool error;
ulong keylength= 0, sort_field_keylength= 0;
uint field_count, item_count;
List<Item> *fields= (this-1)->fields;
Item *item;
THD *thd= join->thd;
SORT_FIELD *sortorder, *sorder;
DBUG_ENTER("remove_duplicates");
DBUG_ASSERT(join->aggr_tables > 0 && table->s->tmp_table != NO_TMP_TABLE);
THD_STAGE_INFO(join->thd, stage_removing_duplicates);
if (!(sortorder= (SORT_FIELD*) my_malloc(PSI_INSTRUMENT_ME,
(fields->elements+1) *
sizeof(SORT_FIELD),
MYF(MY_WME | MY_ZEROFILL))))
DBUG_RETURN(TRUE);
/* Calculate how many saved fields there is in list */
field_count= item_count= 0;
List_iterator<Item> it(*fields);
for (sorder= sortorder ; (item=it++) ;)
{
if (!item->const_item())
{
if (item->get_tmp_table_field())
{
/* Field is stored in temporary table, skipp */
field_count++;
}
else
{
/* Item is not stored in temporary table, remember it */
sorder->item= item;
sorder->type= sorder->item->type_handler()->is_packable() ?
SORT_FIELD_ATTR::VARIABLE_SIZE :
SORT_FIELD_ATTR::FIXED_SIZE;
/* Calculate sorder->length */
item->type_handler()->sort_length(thd, item, sorder);
sorder++;
item_count++;
}
}
}
sorder->item= 0; // End marker
if ((field_count + item_count == 0) && ! having &&
!(join->select_options & OPTION_FOUND_ROWS))
{
// only const items with no OPTION_FOUND_ROWS
join->unit->lim.send_first_row(); // Only send first row
my_free(sortorder);
DBUG_RETURN(false);
}
/*
The table contains first fields that will be in the output, then
temporary results pointed to by the fields list.
Example: SELECT DISTINCT sum(a), sum(d) > 2 FROM ...
In this case the temporary table contains sum(a), sum(d).
*/
Field **first_field=table->field+table->s->fields - field_count;
for (Field **ptr=first_field; *ptr; ptr++)
keylength+= (*ptr)->sort_length() + (*ptr)->maybe_null();
for (SORT_FIELD *ptr= sortorder ; ptr->item ; ptr++)
sort_field_keylength+= ptr->length + (ptr->item->maybe_null() ? 1 : 0);
/*
Disable LIMIT ROWS EXAMINED in order to avoid interrupting prematurely
duplicate removal, and produce a possibly incomplete query result.
*/
thd->lex->limit_rows_examined_cnt= ULONGLONG_MAX;
if (thd->killed == ABORT_QUERY)
thd->reset_killed();
table->file->info(HA_STATUS_VARIABLE);
table->reginfo.lock_type=TL_WRITE;
if (table->s->db_type() == heap_hton ||
(!table->s->blob_fields &&
((ALIGN_SIZE(keylength) + HASH_OVERHEAD) * table->file->stats.records <
thd->variables.sortbuff_size)))
error= remove_dup_with_hash_index(join->thd, table, field_count,
first_field, sortorder,
keylength + sort_field_keylength, having);
else
error=remove_dup_with_compare(join->thd, table, first_field, sortorder,
sort_field_keylength, having);
if (join->select_lex != join->select_lex->master_unit()->fake_select_lex)
thd->lex->set_limit_rows_examined();
free_blobs(first_field);
my_free(sortorder);
DBUG_RETURN(error);
}
/*
Create a sort/compare key from items
Key is of fixed length and binary comparable
*/
static uchar *make_sort_key(SORT_FIELD *sortorder, uchar *key_buffer,
String *tmp_value)
{
for (SORT_FIELD *ptr= sortorder ; ptr->item ; ptr++)
{
ptr->item->type_handler()->make_sort_key_part(key_buffer,
ptr->item,
ptr, tmp_value);
key_buffer+= (ptr->item->maybe_null() ? 1 : 0) + ptr->length;
}
return key_buffer;
}
/*
Remove duplicates by comparing all rows with all other rows
@param thd THD
@param table Temporary table
@param first_field Pointer to fields in temporary table that are part of
distinct, ends with null pointer
@param sortorder An array of Items part of distsinct. Terminated with an
element N with sortorder[N]->item=NULL.
@param keylength Length of key produced by sortorder
@param having Having expression (NULL if no having)
*/
static int remove_dup_with_compare(THD *thd, TABLE *table, Field **first_field,
SORT_FIELD *sortorder, ulong keylength,
Item *having)
{
handler *file=table->file;
uchar *record=table->record[0], *key_buffer, *key_buffer2;
char *tmp_buffer;
int error;
String tmp_value;
DBUG_ENTER("remove_dup_with_compare");
if (unlikely(!my_multi_malloc(PSI_INSTRUMENT_ME,
MYF(MY_WME),
&key_buffer, keylength,
&key_buffer2, keylength,
&tmp_buffer, keylength+1,
NullS)))
DBUG_RETURN(1);
tmp_value.set(tmp_buffer, keylength, &my_charset_bin);
if (unlikely(file->ha_rnd_init_with_error(1)))
DBUG_RETURN(1);
error= file->ha_rnd_next(record);
for (;;)
{
if (unlikely(thd->check_killed()))
{
error= 1;
goto end;
}
if (unlikely(error))
{
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
if (having && !having->val_bool())
{
if (unlikely((error= file->ha_delete_row(record))))
goto err;
error= file->ha_rnd_next(record);
continue;
}
if (unlikely(copy_blobs(first_field)))
{
my_message(ER_OUTOFMEMORY, ER_THD(thd,ER_OUTOFMEMORY),
MYF(ME_FATAL));
error= 1;
goto end;
}
make_sort_key(sortorder, key_buffer, &tmp_value);
store_record(table,record[1]);
/* Read through rest of file and mark duplicated rows deleted */
bool found=0;
for (;;)
{
if (unlikely((error= file->ha_rnd_next(record))))
{
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
make_sort_key(sortorder, key_buffer2, &tmp_value);
if (compare_record(table, first_field) == 0 &&
(!keylength ||
memcmp(key_buffer, key_buffer2, keylength) == 0))
{
if (unlikely((error= file->ha_delete_row(record))))
goto err;
}
else if (!found)
{
found=1;
if (unlikely((error= file->remember_rnd_pos())))
goto err;
}
}
if (!found)
break; // End of file
/* Restart search on saved row */
if (unlikely((error= file->restart_rnd_next(record))))
goto err;
}
error= 0;
end:
my_free(key_buffer);
file->extra(HA_EXTRA_NO_CACHE);
(void) file->ha_rnd_end();
DBUG_RETURN(error);
err:
DBUG_ASSERT(error);
file->print_error(error,MYF(0));
goto end;
}
/**
Generate a hash index for each row to quickly find duplicate rows.
@param thd THD
@param table Temporary table
@param field_count Number of fields part of distinct
@param first_field Pointer to fields in temporary table that are part of
distinct, ends with null pointer
@param sortorder An array of Items part of distsinct. Terminated with an
element N with sortorder[N]->item=NULL.
@param keylength Length of hash key
@param having Having expression (NULL if no having)
@note
Note that this will not work on tables with blobs!
*/
static int remove_dup_with_hash_index(THD *thd, TABLE *table,
uint field_count,
Field **first_field,
SORT_FIELD *sortorder,
ulong key_length,
Item *having)
{
uchar *key_buffer, *key_pos, *record=table->record[0];
char *tmp_buffer;
int error;
handler *file= table->file;
ulong extra_length= ALIGN_SIZE(key_length)-key_length;
uint *field_lengths, *field_length;
HASH hash;
String tmp_value;
DBUG_ENTER("remove_dup_with_hash_index");
if (!my_multi_malloc(key_memory_hash_index_key_buffer, MYF(MY_WME),
&key_buffer,
(uint) ((key_length + extra_length) *
(long) file->stats.records),
&field_lengths,
(uint) (field_count*sizeof(*field_lengths)),
&tmp_buffer, key_length+1,
NullS))
DBUG_RETURN(1);
tmp_value.set(tmp_buffer, key_length, &my_charset_bin);
field_length= field_lengths;
for (Field **ptr= first_field ; *ptr ; ptr++)
(*field_length++)= (*ptr)->sort_length();
if (my_hash_init(key_memory_hash_index_key_buffer, &hash, &my_charset_bin,
(uint) file->stats.records, 0, key_length, 0, 0, 0))
{
my_free(key_buffer);
DBUG_RETURN(1);
}
if (unlikely((error= file->ha_rnd_init(1))))
goto err;
key_pos= key_buffer;
for (;;)
{
uchar *org_key_pos;
if (unlikely(thd->check_killed()))
{
error=0;
goto err;
}
if (unlikely((error= file->ha_rnd_next(record))))
{
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
if (having && !having->val_bool())
{
if (unlikely((error= file->ha_delete_row(record))))
goto err;
continue;
}
/* copy fields to key buffer */
org_key_pos= key_pos;
field_length=field_lengths;
for (Field **ptr= first_field ; *ptr ; ptr++)
{
(*ptr)->make_sort_key_part(key_pos, *field_length);
key_pos+= (*ptr)->maybe_null() + *field_length++;
}
/* Copy result fields not stored in table to key buffer */
key_pos= make_sort_key(sortorder, key_pos, &tmp_value);
/* Check if it exists before */
if (my_hash_search(&hash, org_key_pos, key_length))
{
/* Duplicated found ; Remove the row */
if (unlikely((error= file->ha_delete_row(record))))
goto err;
}
else
{
if (my_hash_insert(&hash, org_key_pos))
goto err;
}
key_pos+=extra_length;
}
my_free(key_buffer);
my_hash_free(&hash);
file->extra(HA_EXTRA_NO_CACHE);
(void) file->ha_rnd_end();
DBUG_RETURN(0);
err:
my_free(key_buffer);
my_hash_free(&hash);
file->extra(HA_EXTRA_NO_CACHE);
(void) file->ha_rnd_end();
if (unlikely(error))
file->print_error(error,MYF(0));
DBUG_RETURN(1);
}
/*
eq_ref: Create the lookup key and check if it is the same as saved key
SYNOPSIS
cmp_buffer_with_ref()
tab Join tab of the accessed table
table The table to read. This is usually tab->table, except for
semi-join when we might need to make a lookup in a temptable
instead.
tab_ref The structure with methods to collect index lookup tuple.
This is usually table->ref, except for the case of when we're
doing lookup into semi-join materialization table.
DESCRIPTION
Used by eq_ref access method: create the index lookup key and check if
we've used this key at previous lookup (If yes, we don't need to repeat
the lookup - the record has been already fetched)
RETURN
TRUE No cached record for the key, or failed to create the key (due to
out-of-domain error)
FALSE The created key is the same as the previous one (and the record
is already in table->record)
*/
static bool
cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref)
{
bool no_prev_key;
if (!tab_ref->disable_cache)
{
if (!(no_prev_key= tab_ref->key_err))
{
/* Previous access found a row. Copy its key */
memcpy(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length);
}
}
else
no_prev_key= TRUE;
if ((tab_ref->key_err= cp_buffer_from_ref(thd, table, tab_ref)) ||
no_prev_key)
return 1;
return memcmp(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length)
!= 0;
}
bool
cp_buffer_from_ref(THD *thd, TABLE *table, TABLE_REF *ref)
{
enum_check_fields org_count_cuted_fields= thd->count_cuted_fields;
MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->write_set);
bool result= 0;
key_part_map map= 1;
thd->count_cuted_fields= CHECK_FIELD_IGNORE;
for (store_key **copy=ref->key_copy ; *copy ; copy++, map <<= 1)
{
while (map & ref->const_ref_part_map) // skip const ref parts
map <<= 1; // no store_key objects for them
if ((*copy)->copy(thd) & 1 ||
((ref->null_rejecting & map) && (*copy)->null_key))
{
result= 1;
break;
}
}
thd->count_cuted_fields= org_count_cuted_fields;
dbug_tmp_restore_column_map(&table->write_set, old_map);
return result;
}
/*****************************************************************************
Group and order functions
*****************************************************************************/
/**
Resolve an ORDER BY or GROUP BY column reference.
Given a column reference (represented by 'order') from a GROUP BY or ORDER
BY clause, find the actual column it represents. If the column being
resolved is from the GROUP BY clause, the procedure searches the SELECT
list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
the ORDER BY clause, only the SELECT list is being searched.
If 'order' is resolved to an Item, then order->item is set to the found
Item. If there is no item for the found column (that is, it was resolved
into a table field), order->item is 'fixed' and is added to all_fields and
ref_pointer_array.
ref_pointer_array and all_fields are updated.
@param[in] thd Pointer to current thread structure
@param[in,out] ref_pointer_array All select, group and order by fields
@param[in] tables List of tables to search in (usually
FROM clause)
@param[in] order Column reference to be resolved
@param[in] fields List of fields to search in (usually
SELECT list)
@param[in,out] all_fields All select, group and order by fields
@param[in] is_group_field True if order is a GROUP field, false if
ORDER by field
@param[in] add_to_all_fields If the item is to be added to all_fields and
ref_pointer_array, this flag can be set to
false to stop the automatic insertion.
@param[in] from_window_spec If true then order is from a window spec
@retval
FALSE if OK
@retval
TRUE if error occurred
*/
static bool
find_order_in_list(THD *thd, Ref_ptr_array ref_pointer_array,
TABLE_LIST *tables,
ORDER *order, List<Item> &fields, List<Item> &all_fields,
bool is_group_field, bool add_to_all_fields,
bool from_window_spec)
{
Item *order_item= *order->item; /* The item from the GROUP/ORDER caluse. */
Item::Type order_item_type;
Item **select_item; /* The corresponding item from the SELECT clause. */
Field *from_field; /* The corresponding field from the FROM clause. */
uint counter;
enum_resolution_type resolution;
if (order_item->is_order_clause_position() && !from_window_spec)
{ /* Order by position */
uint count;
if (order->counter_used)
count= order->counter; // counter was once resolved
else
count= (uint) order_item->val_int();
if (!count || count > fields.elements)
{
my_error(ER_BAD_FIELD_ERROR, MYF(0),
order_item->full_name(), thd_where(thd));
return TRUE;
}
thd->change_item_tree((Item **)&order->item, (Item *)&ref_pointer_array[count - 1]);
order->in_field_list= 1;
order->counter= count;
order->counter_used= 1;
return FALSE;
}
/* Lookup the current GROUP/ORDER field in the SELECT clause. */
select_item= find_item_in_list(order_item, fields, &counter,
REPORT_EXCEPT_NOT_FOUND, &resolution);
if (!select_item)
return TRUE; /* The item is not unique, or some other error occurred. */
/* Check whether the resolved field is not ambiguos. */
if (select_item != not_found_item)
{
Item *view_ref= NULL;
/*
If we have found field not by its alias in select list but by its
original field name, we should additionally check if we have conflict
for this name (in case if we would perform lookup in all tables).
*/
if (resolution == RESOLVED_BEHIND_ALIAS)
{
if (order_item->fix_fields_if_needed_for_order_by(thd, order->item))
return TRUE;
// fix_fields may have replaced order->item, reset local variable.
order_item= *order->item;
}
/* Lookup the current GROUP field in the FROM clause. */
order_item_type= order_item->type();
from_field= (Field*) not_found_field;
if ((is_group_field && order_item_type == Item::FIELD_ITEM) ||
order_item_type == Item::REF_ITEM)
{
from_field= find_field_in_tables(thd, (Item_ident*) order_item, tables,
NULL, ignored_tables_list_t(NULL),
&view_ref, IGNORE_ERRORS, FALSE, FALSE);
if (!from_field)
from_field= (Field*) not_found_field;
}
if (from_field == not_found_field ||
(from_field != view_ref_found ?
/* it is field of base table => check that fields are same */
((*select_item)->type() == Item::FIELD_ITEM &&
((Item_field*) (*select_item))->field->eq(from_field)) :
/*
in is field of view table => check that references on translation
table are same
*/
((*select_item)->type() == Item::REF_ITEM &&
view_ref->type() == Item::REF_ITEM &&
((Item_ref *) (*select_item))->ref ==
((Item_ref *) view_ref)->ref)))
{
/*
If there is no such field in the FROM clause, or it is the same field
as the one found in the SELECT clause, then use the Item created for
the SELECT field. As a result if there was a derived field that
'shadowed' a table field with the same name, the table field will be
chosen over the derived field.
*/
order->item= &ref_pointer_array[counter];
order->in_field_list=1;
return FALSE;
}
else
{
/*
There is a field with the same name in the FROM clause. This
is the field that will be chosen. In this case we issue a
warning so the user knows that the field from the FROM clause
overshadows the column reference from the SELECT list.
*/
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_NON_UNIQ_ERROR,
ER_THD(thd, ER_NON_UNIQ_ERROR),
((Item_ident*) order_item)->field_name.str,
thd_where(thd));
}
}
else if (from_window_spec)
{
Item **found_item= find_item_in_list(order_item, all_fields, &counter,
REPORT_EXCEPT_NOT_FOUND, &resolution,
all_fields.elements - fields.elements);
if (found_item != not_found_item)
{
order->item= &ref_pointer_array[all_fields.elements-1-counter];
order->in_field_list= 0;
return FALSE;
}
}
order->in_field_list=0;
/*
The call to order_item->fix_fields() means that here we resolve
'order_item' to a column from a table in the list 'tables', or to
a column in some outer query. Exactly because of the second case
we come to this point even if (select_item == not_found_item),
inspite of that fix_fields() calls find_item_in_list() one more
time.
We check order_item->fixed() because Item_func_group_concat can put
arguments for which fix_fields already was called.
*/
if (order_item->fix_fields_if_needed_for_order_by(thd, order->item) ||
thd->is_error())
return TRUE; /* Wrong field. */
order_item= *order->item; // Item can change during fix_fields()
if (!add_to_all_fields)
return FALSE;
uint el= all_fields.elements;
/* Add new field to field list. */
all_fields.push_front(order_item, thd->mem_root);
ref_pointer_array[el]= order_item;
/*
If the order_item is a SUM_FUNC_ITEM, when fix_fields is called
ref_by is set to order->item which is the address of order_item.
But this needs to be address of order_item in the all_fields list.
As a result, when it gets replaced with Item_aggregate_ref
object in Item::split_sum_func2, we will be able to retrieve the
newly created object.
*/
if (order_item->type() == Item::SUM_FUNC_ITEM)
((Item_sum *)order_item)->ref_by= all_fields.head_ref();
order->item= &ref_pointer_array[el];
return FALSE;
}
/**
Change order to point at item in select list.
If item isn't a number and doesn't exits in the select list, add it the
the field list.
*/
int setup_order(THD *thd, Ref_ptr_array ref_pointer_array, TABLE_LIST *tables,
List<Item> &fields, List<Item> &all_fields, ORDER *order,
bool from_window_spec)
{
SELECT_LEX *select = thd->lex->current_select;
enum_parsing_place context_analysis_place=
thd->lex->current_select->context_analysis_place;
thd->where= THD_WHERE::ORDER_CLAUSE;
const bool for_union= select->master_unit()->is_unit_op() &&
select == select->master_unit()->fake_select_lex;
for (uint number = 1; order; order=order->next, number++)
{
if (find_order_in_list(thd, ref_pointer_array, tables, order, fields,
all_fields, false, true, from_window_spec))
return 1;
Item * const item= *order->item;
if (item->with_window_func() && context_analysis_place != IN_ORDER_BY)
{
my_error(ER_WINDOW_FUNCTION_IN_WINDOW_SPEC, MYF(0));
return 1;
}
/*
UNION queries cannot be used with an aggregate function in
an ORDER BY clause
*/
if (for_union && (item->with_sum_func() || item->with_window_func()))
{
my_error(ER_AGGREGATE_ORDER_FOR_UNION, MYF(0), number);
return 1;
}
if ((from_window_spec && item->with_sum_func() &&
item->type() != Item::SUM_FUNC_ITEM) || item->with_window_func())
{
item->split_sum_func(thd, ref_pointer_array,
all_fields, SPLIT_SUM_SELECT);
}
}
return 0;
}
/**
Intitialize the GROUP BY list.
@param thd Thread handler
@param ref_pointer_array We store references to all fields that was
not in 'fields' here.
@param fields All fields in the select part. Any item in
'order' that is part of these list is replaced
by a pointer to this fields.
@param all_fields Total list of all unique fields used by the
select. All items in 'order' that was not part
of fields will be added first to this list.
@param order The fields we should do GROUP/PARTITION BY on
@param hidden_group_fields Pointer to flag that is set to 1 if we added
any fields to all_fields.
@param from_window_spec If true then list is from a window spec
@todo
change ER_WRONG_FIELD_WITH_GROUP to more detailed
ER_NON_GROUPING_FIELD_USED
@retval
0 ok
@retval
1 error (probably out of memory)
*/
int
setup_group(THD *thd, Ref_ptr_array ref_pointer_array, TABLE_LIST *tables,
List<Item> &fields, List<Item> &all_fields, ORDER *order,
bool *hidden_group_fields, bool from_window_spec)
{
enum_parsing_place context_analysis_place=
thd->lex->current_select->context_analysis_place;
*hidden_group_fields=0;
ORDER *ord;
if (!order)
return 0; /* Everything is ok */
uint org_fields=all_fields.elements;
thd->where= THD_WHERE::GROUP_STATEMENT;
for (ord= order; ord; ord= ord->next)
{
if (find_order_in_list(thd, ref_pointer_array, tables, ord, fields,
all_fields, true, true, from_window_spec))
return 1;
(*ord->item)->marker= MARKER_UNDEF_POS; /* Mark found */
if ((*ord->item)->with_sum_func() && context_analysis_place == IN_GROUP_BY)
{
my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*ord->item)->full_name());
return 1;
}
if ((*ord->item)->with_window_func())
{
if (context_analysis_place == IN_GROUP_BY)
my_error(ER_WRONG_PLACEMENT_OF_WINDOW_FUNCTION, MYF(0));
else
my_error(ER_WINDOW_FUNCTION_IN_WINDOW_SPEC, MYF(0));
return 1;
}
if (from_window_spec && (*ord->item)->with_sum_func() &&
(*ord->item)->type() != Item::SUM_FUNC_ITEM)
(*ord->item)->split_sum_func(thd, ref_pointer_array,
all_fields, SPLIT_SUM_SELECT);
}
if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY &&
context_analysis_place == IN_GROUP_BY)
{
/*
Don't allow one to use fields that is not used in GROUP BY
For each select a list of field references that aren't under an
aggregate function is created. Each field in this list keeps the
position of the select list expression which it belongs to.
First we check an expression from the select list against the GROUP BY
list. If it's found there then it's ok. It's also ok if this expression
is a constant or an aggregate function. Otherwise we scan the list
of non-aggregated fields and if we'll find at least one field reference
that belongs to this expression and doesn't occur in the GROUP BY list
we throw an error. If there are no fields in the created list for a
select list expression this means that all fields in it are used under
aggregate functions.
Note that for items in the select list (fields), Item_field->markers
contains the position of the field in the select list.
*/
Item *item;
Item_field *field;
int cur_pos_in_select_list= 0;
List_iterator<Item> li(fields);
List_iterator<Item_field> naf_it(thd->lex->current_select->join->non_agg_fields);
field= naf_it++;
while (field && (item=li++))
{
if (item->type() != Item::SUM_FUNC_ITEM &&
item->marker != MARKER_UNDEF_POS &&
!item->const_item() &&
!(item->real_item()->type() == Item::FIELD_ITEM &&
item->used_tables() & OUTER_REF_TABLE_BIT))
{
while (field)
{
/* Skip fields from previous expressions. */
if (field->marker < cur_pos_in_select_list)
goto next_field;
/* Found a field from the next expression. */
if (field->marker > cur_pos_in_select_list)
break;
/*
Check whether the field occur in the GROUP BY list.
Throw the error later if the field isn't found.
*/
for (ord= order; ord; ord= ord->next)
if ((*ord->item)->eq((Item*)field, 0))
goto next_field;
/*
TODO: change ER_WRONG_FIELD_WITH_GROUP to more detailed
ER_NON_GROUPING_FIELD_USED
*/
my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), field->full_name());
return 1;
next_field:
field= naf_it++;
}
}
cur_pos_in_select_list++;
}
}
if (org_fields != all_fields.elements)
*hidden_group_fields=1; // group fields is not used
return 0;
}
/**
Add fields with aren't used at start of field list.
@return
FALSE if ok
*/
static bool
setup_new_fields(THD *thd, List<Item> &fields,
List<Item> &all_fields, ORDER *new_field)
{
Item **item;
uint counter;
enum_resolution_type not_used;
DBUG_ENTER("setup_new_fields");
thd->column_usage= MARK_COLUMNS_READ; // Not really needed, but...
for (; new_field ; new_field= new_field->next)
{
if ((item= find_item_in_list(*new_field->item, fields, &counter,
IGNORE_ERRORS, ¬_used)))
new_field->item=item; /* Change to shared Item */
else
{
thd->where= THD_WHERE::PROCEDURE_LIST;
if ((*new_field->item)->fix_fields(thd, new_field->item))
DBUG_RETURN(1); /* purecov: inspected */
all_fields.push_front(*new_field->item, thd->mem_root);
new_field->item=all_fields.head_ref();
}
}
DBUG_RETURN(0);
}
/**
Create a group by that consist of all non const fields.
Try to use the fields in the order given by 'order' to allow one to
optimize away 'order by'.
@retval
0 OOM error if thd->is_fatal_error is set. Otherwise group was eliminated
# Pointer to new group
*/
ORDER *
create_distinct_group(THD *thd, Ref_ptr_array ref_pointer_array,
ORDER *order_list, List<Item> &fields,
List<Item> &all_fields,
bool *all_order_by_fields_used)
{
List_iterator<Item> li(fields);
Item *item;
Ref_ptr_array orig_ref_pointer_array= ref_pointer_array;
ORDER *order,*group,**prev;
uint idx= 0;
*all_order_by_fields_used= 1;
while ((item=li++))
item->marker= MARKER_UNUSED; /* Marker that field is not used */
prev= &group; group=0;
for (order=order_list ; order; order=order->next)
{
if (order->in_field_list)
{
ORDER *ord=(ORDER*) thd->memdup((char*) order,sizeof(ORDER));
if (!ord)
return 0;
*prev=ord;
prev= &ord->next;
(*ord->item)->marker= MARKER_FOUND_IN_ORDER;
}
else
*all_order_by_fields_used= 0;
}
li.rewind();
while ((item=li++))
{
if (!item->const_item() && !item->with_sum_func() &&
item->marker == MARKER_UNUSED)
{
/*
Don't put duplicate columns from the SELECT list into the
GROUP BY list.
*/
ORDER *ord_iter;
for (ord_iter= group; ord_iter; ord_iter= ord_iter->next)
if ((*ord_iter->item)->eq(item, 1))
goto next_item;
ORDER *ord= thd->calloc<ORDER>(1);
if (!ord)
return 0;
if (item->type() == Item::FIELD_ITEM &&
item->field_type() == MYSQL_TYPE_BIT)
{
/*
Because HEAP tables can't index BIT fields we need to use an
additional hidden field for grouping because later it will be
converted to a LONG field. Original field will remain of the
BIT type and will be returned [el]client.
*/
Item_field *new_item= new (thd->mem_root) Item_field(thd, (Item_field*)item);
if (!new_item)
return 0;
int el= all_fields.elements;
orig_ref_pointer_array[el]= new_item;
all_fields.push_front(new_item, thd->mem_root);
ord->item=&orig_ref_pointer_array[el];
}
else
{
/*
We have here only field_list (not all_field_list), so we can use
simple indexing of ref_pointer_array (order in the array and in the
list are same)
*/
ord->item= &ref_pointer_array[idx];
}
ord->direction= ORDER::ORDER_ASC;
*prev=ord;
prev= &ord->next;
}
next_item:
idx++;
}
*prev=0;
return group;
}
/**
Update join with count of the different type of fields.
*/
void
count_field_types(SELECT_LEX *select_lex, TMP_TABLE_PARAM *param,
List<Item> &fields, bool reset_with_sum_func)
{
List_iterator<Item> li(fields);
Item *field;
param->field_count=param->sum_func_count=param->func_count=
param->hidden_field_count=0;
param->quick_group=1;
while ((field=li++))
{
Item::Type real_type= field->real_item()->type();
if (real_type == Item::FIELD_ITEM)
param->field_count++;
else if (real_type == Item::SUM_FUNC_ITEM)
{
if (! field->const_item())
{
Item_sum *sum_item=(Item_sum*) field->real_item();
if (!sum_item->depended_from() ||
sum_item->depended_from() == select_lex)
{
if (!sum_item->quick_group)
param->quick_group=0; // UDF SUM function
param->sum_func_count++;
for (uint i=0 ; i < sum_item->get_arg_count() ; i++)
{
if (sum_item->get_arg(i)->real_item()->type() == Item::FIELD_ITEM)
param->field_count++;
else
param->func_count++;
}
}
param->func_count++;
}
}
else
{
param->func_count++;
if (reset_with_sum_func)
field->with_flags&= ~item_with_t::SUM_FUNC;
}
}
}
/**
Return 1 if second is a subpart of first argument.
SIDE EFFECT:
For all the first items in the group by list that match, the sort
direction of the GROUP BY items are set to the same as those given by the
ORDER BY.
The direction of the group does not matter if the ORDER BY clause overrides
it anyway.
*/
static bool
test_if_subpart(ORDER *group_by, ORDER *order_by)
{
while (group_by && order_by)
{
if ((*group_by->item)->eq(*order_by->item, 1))
group_by->direction= order_by->direction;
else
return 0;
group_by= group_by->next;
order_by= order_by->next;
}
return MY_TEST(!order_by);
}
/**
Return table number if there is only one table in sort order
and group and order is compatible, else return 0.
*/
static TABLE *
get_sort_by_table(ORDER *a,ORDER *b, List<TABLE_LIST> &tables,
table_map const_tables)
{
TABLE_LIST *table;
List_iterator<TABLE_LIST> ti(tables);
table_map map= (table_map) 0;
DBUG_ENTER("get_sort_by_table");
if (!a)
a=b; // Only one need to be given
else if (!b)
b=a;
for (; a && b; a=a->next,b=b->next)
{
/* Skip elements of a that are constant */
while (!((*a->item)->used_tables() & ~const_tables))
{
if (!(a= a->next))
break;
}
/* Skip elements of b that are constant */
while (!((*b->item)->used_tables() & ~const_tables))
{
if (!(b= b->next))
break;
}
if (!a || !b)
break;
if (!(*a->item)->eq(*b->item,1))
DBUG_RETURN(0);
map|=a->item[0]->used_tables();
}
if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)))
DBUG_RETURN(0);
map&= ~const_tables;
while ((table= ti++) && !(map & table->table->map)) ;
if (map != table->table->map)
DBUG_RETURN(0); // More than one table
DBUG_PRINT("exit",("sort by table: %d",table->table->tablenr));
DBUG_RETURN(table->table);
}
/**
calc how big buffer we need for comparing group entries.
*/
void calc_group_buffer(TMP_TABLE_PARAM *param, ORDER *group)
{
uint key_length=0, parts=0, null_parts=0;
for (; group ; group=group->next)
{
Item *group_item= *group->item;
Field *field= group_item->get_tmp_table_field();
if (field)
{
enum_field_types type;
if ((type= field->type()) == MYSQL_TYPE_BLOB)
key_length+=MAX_BLOB_WIDTH; // Can't be used as a key
else if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_VAR_STRING)
key_length+= field->field_length + HA_KEY_BLOB_LENGTH;
else if (type == MYSQL_TYPE_BIT)
{
/* Bit is usually stored as a longlong key for group fields */
key_length+= 8; // Big enough
}
else
key_length+= field->pack_length();
}
else
{
switch (group_item->cmp_type()) {
case REAL_RESULT:
key_length+= sizeof(double);
break;
case INT_RESULT:
key_length+= sizeof(longlong);
break;
case DECIMAL_RESULT:
key_length+= my_decimal_get_binary_size(group_item->max_length -
(group_item->decimals ? 1 : 0),
group_item->decimals);
break;
case TIME_RESULT:
{
/*
As items represented as DATE/TIME fields in the group buffer
have STRING_RESULT result type, we increase the length
by 8 as maximum pack length of such fields.
*/
key_length+= 8;
break;
}
case STRING_RESULT:
{
enum enum_field_types type= group_item->field_type();
if (type == MYSQL_TYPE_BLOB)
key_length+= MAX_BLOB_WIDTH; // Can't be used as a key
else
{
/*
Group strings are taken as varstrings and require an length field.
A field is not yet created by create_tmp_field_ex()
and the sizes should match up.
*/
key_length+= group_item->max_length + HA_KEY_BLOB_LENGTH;
}
break;
}
default:
/* This case should never be chosen */
DBUG_ASSERT(0);
my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATAL));
}
}
parts++;
if (group_item->maybe_null())
null_parts++;
}
param->group_length= key_length + null_parts;
param->group_parts= parts;
param->group_null_parts= null_parts;
}
static void calc_group_buffer(JOIN *join, ORDER *group)
{
if (group)
join->group= 1;
calc_group_buffer(&join->tmp_table_param, group);
}
/**
allocate group fields or take prepared (cached).
@param main_join join of current select
@param curr_join current join (join of current select or temporary copy
of it)
@retval
0 ok
@retval
1 failed
*/
static bool
make_group_fields(JOIN *main_join, JOIN *curr_join)
{
if (main_join->group_fields_cache.elements)
{
curr_join->group_fields= main_join->group_fields_cache;
curr_join->sort_and_group= 1;
}
else
{
if (alloc_group_fields(curr_join, curr_join->group_list))
return (1);
main_join->group_fields_cache= curr_join->group_fields;
}
return (0);
}
static bool
fill_cached_item_list(THD *thd, List<Cached_item> *list, ORDER *order,
uint max_number_of_elements = UINT_MAX)
{
for (; order && max_number_of_elements ;
order= order->next, max_number_of_elements--)
{
Cached_item *tmp= new_Cached_item(thd, *order->item, true);
if (!tmp || list->push_front(tmp))
return true;
}
return false;
}
/**
Get a list of buffers for saving last group.
Groups are saved in reverse order for easier check loop.
*/
static bool
alloc_group_fields(JOIN *join, ORDER *group)
{
if (fill_cached_item_list(join->thd, &join->group_fields, group))
return true;
join->sort_and_group=1; /* Mark for do_select */
return false;
}
static bool
alloc_order_fields(JOIN *join, ORDER *order, uint max_number_of_elements)
{
return fill_cached_item_list(join->thd, &join->order_fields, order,
max_number_of_elements);
}
/*
Test if a single-row cache of items changed, and update the cache.
@details Test if a list of items that typically represents a result
row has changed. If the value of some item changed, update the cached
value for this item.
@param list list of <item, cached_value> pairs stored as Cached_item.
@return -1 if no item changed
@return index of the first item that changed
*/
int test_if_item_cache_changed(List<Cached_item> &list)
{
DBUG_ENTER("test_if_item_cache_changed");
List_iterator<Cached_item> li(list);
int idx= -1,i;
Cached_item *buff;
for (i=(int) list.elements-1 ; (buff=li++) ; i--)
{
if (buff->cmp())
idx=i;
}
DBUG_PRINT("info", ("idx: %d", idx));
DBUG_RETURN(idx);
}
/*
@return
-1 - Group not changed
value>=0 - Number of the component where the group changed
*/
int
test_if_group_changed(List<Cached_item> &list)
{
DBUG_ENTER("test_if_group_changed");
List_iterator<Cached_item> li(list);
int idx= -1,i;
Cached_item *buff;
for (i=(int) list.elements-1 ; (buff=li++) ; i--)
{
if (buff->cmp())
idx=i;
}
DBUG_PRINT("info", ("idx: %d", idx));
DBUG_RETURN(idx);
}
/**
Setup copy_fields to save fields at start of new group.
Setup copy_fields to save fields at start of new group
Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups.
Change old item_field to use a new field with points at saved fieldvalue
This function is only called before use of send_result_set_metadata.
@param thd THD pointer
@param param temporary table parameters
@param ref_pointer_array array of pointers to top elements of filed list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@todo
In most cases this result will be sent to the user.
This should be changed to use copy_int or copy_real depending
on how the value is to be used: In some cases this may be an
argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
@retval
0 ok
@retval
!=0 error
*/
bool
setup_copy_fields(THD *thd, TMP_TABLE_PARAM *param,
Ref_ptr_array ref_pointer_array,
List<Item> &res_selected_fields, List<Item> &res_all_fields,
uint elements, List<Item> &all_fields)
{
Item *pos;
List_iterator_fast<Item> li(all_fields);
Copy_field *copy= NULL;
Copy_field *copy_start __attribute__((unused));
res_selected_fields.empty();
res_all_fields.empty();
List_iterator_fast<Item> itr(res_all_fields);
List<Item> extra_funcs;
uint i, border= all_fields.elements - elements;
DBUG_ENTER("setup_copy_fields");
if (param->field_count &&
!(copy=param->copy_field= new (thd->mem_root) Copy_field[param->field_count]))
goto err2;
param->copy_funcs.empty();
copy_start= copy;
for (i= 0; (pos= li++); i++)
{
Field *field;
uchar *tmp;
Item *real_pos= pos->real_item();
/*
Aggregate functions can be substituted for fields (by e.g. temp tables).
We need to filter those substituted fields out.
*/
if (real_pos->type() == Item::FIELD_ITEM &&
!(real_pos != pos &&
((Item_ref *)pos)->ref_type() == Item_ref::AGGREGATE_REF))
{
Item_field *item;
if (!(item= new (thd->mem_root) Item_field(thd, ((Item_field*) real_pos))))
goto err;
if (pos->type() == Item::REF_ITEM)
{
/* preserve the names of the ref when dereferncing */
Item_ref *ref= (Item_ref *) pos;
item->db_name= ref->db_name;
item->table_name= ref->table_name;
item->name= ref->name;
}
pos= item;
if (item->field->flags & BLOB_FLAG)
{
if (!(pos= new (thd->mem_root) Item_copy_string(thd, pos)))
goto err;
/*
Item_copy_string::copy for function can call
Item_copy_string::val_int for blob via Item_ref.
But if Item_copy_string::copy for blob isn't called before,
it's value will be wrong
so let's insert Item_copy_string for blobs in the beginning of
copy_funcs
(to see full test case look at having.test, BUG #4358)
*/
if (param->copy_funcs.push_front(pos, thd->mem_root))
goto err;
}
else
{
/*
set up save buffer and change result_field to point at
saved value
*/
field= item->field;
item->result_field=field->make_new_field(thd->mem_root,
field->table, 1);
/*
We need to allocate one extra byte for null handling and
another extra byte to not get warnings from purify in
Field_string::val_int
*/
if (!(tmp= thd->alloc<uchar>(field->pack_length()+2)))
goto err;
if (copy)
{
DBUG_ASSERT (param->field_count > (uint) (copy - copy_start));
copy->set(tmp, item->result_field);
item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1);
#ifdef HAVE_valgrind
copy->to_ptr[copy->from_length]= 0;
#endif
copy++;
}
}
}
else if ((real_pos->type() == Item::FUNC_ITEM ||
real_pos->real_type() == Item::SUBSELECT_ITEM ||
real_pos->type() == Item::CACHE_ITEM ||
real_pos->type() == Item::COND_ITEM) &&
!real_pos->with_sum_func())
{ // Save for send fields
const Lex_ident_column real_name= pos->name;
pos= real_pos;
pos->name= real_name;
/* TODO:
In most cases this result will be sent to the user.
This should be changed to use copy_int or copy_real depending
on how the value is to be used: In some cases this may be an
argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
*/
if (!(pos= pos->type_handler()->create_item_copy(thd, pos)))
goto err;
if (i < border) // HAVING, ORDER and GROUP BY
{
if (extra_funcs.push_back(pos, thd->mem_root))
goto err;
}
else if (param->copy_funcs.push_back(pos, thd->mem_root))
goto err;
}
res_all_fields.push_back(pos, thd->mem_root);
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
pos;
}
param->copy_field_end= copy;
for (i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
/*
Put elements from HAVING, ORDER BY and GROUP BY last to ensure that any
reference used in these will resolve to a item that is already calculated
*/
param->copy_funcs.append(&extra_funcs);
DBUG_RETURN(0);
err:
if (copy)
delete [] param->copy_field; // This is never 0
param->copy_field= 0;
err2:
DBUG_RETURN(TRUE);
}
/**
Make a copy of all simple SELECT'ed items.
This is done at the start of a new group so that we can retrieve
these later when the group changes.
*/
void
copy_fields(TMP_TABLE_PARAM *param)
{
Copy_field *ptr=param->copy_field;
Copy_field *end=param->copy_field_end;
DBUG_ASSERT((ptr != NULL && end >= ptr) || (ptr == NULL && end == NULL));
for (; ptr != end; ptr++)
(*ptr->do_copy)(ptr);
List_iterator_fast<Item> it(param->copy_funcs);
Item_copy *item;
while ((item= (Item_copy*) it++))
item->copy();
}
/**
Make an array of pointers to sum_functions to speed up
sum_func calculation.
@retval
0 ok
@retval
1 Error
*/
bool JOIN::alloc_func_list()
{
uint func_count, group_parts;
DBUG_ENTER("alloc_func_list");
func_count= tmp_table_param.sum_func_count;
/*
If we are using rollup, we need a copy of the summary functions for
each level
*/
if (rollup.state != ROLLUP::STATE_NONE)
func_count*= (send_group_parts+1);
group_parts= send_group_parts;
/*
If distinct, reserve memory for possible
disctinct->group_by optimization
*/
if (select_distinct)
{
group_parts+= fields_list.elements;
/*
If the ORDER clause is specified then it's possible that
it also will be optimized, so reserve space for it too
*/
if (order)
{
ORDER *ord;
for (ord= order; ord; ord= ord->next)
group_parts++;
}
}
/* This must use calloc() as rollup_make_fields depends on this */
sum_funcs= (Item_sum**) thd->calloc(sizeof(Item_sum**) * (func_count+1) +
sizeof(Item_sum***) * (group_parts+1));
sum_funcs_end= (Item_sum***) (sum_funcs+func_count+1);
DBUG_RETURN(sum_funcs == 0);
}
/**
Initialize 'sum_funcs' array with all Item_sum objects.
@param field_list All items
@param send_result_set_metadata Items in select list
@param before_group_by Set to 1 if this is called before GROUP BY handling
@retval
0 ok
@retval
1 error
*/
bool JOIN::make_sum_func_list(List<Item> &field_list,
List<Item> &send_result_set_metadata,
bool before_group_by)
{
List_iterator_fast<Item> it(field_list);
Item_sum **func;
Item *item;
DBUG_ENTER("make_sum_func_list");
func= sum_funcs;
while ((item=it++))
{
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
(!((Item_sum*) item)->depended_from() ||
((Item_sum *)item)->depended_from() == select_lex))
*func++= (Item_sum*) item;
}
if (before_group_by && rollup.state == ROLLUP::STATE_INITED)
{
rollup.state= ROLLUP::STATE_READY;
if (rollup_make_fields(field_list, send_result_set_metadata, &func))
DBUG_RETURN(TRUE); // Should never happen
}
else if (rollup.state == ROLLUP::STATE_NONE)
{
for (uint i=0 ; i <= send_group_parts ;i++)
sum_funcs_end[i]= func;
}
else if (rollup.state == ROLLUP::STATE_READY)
DBUG_RETURN(FALSE); // Don't put end marker
*func=0; // End marker
DBUG_RETURN(FALSE);
}
/**
Change all funcs and sum_funcs to fields in tmp table, and create
new list of all items.
@param thd THD pointer
@param ref_pointer_array array of pointers to top elements of filed list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@retval
0 ok
@retval
!=0 error
*/
static bool
change_to_use_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &res_selected_fields,
List<Item> &res_all_fields,
uint elements, List<Item> &all_fields)
{
List_iterator_fast<Item> it(all_fields);
Item *item_field,*item;
DBUG_ENTER("change_to_use_tmp_fields");
res_selected_fields.empty();
res_all_fields.empty();
uint border= all_fields.elements - elements;
for (uint i= 0; (item= it++); i++)
{
Field *field;
/*
SUM_FUNC_ITEM will be replaced by the calculated value which is
stored in the temporary table.
The first part of the following test is for items that are expressions
with SUM_FUNC_ITEMS, like 'sum(a)+1'. In this case we keep the original
item, which contain an Item_ref that points to the SUM_FUNC_ITEM that
will be replaced with a pointer to the calculated value.
The second test is for window functions. Window functions contains
only pointers to Item_refs, which will be adjusted to point to the
temporary table.
*/
enum Item::Type item_type= item->type();
if ((item->with_sum_func() && item_type != Item::SUM_FUNC_ITEM) ||
item->with_window_func())
item_field= item;
else if (item_type == Item::FIELD_ITEM ||
item_type == Item::DEFAULT_VALUE_ITEM)
{
if (!(item_field= item->get_tmp_table_item(thd)))
DBUG_RETURN(true);
}
else if (item_type == Item::FUNC_ITEM &&
((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC)
{
field= item->get_tmp_table_field();
if (field != NULL)
{
/*
Replace "@:=<expression>" with "@:=<tmp table
column>". Otherwise, we would re-evaluate <expression>, and
if expression were a subquery, this would access
already-unlocked tables.
*/
Item_func_set_user_var* suv=
new (thd->mem_root) Item_func_set_user_var(thd, (Item_func_set_user_var*) item);
Item_field *new_field= new (thd->mem_root) Item_field(thd, field);
if (!suv || !new_field)
DBUG_RETURN(true); // Fatal error
new_field->set_refers_to_temp_table();
List<Item> list;
list.push_back(new_field, thd->mem_root);
suv->set_arguments(thd, list);
item_field= suv;
}
else
item_field= item;
}
else if ((field= item->get_tmp_table_field()))
{
if (item->type() == Item::SUM_FUNC_ITEM && field->table->group)
{
item_field= ((Item_sum*) item)->result_item(thd, field);
}
else
{
item_field= (Item*) new (thd->mem_root) Item_field(thd, field);
if (item_field)
((Item_field*) item_field)->set_refers_to_temp_table();
}
if (!item_field)
DBUG_RETURN(true); // Fatal error
if (item->real_item()->type() != Item::FIELD_ITEM)
field->orig_table= 0;
item_field->name= item->name;
if (item->type() == Item::REF_ITEM)
{
Item_field *ifield= (Item_field *) item_field;
Item_ref *iref= (Item_ref *) item;
ifield->table_name= iref->table_name;
ifield->db_name= iref->db_name;
}
#ifndef DBUG_OFF
if (!item_field->name.str)
{
char buff[256];
String str(buff,sizeof(buff),&my_charset_bin);
str.length(0);
str.extra_allocation(1024);
item->print(&str, QT_ORDINARY);
item_field->name.str= thd->strmake(str.ptr(), str.length());
item_field->name.length= str.length();
}
#endif
}
else
item_field= item;
res_all_fields.push_back(item_field, thd->mem_root);
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
item_field;
}
List_iterator_fast<Item> itr(res_all_fields);
for (uint i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
DBUG_RETURN(false);
}
/**
Change all sum_func refs to fields to point at fields in tmp table.
Change all funcs to be fields in tmp table.
@param thd THD pointer
@param ref_pointer_array array of pointers to top elements of field list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@retval
0 ok
@retval
1 error
*/
static bool
change_refs_to_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &res_selected_fields,
List<Item> &res_all_fields, uint elements,
List<Item> &all_fields)
{
List_iterator_fast<Item> it(all_fields);
Item *item, *new_item;
res_selected_fields.empty();
res_all_fields.empty();
uint i, border= all_fields.elements - elements;
for (i= 0; (item= it++); i++)
{
if (item->type() == Item::SUM_FUNC_ITEM && item->const_item())
new_item= item;
else
{
if (!(new_item= item->get_tmp_table_item(thd)))
return 1;
}
if (res_all_fields.push_back(new_item, thd->mem_root))
return 1;
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
new_item;
}
List_iterator_fast<Item> itr(res_all_fields);
for (i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
return thd->is_error();
}
/******************************************************************************
Code for calculating functions
******************************************************************************/
/**
Call ::setup for all sum functions.
@param thd thread handler
@param func_ptr sum function list
@retval
FALSE ok
@retval
TRUE error
*/
static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr)
{
Item_sum *func;
DBUG_ENTER("setup_sum_funcs");
while ((func= *(func_ptr++)))
{
if (func->aggregator_setup(thd))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
/*
@brief
Setup aggregate functions.
@param thd Thread descriptor
@param func_ptr Array of pointers to aggregate functions
@param need_distinct FALSE means that the table access method already
guarantees that arguments of all aggregate functions
will be unique. (This is the case for Loose Scan)
TRUE - Otherwise.
@return
false Ok
true Error
*/
bool JOIN::prepare_sum_aggregators(THD *thd, Item_sum **func_ptr,
bool need_distinct)
{
Item_sum *func;
DBUG_ENTER("prepare_sum_aggregators");
while ((func= *(func_ptr++)))
{
bool need_distinct_aggregator= need_distinct && func->has_with_distinct();
if (need_distinct_aggregator && table_count - const_tables == 1)
{
/*
We are doing setup for an aggregate with DISTINCT, like
SELECT agg_func(DISTINCT col1, col2 ...) FROM ...
In general case, agg_func will need to use Aggregator_distinct to
remove duplicates from its arguments.
We won't have to remove duplicates if we know the arguments are already
unique. This is true when
1. the join operation has only one non-const table (checked above)
2. the argument list covers a PRIMARY or a UNIQUE index.
Example: here the values of t1.pk are unique:
SELECT agg_func(DISTINCT t1.pk, ...) FROM t1
and so the whole argument of agg_func is unique.
*/
List<Item> arg_fields;
for (uint i= 0; i < func->argument_count(); i++)
{
if (func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
arg_fields.push_back(func->arguments()[i]);
}
/*
If the query has a GROUP BY, then it's sufficient that a unique
key is covered by a concatenation of {argument_list, group_by_list}.
Example: Suppose t1 has PRIMARY KEY(pk1, pk2). Then:
SELECT agg_func(DISTINCT t1.pk1, ...) FROM t1 GROUP BY t1.pk2
Each GROUP BY group will have t1.pk2 fixed. Then, the values of t1.pk1
will be unique, and no de-duplication will be needed.
*/
for (ORDER *group= group_list; group ; group= group->next)
{
if ((*group->item)->real_item()->type() == Item::FIELD_ITEM)
arg_fields.push_back(*group->item);
}
if (list_contains_unique_index(join_tab[const_tables].table,
find_field_in_item_list,
(void *) &arg_fields))
need_distinct_aggregator= false;
}
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_aggr(thd, "prepare_sum_aggregators");
trace_aggr.add("function", func);
trace_aggr.add("aggregator_type",
(need_distinct_aggregator ||
func->uses_non_standard_aggregator_for_distinct()) ?
"distinct" : "simple");
if (func->set_aggregator(thd, need_distinct_aggregator ?
Aggregator::DISTINCT_AGGREGATOR :
Aggregator::SIMPLE_AGGREGATOR))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
static void
init_tmptable_sum_functions(Item_sum **func_ptr)
{
Item_sum *func;
while ((func= *(func_ptr++)))
func->reset_field();
}
/** Update record 0 in tmp_table from record 1. */
static void
update_tmptable_sum_func(Item_sum **func_ptr,
TABLE *tmp_table __attribute__((unused)))
{
Item_sum *func;
while ((func= *(func_ptr++)))
func->update_field();
}
/** Copy result of sum functions to record in tmp_table. */
static void
copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr)
{
for (; func_ptr != end_ptr ; func_ptr++)
(void) (*func_ptr)->save_in_result_field(1);
return;
}
static bool
init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr)
{
for (; func_ptr != end_ptr ;func_ptr++)
{
if ((*func_ptr)->reset_and_add())
return 1;
}
/* If rollup, calculate the upper sum levels */
for ( ; *func_ptr ; func_ptr++)
{
if ((*func_ptr)->aggregator_add())
return 1;
}
return 0;
}
static bool
update_sum_func(Item_sum **func_ptr)
{
Item_sum *func;
for (; (func= (Item_sum*) *func_ptr) ; func_ptr++)
if (func->aggregator_add())
return 1;
return 0;
}
/**
Copy result of functions to record in tmp_table.
Uses the thread pointer to check for errors in
some of the val_xxx() methods called by the
save_in_result_field() function.
TODO: make the Item::val_xxx() return error code
@param func_ptr array of the function Items to copy to the tmp table
@param thd pointer to the current thread for error checking
@retval
FALSE if OK
@retval
TRUE on error
*/
bool
copy_funcs(Item **func_ptr, const THD *thd)
{
Item *func;
for (; (func = *func_ptr) ; func_ptr++)
{
if (func->type() == Item::FUNC_ITEM &&
((Item_func *) func)->with_window_func())
continue;
func->save_in_result_field(1);
/*
Need to check the THD error state because Item::val_xxx() don't
return error code, but can generate errors
TODO: change it for a real status check when Item::val_xxx()
are extended to return status code.
*/
if (unlikely(thd->is_error()))
return TRUE;
}
return FALSE;
}
/**
Create a condition for a const reference and add this to the
currenct select for the table.
*/
static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab)
{
DBUG_ENTER("add_ref_to_table_cond");
if (!join_tab->ref.key_parts)
DBUG_RETURN(FALSE);
Item_cond_and *cond= new (thd->mem_root) Item_cond_and(thd);
TABLE *table=join_tab->table;
int error= 0;
if (!cond)
DBUG_RETURN(TRUE);
for (uint i=0 ; i < join_tab->ref.key_parts ; i++)
{
Field *field=table->field[table->key_info[join_tab->ref.key].key_part[i].
fieldnr-1];
Item *value=join_tab->ref.items[i];
cond->add(new (thd->mem_root)
Item_func_equal(thd, new (thd->mem_root) Item_field(thd, field),
value),
thd->mem_root);
}
if (unlikely(thd->is_error()))
DBUG_RETURN(TRUE);
if (!cond->fixed())
{
Item *tmp_item= (Item*) cond;
cond->fix_fields(thd, &tmp_item);
DBUG_ASSERT(cond == tmp_item);
}
if (join_tab->select)
{
Item *UNINIT_VAR(cond_copy);
if (join_tab->select->pre_idx_push_select_cond)
cond_copy= cond->copy_andor_structure(thd);
if (join_tab->select->cond)
error=(int) cond->add(join_tab->select->cond, thd->mem_root);
join_tab->select->cond= cond;
if (join_tab->select->pre_idx_push_select_cond)
{
Item *new_cond= and_conds(thd, cond_copy,
join_tab->select->pre_idx_push_select_cond);
if (new_cond->fix_fields_if_needed(thd, &new_cond))
error= 1;
join_tab->pre_idx_push_select_cond=
join_tab->select->pre_idx_push_select_cond= new_cond;
}
join_tab->set_select_cond(cond, __LINE__);
}
else if ((join_tab->select= make_select(join_tab->table, 0, 0, cond,
(SORT_INFO*) 0, 0, &error)))
join_tab->set_select_cond(cond, __LINE__);
DBUG_RETURN(error ? TRUE : FALSE);
}
/**
Free joins of subselect of this select.
@param thd THD pointer
@param select pointer to st_select_lex which subselects joins we will free
*/
void free_underlaid_joins(THD *thd, SELECT_LEX *select)
{
for (SELECT_LEX_UNIT *unit= select->first_inner_unit();
unit;
unit= unit->next_unit())
unit->cleanup();
}
/****************************************************************************
ROLLUP handling
****************************************************************************/
/**
Replace occurrences of group by fields in an expression by ref items.
The function replaces occurrences of group by fields in expr
by ref objects for these fields unless they are under aggregate
functions.
The function also corrects value of the the maybe_null attribute
for the items of all subexpressions containing group by fields.
@b EXAMPLES
@code
SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP
SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP
@endcode
@b IMPLEMENTATION
The function recursively traverses the tree of the expr expression,
looks for occurrences of the group by fields that are not under
aggregate functions and replaces them for the corresponding ref items.
@note
This substitution is needed GROUP BY queries with ROLLUP if
SELECT list contains expressions over group by attributes.
@param thd reference to the context
@param expr expression to make replacement
@param group_list list of references to group by items
@param changed out: returns 1 if item contains a replaced field item
@todo
- TODO: Some functions are not null-preserving. For those functions
updating of the maybe_null attribute is an overkill.
@retval
0 if ok
@retval
1 on error
*/
static bool change_group_ref(THD *thd, Item_func *expr, ORDER *group_list,
bool *changed)
{
if (expr->argument_count())
{
Name_resolution_context *context= &thd->lex->current_select->context;
Item **arg,**arg_end;
bool arg_changed= FALSE;
for (arg= expr->arguments(),
arg_end= expr->arguments() + expr->argument_count();
arg != arg_end; arg++)
{
Item *item= *arg;
if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM)
{
ORDER *group_tmp;
for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
{
if (item->eq(*group_tmp->item,0))
{
Item *new_item;
if (!(new_item= new (thd->mem_root) Item_ref(thd, context,
group_tmp->item,
null_clex_str,
item->name)))
return 1; // fatal_error is set
thd->change_item_tree(arg, new_item);
arg_changed= TRUE;
}
}
}
else if (item->type() == Item::FUNC_ITEM)
{
if (change_group_ref(thd, (Item_func *) item, group_list, &arg_changed))
return 1;
}
}
if (arg_changed)
{
expr->base_flags|= item_base_t::MAYBE_NULL | item_base_t::IN_ROLLUP;
*changed= TRUE;
}
}
return 0;
}
/** Allocate memory needed for other rollup functions. */
bool JOIN::rollup_init()
{
uint i,j;
Item **ref_array;
tmp_table_param.quick_group= 0; // Can't create groups in tmp table
/*
Each group can potentially be replaced with Item_func_rollup_const() which
needs a copy_func placeholder.
*/
tmp_table_param.func_count+= send_group_parts;
rollup.state= ROLLUP::STATE_INITED;
/*
Create pointers to the different sum function groups
These are updated by rollup_make_fields()
*/
tmp_table_param.group_parts= send_group_parts;
Item_null_result **null_items= thd->alloc<Item_null_result*>(send_group_parts);
rollup.null_items= Item_null_array(null_items, send_group_parts);
rollup.ref_pointer_arrays=
reinterpret_cast<Ref_ptr_array*>
(thd->alloc((sizeof(Ref_ptr_array) +
all_fields.elements * sizeof(Item*)) * send_group_parts));
rollup.fields= thd->alloc<List<Item> >(send_group_parts);
if (!null_items || !rollup.ref_pointer_arrays || !rollup.fields)
return true;
ref_array= (Item**) (rollup.ref_pointer_arrays+send_group_parts);
/*
Prepare space for field list for the different levels
These will be filled up in rollup_make_fields()
*/
for (i= 0 ; i < send_group_parts ; i++)
{
if (!(rollup.null_items[i]= new (thd->mem_root) Item_null_result(thd)))
return true;
List<Item> *rollup_fields= &rollup.fields[i];
rollup_fields->empty();
rollup.ref_pointer_arrays[i]= Ref_ptr_array(ref_array, all_fields.elements);
ref_array+= all_fields.elements;
}
for (i= 0 ; i < send_group_parts; i++)
{
for (j=0 ; j < fields_list.elements ; j++)
rollup.fields[i].push_back(rollup.null_items[i], thd->mem_root);
}
List_iterator<Item> it(all_fields);
Item *item;
while ((item= it++))
{
ORDER *group_tmp;
bool found_in_group= 0;
for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
{
if (*group_tmp->item == item)
{
item->base_flags|= item_base_t::MAYBE_NULL | item_base_t::IN_ROLLUP;
found_in_group= 1;
break;
}
}
if (item->type() == Item::FUNC_ITEM && !found_in_group)
{
bool changed= FALSE;
if (change_group_ref(thd, (Item_func *) item, group_list, &changed))
return 1;
/*
We have to prevent creation of a field in a temporary table for
an expression that contains GROUP BY attributes.
Marking the expression item as 'with_sum_func' will ensure this.
*/
if (changed)
item->with_flags|= item_with_t::SUM_FUNC;
}
}
return 0;
}
/**
Wrap all constant Items in GROUP BY list.
For ROLLUP queries each constant item referenced in GROUP BY list
is wrapped up into an Item_func object yielding the same value
as the constant item. The objects of the wrapper class are never
considered as constant items and besides they inherit all
properties of the Item_result_field class.
This wrapping allows us to ensure writing constant items
into temporary tables whenever the result of the ROLLUP
operation has to be written into a temporary table, e.g. when
ROLLUP is used together with DISTINCT in the SELECT list.
Usually when creating temporary tables for a intermidiate
result we do not include fields for constant expressions.
@retval
0 if ok
@retval
1 on error
*/
bool JOIN::rollup_process_const_fields()
{
ORDER *group_tmp;
Item *item;
List_iterator<Item> it(all_fields);
for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
{
if (!(*group_tmp->item)->const_item())
continue;
while ((item= it++))
{
if (*group_tmp->item == item)
{
Item* new_item= new (thd->mem_root) Item_func_rollup_const(thd, item);
if (!new_item)
return 1;
new_item->fix_fields(thd, (Item **) 0);
thd->change_item_tree(it.ref(), new_item);
for (ORDER *tmp= group_tmp; tmp; tmp= tmp->next)
{
if (*tmp->item == item)
thd->change_item_tree(tmp->item, new_item);
}
break;
}
}
it.rewind();
}
return 0;
}
/**
Fill up rollup structures with pointers to fields to use.
Creates copies of item_sum items for each sum level.
@param fields_arg List of all fields (hidden and real ones)
@param sel_fields Pointer to selected fields
@param func Store here a pointer to all fields
@retval
0 if ok;
In this case func is pointing to next not used element.
@retval
1 on error
*/
bool JOIN::rollup_make_fields(List<Item> &fields_arg, List<Item> &sel_fields,
Item_sum ***func)
{
List_iterator_fast<Item> it(fields_arg);
Item *first_field= sel_fields.head();
uint level;
/*
Create field lists for the different levels
The idea here is to have a separate field list for each rollup level to
avoid all runtime checks of which columns should be NULL.
The list is stored in reverse order to get sum function in such an order
in func that it makes it easy to reset them with init_sum_functions()
Assuming: SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
rollup.fields[0] will contain list where a,b,c is NULL
rollup.fields[1] will contain list where b,c is NULL
...
rollup.ref_pointer_array[#] points to fields for rollup.fields[#]
...
sum_funcs_end[0] points to all sum functions
sum_funcs_end[1] points to all sum functions, except grand totals
...
*/
for (level=0 ; level < send_group_parts ; level++)
{
uint i;
uint pos= send_group_parts - level -1;
bool real_fields= 0;
Item *item;
List_iterator<Item> new_it(rollup.fields[pos]);
Ref_ptr_array ref_array_start= rollup.ref_pointer_arrays[pos];
ORDER *start_group;
/* Point to first hidden field */
uint ref_array_ix= fields_arg.elements-1;
/* Remember where the sum functions ends for the previous level */
sum_funcs_end[pos+1]= *func;
/* Find the start of the group for this level */
for (i= 0, start_group= group_list ;
i++ < pos ;
start_group= start_group->next)
;
it.rewind();
while ((item= it++))
{
if (item == first_field)
{
real_fields= 1; // End of hidden fields
ref_array_ix= 0;
}
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
(!((Item_sum*) item)->depended_from() ||
((Item_sum *)item)->depended_from() == select_lex))
{
/*
This is a top level summary function that must be replaced with
a sum function that is reset for this level.
NOTE: This code creates an object which is not that nice in a
sub select. Fortunately it's not common to have rollup in
sub selects.
*/
item= item->copy_or_same(thd);
((Item_sum*) item)->make_unique();
*(*func)= (Item_sum*) item;
(*func)++;
}
else
{
/* Check if this is something that is part of this group by */
ORDER *group_tmp;
for (group_tmp= start_group, i= pos ;
group_tmp ; group_tmp= group_tmp->next, i++)
{
if (*group_tmp->item == item)
{
/*
This is an element that is used by the GROUP BY and should be
set to NULL in this level
*/
Item_null_result *null_item= new (thd->mem_root) Item_null_result(thd);
if (!null_item)
return 1;
// Value will be null sometimes
item->set_maybe_null();
null_item->result_field= item->get_tmp_table_field();
item= null_item;
break;
}
}
}
ref_array_start[ref_array_ix]= item;
if (real_fields)
{
(void) new_it++; // Point to next item
new_it.replace(item); // Replace previous
ref_array_ix++;
}
else
ref_array_ix--;
}
}
sum_funcs_end[0]= *func; // Point to last function
return 0;
}
/**
Send all rollup levels higher than the current one to the client.
@b SAMPLE
@code
SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
@endcode
@param idx Level we are on:
- 0 = Total sum level
- 1 = First group changed (a)
- 2 = Second group changed (a,b)
@retval
0 ok
@retval
1 If send_data_failed()
*/
int JOIN::rollup_send_data(uint idx)
{
uint i;
for (i= send_group_parts ; i-- > idx ; )
{
int res= 0;
/* Get reference pointers to sum functions in place */
copy_ref_ptr_array(ref_ptrs, rollup.ref_pointer_arrays[i]);
if ((!having || having->val_bool()))
{
if (send_records < unit->lim.get_select_limit() && do_send_rows &&
(res= result->send_data_with_check(rollup.fields[i],
unit, send_records)) > 0)
return 1;
if (!res)
send_records++;
}
}
/* Restore ref_pointer_array */
set_items_ref_array(current_ref_ptrs);
return 0;
}
/**
Write all rollup levels higher than the current one to a temp table.
@b SAMPLE
@code
SELECT a, b, SUM(c) FROM t1 GROUP BY a,b WITH ROLLUP
@endcode
@param idx Level we are on:
- 0 = Total sum level
- 1 = First group changed (a)
- 2 = Second group changed (a,b)
@param table reference to temp table
@retval
0 ok
@retval
1 if write_data_failed()
*/
int JOIN::rollup_write_data(uint idx, TMP_TABLE_PARAM *tmp_table_param_arg,
TABLE *table_arg)
{
uint i;
for (i= send_group_parts ; i-- > idx ; )
{
/* Get reference pointers to sum functions in place */
copy_ref_ptr_array(ref_ptrs, rollup.ref_pointer_arrays[i]);
if ((!having || having->val_bool()))
{
int write_error;
Item *item;
List_iterator_fast<Item> it(rollup.fields[i]);
while ((item= it++))
{
if (item->type() == Item::NULL_ITEM && item->is_result_field())
item->save_in_result_field(1);
}
copy_sum_funcs(sum_funcs_end[i+1], sum_funcs_end[i]);
if (unlikely((write_error=
table_arg->file->ha_write_tmp_row(table_arg->record[0]))))
{
if (create_internal_tmp_table_from_heap(thd, table_arg,
tmp_table_param_arg->start_recinfo,
&tmp_table_param_arg->recinfo,
write_error, 0, NULL))
return 1;
}
}
}
/* Restore ref_pointer_array */
set_items_ref_array(current_ref_ptrs);
return 0;
}
/**
clear results if there are not rows found for group
(end_send_group/end_write_group)
*/
void inline JOIN::clear_sum_funcs()
{
if (sum_funcs)
{
Item_sum *func, **func_ptr= sum_funcs;
while ((func= *(func_ptr++)))
func->clear();
}
}
/*
Prepare for returning 'empty row' when there is no matching row.
- Mark all tables with mark_as_null_row()
- Make a copy of of all simple SELECT items
- Reset all sum functions to NULL or 0.
*/
void JOIN::clear(table_map *cleared_tables)
{
clear_tables(this, cleared_tables);
copy_fields(&tmp_table_param);
clear_sum_funcs();
}
/**
Print an EXPLAIN line with all NULLs and given message in the 'Extra' column
@retval
0 ok
1 OOM error or error from send_data()
*/
int print_explain_message_line(select_result_sink *result,
uint8 options, bool is_analyze,
uint select_number,
const char *select_type,
ha_rows *rows,
const char *message)
{
/* Note: for SHOW EXPLAIN, this is caller thread's THD */
THD *thd= result->thd;
MEM_ROOT *mem_root= thd->mem_root;
Item *item_null= new (mem_root) Item_null(thd);
List<Item> item_list;
item_list.push_back(new (mem_root) Item_int(thd, (int32) select_number),
mem_root);
item_list.push_back(new (mem_root) Item_string_sys(thd, select_type),
mem_root);
/* `table` */
item_list.push_back(item_null, mem_root);
/* `partitions` */
if (options & DESCRIBE_PARTITIONS)
item_list.push_back(item_null, mem_root);
/* type, possible_keys, key, key_len, ref */
for (uint i=0 ; i < 5; i++)
item_list.push_back(item_null, mem_root);
/* `rows` */
StringBuffer<64> rows_str;
if (rows)
{
rows_str.append_ulonglong((ulonglong)(*rows));
item_list.push_back(new (mem_root)
Item_string_sys(thd, rows_str.ptr(),
rows_str.length()), mem_root);
}
else
item_list.push_back(item_null, mem_root);
/* `r_rows` */
if (is_analyze)
item_list.push_back(item_null, mem_root);
/* `filtered` */
if (is_analyze || options & DESCRIBE_EXTENDED)
item_list.push_back(item_null, mem_root);
/* `r_filtered` */
if (is_analyze)
item_list.push_back(item_null, mem_root);
/* `Extra` */
if (message)
item_list.push_back(new (mem_root) Item_string_sys(thd, message),
mem_root);
else
item_list.push_back(item_null, mem_root);
if (unlikely(thd->is_error()) || unlikely(result->send_data(item_list)))
return 1;
return 0;
}
/*
Append MRR information from quick select to the given string
*/
void explain_append_mrr_info(QUICK_RANGE_SELECT *quick, String *res)
{
char mrr_str_buf[128];
mrr_str_buf[0]=0;
int len;
handler *h= quick->head->file;
len= h->multi_range_read_explain_info(quick->mrr_flags, mrr_str_buf,
sizeof(mrr_str_buf));
if (len > 0)
{
//res->append(STRING_WITH_LEN("; "));
res->append(mrr_str_buf, len);
}
}
///////////////////////////////////////////////////////////////////////////////
int append_possible_keys(MEM_ROOT *alloc, String_list &list, TABLE *table,
key_map possible_keys)
{
uint j;
for (j=0 ; j < table->s->keys ; j++)
{
if (possible_keys.is_set(j))
if (!(list.append_str(alloc, table->key_info[j].name.str)))
return 1;
}
return 0;
}
bool JOIN_TAB::save_explain_data(Explain_table_access *eta,
table_map prefix_tables,
bool distinct_arg, JOIN_TAB *first_top_tab)
{
int quick_type= -1;
CHARSET_INFO *cs= system_charset_info;
THD *thd= join->thd;
TABLE_LIST *table_list= table->pos_in_table_list;
QUICK_SELECT_I *cur_quick= NULL;
my_bool key_read;
char table_name_buffer[SAFE_NAME_LEN];
KEY *key_info= 0;
uint key_len= 0, used_index= MAX_KEY;
#ifdef NOT_YET
/*
Would be good to keep this condition up to date.
Another alternative is to remove JOIN_TAB::cond_selectivity and use
TABLE::cond_selectivity everywhere
*/
DBUG_ASSERT(cond_selectivity == table->cond_selectivity);
#endif
explain_plan= eta;
eta->key.clear();
eta->quick_info= NULL;
eta->cost= join_read_time;
eta->loops= join_loops;
/*
We assume that if this table does pre-sorting, then it doesn't do filtering
with SQL_SELECT.
*/
DBUG_ASSERT(!(select && filesort));
const SQL_SELECT *tab_select= get_sql_select();
if (filesort)
{
if (!(eta->pre_join_sort=
new (thd->mem_root) Explain_aggr_filesort(thd->mem_root,
thd->lex->analyze_stmt,
filesort)))
return 1;
}
// psergey-todo: data for filtering!
tracker= &eta->tracker;
jbuf_tracker= &eta->jbuf_tracker;
jbuf_loops_tracker= &eta->jbuf_loops_tracker;
jbuf_unpack_tracker= &eta->jbuf_unpack_tracker;
/* Enable the table access time tracker only for "ANALYZE stmt" */
if (unlikely(thd->lex->analyze_stmt ||
thd->variables.log_slow_verbosity &
LOG_SLOW_VERBOSITY_ENGINE))
{
table->file->set_time_tracker(&eta->op_tracker);
/*
Set handler_for_stats even if we are not running an ANALYZE command.
There's no harm, and in case somebody runs a SHOW ANALYZE command we'll
be able to print the engine statistics.
*/
if (table->file->handler_stats &&
table->s->tmp_table != INTERNAL_TMP_TABLE)
eta->handler_for_stats= table->file;
if (likely(thd->lex->analyze_stmt))
{
eta->op_tracker.set_gap_tracker(&eta->extra_time_tracker);
eta->jbuf_unpack_tracker.set_gap_tracker(&eta->jbuf_extra_time_tracker);
}
}
/* No need to save id and select_type here, they are kept in Explain_select */
/* table */
if (table->derived_select_number)
{
/* Derived table name generation */
size_t len= my_snprintf(table_name_buffer, sizeof(table_name_buffer)-1,
"<derived%u>",
table->derived_select_number);
eta->table_name.copy(table_name_buffer, len, cs);
}
else if (bush_children)
{
JOIN_TAB *ctab= bush_children->start;
/* table */
size_t len= my_snprintf(table_name_buffer,
sizeof(table_name_buffer)-1,
"<subquery%d>",
ctab->emb_sj_nest->sj_subq_pred->get_identifier());
eta->table_name.copy(table_name_buffer, len, cs);
}
else
{
TABLE_LIST *real_table= table->pos_in_table_list;
/*
When multi-table UPDATE/DELETE does updates/deletes to a VIEW, the view
is merged in a certain particular way (grep for DT_MERGE_FOR_INSERT).
As a result, view's underlying tables have $tbl->pos_in_table_list={view}.
We don't want to print view name in EXPLAIN, we want underlying table's
alias (like specified in the view definition).
*/
if (real_table->merged_for_insert)
{
TABLE_LIST *view_child=
real_table->view->first_select_lex()->table_list.first;
for (;view_child; view_child= view_child->next_local)
{
if (view_child->table == table)
{
real_table= view_child;
break;
}
}
}
eta->table_name.copy(real_table->alias.str, real_table->alias.length, cs);
}
/* "partitions" column */
{
#ifdef WITH_PARTITION_STORAGE_ENGINE
partition_info *part_info;
if (!table->derived_select_number &&
(part_info= table->part_info))
{ //TODO: all thd->mem_root here should be fixed
make_used_partitions_str(thd->mem_root, part_info, &eta->used_partitions,
eta->used_partitions_list);
eta->used_partitions_set= true;
}
else
eta->used_partitions_set= false;
#else
/* just produce empty column if partitioning is not compiled in */
eta->used_partitions_set= false;
#endif
}
/* "type" column */
enum join_type tab_type= type;
if ((type == JT_ALL || type == JT_RANGE || type == JT_HASH) &&
tab_select && tab_select->quick && use_quick != 2)
{
cur_quick= tab_select->quick;
quick_type= cur_quick->get_type();
if ((quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) ||
(quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT) ||
(quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) ||
(quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION))
tab_type= type == JT_HASH ? JT_HASH_INDEX_MERGE : JT_INDEX_MERGE;
else
tab_type= type == JT_HASH ? JT_HASH_RANGE : JT_RANGE;
}
eta->type= tab_type;
/* Build "possible_keys" value */
// psergey-todo: why does this use thd MEM_ROOT??? Doesn't this
// break ANALYZE ? thd->mem_root will be freed, and after that we will
// attempt to print the query plan?
if (append_possible_keys(thd->mem_root, eta->possible_keys, table, keys))
return 1;
// psergey-todo: ^ check for error return code
/* Build "key", "key_len", and "ref" */
if (rowid_filter)
{
Range_rowid_filter *range_filter= (Range_rowid_filter *) rowid_filter;
QUICK_SELECT_I *quick= range_filter->get_select()->quick;
Explain_rowid_filter *erf= new (thd->mem_root) Explain_rowid_filter;
erf->quick= quick->get_explain(thd->mem_root);
erf->selectivity= range_rowid_filter_info->selectivity;
erf->rows= quick->records;
if (!(erf->tracker= new Rowid_filter_tracker(thd->lex->analyze_stmt)))
return 1;
rowid_filter->set_tracker(erf->tracker);
eta->rowid_filter= erf;
}
if (tab_type == JT_NEXT)
{
used_index= index;
key_info= table->key_info+index;
key_len= key_info->key_length;
}
else if (ref.key_parts)
{
used_index= ref.key;
key_info= get_keyinfo_by_key_no(ref.key);
key_len= ref.key_length;
}
/*
In STRAIGHT_JOIN queries, there can be join tabs with JT_CONST type
that still have quick selects.
*/
if (tab_select && tab_select->quick && tab_type != JT_CONST)
{
if (!(eta->quick_info= tab_select->quick->get_explain(thd->mem_root)))
return 1;
}
if (key_info) /* 'index' or 'ref' access */
{
eta->key.set(thd->mem_root, key_info, key_len);
if (ref.key_parts && tab_type != JT_FT)
{
store_key **key_ref= ref.key_copy;
for (uint kp= 0; kp < ref.key_parts; kp++)
{
if ((key_part_map(1) << kp) & ref.const_ref_part_map)
{
if (!(eta->ref_list.append_str(thd->mem_root, "const")))
return 1;
/*
create_ref_for_key() handles keypart=const equalities as follows:
- non-EXPLAIN execution will copy the "const" to lookup tuple
immediately and will not add an element to ref.key_copy
- EXPLAIN will put an element into ref.key_copy. Since we've
just printed "const" for it, we should skip it here
*/
if (thd->lex->describe)
key_ref++;
}
else
{
if (!(eta->ref_list.append_str(thd->mem_root, (*key_ref)->name())))
return 1;
key_ref++;
}
}
}
}
if (tab_type == JT_HASH_NEXT) /* full index scan + hash join */
{
used_index= index;
eta->hash_next_key.set(thd->mem_root,
& table->key_info[index],
table->key_info[index].key_length);
// psergey-todo: ^ is the above correct? are we necessarily joining on all
// columns?
}
if (!key_info)
{
if (table_list && /* SJM bushes don't have table_list */
table_list->schema_table &&
table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
{
IS_table_read_plan *is_table_read_plan= table_list->is_table_read_plan;
StringBuffer<64> key_name_buf;
if (is_table_read_plan->trivial_show_command ||
is_table_read_plan->has_db_lookup_value())
{
/* The "key" has the name of the column referring to the database */
int f_idx= table_list->schema_table->idx_field1;
LEX_CSTRING tmp= table_list->schema_table->fields_info[f_idx].name();
key_name_buf.append(tmp, cs);
}
if (is_table_read_plan->trivial_show_command ||
is_table_read_plan->has_table_lookup_value())
{
if (is_table_read_plan->trivial_show_command ||
is_table_read_plan->has_db_lookup_value())
key_name_buf.append(',');
int f_idx= table_list->schema_table->idx_field2;
LEX_CSTRING tmp= table_list->schema_table->fields_info[f_idx].name();
key_name_buf.append(tmp, cs);
}
if (key_name_buf.length())
eta->key.set_pseudo_key(thd->mem_root, key_name_buf.c_ptr_safe());
}
}
/* "rows" */
if (table_list /* SJM bushes don't have table_list */ &&
table_list->schema_table)
{
/* I_S tables have rows=extra=NULL */
eta->rows_set= false;
eta->filtered_set= false;
}
else
{
double examined_rows= get_examined_rows();
eta->rows_set= true;
eta->rows= double_to_rows(examined_rows);
/* "filtered" */
float f= 0.0;
if (examined_rows)
{
f= (float) (100.0 * records_out / examined_rows);
set_if_smaller(f, 100.0);
}
eta->filtered_set= true;
eta->filtered= f;
}
/* Build "Extra" field and save it */
key_read= table->file->keyread_enabled();
if ((tab_type == JT_NEXT || tab_type == JT_CONST) && used_index != MAX_KEY &&
table->covering_keys.is_set(used_index))
key_read=1;
if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT &&
!((QUICK_ROR_INTERSECT_SELECT*)cur_quick)->need_to_fetch_row)
key_read=1;
if (table_list->table_function)
eta->push_extra(ET_TABLE_FUNCTION);
if (info)
{
eta->push_extra(info);
}
else if (packed_info & TAB_INFO_HAVE_VALUE)
{
if (packed_info & TAB_INFO_USING_INDEX)
eta->push_extra(ET_USING_INDEX);
if (packed_info & TAB_INFO_USING_WHERE)
eta->push_extra(ET_USING_WHERE);
if (packed_info & TAB_INFO_FULL_SCAN_ON_NULL)
eta->push_extra(ET_FULL_SCAN_ON_NULL_KEY);
}
else
{
uint keyno= MAX_KEY;
if (ref.key_parts)
keyno= ref.key;
else if (tab_select && cur_quick)
keyno = cur_quick->index;
if (keyno != MAX_KEY && keyno == table->file->pushed_idx_cond_keyno &&
table->file->pushed_idx_cond)
{
eta->push_extra(ET_USING_INDEX_CONDITION);
eta->pushed_index_cond= table->file->pushed_idx_cond;
}
else if (cache_idx_cond)
{
eta->push_extra(ET_USING_INDEX_CONDITION_BKA);
eta->pushed_index_cond= cache_idx_cond;
}
if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE)
{
eta->push_extra(ET_USING);
}
if (tab_select)
{
if (use_quick == 2)
{
eta->push_extra(ET_RANGE_CHECKED_FOR_EACH_RECORD);
eta->range_checked_fer= new (thd->mem_root) Explain_range_checked_fer;
if (eta->range_checked_fer)
eta->range_checked_fer->
append_possible_keys_stat(thd->mem_root, table, keys);
}
else if (tab_select->cond ||
(cache_select && cache_select->cond))
{
const COND *pushed_cond= table->file->pushed_cond;
if ((table->file->ha_table_flags() &
HA_CAN_TABLE_CONDITION_PUSHDOWN) &&
pushed_cond)
{
eta->push_extra(ET_USING_WHERE_WITH_PUSHED_CONDITION);
}
else
{
eta->where_cond= tab_select->cond;
eta->cache_cond= cache_select? cache_select->cond : NULL;
eta->push_extra(ET_USING_WHERE);
}
}
}
if (table_list /* SJM bushes don't have table_list */ &&
table_list->schema_table &&
table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
{
if (!table_list->table_open_method)
eta->push_extra(ET_SKIP_OPEN_TABLE);
else if (table_list->table_open_method == OPEN_FRM_ONLY)
eta->push_extra(ET_OPEN_FRM_ONLY);
else
eta->push_extra(ET_OPEN_FULL_TABLE);
/* psergey-note: the following has a bug.*/
if (table_list->is_table_read_plan->trivial_show_command ||
(table_list->is_table_read_plan->has_db_lookup_value() &&
table_list->is_table_read_plan->has_table_lookup_value()))
eta->push_extra(ET_SCANNED_0_DATABASES);
else if (table_list->is_table_read_plan->has_db_lookup_value() ||
table_list->is_table_read_plan->has_table_lookup_value())
eta->push_extra(ET_SCANNED_1_DATABASE);
else
eta->push_extra(ET_SCANNED_ALL_DATABASES);
}
if (key_read)
{
if (quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
{
QUICK_GROUP_MIN_MAX_SELECT *qgs=
(QUICK_GROUP_MIN_MAX_SELECT *) tab_select->quick;
eta->push_extra(ET_USING_INDEX_FOR_GROUP_BY);
eta->loose_scan_is_scanning= qgs->loose_scan_is_scanning();
}
else
eta->push_extra(ET_USING_INDEX);
}
if (table->reginfo.not_exists_optimize)
eta->push_extra(ET_NOT_EXISTS);
if (quick_type == QUICK_SELECT_I::QS_TYPE_RANGE)
{
explain_append_mrr_info((QUICK_RANGE_SELECT*)(tab_select->quick),
&eta->mrr_type);
if (eta->mrr_type.length() > 0)
eta->push_extra(ET_USING_MRR);
}
if (shortcut_for_distinct)
eta->push_extra(ET_DISTINCT);
if (loosescan_match_tab)
{
eta->push_extra(ET_LOOSESCAN);
}
if (first_weedout_table)
{
eta->start_dups_weedout= true;
eta->push_extra(ET_START_TEMPORARY);
}
if (check_weed_out_table)
{
eta->push_extra(ET_END_TEMPORARY);
eta->end_dups_weedout= true;
}
else if (do_firstmatch)
{
if (do_firstmatch == /*join->join_tab*/ first_top_tab - 1)
eta->push_extra(ET_FIRST_MATCH);
else
{
eta->push_extra(ET_FIRST_MATCH);
TABLE *prev_table=do_firstmatch->table;
if (prev_table->derived_select_number)
{
char namebuf[NAME_LEN];
/* Derived table name generation */
size_t len= my_snprintf(namebuf, sizeof(namebuf)-1,
"<derived%u>",
prev_table->derived_select_number);
eta->firstmatch_table_name.append(namebuf, len);
}
else
eta->firstmatch_table_name.append(&prev_table->pos_in_table_list->alias);
}
}
for (uint part= 0; part < ref.key_parts; part++)
{
if (ref.cond_guards[part])
{
eta->push_extra(ET_FULL_SCAN_ON_NULL_KEY);
eta->full_scan_on_null_key= true;
break;
}
}
if (cache)
{
eta->push_extra(ET_USING_JOIN_BUFFER);
if (cache->save_explain_data(&eta->bka_type))
return 1;
}
}
/*
In case this is a derived table, here we remember the number of
subselect that used to produce it.
*/
if (!(table_list && table_list->is_with_table_recursive_reference()))
eta->derived_select_number= table->derived_select_number;
/* The same for non-merged semi-joins */
eta->non_merged_sjm_number = get_non_merged_semijoin_select();
return 0;
}
/*
Walk through join->aggr_tables and save aggregation/grouping query plan into
an Explain_select object
@retval
0 ok
1 error
*/
bool save_agg_explain_data(JOIN *join, Explain_select *xpl_sel)
{
JOIN_TAB *join_tab=join->join_tab + join->exec_join_tab_cnt();
Explain_aggr_node *prev_node;
Explain_aggr_node *node= xpl_sel->aggr_tree;
bool is_analyze= join->thd->lex->analyze_stmt;
THD *thd= join->thd;
for (uint i= 0; i < join->aggr_tables; i++, join_tab++)
{
// Each aggregate means a temp.table
prev_node= node;
if (!(node= new (thd->mem_root) Explain_aggr_tmp_table))
return 1;
node->child= prev_node;
if (join_tab->window_funcs_step)
{
Explain_aggr_node *new_node=
join_tab->window_funcs_step->save_explain_plan(thd->mem_root,
is_analyze);
if (!new_node)
return 1;
prev_node=node;
node= new_node;
node->child= prev_node;
}
/* The below matches execution in join_init_read_record() */
if (join_tab->distinct)
{
prev_node= node;
if (!(node= new (thd->mem_root) Explain_aggr_remove_dups))
return 1;
node->child= prev_node;
}
if (join_tab->filesort)
{
Explain_aggr_filesort *eaf =
new (thd->mem_root) Explain_aggr_filesort(thd->mem_root, is_analyze, join_tab->filesort);
if (!eaf)
return 1;
prev_node= node;
node= eaf;
node->child= prev_node;
}
}
xpl_sel->aggr_tree= node;
return 0;
}
/**
Save Query Plan Footprint
@note
Currently, this function may be called multiple times
@retval
0 ok
1 error
*/
int JOIN::save_explain_data_intern(Explain_query *output,
bool need_tmp_table_arg,
bool need_order_arg, bool distinct_arg,
const char *message)
{
JOIN *join= this; /* Legacy: this code used to be a non-member function */
DBUG_ENTER("JOIN::save_explain_data_intern");
DBUG_PRINT("info", ("Select %p (%u), type %s, message %s",
join->select_lex, join->select_lex->select_number,
join->select_lex->type,
message ? message : "NULL"));
DBUG_ASSERT(have_query_plan == QEP_AVAILABLE);
/* fake_select_lex is created/printed by Explain_union */
DBUG_ASSERT(join->select_lex != join->unit->fake_select_lex);
/* There should be no attempts to save query plans for merged selects */
DBUG_ASSERT(!join->select_lex->master_unit()->derived ||
join->select_lex->master_unit()->derived->is_materialized_derived() ||
join->select_lex->master_unit()->derived->is_with_table());
/* Don't log this into the slow query log */
if (message)
{
if (!(explain= new (output->mem_root)
Explain_select(output->mem_root,
thd->lex->analyze_stmt)))
DBUG_RETURN(1);
#ifndef DBUG_OFF
explain->select_lex= select_lex;
#endif
join->select_lex->set_explain_type(true);
explain->select_id= join->select_lex->select_number;
explain->select_type= join->select_lex->type;
explain->linkage= select_lex->get_linkage();
explain->using_temporary= need_tmp;
explain->using_filesort= need_order_arg;
/* Setting explain->message means that all other members are invalid */
explain->message= message;
if (select_lex->master_unit()->derived)
explain->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
if (save_agg_explain_data(this, explain))
DBUG_RETURN(1);
output->add_node(explain);
}
else if (pushdown_query)
{
if (!(explain= new (output->mem_root)
Explain_select(output->mem_root,
thd->lex->analyze_stmt)))
DBUG_RETURN(1);
select_lex->set_explain_type(true);
explain->select_id= select_lex->select_number;
explain->select_type= select_lex->type;
explain->linkage= select_lex->get_linkage();
explain->using_temporary= need_tmp;
explain->using_filesort= need_order_arg;
explain->message= "Storage engine handles GROUP BY";
if (select_lex->master_unit()->derived)
explain->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
output->add_node(explain);
}
else
{
Explain_select *xpl_sel;
explain= xpl_sel=
new (output->mem_root) Explain_select(output->mem_root,
thd->lex->analyze_stmt);
if (!explain)
DBUG_RETURN(1);
table_map used_tables=0;
join->select_lex->set_explain_type(true);
xpl_sel->cost= best_read;
xpl_sel->select_id= join->select_lex->select_number;
xpl_sel->select_type= join->select_lex->type;
xpl_sel->linkage= select_lex->get_linkage();
xpl_sel->is_lateral= ((select_lex->get_linkage() == DERIVED_TABLE_TYPE) &&
(select_lex->uncacheable & UNCACHEABLE_DEPENDENT));
if (select_lex->master_unit()->derived)
xpl_sel->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
if (save_agg_explain_data(this, xpl_sel))
DBUG_RETURN(1);
xpl_sel->exec_const_cond= exec_const_cond;
xpl_sel->outer_ref_cond= outer_ref_cond;
xpl_sel->pseudo_bits_cond= pseudo_bits_cond;
if (tmp_having)
xpl_sel->having= tmp_having;
else
xpl_sel->having= having;
xpl_sel->having_value= having_value;
JOIN_TAB* const first_top_tab= join->first_breadth_first_tab();
JOIN_TAB* prev_bush_root_tab= NULL;
Explain_basic_join *cur_parent= xpl_sel;
for (JOIN_TAB *tab= first_explain_order_tab(join); tab;
tab= next_explain_order_tab(join, tab))
{
JOIN_TAB *saved_join_tab= NULL;
TABLE *cur_table= tab->table;
/* Don't show eliminated tables */
if (cur_table->map & join->eliminated_tables)
{
used_tables|= cur_table->map;
continue;
}
Explain_table_access *eta= (new (output->mem_root)
Explain_table_access(output->mem_root,
thd->lex->analyze_stmt));
if (!eta)
DBUG_RETURN(1);
if (tab->bush_root_tab != prev_bush_root_tab)
{
if (tab->bush_root_tab)
{
/*
We've entered an SJ-Materialization nest. Create an object for it.
*/
if (!(cur_parent=
new (output->mem_root) Explain_basic_join(output->mem_root)))
DBUG_RETURN(1);
JOIN_TAB *first_child= tab->bush_root_tab->bush_children->start;
cur_parent->select_id=
first_child->emb_sj_nest->sj_subq_pred->get_identifier();
}
else
{
/*
We've just left an SJ-Materialization nest. We are at the join tab
that 'embeds the nest'
*/
DBUG_ASSERT(tab->bush_children);
eta->sjm_nest= cur_parent;
cur_parent= xpl_sel;
}
}
prev_bush_root_tab= tab->bush_root_tab;
cur_parent->add_table(eta, output);
if (tab->save_explain_data(eta, used_tables, distinct_arg, first_top_tab))
DBUG_RETURN(1);
if (saved_join_tab)
tab= saved_join_tab;
// For next iteration
used_tables|= cur_table->map;
}
output->add_node(xpl_sel);
}
/*
Don't try to add query plans for child selects if this select was pushed
down into a Smart Storage Engine:
- the entire statement was pushed down ("PUSHED SELECT"), or
- this derived table was pushed down ("PUSHED DERIVED")
*/
if (!select_lex->pushdown_select && select_lex->type != pushed_derived_text)
for (SELECT_LEX_UNIT *tmp_unit= join->select_lex->first_inner_unit();
tmp_unit;
tmp_unit= tmp_unit->next_unit())
if (tmp_unit->explainable())
explain->add_child(tmp_unit->first_select()->select_number);
if (select_lex->is_top_level_node())
output->query_plan_ready();
DBUG_RETURN(0);
}
/*
This function serves as "shortcut point" for EXPLAIN queries.
The EXPLAIN statement executes just like its SELECT counterpart would
execute, except that JOIN::exec() will call select_describe() instead of
actually executing the query.
Inside select_describe():
- Query plan is updated with latest QEP choices made at the start of
JOIN::exec().
- the proces of "almost execution" is invoked for the children subqueries.
Overall, select_describe() is a legacy of old EXPLAIN implementation and
should be removed.
*/
static void select_describe(JOIN *join, bool need_tmp_table, bool need_order,
bool distinct,const char *message)
{
THD *thd=join->thd;
DBUG_ENTER("select_describe");
if (join->select_lex->pushdown_select)
{
/*
The whole statement was pushed down to a Smart Storage Engine. Do not
attempt to produce a query plan locally.
*/
DBUG_VOID_RETURN;
}
/* Update the QPF with latest values of using_temporary, using_filesort */
for (SELECT_LEX_UNIT *unit= join->select_lex->first_inner_unit();
unit;
unit= unit->next_unit())
{
/*
This fix_fields() call is to handle an edge case like this:
SELECT ... UNION SELECT ... ORDER BY (SELECT ...)
for such queries, we'll get here before having called
subquery_expr->fix_fields(), which will cause failure to
*/
if (unit->item && !unit->item->fixed())
{
Item *ref= unit->item;
if (unit->item->fix_fields(thd, &ref))
DBUG_VOID_RETURN;
DBUG_ASSERT(ref == unit->item);
}
if (unit->explainable())
{
if (mysql_explain_union(thd, unit, unit->result))
DBUG_VOID_RETURN;
}
}
DBUG_VOID_RETURN;
}
bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result)
{
DBUG_ENTER("mysql_explain_union");
bool res= 0;
SELECT_LEX *first= unit->first_select();
for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
{
sl->set_explain_type(FALSE);
sl->options|= SELECT_DESCRIBE;
}
if (unit->is_unit_op() || unit->fake_select_lex)
{
ulonglong save_options= 0;
if (unit->union_needs_tmp_table() && unit->fake_select_lex)
{
save_options= unit->fake_select_lex->options;
unit->fake_select_lex->select_number= FAKE_SELECT_LEX_ID; // just for initialization
unit->fake_select_lex->type= unit_operation_text[unit->common_op()];
unit->fake_select_lex->options|= SELECT_DESCRIBE;
}
if (!(res= unit->prepare(unit->derived, result,
SELECT_NO_UNLOCK | SELECT_DESCRIBE)))
{
bool is_pushed_union=
(unit->derived && unit->derived->pushdown_derived) ||
unit->pushdown_unit;
if (unit->pushdown_unit)
{
create_explain_query_if_not_exists(thd->lex, thd->mem_root);
if (!unit->executed)
unit->save_union_explain(thd->lex->explain);
List<Item> items;
result->prepare(items, unit);
}
if (!is_pushed_union)
res= unit->exec();
}
if (unit->union_needs_tmp_table() && unit->fake_select_lex)
unit->fake_select_lex->options= save_options;
}
else
{
thd->lex->current_select= first;
unit->set_limit(unit->global_parameters());
res= mysql_select(thd, first->table_list.first, first->item_list,
first->where,
first->order_list.elements + first->group_list.elements,
first->order_list.first, first->group_list.first,
first->having, thd->lex->proc_list.first,
first->options | thd->variables.option_bits | SELECT_DESCRIBE,
result, unit, first);
}
DBUG_RETURN(res || thd->is_error());
}
static void print_table_array(THD *thd,
table_map eliminated_tables,
String *str, TABLE_LIST **table,
TABLE_LIST **end,
enum_query_type query_type)
{
(*table)->print(thd, eliminated_tables, str, query_type);
for (TABLE_LIST **tbl= table + 1; tbl < end; tbl++)
{
TABLE_LIST *curr= *tbl;
/*
The "eliminated_tables &&" check guards againist the case of
printing the query for CREATE VIEW. We do that without having run
JOIN::optimize() and so will have nested_join->used_tables==0.
*/
if (eliminated_tables &&
((curr->table && (curr->table->map & eliminated_tables)) ||
(curr->nested_join && !(curr->nested_join->used_tables &
~eliminated_tables))))
{
/* as of 5.5, print_join doesnt put eliminated elements into array */
DBUG_ASSERT(0);
continue;
}
/* JOIN_TYPE_OUTER is just a marker unrelated to real join */
if (curr->outer_join & (JOIN_TYPE_LEFT|JOIN_TYPE_RIGHT))
{
/* MySQL converts right to left joins */
str->append(STRING_WITH_LEN(" left join "));
}
else if (curr->straight)
str->append(STRING_WITH_LEN(" straight_join "));
else if (curr->sj_inner_tables)
str->append(STRING_WITH_LEN(" semi join "));
else
str->append(STRING_WITH_LEN(" join "));
curr->print(thd, eliminated_tables, str, query_type);
if (curr->on_expr)
{
str->append(STRING_WITH_LEN(" on("));
curr->on_expr->print(str, query_type);
str->append(')');
}
}
}
/*
Check if the passed table is
- a base table which was eliminated, or
- a join nest which only contained eliminated tables (and so was eliminated,
too)
*/
bool is_eliminated_table(table_map eliminated_tables, TABLE_LIST *tbl)
{
return eliminated_tables &&
((tbl->table && (tbl->table->map & eliminated_tables)) ||
(tbl->nested_join && !(tbl->nested_join->used_tables &
~eliminated_tables)));
}
/**
Print joins from the FROM clause.
@param thd thread handler
@param str string where table should be printed
@param tables list of tables in join
@query_type type of the query is being generated
*/
static void print_join(THD *thd,
table_map eliminated_tables,
String *str,
List<TABLE_LIST> *tables,
enum_query_type query_type)
{
/* List is reversed => we should reverse it before using */
List_iterator_fast<TABLE_LIST> ti(*tables);
TABLE_LIST **table;
DBUG_ENTER("print_join");
/*
If the QT_NO_DATA_EXPANSION flag is specified, we print the
original table list, including constant tables that have been
optimized away, as the constant tables may be referenced in the
expression printed by Item_field::print() when this flag is given.
Otherwise, only non-const tables are printed.
Example:
Original SQL:
select * from (select 1) t
Printed without QT_NO_DATA_EXPANSION:
select '1' AS `1` from dual
Printed with QT_NO_DATA_EXPANSION:
select `t`.`1` from (select 1 AS `1`) `t`
*/
const bool print_const_tables= (query_type & QT_NO_DATA_EXPANSION);
size_t tables_to_print= 0;
for (TABLE_LIST *t= ti++; t ; t= ti++)
{
/* See comment in print_table_array() about the second condition */
if (print_const_tables || !t->optimized_away)
if (!is_eliminated_table(eliminated_tables, t))
tables_to_print++;
}
if (tables_to_print == 0)
{
str->append(STRING_WITH_LEN("dual"));
DBUG_VOID_RETURN; // all tables were optimized away
}
ti.rewind();
if (!(table= thd->alloc<TABLE_LIST*>(tables_to_print)))
DBUG_VOID_RETURN; // out of memory
TABLE_LIST *tmp, **t= table + (tables_to_print - 1);
while ((tmp= ti++))
{
if (tmp->optimized_away && !print_const_tables)
continue;
if (is_eliminated_table(eliminated_tables, tmp))
continue;
*t--= tmp;
}
DBUG_ASSERT(tables->elements >= 1);
/*
Assert that the first table in the list isn't eliminated. This comes from
the fact that the first table can't be inner table of an outer join.
*/
DBUG_ASSERT(!eliminated_tables ||
!(((*table)->table && ((*table)->table->map & eliminated_tables)) ||
((*table)->nested_join && !((*table)->nested_join->used_tables &
~eliminated_tables))));
/*
If the first table is a semi-join nest, swap it with something that is
not a semi-join nest.
*/
if ((*table)->sj_inner_tables)
{
TABLE_LIST **end= table + tables_to_print;
for (TABLE_LIST **t2= table; t2!=end; t2++)
{
if (!(*t2)->sj_inner_tables)
{
tmp= *t2;
*t2= *table;
*table= tmp;
break;
}
}
}
print_table_array(thd, eliminated_tables, str, table,
table + tables_to_print, query_type);
DBUG_VOID_RETURN;
}
/**
@brief Print an index hint
@details Prints out the USE|FORCE|IGNORE index hint.
@param thd the current thread
@param[out] str appends the index hint here
@param hint what the hint is (as string : "USE INDEX"|
"FORCE INDEX"|"IGNORE INDEX")
@param hint_length the length of the string in 'hint'
@param indexes a list of index names for the hint
*/
void
Index_hint::print(THD *thd, String *str)
{
switch (type)
{
case INDEX_HINT_IGNORE: str->append(STRING_WITH_LEN("IGNORE INDEX")); break;
case INDEX_HINT_USE: str->append(STRING_WITH_LEN("USE INDEX")); break;
case INDEX_HINT_FORCE: str->append(STRING_WITH_LEN("FORCE INDEX")); break;
}
str->append(STRING_WITH_LEN(" ("));
if (key_name.length)
{
if (thd && key_name.streq(primary_key_name))
str->append(primary_key_name);
else
append_identifier(thd, str, &key_name);
}
str->append(')');
}
/**
Print table as it should be in join list.
@param str string where table should be printed
*/
void TABLE_LIST::print(THD *thd, table_map eliminated_tables, String *str,
enum_query_type query_type)
{
if (nested_join)
{
str->append('(');
print_join(thd, eliminated_tables, str, &nested_join->join_list, query_type);
str->append(')');
}
else if (jtbm_subselect)
{
if (jtbm_subselect->engine->engine_type() ==
subselect_engine::SINGLE_SELECT_ENGINE)
{
/*
We get here when conversion into materialization didn't finish (this
happens when
- The subquery is a degenerate case which produces 0 or 1 record
- subquery's optimization didn't finish because of @@max_join_size
limits
- ... maybe some other cases like this
*/
str->append(STRING_WITH_LEN(" <materialize> ("));
jtbm_subselect->engine->print(str, query_type);
str->append(')');
}
else
{
str->append(STRING_WITH_LEN(" <materialize> ("));
subselect_hash_sj_engine *hash_engine;
hash_engine= (subselect_hash_sj_engine*)jtbm_subselect->engine;
hash_engine->materialize_engine->print(str, query_type);
str->append(')');
}
}
else
{
Lex_ident_table cmp_name(empty_clex_str); // Name to compare with alias
if (view_name.str)
{
// A view
if (!(belong_to_view &&
belong_to_view->compact_view_format) &&
!(query_type & QT_ITEM_IDENT_SKIP_DB_NAMES))
{
append_identifier(thd, str, &view_db);
str->append('.');
}
append_identifier(thd, str, &view_name);
cmp_name= view_name;
}
else if (derived)
{
if (!is_with_table())
{
// A derived table
str->append('(');
derived->print(str, query_type);
str->append(')');
cmp_name= Lex_ident_table(empty_clex_str); // Force printing of alias
}
else
{
append_identifier(thd, str, &table_name);
cmp_name= table_name;
}
}
else if (table_function)
{
/* A table function. */
(void) table_function->print(thd, this, str, query_type);
str->append(' ');
append_identifier(thd, str, &alias);
cmp_name= alias;
}
else
{
// A normal table
if (!(belong_to_view &&
belong_to_view->compact_view_format) &&
!(query_type & QT_ITEM_IDENT_SKIP_DB_NAMES))
{
append_identifier(thd, str, &db);
str->append('.');
}
if (schema_table)
{
append_identifier(thd, str, &schema_table_name);
cmp_name= Lex_ident_table(schema_table_name);
}
else
{
append_identifier(thd, str, &table_name);
cmp_name= table_name;
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (partition_names && partition_names->elements)
{
int i, num_parts= partition_names->elements;
List_iterator<String> name_it(*(partition_names));
str->append(STRING_WITH_LEN(" PARTITION ("));
for (i= 1; i <= num_parts; i++)
{
String *name= name_it++;
append_identifier(thd, str, name->ptr(), name->length());
if (i != num_parts)
str->append(',');
}
str->append(')');
}
#endif /* WITH_PARTITION_STORAGE_ENGINE */
}
if (table && table->versioned())
vers_conditions.print(str, query_type);
if (!cmp_name.streq(alias))
{
str->append(' ');
append_identifier_opt_casedn(thd, str, alias,
lower_case_table_names == 1);
if (column_names && (column_names->elements > 0))
list_strlex_print(thd, str, column_names, true);
}
if (index_hints)
{
List_iterator<Index_hint> it(*index_hints);
Index_hint *hint;
while ((hint= it++))
{
str->append(' ');
hint->print(thd, str);
}
}
}
}
enum explainable_cmd_type
{
SELECT_CMD, INSERT_CMD, REPLACE_CMD, UPDATE_CMD, DELETE_CMD, NO_CMD
};
static
const LEX_CSTRING explainable_cmd_name []=
{
{STRING_WITH_LEN("select ")},
{STRING_WITH_LEN("insert ")},
{STRING_WITH_LEN("replace ")},
{STRING_WITH_LEN("update ")},
{STRING_WITH_LEN("delete ")},
};
static
const LEX_CSTRING* get_explainable_cmd_name(enum explainable_cmd_type cmd)
{
return explainable_cmd_name + cmd;
}
static
enum explainable_cmd_type get_explainable_cmd_type(THD *thd)
{
switch (thd->lex->sql_command) {
case SQLCOM_SELECT:
return SELECT_CMD;
case SQLCOM_INSERT:
case SQLCOM_INSERT_SELECT:
return INSERT_CMD;
case SQLCOM_REPLACE:
case SQLCOM_REPLACE_SELECT:
return REPLACE_CMD;
case SQLCOM_UPDATE:
case SQLCOM_UPDATE_MULTI:
return UPDATE_CMD;
case SQLCOM_DELETE:
case SQLCOM_DELETE_MULTI:
return DELETE_CMD;
default:
return SELECT_CMD;
}
}
void TABLE_LIST::print_leaf_tables(THD *thd, String *str,
enum_query_type query_type)
{
if (merge_underlying_list)
{
for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local)
tbl->print_leaf_tables(thd, str, query_type);
}
else
print(thd, 0, str, query_type);
}
void st_select_lex::print_item_list(THD *thd, String *str,
enum_query_type query_type)
{
bool first= 1;
/*
outer_select() can not be used here because it is for name resolution
and will return NULL at any end of name resolution chain (view/derived)
*/
bool top_level= is_query_topmost(thd);
List_iterator_fast<Item> it(item_list);
Item *item;
while ((item= it++))
{
if (first)
first= 0;
else
str->append(',');
if ((is_subquery_function() && !item->is_explicit_name()) ||
!item->name.str)
{
/*
Do not print auto-generated aliases in subqueries. It has no purpose
in a view definition or other contexts where the query is printed.
*/
item->print(str, query_type);
}
else
{
/*
Do not print illegal names (if it is not top level SELECT).
Top level view checked (and correct name are assigned),
other cases of top level SELECT are not important, because
it is not "table field".
*/
if (top_level ||
item->is_explicit_name() ||
!check_column_name(item->name))
item->print_item_w_name(str, query_type);
else
item->print(str, query_type);
}
}
}
void st_select_lex::print_set_clause(THD *thd, String *str,
enum_query_type query_type)
{
bool first= 1;
/*
outer_select() can not be used here because it is for name resolution
and will return NULL at any end of name resolution chain (view/derived)
*/
List_iterator_fast<Item> it(item_list);
List_iterator_fast<Item> vt(thd->lex->value_list);
Item *item;
Item *val;
while ((item= it++, val= vt++ ))
{
if (first)
{
str->append(STRING_WITH_LEN(" set "));
first= 0;
}
else
str->append(',');
item->print(str, (enum_query_type) (query_type | QT_NO_DATA_EXPANSION));
str->append(STRING_WITH_LEN(" = "));
val->print(str, query_type);
}
}
void st_select_lex::print_on_duplicate_key_clause(THD *thd, String *str,
enum_query_type query_type)
{
bool first= 1;
List_iterator_fast<Item> it(thd->lex->update_list);
List_iterator_fast<Item> vt(thd->lex->value_list);
Item *item;
Item *val;
while ((item= it++, val= vt++ ))
{
if (first)
{
str->append(STRING_WITH_LEN(" on duplicate key update "));
first= 0;
}
else
str->append(',');
item->print(str, query_type);
str->append(STRING_WITH_LEN(" = "));
val->print(str, query_type);
}
}
void st_select_lex::print_lock_type(String *str)
{
if (select_lock == select_lock_type::IN_SHARE_MODE)
str->append(STRING_WITH_LEN(" lock in share mode"));
else if (select_lock == select_lock_type::FOR_UPDATE)
str->append(STRING_WITH_LEN(" for update"));
if (unlikely(skip_locked))
str->append(STRING_WITH_LEN(" skip locked"));
}
void st_select_lex::print(THD *thd, String *str, enum_query_type query_type)
{
DBUG_ASSERT(thd);
if (tvc)
{
tvc->print(thd, str, query_type);
return;
}
if (is_tvc_wrapper && (query_type & QT_NO_WRAPPERS_FOR_TVC_IN_VIEW))
{
first_inner_unit()->first_select()->print(thd, str, query_type);
return;
}
bool top_level= is_query_topmost(thd);
enum explainable_cmd_type sel_type= SELECT_CMD;
if (top_level && !(query_type & QT_SELECT_ONLY))
sel_type= get_explainable_cmd_type(thd);
if (sel_type == INSERT_CMD || sel_type == REPLACE_CMD)
{
str->append(get_explainable_cmd_name(sel_type));
str->append(STRING_WITH_LEN("into "));
TABLE_LIST *tbl= thd->lex->query_tables;
while (tbl->merge_underlying_list)
tbl= tbl->merge_underlying_list;
tbl->print(thd, 0, str, query_type);
if (thd->lex->field_list.elements)
{
str->append ('(');
List_iterator_fast<Item> it(thd->lex->field_list);
Item *item;
bool first= true;
while ((item= it++))
{
if (first)
first= false;
else
str->append(',');
str->append(item->name);
}
str->append(')');
}
str->append(' ');
if (thd->lex->sql_command == SQLCOM_INSERT ||
thd->lex->sql_command == SQLCOM_REPLACE)
{
str->append(STRING_WITH_LEN("values "));
bool is_first_elem= true;
List_iterator_fast<List_item> li(thd->lex->many_values);
List_item *list;
while ((list= li++))
{
if (is_first_elem)
is_first_elem= false;
else
str->append(',');
print_list_item(str, list, query_type);
}
if (thd->lex->update_list.elements)
print_on_duplicate_key_clause(thd, str, query_type);
return;
}
}
if ((query_type & QT_SHOW_SELECT_NUMBER) &&
thd->lex->all_selects_list &&
thd->lex->all_selects_list->link_next &&
select_number != FAKE_SELECT_LEX_ID)
{
str->append(STRING_WITH_LEN("/* select#"));
str->append_ulonglong(select_number);
if (thd->lex->describe & DESCRIBE_EXTENDED2)
{
str->append('/');
str->append_ulonglong(nest_level);
if (master_unit()->fake_select_lex &&
master_unit()->first_select() == this)
{
str->append(STRING_WITH_LEN(" Filter Select: "));
master_unit()->fake_select_lex->print(thd, str, query_type);
}
}
str->append(STRING_WITH_LEN(" */ "));
if (join && join->cleaned) // if this join has been cleaned
return; // the select_number printed above is all we have
}
if (sel_type == SELECT_CMD ||
sel_type == INSERT_CMD ||
sel_type == REPLACE_CMD)
str->append(STRING_WITH_LEN("select "));
if (join && join->cleaned)
{
/*
JOIN already cleaned up so it is dangerous to print items
because temporary tables they pointed on could be freed.
*/
str->append('#');
str->append_ulonglong(select_number);
return;
}
/* First add options */
if (options & SELECT_STRAIGHT_JOIN)
str->append(STRING_WITH_LEN("straight_join "));
if (options & SELECT_HIGH_PRIORITY)
str->append(STRING_WITH_LEN("high_priority "));
if (options & SELECT_DISTINCT)
str->append(STRING_WITH_LEN("distinct "));
if (options & SELECT_SMALL_RESULT)
str->append(STRING_WITH_LEN("sql_small_result "));
if (options & SELECT_BIG_RESULT)
str->append(STRING_WITH_LEN("sql_big_result "));
if (options & OPTION_BUFFER_RESULT)
str->append(STRING_WITH_LEN("sql_buffer_result "));
if (options & OPTION_FOUND_ROWS)
str->append(STRING_WITH_LEN("sql_calc_found_rows "));
if (this == parent_lex->first_select_lex())
{
switch (parent_lex->sql_cache)
{
case LEX::SQL_NO_CACHE:
str->append(STRING_WITH_LEN("sql_no_cache "));
break;
case LEX::SQL_CACHE:
str->append(STRING_WITH_LEN("sql_cache "));
break;
case LEX::SQL_CACHE_UNSPECIFIED:
break;
default:
DBUG_ASSERT(0);
}
}
//Item List
if (sel_type == SELECT_CMD ||
sel_type == INSERT_CMD ||
sel_type == REPLACE_CMD)
print_item_list(thd, str, query_type);
/*
from clause
TODO: support USING/FORCE/IGNORE index
*/
if (table_list.elements)
{
if (sel_type == SELECT_CMD ||
sel_type == INSERT_CMD ||
sel_type == REPLACE_CMD)
{
str->append(STRING_WITH_LEN(" from "));
/* go through join tree */
print_join(thd, join? join->eliminated_tables: 0, str, &top_join_list,
query_type);
}
if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
str->append(get_explainable_cmd_name(sel_type));
if (sel_type == DELETE_CMD)
{
str->append(STRING_WITH_LEN(" from "));
bool first= true;
for (TABLE_LIST *target_tbl= thd->lex->auxiliary_table_list.first;
target_tbl;
target_tbl= target_tbl->next_local)
{
if (first)
first= false;
else
str->append(',');
target_tbl->correspondent_table->print_leaf_tables(thd, str,
query_type);
}
if (!first)
str->append(STRING_WITH_LEN(" using "));
}
if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
{
if (join)
print_join(thd, 0, str, &top_join_list, query_type);
else
{
bool first= true;
List_iterator_fast<TABLE_LIST> li(leaf_tables);
TABLE_LIST *tbl;
while ((tbl= li++))
{
if (first)
first= false;
else
str->append(',');
tbl->print(thd, 0, str, query_type);
}
}
}
}
else if (where)
{
/*
"SELECT 1 FROM DUAL WHERE 2" should not be printed as
"SELECT 1 WHERE 2": the 1st syntax is valid, but the 2nd is not.
*/
str->append(STRING_WITH_LEN(" from DUAL "));
}
if (sel_type == UPDATE_CMD)
print_set_clause(thd, str, query_type);
// Where
Item *cur_where= where;
if (join)
cur_where= join->conds;
else if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
cur_where= thd->lex->upd_del_where;
if (cur_where || cond_value != Item::COND_UNDEF)
{
str->append(STRING_WITH_LEN(" where "));
if (cur_where)
cur_where->print(str, query_type);
else
str->append(cond_value != Item::COND_FALSE ? '1' : '0');
}
// group by & olap
if (group_list.elements)
{
str->append(STRING_WITH_LEN(" group by "));
print_order(str, group_list.first, query_type);
switch (olap)
{
case CUBE_TYPE:
str->append(STRING_WITH_LEN(" with cube"));
break;
case ROLLUP_TYPE:
str->append(STRING_WITH_LEN(" with rollup"));
break;
default:
; //satisfy compiler
}
}
// having
Item *cur_having= having;
if (join)
cur_having= join->having;
if (cur_having || having_value != Item::COND_UNDEF)
{
str->append(STRING_WITH_LEN(" having "));
if (cur_having)
cur_having->print(str, query_type);
else
str->append(having_value != Item::COND_FALSE ? '1' : '0');
}
if (order_list.elements)
{
str->append(STRING_WITH_LEN(" order by "));
print_order(str, order_list.first, query_type);
}
// limit
print_limit(thd, str, query_type);
// lock type
if (braces) /* no braces processed in
SELECT_LEX_UNIT::print_lock_from_the_last_select */
print_lock_type(str);
if ((sel_type == INSERT_CMD || sel_type == REPLACE_CMD) &&
thd->lex->update_list.elements)
print_on_duplicate_key_clause(thd, str, query_type);
// returning clause
if (sel_type == DELETE_CMD && !item_list.elements)
{
print_item_list(thd, str, query_type);
}
// PROCEDURE unsupported here
}
/**
Change the select_result object of the JOIN.
If old_result is not used, forward the call to the current
select_result in case it is a wrapper around old_result.
Call prepare() and prepare2() on the new select_result if we decide
to use it.
@param new_result New select_result object
@param old_result Old select_result object (NULL to force change)
@retval false Success
@retval true Error
*/
bool JOIN::change_result(select_result *new_result, select_result *old_result)
{
DBUG_ENTER("JOIN::change_result");
if (old_result == NULL || result == old_result)
{
result= new_result;
if (result->prepare(fields_list, select_lex->master_unit()) ||
result->prepare2(this))
DBUG_RETURN(true); /* purecov: inspected */
DBUG_RETURN(false);
}
DBUG_RETURN(result->change_result(new_result));
}
/**
@brief
Set allowed types of join caches that can be used for join operations
@details
The function sets a bitmap of allowed join buffers types in the field
allowed_join_cache_types of this JOIN structure:
bit 1 is set if tjoin buffers are allowed to be incremental
bit 2 is set if the join buffers are allowed to be hashed
but 3 is set if the join buffers are allowed to be used for BKA
join algorithms.
The allowed types are read from system variables.
Besides the function sets maximum allowed join cache level that is
also read from a system variable.
*/
void JOIN::set_allowed_join_cache_types()
{
allowed_join_cache_types= 0;
if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_INCREMENTAL))
allowed_join_cache_types|= JOIN_CACHE_INCREMENTAL_BIT;
if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_HASHED))
allowed_join_cache_types|= JOIN_CACHE_HASHED_BIT;
if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_BKA))
allowed_join_cache_types|= JOIN_CACHE_BKA_BIT;
allowed_semijoin_with_cache=
optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE);
allowed_outer_join_with_cache=
optimizer_flag(thd, OPTIMIZER_SWITCH_OUTER_JOIN_WITH_CACHE);
max_allowed_join_cache_level= thd->variables.join_cache_level;
}
/**
Save a query execution plan so that the caller can revert to it if needed,
and reset the current query plan so that it can be reoptimized.
@param save_to The object into which the current query plan state is saved
*/
void JOIN::save_query_plan(Join_plan_state *save_to)
{
DYNAMIC_ARRAY tmp_keyuse;
/* Swap the current and the backup keyuse internal arrays. */
tmp_keyuse= keyuse;
keyuse= save_to->keyuse; /* keyuse is reset to an empty array. */
save_to->keyuse= tmp_keyuse;
for (uint i= 0; i < table_count; i++)
{
save_to->join_tab_keyuse[i]= join_tab[i].keyuse;
join_tab[i].keyuse= NULL;
save_to->join_tab_checked_keys[i]= join_tab[i].checked_keys;
join_tab[i].checked_keys.clear_all();
}
memcpy((uchar*) save_to->best_positions, (uchar*) best_positions,
sizeof(POSITION) * (table_count + 1));
memset((uchar*) best_positions, 0, sizeof(POSITION) * (table_count + 1));
/* Save SJM nests */
List_iterator<TABLE_LIST> it(select_lex->sj_nests);
TABLE_LIST *tlist;
SJ_MATERIALIZATION_INFO **p_info= save_to->sj_mat_info;
while ((tlist= it++))
{
*(p_info++)= tlist->sj_mat_info;
}
}
/**
Reset a query execution plan so that it can be reoptimized in-place.
*/
void JOIN::reset_query_plan()
{
for (uint i= 0; i < table_count; i++)
{
join_tab[i].keyuse= NULL;
join_tab[i].checked_keys.clear_all();
}
}
/**
Restore a query execution plan previously saved by the caller.
@param The object from which the current query plan state is restored.
*/
void JOIN::restore_query_plan(Join_plan_state *restore_from)
{
DYNAMIC_ARRAY tmp_keyuse;
tmp_keyuse= keyuse;
keyuse= restore_from->keyuse;
restore_from->keyuse= tmp_keyuse;
for (uint i= 0; i < table_count; i++)
{
join_tab[i].keyuse= restore_from->join_tab_keyuse[i];
join_tab[i].checked_keys= restore_from->join_tab_checked_keys[i];
}
memcpy((uchar*) best_positions, (uchar*) restore_from->best_positions,
sizeof(POSITION) * (table_count + 1));
/* Restore SJM nests */
List_iterator<TABLE_LIST> it(select_lex->sj_nests);
TABLE_LIST *tlist;
SJ_MATERIALIZATION_INFO **p_info= restore_from->sj_mat_info;
while ((tlist= it++))
{
tlist->sj_mat_info= *(p_info++);
}
}
/**
Reoptimize a query plan taking into account an additional conjunct to the
WHERE clause.
@param added_where An extra conjunct to the WHERE clause to reoptimize with
@param join_tables The set of tables to reoptimize
@param save_to If != NULL, save here the state of the current query
plan, otherwise reuse the existing query plan structures.
@notes
Given a query plan that was already optimized taking into account some WHERE
clause 'C', reoptimize this plan with a new WHERE clause 'C AND added_where'.
The reoptimization works as follows:
1. Call update_ref_and_keys *only* for the new conditions 'added_where'
that are about to be injected into the query.
2. Expand if necessary the original KEYUSE array JOIN::keyuse to
accommodate the new REF accesses computed for the 'added_where' condition.
3. Add the new KEYUSEs into JOIN::keyuse.
4. Re-sort and re-filter the JOIN::keyuse array with the newly added
KEYUSE elements.
@retval REOPT_NEW_PLAN there is a new plan.
@retval REOPT_OLD_PLAN no new improved plan was produced, use the old one.
@retval REOPT_ERROR an irrecovarable error occurred during
reoptimization.
*/
JOIN::enum_reopt_result
JOIN::reoptimize(Item *added_where, table_map join_tables,
Join_plan_state *save_to)
{
DYNAMIC_ARRAY added_keyuse;
SARGABLE_PARAM *sargables= 0; /* Used only as a dummy parameter. */
size_t org_keyuse_elements;
/* Re-run the REF optimizer to take into account the new conditions. */
if (update_ref_and_keys(thd, &added_keyuse, join_tab, table_count,
added_where, ~outer_join, select_lex, &sargables))
{
delete_dynamic(&added_keyuse);
return REOPT_ERROR;
}
if (!added_keyuse.elements)
{
delete_dynamic(&added_keyuse);
return REOPT_OLD_PLAN;
}
if (save_to)
save_query_plan(save_to);
else
reset_query_plan();
if (!keyuse.buffer &&
my_init_dynamic_array(thd->mem_root->psi_key, &keyuse, sizeof(KEYUSE),
20, 64, MYF(MY_THREAD_SPECIFIC)))
{
delete_dynamic(&added_keyuse);
return REOPT_ERROR;
}
org_keyuse_elements= save_to ? save_to->keyuse.elements : keyuse.elements;
allocate_dynamic(&keyuse, org_keyuse_elements + added_keyuse.elements);
/* If needed, add the access methods from the original query plan. */
if (save_to)
{
DBUG_ASSERT(!keyuse.elements);
keyuse.elements= save_to->keyuse.elements;
if (size_t e= keyuse.elements)
memcpy(keyuse.buffer,
save_to->keyuse.buffer, e * keyuse.size_of_element);
}
/* Add the new access methods to the keyuse array. */
memcpy(keyuse.buffer + keyuse.elements * keyuse.size_of_element,
added_keyuse.buffer,
(size_t) added_keyuse.elements * added_keyuse.size_of_element);
keyuse.elements+= added_keyuse.elements;
/* added_keyuse contents is copied, and it is no longer needed. */
delete_dynamic(&added_keyuse);
if (sort_and_filter_keyuse(this, &keyuse, true))
return REOPT_ERROR;
optimize_keyuse(this, &keyuse);
if (optimize_semijoin_nests(this, join_tables))
return REOPT_ERROR;
/* Re-run the join optimizer to compute a new query plan. */
if (choose_plan(this, join_tables, 0))
return REOPT_ERROR;
return REOPT_NEW_PLAN;
}
/**
Cache constant expressions in WHERE, HAVING, ON conditions.
*/
void JOIN::cache_const_exprs()
{
uchar cache_flag= FALSE;
uchar *analyzer_arg= &cache_flag;
/* No need in cache if all tables are constant. */
if (const_tables == table_count)
return;
if (conds)
conds->top_level_compile(thd, &Item::cache_const_expr_analyzer, &analyzer_arg,
&Item::cache_const_expr_transformer, &cache_flag);
cache_flag= FALSE;
if (having)
having->top_level_compile(thd, &Item::cache_const_expr_analyzer,
&analyzer_arg, &Item::cache_const_expr_transformer, &cache_flag);
for (JOIN_TAB *tab= first_depth_first_tab(this); tab;
tab= next_depth_first_tab(this, tab))
{
if (*tab->on_expr_ref)
{
cache_flag= FALSE;
(*tab->on_expr_ref)->top_level_compile(thd, &Item::cache_const_expr_analyzer,
&analyzer_arg, &Item::cache_const_expr_transformer, &cache_flag);
}
}
}
/*
Get the cost of using index keynr to read #LIMIT matching rows by calling
ha_index_next() repeatedly (either with index scan, quick or 'ref')
@detail
- If there is a quick select, we try to use it.
- If there is no quick select return the full cost from
cost_for_index_read() (Doing a full scan with up to 'limit' records)
@param pos Result from best_access_path(). Is NULL for
single-table UPDATE/DELETE
@param table Table to be sorted
@param keynr Which index to use
@param rows_limit How many rows we want to read.
This may be different than what was in the original
LIMIT the caller has included fanouts and extra
rows needed for handling GROUP BY.
@param rows_to_scan Number of rows to scan if there is no range.
@param read_cost Full cost, including cost of WHERE.
@param read_rows Number of rows that needs to be read
@return
0 No possible range scan, cost is for index scan
1 Range scan should be used
For the moment we don't take selectivity of the WHERE clause into
account when calculating the number of rows we have to read
(except what we get from quick select).
The cost is calculated the following way:
(The selectivity is there to take into account the increased number of
rows that we have to read to find LIMIT matching rows)
*/
static bool get_range_limit_read_cost(const POSITION *pos,
const TABLE *table,
uint keynr,
ha_rows rows_limit_arg,
ha_rows rows_to_scan,
double *read_cost,
double *read_rows)
{
double rows_limit= rows2double(rows_limit_arg);
if (table->opt_range_keys.is_set(keynr))
{
/*
Start from quick select's rows and cost. These are always cheaper than
full index scan/cost.
*/
double best_rows, range_rows;
double range_cost= (double) table->opt_range[keynr].cost.fetch_cost();
best_rows= range_rows= (double) table->opt_range[keynr].rows;
if (pos)
{
double cond_selectivity;
/*
Take into count table selectivity as the number of accepted
rows for this table will be 'records_out'.
For example:
key1 BETWEEN 10 AND 1000 AND key2 BETWEEN 10 AND 20
If we are trying to do an ORDER BY on key1, we have to take into
account that using key2 we have to examine much fewer rows.
*/
best_rows= pos->records_out; // Best rows with any key/keys
/*
We assign "double range_rows" from integer #rows a few lines above
so comparison with 0.0 makes sense
*/
if (range_rows > 0.0)
cond_selectivity= best_rows / range_rows;
else
cond_selectivity= 1.0;
DBUG_ASSERT(cond_selectivity <= 1.000000001);
set_if_smaller(cond_selectivity, 1.0);
/*
We have to examine more rows in the proportion to the selectivity of the
the table
*/
rows_limit= rows_limit / cond_selectivity;
}
if (best_rows > rows_limit)
{
/*
LIMIT clause specifies that we will need to read fewer records than
quick select will return. Assume that quick select's cost is
proportional to the number of records we need to return (e.g. if we
only need 1/3rd of records, it will cost us 1/3rd of quick select's
read time)
*/
range_cost*= rows_limit / best_rows;
range_rows= rows_limit;
}
*read_cost= range_cost + range_rows * WHERE_COST_THD(table->in_use);
*read_rows= range_rows;
return 1;
}
/*
Calculate the number of rows we have to check if we are
doing a full index scan (as a suitable range scan was not available).
We assume that each of the tested indexes is not correlated
with ref_key. Thus, to select first N records we have to scan
N/selectivity(ref_key) index entries.
selectivity(ref_key) = #scanned_records/#table_records =
refkey_rows_estimate/table_records.
In any case we can't select more than #table_records.
N/(refkey_rows_estimate/table_records) > table_records
<=> N > refkey_rows_estimate.
*/
ALL_READ_COST cost= cost_for_index_read(table->in_use, table, keynr,
rows_to_scan, 0);
*read_cost= (table->file->cost(&cost) +
rows_to_scan * WHERE_COST_THD(table->in_use));
*read_rows= rows2double(rows_to_scan);
return 0;
}
/**
Find a cheaper access key than a given key
@param tab NULL or JOIN_TAB of the accessed table
@param order Linked list of ORDER BY arguments
@param table Table if tab == NULL or tab->table
@param usable_keys Key map to find a cheaper key in
@param ref_key
0 <= key < MAX_KEY - Key that is currently used for finding
row
MAX_KEY - means index_merge is used
-1 - means we're currently not using an
index to find rows.
@param select_limit LIMIT value
@param [out] new_key Key number if success, otherwise undefined
@param [out] new_key_direction Return -1 (reverse) or +1 if success,
otherwise undefined
@param [out] new_select_limit Estimate of the number of rows we have
to read find 'select_limit' rows.
@param [out] new_used_key_parts NULL by default, otherwise return number
of new_key prefix columns if success
or undefined if the function fails
@param [out] saved_best_key_parts NULL by default, otherwise preserve the
value for further use in QUICK_SELECT_DESC
@note
This function takes into account table->opt_range_condition_rows statistic
(that is calculated by the make_join_statistics function).
However, single table procedures such as Sql_cmd_update:update_single_table()
and Sql_cmd_delete::delete_single_table()
never call make_join_statistics, so they have to update it manually
(@see get_index_for_order()).
*/
static bool
test_if_cheaper_ordering(bool in_join_optimizer,
const JOIN_TAB *tab, ORDER *order, TABLE *table,
key_map usable_keys, int ref_key,
ha_rows select_limit_arg,
int *new_key, int *new_key_direction,
ha_rows *new_select_limit, double *new_read_time,
uint *new_used_key_parts,
uint *saved_best_key_parts)
{
DBUG_ENTER("test_if_cheaper_ordering");
/*
Check whether there is an index compatible with the given order
usage of which is cheaper than usage of the ref_key index (ref_key>=0)
or a table scan.
It may be the case if ORDER/GROUP BY is used with LIMIT.
*/
ha_rows best_select_limit= HA_POS_ERROR;
JOIN *join;
uint nr;
key_map keys;
int best_key_direction= 0;
double read_time, filesort_cost;
enum sort_type filesort_type;
int best_key= -1;
double fanout;
ha_rows table_records= table->stat_records();
bool group;
const bool has_limit= (select_limit_arg != HA_POS_ERROR);
THD *thd= table->in_use;
POSITION *position;
ha_rows rows_estimate, refkey_rows_estimate;
Json_writer_object trace_wrapper(thd);
Json_writer_object trace_cheaper_ordering(
thd, "reconsidering_access_paths_for_index_ordering");
if (tab)
{
join= tab->join;
position= &join->best_positions[tab- join->join_tab];
group=join->group && order == join->group_list;
/* Take into account that records_out can be < 1.0 in case of GROUP BY */
rows_estimate= double_to_rows(position->records_out+0.5);
set_if_bigger(rows_estimate, 1);
refkey_rows_estimate= rows_estimate;
}
else
{
join= NULL;
position= 0;
refkey_rows_estimate= rows_estimate= table_records;
group= 0;
}
trace_cheaper_ordering.add("clause", group ? "GROUP BY" : "ORDER BY");
/*
If not used with LIMIT, only use keys if the whole query can be
resolved with a key; This is because filesort() is usually faster than
retrieving all rows through an index.
*/
if (select_limit_arg >= table_records)
{
keys= *table->file->keys_to_use_for_scanning();
keys.merge(table->covering_keys);
/*
We are adding here also the index specified in FORCE INDEX clause,
if any.
This is to allow users to use index in ORDER BY.
*/
if (table->force_index)
keys.merge(group ? table->keys_in_use_for_group_by :
table->keys_in_use_for_order_by);
keys.intersect(usable_keys);
}
else
keys= usable_keys;
if (join) // True if SELECT
{
uint nr= join->const_tables;
fanout= 1.0;
if (nr != join->table_count - 1) // If not last table
fanout= (join->join_record_count / position->records_out);
else
{
/* Only one table. Limit cannot be bigger than table_records */
set_if_smaller(select_limit_arg, table_records);
}
read_time= position->read_time;
}
else
{
/* Probably an update or delete. Assume we will do a full table scan */
fanout= 1.0;
read_time= table->file->cost(table->file->ha_scan_and_compare_time(rows_estimate));
set_if_smaller(select_limit_arg, table_records);
}
filesort_cost= cost_of_filesort(table, order, rows_estimate,
select_limit_arg, &filesort_type);
read_time+= filesort_cost;
/*
Calculate the selectivity of the ref_key for REF_ACCESS. For
RANGE_ACCESS we use table->opt_range_condition_rows.
*/
if (in_join_optimizer)
{
if (ref_key >= 0 && ref_key != MAX_KEY &&
join->best_positions[join->const_tables].type == JT_REF)
{
refkey_rows_estimate=
(ha_rows)join->best_positions[join->const_tables].records_read;
set_if_bigger(refkey_rows_estimate, 1);
}
}
else if (ref_key >= 0 && ref_key != MAX_KEY && tab->type == JT_REF)
{
/*
If ref access uses keypart=const for all its key parts,
and quick select uses the same # of key parts, then they are equivalent.
Reuse #rows estimate from quick select as it is more precise.
Note: we could just have used
join->best_positions[join->const_tables].records_read
here. That number was computed in best_access_path() and it already
includes adjustments based on table->opt_range[ref_key].rows.
*/
if (tab->ref.const_ref_part_map ==
make_prev_keypart_map(tab->ref.key_parts) &&
table->opt_range_keys.is_set(ref_key) &&
table->opt_range[ref_key].key_parts == tab->ref.key_parts)
refkey_rows_estimate= table->opt_range[ref_key].rows;
else
{
const KEY *ref_keyinfo= table->key_info + ref_key;
refkey_rows_estimate=
(ha_rows)ref_keyinfo->actual_rec_per_key(tab->ref.key_parts - 1);
}
set_if_bigger(refkey_rows_estimate, 1);
}
if (unlikely(thd->trace_started()))
{
if (tab)
trace_cheaper_ordering.add_table_name(tab);
else
trace_cheaper_ordering.add_table_name(table);
trace_cheaper_ordering.
add("rows_estimation", rows_estimate).
add("filesort_cost", filesort_cost).
add("read_cost", read_time).
add("filesort_type", filesort_names[filesort_type].str).
add("fanout", fanout);
}
/*
Force using an index for sorting if there was no ref key
and FORCE INDEX was used.
*/
if (table->force_index && ref_key < 0)
read_time= DBL_MAX;
Json_writer_array possible_keys(thd,"possible_keys");
for (nr=0; nr < table->s->total_keys ; nr++)
{
int direction;
ha_rows select_limit= select_limit_arg;
ha_rows estimated_rows_to_scan;
uint used_key_parts= 0;
double range_cost, range_rows;
Json_writer_object possible_key(thd);
possible_key.add("index", table->key_info[nr].name);
if (keys.is_set(nr) &&
(direction= test_if_order_by_key(join, order, table, nr,
&used_key_parts)))
{
/*
At this point we are sure that ref_key is a non-ordering
key (where "ordering key" is a key that will return rows
in the order required by ORDER BY).
*/
DBUG_ASSERT (ref_key != (int) nr);
possible_key.add("can_resolve_order", true);
possible_key.add("direction", direction);
bool is_covering= (table->covering_keys.is_set(nr) ||
table->is_clustering_key(nr));
/*
Don't use an index scan with ORDER BY without limit.
For GROUP BY without limit always use index scan
if there is a suitable index.
Why we hold to this asymmetry hardly can be explained
rationally. It's easy to demonstrate that using
temporary table + filesort could be cheaper for grouping
queries too.
*/
if (is_covering || has_limit ||
(ref_key < 0 && (group || table->force_index)))
{
double rec_per_key;
if (group)
{
/*
Used_key_parts can be larger than keyinfo->user_defined_key_parts
when using a secondary index clustered with a primary
key (e.g. as in Innodb).
See Bug #28591 for details.
*/
KEY *keyinfo= table->key_info+nr;
uint used_index_parts= keyinfo->user_defined_key_parts;
uint used_pk_parts= 0;
if (used_key_parts > used_index_parts)
used_pk_parts= used_key_parts-used_index_parts;
rec_per_key= used_key_parts ?
keyinfo->actual_rec_per_key(used_key_parts-1) : 1;
/* Take into account the selectivity of the used pk prefix */
if (used_pk_parts)
{
/*
TODO: This code need to be tested with debugger
- Why set rec_per_key to 1 if we don't have primary key data
or the full key is used ?
- If used_pk_parts == 1, we don't take into account that
the first primary key part could part of the current key.
*/
KEY *pkinfo=tab->table->key_info+table->s->primary_key;
/*
If the values of of records per key for the prefixes
of the primary key are considered unknown we assume
they are equal to 1.
*/
if (used_key_parts == pkinfo->user_defined_key_parts ||
pkinfo->rec_per_key[0] == 0)
rec_per_key= 1;
if (rec_per_key > 1)
{
rec_per_key*= pkinfo->actual_rec_per_key(used_pk_parts-1);
rec_per_key/= pkinfo->actual_rec_per_key(0);
/*
The value of rec_per_key for the extended key has
to be adjusted accordingly if some components of
the secondary key are included in the primary key.
*/
for(uint i= 1; i < used_pk_parts; i++)
{
if (pkinfo->key_part[i].field->key_start.is_set(nr))
{
/*
We presume here that for any index rec_per_key[i] != 0
if rec_per_key[0] != 0.
*/
DBUG_ASSERT(pkinfo->actual_rec_per_key(i));
rec_per_key*= pkinfo->actual_rec_per_key(i-1);
rec_per_key/= pkinfo->actual_rec_per_key(i);
}
}
}
}
set_if_bigger(rec_per_key, 1);
/*
With a grouping query each group containing on average
rec_per_key records produces only one row that will
be included into the result set.
*/
if (select_limit > table_records/rec_per_key)
select_limit= table_records;
else
select_limit= (ha_rows) (select_limit*rec_per_key);
} /* group */
/*
If tab=tk is not the last joined table tn then to get first
L records from the result set we can expect to retrieve
only L/fanout(tk,tn) where fanout(tk,tn) says how many
rows in the record set on average will match each row tk.
Usually our estimates for fanouts are too pessimistic.
So the estimate for L/fanout(tk,tn) will be too optimistic
and as result we'll choose an index scan when using ref/range
access + filesort will be cheaper.
*/
select_limit= double_to_rows(select_limit/fanout);
set_if_bigger(select_limit, 1);
if (select_limit > refkey_rows_estimate)
estimated_rows_to_scan= table_records;
else
estimated_rows_to_scan= (ha_rows) (select_limit *
(double) table_records /
(double) refkey_rows_estimate);
bool range_scan= get_range_limit_read_cost(tab ? position : 0,
table,
nr,
select_limit,
estimated_rows_to_scan,
&range_cost,
&range_rows);
if (unlikely(possible_key.trace_started()))
{
possible_key
.add("rows_to_examine", range_rows)
.add("range_scan", range_scan)
.add("scan_cost", range_cost);
}
/*
We will try use the key if:
- If there is no ref key and no usable keys has yet been found and
there is either a group by or a FORCE_INDEX
- If the new cost is better than read_time
*/
if (range_cost < read_time)
{
read_time= range_cost;
possible_key.add("chosen", true);
best_key= nr;
if (saved_best_key_parts)
*saved_best_key_parts= used_key_parts;
if (new_used_key_parts)
*new_used_key_parts= table->s->key_info[nr].user_defined_key_parts;
best_key_direction= direction;
best_select_limit= estimated_rows_to_scan;
}
else if (unlikely(possible_key.trace_started()))
{
possible_key
.add("usable", false)
.add("cause", "cost");
}
}
else if (unlikely(possible_key.trace_started()))
{
possible_key.add("usable", false);
if (!group && select_limit == HA_POS_ERROR)
possible_key.add("cause", "order by without limit");
}
}
else if (unlikely(possible_key.trace_started()))
{
if (keys.is_set(nr))
{
possible_key.
add("can_resolve_order", false).
add("cause", "order can not be resolved by key");
}
else
{
possible_key.
add("can_resolve_order", false).
add("cause", "not usable index for the query");
}
}
}
if (best_key < 0 || best_key == ref_key)
DBUG_RETURN(FALSE);
*new_key= best_key;
*new_key_direction= best_key_direction;
*new_select_limit= has_limit ? best_select_limit : table_records;
*new_read_time= read_time;
DBUG_RETURN(TRUE);
}
/**
Find a key to apply single table UPDATE/DELETE by a given ORDER
@param order Linked list of ORDER BY arguments
@param table Table to find a key
@param select Pointer to access/update select->quick (if any)
@param limit LIMIT clause parameter
@param [out] scanned_limit How many records we expect to scan
Valid if *need_sort=FALSE.
@param [out] need_sort TRUE if filesort needed
@param [out] reverse
TRUE if the key is reversed again given ORDER (undefined if key == MAX_KEY)
@return
- MAX_KEY if no key found (need_sort == TRUE)
- MAX_KEY if quick select result order is OK (need_sort == FALSE)
- key number (either index scan or quick select) (need_sort == FALSE)
@note
Side effects:
- may deallocate or deallocate and replace select->quick;
- may set table->opt_range_condition_rows and table->quick_rows[...]
to table->file->stats.records.
*/
uint get_index_for_order(ORDER *order, TABLE *table, SQL_SELECT *select,
ha_rows limit, ha_rows *scanned_limit,
bool *need_sort, bool *reverse)
{
if (!order)
{
*need_sort= FALSE;
if (select && select->quick)
return select->quick->index; // index or MAX_KEY, use quick select as is
else
return table->file->key_used_on_scan; // MAX_KEY or index for some engine
}
if (!is_simple_order(order)) // just to cut further expensive checks
{
*need_sort= TRUE;
return MAX_KEY;
}
if (select && select->quick)
{
if (select->quick->index == MAX_KEY)
{
*need_sort= TRUE;
return MAX_KEY;
}
uint used_key_parts;
switch (test_if_order_by_key(NULL, order, table, select->quick->index,
&used_key_parts)) {
case 1: // desired order
*need_sort= FALSE;
*scanned_limit= MY_MIN(limit, select->quick->records);
return select->quick->index;
case 0: // unacceptable order
*need_sort= TRUE;
return MAX_KEY;
case -1: // desired order, but opposite direction
{
QUICK_SELECT_I *reverse_quick;
if ((reverse_quick=
select->quick->make_reverse(used_key_parts)))
{
select->set_quick(reverse_quick);
*need_sort= FALSE;
*scanned_limit= MY_MIN(limit, select->quick->records);
return select->quick->index;
}
else
{
*need_sort= TRUE;
return MAX_KEY;
}
}
}
DBUG_ASSERT(0);
}
else if (limit != HA_POS_ERROR)
{
// check if some index scan & LIMIT is more efficient than filesort
/*
Update opt_range_condition_rows since single table UPDATE/DELETE
procedures don't call make_join_statistics() and leave this
variable uninitialized.
*/
table->opt_range_condition_rows= table->stat_records();
int key, direction;
double new_cost;
if (test_if_cheaper_ordering(FALSE, NULL, order, table,
table->keys_in_use_for_order_by, -1, limit,
&key, &direction, &limit, &new_cost) &&
!is_key_used(table, key, table->write_set))
{
*need_sort= FALSE;
*scanned_limit= limit;
*reverse= (direction < 0);
return key;
}
}
*need_sort= TRUE;
return MAX_KEY;
}
/*
Count how many times the specified conditions are true for first rows_to_read
rows of the table.
@param thd Thread handle
@param rows_to_read How many rows to sample
@param table Table to use
@conds conds INOUT List of conditions and counters for them
@return Number of we've checked. It can be equal or less than rows_to_read.
0 is returned for error or when the table had no rows.
*/
ulong check_selectivity(THD *thd,
ulong rows_to_read,
TABLE *table,
List<COND_STATISTIC> *conds)
{
ulong count= 0;
COND_STATISTIC *cond;
List_iterator_fast<COND_STATISTIC> it(*conds);
handler *file= table->file;
uchar *record= table->record[0];
int error= 0;
DBUG_ENTER("check_selectivity");
DBUG_ASSERT(rows_to_read > 0);
while ((cond= it++))
{
DBUG_ASSERT(cond->cond);
DBUG_ASSERT(cond->cond->used_tables() == table->map);
cond->positive= 0;
}
it.rewind();
if (unlikely(file->ha_rnd_init_with_error(1)))
DBUG_RETURN(0);
do
{
error= file->ha_rnd_next(record);
if (unlikely(thd->killed))
{
thd->send_kill_message();
count= 0;
goto err;
}
if (unlikely(error))
{
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
count++;
while ((cond= it++))
{
if (cond->cond->val_bool())
cond->positive++;
}
it.rewind();
} while (count < rows_to_read);
file->ha_rnd_end();
DBUG_RETURN(count);
err:
DBUG_PRINT("error", ("error %d", error));
file->ha_rnd_end();
DBUG_RETURN(0);
}
/****************************************************************************
AGGR_OP implementation
****************************************************************************/
/**
@brief Instantiate tmp table for aggregation and start index scan if needed
@todo Tmp table always would be created, even for empty result. Extend
executor to avoid tmp table creation when no rows were written
into tmp table.
@return
true error
false ok
*/
bool
AGGR_OP::prepare_tmp_table()
{
TABLE *table= join_tab->table;
JOIN *join= join_tab->join;
int rc= 0;
if (!join_tab->table->is_created())
{
if (instantiate_tmp_table(table, join_tab->tmp_table_param->keyinfo,
join_tab->tmp_table_param->start_recinfo,
&join_tab->tmp_table_param->recinfo,
join->select_options))
return true;
(void) table->file->extra(HA_EXTRA_WRITE_CACHE);
}
/* If it wasn't already, start index scan for grouping using table index. */
if (!table->file->inited && table->group &&
join_tab->tmp_table_param->sum_func_count && table->s->keys)
rc= table->file->ha_index_init(0, 0);
else
{
/* Start index scan in scanning mode */
rc= table->file->ha_rnd_init(true);
}
if (rc)
{
table->file->print_error(rc, MYF(0));
return true;
}
return false;
}
/**
@brief Prepare table if necessary and call write_func to save record
@param end_of_records the end_of_record signal to pass to the writer
@return return one of enum_nested_loop_state.
*/
enum_nested_loop_state
AGGR_OP::put_record(bool end_of_records)
{
// Lasy tmp table creation/initialization
if (!join_tab->table->file->inited)
if (prepare_tmp_table())
return NESTED_LOOP_ERROR;
enum_nested_loop_state rc= (*write_func)(join_tab->join, join_tab,
end_of_records);
return rc;
}
/**
@brief Finish rnd/index scan after accumulating records, switch ref_array,
and send accumulated records further.
@return return one of enum_nested_loop_state.
*/
enum_nested_loop_state
AGGR_OP::end_send()
{
enum_nested_loop_state rc= NESTED_LOOP_OK;
TABLE *table= join_tab->table;
JOIN *join= join_tab->join;
// All records were stored, send them further
int tmp, new_errno= 0;
if ((rc= put_record(true)) < NESTED_LOOP_OK)
return rc;
if ((tmp= table->file->extra(HA_EXTRA_NO_CACHE)))
{
DBUG_PRINT("error",("extra(HA_EXTRA_NO_CACHE) failed"));
new_errno= tmp;
}
if ((tmp= table->file->ha_index_or_rnd_end()))
{
DBUG_PRINT("error",("ha_index_or_rnd_end() failed"));
new_errno= tmp;
}
if (new_errno)
{
table->file->print_error(new_errno,MYF(0));
return NESTED_LOOP_ERROR;
}
// Update ref array
join_tab->join->set_items_ref_array(*join_tab->ref_array);
bool keep_last_filesort_result = join_tab->filesort ? false : true;
if (join_tab->window_funcs_step)
{
if (join_tab->window_funcs_step->exec(join, keep_last_filesort_result))
return NESTED_LOOP_ERROR;
}
table->reginfo.lock_type= TL_UNLOCK;
bool in_first_read= true;
/*
Reset the counter before copying rows from internal temporary table to
INSERT table.
*/
join_tab->join->thd->get_stmt_da()->reset_current_row_for_warning(1);
while (rc == NESTED_LOOP_OK)
{
int error;
if (in_first_read)
{
in_first_read= false;
error= join_init_read_record(join_tab);
}
else
error= join_tab->read_record.read_record();
if (unlikely(error > 0 || (join->thd->is_error()))) // Fatal error
rc= NESTED_LOOP_ERROR;
else if (error < 0)
break;
else if (unlikely(join->thd->killed)) // Aborted by user
{
join->thd->send_kill_message();
rc= NESTED_LOOP_KILLED;
}
else
{
rc= evaluate_join_record(join, join_tab, 0);
}
}
if (keep_last_filesort_result)
{
delete join_tab->filesort_result;
join_tab->filesort_result= NULL;
}
// Finish rnd scn after sending records
if (join_tab->table->file->inited)
join_tab->table->file->ha_rnd_end();
return rc;
}
/**
@brief
Remove marked top conjuncts of a condition
@param thd The thread handle
@param cond The condition which subformulas are to be removed
@details
The function removes all top conjuncts marked with the flag
MARKER_FULL_EXTRACTION from the condition 'cond'. The resulting
formula is returned a the result of the function
If 'cond' s marked with such flag the function returns 0.
The function clear the extraction flags for the removed
formulas
@retval
condition without removed subformulas
0 if the whole 'cond' is removed
*/
Item *remove_pushed_top_conjuncts(THD *thd, Item *cond)
{
if (cond->get_extraction_flag() == MARKER_FULL_EXTRACTION)
{
cond->clear_extraction_flag();
return 0;
}
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
{
if (item->get_extraction_flag() == MARKER_FULL_EXTRACTION)
{
item->clear_extraction_flag();
li.remove();
}
}
switch (((Item_cond*) cond)->argument_list()->elements)
{
case 0:
return 0;
case 1:
return ((Item_cond*) cond)->argument_list()->head();
default:
return cond;
}
}
}
return cond;
}
/*
There are 5 cases in which we shortcut the join optimization process as we
conclude that the join would be a degenerate one
1) IMPOSSIBLE WHERE
2) MIN/MAX optimization (@see opt_sum_query)
3) EMPTY CONST TABLE
If a window function is present in any of the above cases then to get the
result of the window function, we need to execute it. So we need to
create a temporary table for its execution. Here we need to take in mind
that aggregate functions and non-aggregate function need not be executed.
*/
void JOIN::handle_implicit_grouping_with_window_funcs()
{
if (select_lex->have_window_funcs() && send_row_on_empty_set())
{
const_tables= top_join_tab_count= table_count= 0;
}
}
/*
@brief
Perform a partial cleanup for the JOIN_TAB structure
@note
this is used to cleanup resources for the re-execution of correlated
subqueries.
*/
void JOIN_TAB::partial_cleanup()
{
if (!table)
return;
if (table->is_created())
{
table->file->ha_index_or_rnd_end();
DBUG_PRINT("info", ("close index: %s.%s alias: %s",
table->s->db.str,
table->s->table_name.str,
table->alias.c_ptr()));
if (aggr)
{
int tmp= 0;
if ((tmp= table->file->extra(HA_EXTRA_NO_CACHE)))
table->file->print_error(tmp, MYF(0));
}
}
delete filesort_result;
filesort_result= NULL;
free_cache(&read_record);
}
/**
@brief
Construct not null conditions for provingly not nullable fields
@details
For each non-constant joined table the function creates a conjunction
of IS NOT NULL predicates containing a predicate for each field used
in the WHERE clause or an OR expression such that
- is declared as nullable
- for which it can proved be that it is null-rejected
- is a part of some index.
This conjunction could be anded with either the WHERE condition or with
an ON expression and the modified join query would produce the same
result set as the original one.
If a conjunction of IS NOT NULL predicates is constructed for an inner
table of an outer join OJ that is not an inner table of embedded outer
joins then it is to be anded with the ON expression of OJ.
The constructed conjunctions of IS NOT NULL predicates are attached
to the corresponding tables. They used for range analysis complementary
to other sargable range conditions.
@note
Let f be a field of the joined table t. In the context of the upper
paragraph field f is called null-rejected if any the following holds:
- t is a table of a top inner join and a conjunctive formula that rejects
rows with null values for f can be extracted from the WHERE condition
- t is an outer table of a top outer join operation and a conjunctive
formula over the outer tables of the outer join that rejects rows with
null values for can be extracted from the WHERE condition
- t is an outer table of a non-top outer join operation and a conjunctive
formula over the outer tables of the outer join that rejects rows with
null values for f can be extracted from the ON expression of the
embedding outer join
- the joined table is an inner table of a outer join operation and
a conjunctive formula over inner tables of the outer join that rejects
rows with null values for f can be extracted from the ON expression of
the outer join operation.
It is assumed above that all inner join nests have been eliminated and
that all possible conversions of outer joins into inner joins have been
already done.
*/
void JOIN::make_notnull_conds_for_range_scans()
{
DBUG_ENTER("JOIN::make_notnull_conds_for_range_scans");
if (impossible_where ||
!optimizer_flag(thd, OPTIMIZER_SWITCH_NOT_NULL_RANGE_SCAN))
{
/* Complementary range analysis is not needed */
DBUG_VOID_RETURN;
}
if (conds && build_notnull_conds_for_range_scans(this, conds,
conds->used_tables()))
{
/*
Found a IS NULL conjunctive predicate for a null-rejected field
in the WHERE clause
*/
conds= (Item*) Item_false;
cond_equal= 0;
impossible_where= true;
DBUG_VOID_RETURN;
}
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *tbl;
while ((tbl= li++))
{
if (tbl->on_expr)
{
if (tbl->nested_join)
{
build_notnull_conds_for_inner_nest_of_outer_join(this, tbl);
}
else if (build_notnull_conds_for_range_scans(this, tbl->on_expr,
tbl->table->map))
{
/*
Found a IS NULL conjunctive predicate for a null-rejected field
of the inner table of an outer join with ON expression tbl->on_expr
*/
tbl->on_expr= (Item*) Item_false;
}
}
}
DBUG_VOID_RETURN;
}
/**
@brief
Build not null conditions for range scans of given join tables
@param join the join for whose tables not null conditions are to be built
@param cond the condition from which not null predicates are to be inferred
@param allowed the bit map of join tables to be taken into account
@details
For each join table t from the 'allowed' set of tables the function finds
all fields whose null-rejectedness can be inferred from null-rejectedness
of the condition cond. For each found field f from table t such that it
participates at least in one index on table t a NOT NULL predicate is
constructed and a conjunction of all such predicates is attached to t.
If when looking for null-rejecting fields of t it is discovered one of its
fields has to be null-rejected and there is IS NULL conjunctive top level
predicate for this field then the function immediately returns true.
The function uses the bitmap TABLE::tmp_set to mark found null-rejected
fields of table t.
@note
Currently only top level conjuncts without disjunctive sub-formulas are
are taken into account when looking for null-rejected fields.
@retval
true if a contradiction is inferred
false otherwise
*/
static
bool build_notnull_conds_for_range_scans(JOIN *join, Item *cond,
table_map allowed)
{
THD *thd= join->thd;
DBUG_ENTER("build_notnull_conds_for_range_scans");
for (JOIN_TAB *s= join->join_tab;
s < join->join_tab + join->table_count ; s++)
{
/* Clear all needed bitmaps to mark found fields */
if ((allowed & s->table->map) &&
!(s->table->map & join->const_table_map))
bitmap_clear_all(&s->table->tmp_set);
}
/*
Find all null-rejected fields assuming that cond is null-rejected and
only formulas over tables from 'allowed' are to be taken into account
*/
if (cond->find_not_null_fields(allowed))
DBUG_RETURN(true);
/*
For each table t from 'allowed' build a conjunction of NOT NULL predicates
constructed for all found fields if they are included in some indexes.
If the construction of the conjunction succeeds attach the formula to
t->table->notnull_cond. The condition will be used to look for
complementary range scans.
*/
for (JOIN_TAB *s= join->join_tab ;
s < join->join_tab + join->table_count ; s++)
{
TABLE *tab= s->table;
List<Item> notnull_list;
Item *notnull_cond= 0;
if (!(allowed & tab->map) ||
(s->table->map && join->const_table_map))
continue;
for (Field** field_ptr= tab->field; *field_ptr; field_ptr++)
{
Field *field= *field_ptr;
if (field->part_of_key.is_clear_all())
continue;
if (!bitmap_is_set(&tab->tmp_set, field->field_index))
continue;
Item_field *field_item= new (thd->mem_root) Item_field(thd, field);
if (!field_item)
continue;
Item *isnotnull_item=
new (thd->mem_root) Item_func_isnotnull(thd, field_item);
if (!isnotnull_item)
continue;
if (notnull_list.push_back(isnotnull_item, thd->mem_root))
continue;
s->const_keys.merge(field->part_of_key);
}
switch (notnull_list.elements) {
case 0:
break;
case 1:
notnull_cond= notnull_list.head();
break;
default:
notnull_cond=
new (thd->mem_root) Item_cond_and(thd, notnull_list);
}
if (notnull_cond && !notnull_cond->fix_fields(thd, 0))
{
tab->notnull_cond= notnull_cond;
}
}
DBUG_RETURN(false);
}
/**
@brief
Build not null conditions for inner nest tables of an outer join
@param join the join for whose table nest not null conditions are to be
built
@param nest_tbl the nest of the inner tables of an outer join
@details
The function assumes that nest_tbl is the nest of the inner tables
of an outer join and so an ON expression for this outer join is
attached to nest_tbl.
The function selects the tables of the nest_tbl that are not inner
tables of embedded outer joins and then it calls
build_notnull_conds_for_range_scans() for nest_tbl->on_expr and
the bitmap for the selected tables. This call finds all fields
belonging to the selected tables whose null-rejectedness can be
inferred from the null-rejectedness of nest_tbl->on_expr. After
this the function recursively finds all null_rejected fields for
the remaining tables from the nest of nest_tbl.
*/
static
void build_notnull_conds_for_inner_nest_of_outer_join(JOIN *join,
TABLE_LIST *nest_tbl)
{
TABLE_LIST *tbl;
table_map used_tables= 0;
List_iterator<TABLE_LIST> li(nest_tbl->nested_join->join_list);
while ((tbl= li++))
{
if (!tbl->on_expr)
used_tables|= tbl->table->map;
}
if (used_tables &&
build_notnull_conds_for_range_scans(join, nest_tbl->on_expr, used_tables))
{
nest_tbl->on_expr= (Item*) Item_false;
}
li.rewind();
while ((tbl= li++))
{
if (tbl->on_expr)
{
if (tbl->nested_join)
{
build_notnull_conds_for_inner_nest_of_outer_join(join, tbl);
}
else if (build_notnull_conds_for_range_scans(join, tbl->on_expr,
tbl->table->map))
tbl->on_expr= (Item*) Item_false;
}
}
}
/*
@brief
Initialize join cache and enable keyread
*/
void JOIN::init_join_cache_and_keyread()
{
JOIN_TAB *tab;
for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
tab;
tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
{
TABLE *table= tab->table;
switch (tab->type) {
case JT_SYSTEM:
case JT_CONST:
case JT_FT:
case JT_UNKNOWN:
case JT_MAYBE_REF:
break;
case JT_EQ_REF:
case JT_REF_OR_NULL:
case JT_REF:
if (table->covering_keys.is_set(tab->ref.key) && !table->no_keyread)
table->file->ha_start_keyread(tab->ref.key);
break;
case JT_HASH:
case JT_ALL:
case JT_RANGE:
SQL_SELECT *select;
select= tab->select ? tab->select :
(tab->filesort ? tab->filesort->select : NULL);
if (select && select->quick && select->quick->index != MAX_KEY &&
table->covering_keys.is_set(select->quick->index) &&
!table->no_keyread)
table->file->ha_start_keyread(select->quick->index);
break;
case JT_HASH_NEXT:
case JT_NEXT:
if ((tab->read_first_record == join_read_first ||
tab->read_first_record == join_read_last) &&
table->covering_keys.is_set(tab->index) &&
!table->no_keyread)
{
DBUG_ASSERT(!tab->filesort);
table->file->ha_start_keyread(tab->index);
}
break;
default:
break;
/* purecov: end */
}
if (table->file->keyread_enabled() &&
!table->is_clustering_key(table->file->keyread))
{
/*
Here we set the read_set bitmap for all covering keys
except CLUSTERED indexes, with all the key-parts inside the key.
This is needed specifically for an index that contains virtual column.
Example:
Lets say we have this query
SELECT b FROM t1;
and the table definition is like
CREATE TABLE t1(
a varchar(10) DEFAULT NULL,
b varchar(255) GENERATED ALWAYS AS (a) VIRTUAL,
KEY key1 (b));
So we a virtual column b and an index key1 defined on the virtual
column. So if a query uses a vcol, base columns that it
depends on are automatically added to the read_set - because they're
needed to calculate the vcol.
But if we're doing keyread, vcol is taken
from the index, not calculated, and base columns do not need to be
in the read set. To ensure this we try to set the read_set to only
the key-parts of the indexes.
Another side effect of this is
Lets say you have a query
select a, b from t1
and there is an index key1 (a,b,c)
then as key1 is covering and we would have the keyread enable for
this key, so the below call will also set the read_set for column
c, which is not a problem as we read all the columns from the index
tuple.
*/
table->mark_index_columns(table->file->keyread, table->read_set);
}
bool init_for_explain= false;
/*
Can we use lightweight initalization mode just for EXPLAINs? We can if
we're certain that the optimizer will not execute the subquery.
The optimzier will not execute the subquery if it's too expensive. For
the exact criteria, see Item_subselect::is_expensive().
Note that the subquery might be a UNION and we might not yet know if it
is expensive.
What we do know is that if this SELECT is too expensive, then the whole
subquery will be too expensive as well.
So, we can use lightweight initialization (init_for_explain=true) if this
SELECT examines more than @@expensive_subquery_limit rows.
*/
if ((select_options & SELECT_DESCRIBE) &&
get_examined_rows() >= thd->variables.expensive_subquery_limit)
{
init_for_explain= true;
}
if (tab->cache && tab->cache->init(init_for_explain))
revise_cache_usage(tab);
else
tab->remove_redundant_bnl_scan_conds();
}
}
/*
@brief
Unpack temp table fields to base table fields.
*/
void unpack_to_base_table_fields(TABLE *table)
{
JOIN_TAB *tab= table->reginfo.join_tab;
for (Copy_field *cp= tab->read_record.copy_field;
cp != tab->read_record.copy_field_end; cp++)
(*cp->do_copy)(cp);
}
/*
Call item->fix_after_optimize for all items registered in
lex->fix_after_optimize
This is needed for items like ROWNUM(), which needs access to structures
created by the early optimizer pass, like JOIN
*/
static void fix_items_after_optimize(THD *thd, SELECT_LEX *select_lex)
{
List_iterator<Item> li(select_lex->fix_after_optimize);
while (Item *item= li++)
item->fix_after_optimize(thd);
}
/*
Set a limit for the SELECT_LEX_UNIT based on ROWNUM usage.
The limit is shown in EXPLAIN
*/
static bool set_limit_for_unit(THD *thd, SELECT_LEX_UNIT *unit, ha_rows lim)
{
SELECT_LEX *gpar= unit->global_parameters();
if (gpar->limit_params.select_limit != 0 &&
// limit can not be an expression but can be parameter
(!gpar->limit_params.select_limit->basic_const_item() ||
((ha_rows)gpar->limit_params.select_limit->val_int()) < lim))
return false;
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
gpar->limit_params.select_limit=
new (thd->mem_root) Item_int(thd, lim, MAX_BIGINT_WIDTH);
if (gpar->limit_params.select_limit == 0)
return true; // EOM
unit->set_limit(gpar);
gpar->limit_params.explicit_limit= true; // to show in EXPLAIN
if (arena)
thd->restore_active_arena(arena, &backup);
return false;
}
/**
Check possibility of LIMIT setting by rownum() of upper SELECT and do it
@note Ideal is to convert something like
SELECT ...
FROM (SELECT ...) table
WHERE rownum() < <CONSTANT>;
to
SELECT ...
FROM (SELECT ... LIMIT <CONSTANT>) table
WHERE rownum() < <CONSTANT>;
@retval true EOM
@retval false no errors
*/
bool JOIN::optimize_upper_rownum_func()
{
DBUG_ASSERT(select_lex->master_unit()->derived);
if (select_lex->master_unit()->first_select() != select_lex)
return false; // first will set parameter
if (select_lex->master_unit()->global_parameters()->
limit_params.offset_limit != NULL)
return false; // offset is set, we cannot set limit
SELECT_LEX *outer_select= select_lex->master_unit()->outer_select();
/*
Check that it is safe to use rownum-limit from the outer query
(the one that has 'WHERE rownum()...')
*/
if (outer_select == NULL ||
!outer_select->with_rownum ||
(outer_select->options & SELECT_DISTINCT) ||
outer_select->table_list.elements != 1 ||
outer_select->where == NULL ||
outer_select->where->type() != Item::FUNC_ITEM)
return false;
return process_direct_rownum_comparison(thd, unit, outer_select->where);
}
/**
Test if the predicate compares rownum() with a constant
@return 1 No or invalid rownum() compare
@return 0 rownum() is compared with a constant.
In this case *args contains the constant and
*inv_order constains 1 if the rownum() was the right
argument, like in 'WHERE 2 >= rownum()'.
*/
static bool check_rownum_usage(Item_func *func_item, longlong *limit,
bool *inv_order)
{
Item *arg1, *arg2;
*inv_order= 0;
DBUG_ASSERT(func_item->argument_count() == 2);
/* 'rownum op const' or 'const op field' */
arg1= func_item->arguments()[0]->real_item();
if (arg1->type() == Item::FUNC_ITEM &&
((Item_func*) arg1)->functype() == Item_func::ROWNUM_FUNC)
{
arg2= func_item->arguments()[1]->real_item();
if (arg2->can_eval_in_optimize())
{
*limit= arg2->val_int();
return *limit <= 0 || (ulonglong) *limit >= HA_POS_ERROR;
}
}
else if (arg1->can_eval_in_optimize())
{
arg2= func_item->arguments()[1]->real_item();
if (arg2->type() == Item::FUNC_ITEM &&
((Item_func*) arg2)->functype() == Item_func::ROWNUM_FUNC)
{
*limit= arg1->val_int();
*inv_order= 1;
return *limit <= 0 || (ulonglong) *limit >= HA_POS_ERROR;
}
}
return 1;
}
/*
Limit optimization for ROWNUM()
Go through the WHERE clause and find out if there are any of the following
constructs on the top level:
rownum() <= integer_constant
rownum() < integer_constant
rownum() = 1
If yes, then threat the select as if 'LIMIT integer_constant' would
have been used
*/
static void optimize_rownum(THD *thd, SELECT_LEX_UNIT *unit,
Item *cond)
{
DBUG_ENTER("optimize_rownum");
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
optimize_rownum(thd, unit, item);
}
DBUG_VOID_RETURN;
}
process_direct_rownum_comparison(thd, unit, cond);
DBUG_VOID_RETURN;
}
static bool process_direct_rownum_comparison(THD *thd, SELECT_LEX_UNIT *unit,
Item *cond)
{
DBUG_ENTER("process_direct_rownum_comparison");
if (cond->real_type() == Item::FUNC_ITEM)
{
Item_func *pred= (Item_func*) cond;
longlong limit;
bool inv;
if (pred->argument_count() != 2)
DBUG_RETURN(false); // Not a compare functions
if (check_rownum_usage(pred, &limit, &inv))
DBUG_RETURN(false);
Item_func::Functype pred_type= pred->functype();
if (inv && pred_type != Item_func::EQ_FUNC)
{
if (pred_type == Item_func::GT_FUNC) // # > rownum()
pred_type= Item_func::LT_FUNC;
else if (pred_type == Item_func::GE_FUNC) // # >= rownum()
pred_type= Item_func::LE_FUNC;
else
DBUG_RETURN(false);
}
switch (pred_type) {
case Item_func::LT_FUNC: // rownum() < #
{
if (limit <= 0)
DBUG_RETURN(false);
DBUG_RETURN(set_limit_for_unit(thd, unit, limit - 1));
case Item_func::LE_FUNC:
DBUG_RETURN(set_limit_for_unit(thd, unit, limit));
case Item_func::EQ_FUNC:
if (limit == 1)
DBUG_RETURN(set_limit_for_unit(thd, unit, limit));
break;
default:
break;
}
}
}
DBUG_RETURN(false);
}
/**
@brief
Transform IN predicates having equal constant elements to equalities
@param thd The context of the statement
@details
If all elements in an IN predicate are constant and equal to each other
then clause
- "a IN (e1,..,en)" can be transformed to "a = e1"
- "a NOT IN (e1,..,en)" can be transformed to "a != e1".
This means an object of Item_func_in can be replaced with an object of
Item_func_eq for IN (e1,..,en) clause or Item_func_ne for
NOT IN (e1,...,en).
Such a replacement allows the optimizer to choose a better execution plan.
This methods applies such transformation for each IN predicate of the WHERE
condition and ON expressions of this join where possible
@retval
false success
true failure
*/
bool JOIN::transform_in_predicates_into_equalities(THD *thd)
{
DBUG_ENTER("JOIN::transform_in_predicates_into_equalities");
DBUG_RETURN(transform_all_conds_and_on_exprs(
thd, &Item::in_predicate_to_equality_transformer));
}
/**
@brief
Rewrite datetime comparison conditions into sargable.
See details in the description for class Date_cmp_func_rewriter
*/
bool JOIN::transform_date_conds_into_sargable()
{
DBUG_ENTER("JOIN::transform_date_conds_into_sargable");
DBUG_RETURN(transform_all_conds_and_on_exprs(
thd, &Item::date_conds_transformer));
}
/**
@brief
Transform all items in WHERE and ON expressions using a given transformer
@param thd The context of the statement
transformer Pointer to the transformation function
@details
For each item of the WHERE condition and ON expressions of the SELECT
for this join the method performs the intransformation using the given
transformation function
@retval
false success
true failure
*/
bool JOIN::transform_all_conds_and_on_exprs(THD *thd,
Item_transformer transformer)
{
if (conds)
{
conds= conds->top_level_transform(thd, transformer, (uchar *) 0);
if (!conds)
return true;
}
if (join_list)
{
if (transform_all_conds_and_on_exprs_in_join_list(thd, join_list,
transformer))
return true;
}
return false;
}
bool JOIN::transform_all_conds_and_on_exprs_in_join_list(
THD *thd, List<TABLE_LIST> *join_list, Item_transformer transformer)
{
TABLE_LIST *table;
List_iterator<TABLE_LIST> li(*join_list);
while ((table= li++))
{
if (table->nested_join)
{
if (transform_all_conds_and_on_exprs_in_join_list(
thd, &table->nested_join->join_list, transformer))
return true;
}
if (table->on_expr)
{
table->on_expr= table->on_expr->top_level_transform(thd, transformer, 0);
if (!table->on_expr)
return true;
}
}
return false;
}
static void MYSQL_DML_START(THD *thd)
{
switch (thd->lex->sql_command) {
case SQLCOM_UPDATE:
MYSQL_UPDATE_START(thd->query());
break;
case SQLCOM_UPDATE_MULTI:
MYSQL_MULTI_UPDATE_START(thd->query());
break;
case SQLCOM_DELETE:
MYSQL_DELETE_START(thd->query());
break;
case SQLCOM_DELETE_MULTI:
MYSQL_MULTI_DELETE_START(thd->query());
break;
default:
DBUG_ASSERT(0);
}
}
static void MYSQL_DML_GET_STAT(THD * thd, ha_rows &found, ha_rows &changed)
{
switch (thd->lex->sql_command) {
case SQLCOM_UPDATE:
case SQLCOM_UPDATE_MULTI:
case SQLCOM_DELETE_MULTI:
thd->lex->m_sql_cmd->get_dml_stat(found, changed);
break;
case SQLCOM_DELETE:
found= 0;
changed= (thd->get_row_count_func());
break;
default:
DBUG_ASSERT(0);
}
}
static void MYSQL_DML_DONE(THD *thd, int rc, ha_rows found, ha_rows changed)
{
switch (thd->lex->sql_command) {
case SQLCOM_UPDATE:
MYSQL_UPDATE_DONE(rc, found, changed);
break;
case SQLCOM_UPDATE_MULTI:
MYSQL_MULTI_UPDATE_DONE(rc, found, changed);
break;
case SQLCOM_DELETE:
MYSQL_DELETE_DONE(rc, changed);
break;
case SQLCOM_DELETE_MULTI:
MYSQL_MULTI_DELETE_DONE(rc, changed);
break;
default:
DBUG_ASSERT(0);
}
}
/*
@brief Perform actions needed before locking tables for a DML statement
@param thd global context the processed statement
@returns false if success, true if error
@details
This function calls the precheck() procedure fo the processed statement,
then is opens tables used in the statement and finally it calls the function
prepare_inner() that is specific for the type of the statement.
@note
The function are used when processing:
- a DML statement
- PREPARE stmt FROM <DML "statement>"
- EXECUTE stmt when stmt is prepared from a DML statement.
*/
bool Sql_cmd_dml::prepare(THD *thd)
{
lex= thd->lex;
SELECT_LEX_UNIT *unit= &lex->unit;
DBUG_ASSERT(!is_prepared());
// Perform a coarse statement-specific privilege check.
if (precheck(thd))
goto err;
MYSQL_DML_START(thd);
lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_DERIVED;
if (open_tables_for_query(thd, lex->query_tables, &table_count, 0,
get_dml_prelocking_strategy()))
{
if (thd->is_error())
goto err;
(void)unit->cleanup();
return true;
}
if (prepare_inner(thd))
goto err;
lex->context_analysis_only&= ~CONTEXT_ANALYSIS_ONLY_DERIVED;
set_prepared();
unit->set_prepared();
return false;
err:
DBUG_ASSERT(thd->is_error());
DBUG_PRINT("info", ("report_error: %d", thd->is_error()));
(void)unit->cleanup();
return true;
}
/**
@brief Execute a DML statement
@param thd global context the processed statement
@returns false if success, true if error
@details
The function assumes that each type of a DML statement has its own
implementation of the virtunal functions precheck(). It is also
assumed that that the virtual function execute execute_inner() is to be
overridden by the implementations for specific commands.
@note
Currently only UPDATE and DELETE statement are executed using this function.
*/
bool Sql_cmd_dml::execute(THD *thd)
{
lex = thd->lex;
ha_rows found= 0, changed= 0;
bool res;
SELECT_LEX_UNIT *unit = &lex->unit;
SELECT_LEX *select_lex= lex->first_select_lex();
if (!is_prepared())
{
/*
This is called when processing
- a DML statement
- PREPARE stmt FROM <DML "statement>"
- EXECUTE stmt when stmt is prepared from a DML statement.
The call will invoke open_tables_for_query()
*/
if (prepare(thd))
goto err;
}
else // This branch currently is never used for DML commands
{
if (precheck(thd))
goto err;
MYSQL_DML_START(thd);
if (open_tables_for_query(thd, lex->query_tables, &table_count, 0,
get_dml_prelocking_strategy()))
goto err;
}
THD_STAGE_INFO(thd, stage_init);
/*
Locking of tables is done after preparation but before optimization.
This allows to do better partition pruning and avoid locking unused
partitions. As a consequence, in such a case, prepare stage can rely only
on metadata about tables used and not data from them.
*/
if (!is_empty_query())
{
if (lock_tables(thd, lex->query_tables, table_count, 0))
goto err;
}
unit->set_limit(select_lex);
/* Perform statement-specific execution */
res = execute_inner(thd);
if (res)
goto err;
else
MYSQL_DML_GET_STAT(thd, found, changed);
thd->push_final_warnings();
res= unit->cleanup();
/* "Unprepare" this object since unit->cleanup actually unprepares */
unprepare(thd);
THD_STAGE_INFO(thd, stage_end);
MYSQL_DML_DONE(thd, 0, found, changed);
return res;
err:
DBUG_ASSERT(thd->is_error() || thd->killed);
MYSQL_DML_DONE(thd, 1, 0, 0);
THD_STAGE_INFO(thd, stage_end);
(void)unit->cleanup();
if (is_prepared())
unprepare(thd);
return thd->is_error();
}
/**
@brief Generic implemention of optimization and execution phases
@param thd global context the processed statement
@returns false if success, true if error
@note
This implementation assumes that the processed DML statement is represented
as a SELECT_LEX or SELECT_LEX_UNIT tree with attached corresponding
JOIN structures. Any JOIN structure is constructed at the prepare phase.
When created at the top level join it is provided with an object of a class
derived from select_result_sink. The pointer to the object is saved in
the this->result field. For different types of DML statements different
derived classes are used for this object. The class of this object determines
additional specific actions performed at the phases of context analysis,
optimization and execution.
*/
bool Sql_cmd_dml::execute_inner(THD *thd)
{
SELECT_LEX_UNIT *unit = &lex->unit;
SELECT_LEX *select_lex= unit->first_select();
JOIN *join= select_lex->join;
if (join->optimize())
goto err;
if (thd->lex->describe & DESCRIBE_EXTENDED)
{
join->conds_history= join->conds;
join->having_history= (join->having?join->having:join->tmp_having);
}
if (unlikely(thd->is_error()))
goto err;
if (join->exec())
goto err;
if (thd->lex->describe & DESCRIBE_EXTENDED)
{
select_lex->where= join->conds_history;
select_lex->having= join->having_history;
}
err:
return join->error;
}
/**
@} (end of group Query_Optimizer)
*/
|