File: vector_mhnsw.cc

package info (click to toggle)
mariadb 1%3A11.8.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 772,520 kB
  • sloc: ansic: 2,414,714; cpp: 1,791,394; asm: 381,336; perl: 62,905; sh: 49,647; pascal: 40,897; java: 39,363; python: 20,791; yacc: 20,432; sql: 17,907; xml: 12,344; ruby: 8,544; cs: 6,542; makefile: 6,145; ada: 1,879; lex: 1,193; javascript: 996; objc: 80; tcl: 73; awk: 46; php: 22
file content (1641 lines) | stat: -rw-r--r-- 49,987 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
/*
   Copyright (c) 2024, 2025, MariaDB plc

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA
*/

#include <my_global.h>
#include "key.h"                                // key_copy()
#include "create_options.h"
#include "table_cache.h"
#include "vector_mhnsw.h"
#include <scope.h>
#include <my_atomic_wrapper.h>
#include "bloom_filters.h"

// distance can be a little bit < 0 because of fast math
static constexpr float NEAREST = -1.0f;

// Algorithm parameters
static constexpr float alpha = 1.1f;
static constexpr uint ef_construction= 10;
static constexpr uint max_ef= 10000;

static ulonglong mhnsw_max_cache_size;
static MYSQL_SYSVAR_ULONGLONG(max_cache_size, mhnsw_max_cache_size,
       PLUGIN_VAR_RQCMDARG, "Upper limit for one MHNSW vector index cache",
       nullptr, nullptr, 16*1024*1024, 1024*1024, SIZE_T_MAX, 1);
static MYSQL_THDVAR_UINT(ef_search, PLUGIN_VAR_RQCMDARG,
       "Larger values mean slower SELECTs but more accurate results. "
       "Defines the minimal number of result candidates to look for in the "
       "vector index for ORDER BY ... LIMIT N queries. The search will never "
       "search for less rows than that, even if LIMIT is smaller",
       nullptr, nullptr, 20, 1, max_ef, 1);
static MYSQL_THDVAR_UINT(default_m, PLUGIN_VAR_RQCMDARG,
       "Larger values mean slower SELECTs and INSERTs, larger index size "
       "and higher memory consumption but more accurate results",
       nullptr, nullptr, 6, 3, 200, 1);

enum metric_type : uint { EUCLIDEAN, COSINE };
static const char *distance_names[]= { "euclidean", "cosine", nullptr };
static TYPELIB distances= CREATE_TYPELIB_FOR(distance_names);
static MYSQL_THDVAR_ENUM(default_distance, PLUGIN_VAR_RQCMDARG,
       "Distance function to build the vector index for",
       nullptr, nullptr, EUCLIDEAN, &distances);

struct ha_index_option_struct
{
  ulonglong M; // option struct does not support uint
  metric_type metric;
};

enum Graph_table_fields {
  FIELD_LAYER, FIELD_TREF, FIELD_VEC, FIELD_NEIGHBORS
};
enum Graph_table_indices {
  IDX_TREF, IDX_LAYER
};

class MHNSW_Share;
class FVectorNode;

/*
  One vector, an array of coordinates in ctx->vec_len dimensions
*/
#pragma pack(push, 1)
struct FVector
{
  static constexpr size_t data_header= sizeof(float);
  static constexpr size_t alloc_header= data_header + sizeof(float);

  float abs2, scale;
  int16_t dims[4];

  uchar *data() const { return (uchar*)(&scale); }

  static size_t data_size(size_t n)
  { return data_header + n*2; }

  static size_t data_to_value_size(size_t data_size)
  { return (data_size - data_header)*2; }

  static const FVector *create(metric_type metric, void *mem, const void *src, size_t src_len)
  {
    float scale=0, *v= (float *)src;
    size_t vec_len= src_len / sizeof(float);
    for (size_t i= 0; i < vec_len; i++)
      scale= std::max(scale, std::abs(get_float(v + i)));

    FVector *vec= align_ptr(mem);
    vec->scale= scale ? scale/32767 : 1;
    if (std::round(scale/vec->scale) > 32767)
      vec->scale= std::nextafter(vec->scale, FLT_MAX);
    for (size_t i= 0; i < vec_len; i++)
      vec->dims[i] = static_cast<int16_t>(std::round(get_float(v + i) / vec->scale));
    vec->postprocess(vec_len);
    if (metric == COSINE)
    {
      if (vec->abs2 > 0.0f)
        vec->scale/= std::sqrt(2*vec->abs2);
      vec->abs2= 0.5f;
    }
    return vec;
  }

  void postprocess(size_t vec_len)
  {
    fix_tail(vec_len);
    abs2= scale * scale * dot_product(dims, dims, vec_len) / 2;
  }

#ifdef AVX2_IMPLEMENTATION
  /************* AVX2 *****************************************************/
  static constexpr size_t AVX2_bytes= 256/8;
  static constexpr size_t AVX2_dims= AVX2_bytes/sizeof(int16_t);

  AVX2_IMPLEMENTATION
  static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
  {
    typedef float v8f __attribute__((vector_size(AVX2_bytes)));
    union { v8f v; __m256 i; } tmp;
    __m256i *p1= (__m256i*)v1;
    __m256i *p2= (__m256i*)v2;
    v8f d= {0};
    for (size_t i= 0; i < (len + AVX2_dims-1)/AVX2_dims; p1++, p2++, i++)
    {
      tmp.i= _mm256_cvtepi32_ps(_mm256_madd_epi16(*p1, *p2));
      d+= tmp.v;
    }
    return d[0] + d[1] + d[2] + d[3] + d[4] + d[5] + d[6] + d[7];
  }

  AVX2_IMPLEMENTATION
  static size_t alloc_size(size_t n)
  { return alloc_header + MY_ALIGN(n*2, AVX2_bytes) + AVX2_bytes - 1; }

  AVX2_IMPLEMENTATION
  static FVector *align_ptr(void *ptr)
  { return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, AVX2_bytes)
                      - alloc_header); }

  AVX2_IMPLEMENTATION
  void fix_tail(size_t vec_len)
  {
    bzero(dims + vec_len, (MY_ALIGN(vec_len, AVX2_dims) - vec_len)*2);
  }
#endif

#ifdef AVX512_IMPLEMENTATION
  /************* AVX512 ****************************************************/
  static constexpr size_t AVX512_bytes= 512/8;
  static constexpr size_t AVX512_dims= AVX512_bytes/sizeof(int16_t);

  AVX512_IMPLEMENTATION
  static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
  {
    __m512i *p1= (__m512i*)v1;
    __m512i *p2= (__m512i*)v2;
    __m512 d= _mm512_setzero_ps();
    for (size_t i= 0; i < (len + AVX512_dims-1)/AVX512_dims; p1++, p2++, i++)
      d= _mm512_add_ps(d, _mm512_cvtepi32_ps(_mm512_madd_epi16(*p1, *p2)));
    return _mm512_reduce_add_ps(d);
  }

  AVX512_IMPLEMENTATION
  static size_t alloc_size(size_t n)
  { return alloc_header + MY_ALIGN(n*2, AVX512_bytes) + AVX512_bytes - 1; }

  AVX512_IMPLEMENTATION
  static FVector *align_ptr(void *ptr)
  { return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, AVX512_bytes)
                      - alloc_header); }

  AVX512_IMPLEMENTATION
  void fix_tail(size_t vec_len)
  {
    bzero(dims + vec_len, (MY_ALIGN(vec_len, AVX512_dims) - vec_len)*2);
  }
#endif


/*
  ARM NEON implementation. A microbenchmark shows 1.7x dot_product() performance
  improvement compared to regular -O2/-O3 builds and 2.4x compared to builds
  with auto-vectorization disabled.

  There seem to be no performance difference between vmull+vmull_high and
  vmull+vmlal2_high implementations.
*/

#ifdef NEON_IMPLEMENTATION
  static constexpr size_t NEON_bytes= 128 / 8;
  static constexpr size_t NEON_dims= NEON_bytes / sizeof(int16_t);

  static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
  {
    int64_t d= 0;
    for (size_t i= 0; i < (len + NEON_dims - 1) / NEON_dims; i++)
    {
      int16x8_t p1= vld1q_s16(v1);
      int16x8_t p2= vld1q_s16(v2);
      d+= vaddlvq_s32(vmull_s16(vget_low_s16(p1), vget_low_s16(p2))) +
          vaddlvq_s32(vmull_high_s16(p1, p2));
      v1+= NEON_dims;
      v2+= NEON_dims;
    }
    return static_cast<float>(d);
  }

  static size_t alloc_size(size_t n)
  { return alloc_header + MY_ALIGN(n * 2, NEON_bytes) + NEON_bytes - 1; }

  static FVector *align_ptr(void *ptr)
  { return (FVector*) (MY_ALIGN(((intptr) ptr) + alloc_header, NEON_bytes)
                       - alloc_header); }

  void fix_tail(size_t vec_len)
  {
    bzero(dims + vec_len, (MY_ALIGN(vec_len, NEON_dims) - vec_len) * 2);
  }
#endif

#ifdef POWER_IMPLEMENTATION
  /************* POWERPC *****************************************************/
  static constexpr size_t POWER_bytes= 128 / 8; // Assume 128-bit vector width
  static constexpr size_t POWER_dims= POWER_bytes / sizeof(int16_t);

  static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
  {
    // Using vector long long for int64_t accumulation
    vector long long ll_sum= {0, 0};
    // Round up to process full vector, including padding
    size_t base= ((len + POWER_dims - 1) / POWER_dims) * POWER_dims;

    #pragma GCC unroll 4
    for (size_t i= 0; i < base; i+= POWER_dims)
    {
      vector short x= vec_ld(0, &v1[i]);
      vector short y= vec_ld(0, &v2[i]);

      // Vectorized multiplication using vec_mule() and vec_mulo()
      vector int product_hi= vec_mule(x, y);
      vector int product_lo= vec_mulo(x, y);

      // Extend vector int to vector long long for accumulation
      vector long long llhi1= vec_unpackh(product_hi);
      vector long long llhi2= vec_unpackl(product_hi);
      vector long long lllo1= vec_unpackh(product_lo);
      vector long long lllo2= vec_unpackl(product_lo);

      ll_sum+= llhi1 + llhi2 + lllo1 + lllo2;
    }

    return static_cast<float>(static_cast<int64_t>(ll_sum[0]) +
                              static_cast<int64_t>(ll_sum[1]));
  }

  static size_t alloc_size(size_t n)
  {
    return alloc_header + MY_ALIGN(n * 2, POWER_bytes) + POWER_bytes - 1;
  }

  static FVector *align_ptr(void *ptr)
  {
    return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, POWER_bytes)
                    - alloc_header);
  }

  void fix_tail(size_t vec_len)
  {
    bzero(dims + vec_len, (MY_ALIGN(vec_len, POWER_dims) - vec_len) * 2);
  }
#undef DEFAULT_IMPLEMENTATION
#endif

  /************* no-SIMD default ******************************************/
#ifdef DEFAULT_IMPLEMENTATION
  DEFAULT_IMPLEMENTATION
  static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
  {
    int64_t d= 0;
    for (size_t i= 0; i < len; i++)
      d+= int32_t(v1[i]) * int32_t(v2[i]);
    return static_cast<float>(d);
  }

  DEFAULT_IMPLEMENTATION
  static size_t alloc_size(size_t n) { return alloc_header + n*2; }

  DEFAULT_IMPLEMENTATION
  static FVector *align_ptr(void *ptr) { return (FVector*)ptr; }

  DEFAULT_IMPLEMENTATION
  void fix_tail(size_t) {  }
#endif

  float distance_to(const FVector *other, size_t vec_len) const
  {
    return abs2 + other->abs2 - scale * other->scale *
           dot_product(dims, other->dims, vec_len);
  }
};
#pragma pack(pop)

/*
  An array of pointers to graph nodes

  It's mainly used to store all neighbors of a given node on a given layer.

  An array is fixed size, 2*M for the zero layer, M for other layers
  see MHNSW_Share::max_neighbors().

  Number of neighbors is zero-padded to multiples of 8 (for SIMD Bloom filter).

  Also used as a simply array of nodes in search_layer, the array size
  then is defined by ef or efConstruction.
*/
struct Neighborhood: public Sql_alloc
{
  FVectorNode **links;
  size_t num;
  FVectorNode **init(FVectorNode **ptr, size_t n)
  {
    num= 0;
    links= ptr;
    n= MY_ALIGN(n, 8);
    bzero(ptr, n*sizeof(*ptr));
    return ptr + n;
  }
};


/*
  One node in a graph = one row in the graph table

  stores a vector itself, ref (= position) in the graph (= hlindex)
  table, a ref in the main table, and an array of Neighborhood's, one
  per layer.

  It's lazily initialized, may know only gref, everything else is
  loaded on demand.

  On the other hand, on INSERT the new node knows everything except
  gref - which only becomes known after ha_write_row.

  Allocated on memroot in two chunks. One is the same size for all nodes
  and stores FVectorNode object, gref, tref, and vector. The second
  stores neighbors, all Neighborhood's together, its size depends
  on the number of layers this node is on.

  There can be millions of nodes in the cache and the cache size
  is constrained by mhnsw_max_cache_size, so every byte matters here
*/
#pragma pack(push, 1)
class FVectorNode
{
private:
  MHNSW_Share *ctx;

  const FVector *make_vec(const void *v);
  int alloc_neighborhood(uint8_t layer);
public:
  const FVector *vec= nullptr;
  Neighborhood *neighbors= nullptr;
  uint8_t max_layer;
  bool stored:1, deleted:1;

  FVectorNode(MHNSW_Share *ctx_, const void *gref_);
  FVectorNode(MHNSW_Share *ctx_, const void *tref_, uint8_t layer,
              const void *vec_);
  float distance_to(const FVector *other) const;
  int load(TABLE *graph);
  int load_from_record(TABLE *graph);
  int save(TABLE *graph);
  size_t tref_len() const;
  size_t gref_len() const;
  uchar *gref() const;
  uchar *tref() const;
  void push_neighbor(size_t layer, FVectorNode *v);

  static const uchar *get_key(const void *elem, size_t *key_len, my_bool);
};
#pragma pack(pop)

/*
  Shared algorithm context. The graph.

  Stored in TABLE_SHARE and on TABLE_SHARE::mem_root.
  Stores the complete graph in MHNSW_Share::root,
  The mapping gref->FVectorNode is in the node_cache.
  Both root and node_cache are protected by a cache_lock, but it's
  needed when loading nodes and is not used when the whole graph is in memory.
  Graph can be traversed concurrently by different threads, as traversal
  changes neither nodes nor the ctx.
  Nodes can be loaded concurrently by different threads, this is protected
  by a partitioned node_lock.
  reference counter allows flushing the graph without interrupting
  concurrent searches.
  MyISAM automatically gets exclusive write access because of the TL_WRITE,
  but InnoDB has to use a dedicated ctx->commit_lock for that
*/
class MHNSW_Share : public Sql_alloc
{
  mysql_mutex_t cache_lock;
  mysql_mutex_t node_lock[8];

  void cache_internal(FVectorNode *node)
  {
    DBUG_ASSERT(node->stored);
    node_cache.insert(node);
  }
  void *alloc_node_internal()
  {
    return alloc_root(&root, sizeof(FVectorNode) + gref_len + tref_len
                      + FVector::alloc_size(vec_len));
  }

protected:
  std::atomic<uint> refcnt{0};
  MEM_ROOT root;
  Hash_set<FVectorNode> node_cache{PSI_INSTRUMENT_MEM, FVectorNode::get_key};

public:
  ulonglong version= 0;                 // protected by commit_lock
  mysql_rwlock_t commit_lock;
  size_t vec_len= 0;
  size_t byte_len= 0;
  Atomic_relaxed<double> ef_power{0.6}; // for the bloom filter size heuristic
  Atomic_relaxed<float>  diameter{0};   // for the generosity heuristic
  FVectorNode *start= 0;
  const uint tref_len;
  const uint gref_len;
  const uint M;
  metric_type metric;

  MHNSW_Share(TABLE *t)
    : tref_len(t->file->ref_length),
      gref_len(t->hlindex->file->ref_length),
      M(static_cast<uint>(t->s->key_info[t->s->keys].option_struct->M)),
      metric(t->s->key_info[t->s->keys].option_struct->metric)
  {
    mysql_rwlock_init(PSI_INSTRUMENT_ME, &commit_lock);
    mysql_mutex_init(PSI_INSTRUMENT_ME, &cache_lock, MY_MUTEX_INIT_FAST);
    for (uint i=0; i < array_elements(node_lock); i++)
      mysql_mutex_init(PSI_INSTRUMENT_ME, node_lock + i, MY_MUTEX_INIT_SLOW);
    init_alloc_root(PSI_INSTRUMENT_MEM, &root, 1024*1024, 0, MYF(0));
  }

  virtual ~MHNSW_Share()
  {
    free_root(&root, MYF(0));
    mysql_rwlock_destroy(&commit_lock);
    mysql_mutex_destroy(&cache_lock);
    for (size_t i=0; i < array_elements(node_lock); i++)
      mysql_mutex_destroy(node_lock + i);
  }

  uint lock_node(FVectorNode *ptr)
  {
    ulong nr1= 1, nr2= 4;
    my_hash_sort_bin(0, (uchar*)&ptr, sizeof(ptr), &nr1, &nr2);
    uint ticket= nr1 % array_elements(node_lock);
    mysql_mutex_lock(node_lock + ticket);
    return ticket;
  }

  void unlock_node(uint ticket)
  {
    mysql_mutex_unlock(node_lock + ticket);
  }

  uint max_neighbors(size_t layer) const
  {
    return (layer ? 1 : 2) * M; // heuristic from the paper
  }

  void set_lengths(size_t len)
  {
    byte_len= len;
    vec_len= len / sizeof(float);
  }

  static int acquire(MHNSW_Share **ctx, TABLE *table, bool for_update);
  static MHNSW_Share *get_from_share(TABLE_SHARE *share, TABLE *table);

  virtual void reset(TABLE_SHARE *share)
  {
    share->lock_share();
    if (static_cast<MHNSW_Share*>(share->hlindex->hlindex_data) == this)
    {
      share->hlindex->hlindex_data= nullptr;
      --refcnt;
    }
    share->unlock_share();
  }

  void release(TABLE *table)
  {
    return release(table->file->has_transactions(), table->s);
  }

  virtual void release(bool can_commit, TABLE_SHARE *share)
  {
    if (can_commit)
      mysql_rwlock_unlock(&commit_lock);
    if (root_size(&root) > mhnsw_max_cache_size)
      reset(share);
    if (--refcnt == 0)
      this->~MHNSW_Share(); // XXX reuse
  }

  virtual MHNSW_Share *dup(bool can_commit)
  {
    refcnt++;
    if (can_commit)
      mysql_rwlock_rdlock(&commit_lock);
    return this;
  }

  FVectorNode *get_node(const void *gref)
  {
    mysql_mutex_lock(&cache_lock);
    FVectorNode *node= node_cache.find(gref, gref_len);
    if (!node)
    {
      node= new (alloc_node_internal()) FVectorNode(this, gref);
      cache_internal(node);
    }
    mysql_mutex_unlock(&cache_lock);
    return node;
  }

  /* used on INSERT, gref isn't known, so cannot cache the node yet */
  void *alloc_node()
  {
    mysql_mutex_lock(&cache_lock);
    auto p= alloc_node_internal();
    mysql_mutex_unlock(&cache_lock);
    return p;
  }

  /* explicitly cache the node after alloc_node() */
  void cache_node(FVectorNode *node)
  {
    mysql_mutex_lock(&cache_lock);
    cache_internal(node);
    mysql_mutex_unlock(&cache_lock);
  }

  /* find the node without creating, only used on merging trx->ctx */
  FVectorNode *find_node(const void *gref)
  {
    mysql_mutex_lock(&cache_lock);
    FVectorNode *node= node_cache.find(gref, gref_len);
    mysql_mutex_unlock(&cache_lock);
    return node;
  }

  void *alloc_neighborhood(size_t max_layer)
  {
    mysql_mutex_lock(&cache_lock);
    auto p= alloc_root(&root, sizeof(Neighborhood)*(max_layer+1) +
             sizeof(FVectorNode*)*(MY_ALIGN(M, 4)*2 + MY_ALIGN(M,8)*max_layer));
    mysql_mutex_unlock(&cache_lock);
    return p;
  }
};

/*
  This is a non-shared context that exists within one transaction.

  At the end of the transaction it's either discarded (on rollback)
  or merged into the shared ctx (on commit).

  trx's are stored in thd->ha_data[] in a single-linked list,
  one instance of trx per TABLE_SHARE and allocated on the
  thd->transaction->mem_root
*/
class MHNSW_Trx : public MHNSW_Share
{
public:
  MDL_ticket *table_id;
  bool list_of_nodes_is_lost= false;
  MHNSW_Trx *next= nullptr;

  MHNSW_Trx(TABLE *table) : MHNSW_Share(table), table_id(table->mdl_ticket) {}
  void reset(TABLE_SHARE *) override
  {
    node_cache.clear();
    free_root(&root, MYF(0));
    start= 0;
    list_of_nodes_is_lost= true;
  }
  void release(bool, TABLE_SHARE *) override
  {
    if (--refcnt == 0 && root_size(&root) > mhnsw_max_cache_size)
      reset(nullptr);
  }

  virtual MHNSW_Share *dup(bool) override
  {
    refcnt++;
    return this;
  }

  static MHNSW_Trx *get_from_thd(TABLE *table, bool for_update);

  // it's okay in a transaction-local cache, there's no concurrent access
  Hash_set<FVectorNode> &get_cache() { return node_cache; }

  static transaction_participant tp;
  static int do_commit(THD *thd, bool);
  static int do_savepoint_rollback(THD *thd, void *);
  static int do_rollback(THD *thd, bool);
  static int do_prepare(THD *thd, bool);
};

struct transaction_participant MHNSW_Trx::tp=
{
  0, 0, 0,
  nullptr,                        /* close_connection */
  [](THD *, void *){ return 0; }, /* savepoint_set */
  MHNSW_Trx::do_savepoint_rollback,
  [](THD *thd){ return true; },   /*savepoint_rollback_can_release_mdl*/
  nullptr,                        /*savepoint_release*/
  MHNSW_Trx::do_commit, MHNSW_Trx::do_rollback,
  MHNSW_Trx::do_prepare,          /* prepare */
  nullptr,                        /* recover */
  nullptr, nullptr,               /* commit/rollback_by_xid */
  nullptr, nullptr,               /* recover_rollback_by_xid/recovery_done */
  nullptr, nullptr, nullptr,      /* snapshot, commit/prepare_ordered */
  nullptr, nullptr                /* checkpoint, versioned */
};

int MHNSW_Trx::do_savepoint_rollback(THD *thd, void *)
{
  for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
       trx; trx= trx->next)
    trx->reset(nullptr);
  return 0;
}

int MHNSW_Trx::do_rollback(THD *thd, bool all)
{
  if (!all && thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
    return do_savepoint_rollback(thd, nullptr);

  MHNSW_Trx *trx_next;
  for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
       trx; trx= trx_next)
  {
    trx_next= trx->next;
    trx->~MHNSW_Trx();
  }
  thd_set_ha_data(current_thd, &tp, nullptr);
  return 0;
}

int MHNSW_Trx::do_commit(THD *thd, bool all)
{
  if (!all && thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
    return 0;

  MHNSW_Trx *trx_next;
  for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
       trx; trx= trx_next)
  {
    trx_next= trx->next;
    if (trx->table_id)
    {
      MDL_key *key= trx->table_id->get_key();
      LEX_CSTRING db=  {key->db_name(), key->db_name_length()},
                  tbl= {key->name(), key->name_length()};
      TABLE_LIST tl;
      tl.init_one_table(&db, &tbl, nullptr, TL_IGNORE);
      TABLE_SHARE *share= tdc_acquire_share(thd, &tl, GTS_TABLE, nullptr);
      if (share)
      {
        auto ctx= share->hlindex ? MHNSW_Share::get_from_share(share, nullptr)
                                 : nullptr;
        if (ctx)
        {
          mysql_rwlock_wrlock(&ctx->commit_lock);
          ctx->version++;
          if (trx->list_of_nodes_is_lost)
            ctx->reset(share);
          else
          {
            // consider copying nodes from trx to shared cache when it makes
            // sense. for ann_benchmarks it does not.
            // also, consider flushing only changed nodes (a flag in the node)
            for (FVectorNode &from : trx->get_cache())
              if (FVectorNode *node= ctx->find_node(from.gref()))
                node->vec= nullptr;
            ctx->start= nullptr;
          }
          ctx->release(true, share);
        }
        tdc_release_share(share);
      }
    }
    trx->~MHNSW_Trx();
  }
  thd_set_ha_data(current_thd, &tp, nullptr);
  return 0;
}

int MHNSW_Trx::do_prepare(THD *thd, bool)
{
  /* Explicit XA is not supported yet */
  return thd->transaction->xid_state.is_explicit_XA()
         ? HA_ERR_UNSUPPORTED : 0;
}

MHNSW_Trx *MHNSW_Trx::get_from_thd(TABLE *table, bool for_update)
{
  if (!table->file->has_transactions())
      return NULL;

  THD *thd= table->in_use;
  auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
  if (!for_update && !trx)
    return NULL;

  while (trx && trx->table_id != table->mdl_ticket) trx= trx->next;
  if (!trx)
  {
    trx= new (&thd->transaction->mem_root) MHNSW_Trx(table);
    trx->next= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
    thd_set_ha_data(thd, &tp, trx);
    if (!trx->next)
    {
      if (thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
        trans_register_ha(thd, true, &tp, 0);
      trans_register_ha(thd, false, &tp, 0);
    }
  }
  trx->refcnt++;
  return trx;
}

MHNSW_Share *MHNSW_Share::get_from_share(TABLE_SHARE *share, TABLE *table)
{
  share->lock_share();
  auto ctx= static_cast<MHNSW_Share*>(share->hlindex->hlindex_data);
  if (!ctx && table)
  {
    ctx= new (&share->hlindex->mem_root) MHNSW_Share(table);
    if (!ctx) return nullptr;
    share->hlindex->hlindex_data= ctx;
    ctx->refcnt++;
  }
  if (ctx)
    ctx->refcnt++;
  if (table) // hijack TABLE::used_stat_records
    table->hlindex->used_stat_records= ctx->node_cache.size();
  share->unlock_share();
  return ctx;
}

int MHNSW_Share::acquire(MHNSW_Share **ctx, TABLE *table, bool for_update)
{
  TABLE *graph= table->hlindex;

  if (!(*ctx= MHNSW_Trx::get_from_thd(table, for_update)))
  {
    *ctx= MHNSW_Share::get_from_share(table->s, table);
    if (table->file->has_transactions())
      mysql_rwlock_rdlock(&(*ctx)->commit_lock);
  }

  if ((*ctx)->start)
    return 0;

  if (int err= graph->file->ha_index_init(IDX_LAYER, 1))
    return err;

  int err= graph->file->ha_index_last(graph->record[0]);
  graph->file->ha_index_end();
  if (err)
    return err;

  graph->file->position(graph->record[0]);
  (*ctx)->set_lengths(FVector::data_to_value_size(graph->field[FIELD_VEC]->value_length()));

  auto node= (*ctx)->get_node(graph->file->ref);
  if ((err= node->load_from_record(graph)))
    return err;

  (*ctx)->start= node; // set the shared start only when node is fully loaded
  return 0;
}

/* copy the vector, preprocessed as needed */
const FVector *FVectorNode::make_vec(const void *v)
{
  return FVector::create(ctx->metric, tref() + tref_len(), v, ctx->byte_len);
}

FVectorNode::FVectorNode(MHNSW_Share *ctx_, const void *gref_)
  : ctx(ctx_), stored(true), deleted(false)
{
  memcpy(gref(), gref_, gref_len());
}

FVectorNode::FVectorNode(MHNSW_Share *ctx_, const void *tref_, uint8_t layer,
                         const void *vec_)
  : ctx(ctx_), stored(false), deleted(false)
{
  DBUG_ASSERT(tref_);
  memset(gref(), 0xff, gref_len()); // important: larger than any real gref
  memcpy(tref(), tref_, tref_len());
  vec= make_vec(vec_);

  alloc_neighborhood(layer);
}

float FVectorNode::distance_to(const FVector *other) const
{
  return vec->distance_to(other, ctx->vec_len);
}

int FVectorNode::alloc_neighborhood(uint8_t layer)
{
  if (neighbors)
    return 0;
  max_layer= layer;
  neighbors= (Neighborhood*)ctx->alloc_neighborhood(layer);
  auto ptr= (FVectorNode**)(neighbors + (layer+1));
  for (size_t i= 0; i <= layer; i++)
    ptr= neighbors[i].init(ptr, ctx->max_neighbors(i));
  return 0;
}

int FVectorNode::load(TABLE *graph)
{
  if (likely(vec))
    return 0;

  DBUG_ASSERT(stored);
  // trx: consider loading nodes from shared, when it makes sense
  // for ann_benchmarks it does not
  if (int err= graph->file->ha_rnd_pos(graph->record[0], gref()))
    return err;
  return load_from_record(graph);
}

int FVectorNode::load_from_record(TABLE *graph)
{
  DBUG_ASSERT(ctx->byte_len);

  uint ticket= ctx->lock_node(this);
  SCOPE_EXIT([this, ticket](){ ctx->unlock_node(ticket); });

  if (vec)
    return 0;

  String buf, *v= graph->field[FIELD_TREF]->val_str(&buf);
  deleted= graph->field[FIELD_TREF]->is_null();
  if (!deleted)
  {
    if (unlikely(v->length() != tref_len()))
      return my_errno= HA_ERR_CRASHED;
    memcpy(tref(), v->ptr(), v->length());
  }

  v= graph->field[FIELD_VEC]->val_str(&buf);
  if (unlikely(!v))
    return my_errno= HA_ERR_CRASHED;

  if (v->length() != FVector::data_size(ctx->vec_len))
    return my_errno= HA_ERR_CRASHED;
  FVector *vec_ptr= FVector::align_ptr(tref() + tref_len());
  memcpy(vec_ptr->data(), v->ptr(), v->length());
  vec_ptr->postprocess(ctx->vec_len);

  longlong layer= graph->field[FIELD_LAYER]->val_int();
  if (layer > 100) // 10e30 nodes at M=2, more at larger M's
    return my_errno= HA_ERR_CRASHED;

  if (int err= alloc_neighborhood(static_cast<uint8_t>(layer)))
    return err;

  v= graph->field[FIELD_NEIGHBORS]->val_str(&buf);
  if (unlikely(!v))
    return my_errno= HA_ERR_CRASHED;

  // <N> <gref> <gref> ... <N> ...etc...
  uchar *ptr= (uchar*)v->ptr(), *end= ptr + v->length();
  for (size_t i=0; i <= max_layer; i++)
  {
    if (unlikely(ptr >= end))
      return my_errno= HA_ERR_CRASHED;
    size_t grefs= *ptr++;
    if (unlikely(ptr + grefs * gref_len() > end))
      return my_errno= HA_ERR_CRASHED;
    neighbors[i].num= grefs;
    for (size_t j=0; j < grefs; j++, ptr+= gref_len())
      neighbors[i].links[j]= ctx->get_node(ptr);
  }
  vec= vec_ptr; // must be done at the very end
  return 0;
}

void FVectorNode::push_neighbor(size_t layer, FVectorNode *other)
{
  DBUG_ASSERT(neighbors[layer].num < ctx->max_neighbors(layer));
  neighbors[layer].links[neighbors[layer].num++]= other;
}

size_t FVectorNode::tref_len() const { return ctx->tref_len; }
size_t FVectorNode::gref_len() const { return ctx->gref_len; }
uchar *FVectorNode::gref() const { return (uchar*)(this+1); }
uchar *FVectorNode::tref() const { return gref() + gref_len(); }

const uchar *FVectorNode::get_key(const void *elem, size_t *key_len, my_bool)
{
  *key_len= static_cast<const FVectorNode*>(elem)->gref_len();
  return static_cast<const FVectorNode*>(elem)->gref();
}

/* one visited node during the search. caches the distance to target */
struct Visited : public Sql_alloc
{
  FVectorNode *node;
  const float distance_to_target;
  Visited(FVectorNode *n, float d) : node(n), distance_to_target(d) {}
  static int cmp(void *, const void* a_, const void *b_)
  {
    const Visited *a= static_cast<const Visited*>(a_);
    const Visited *b= static_cast<const Visited*>(b_);
    return a->distance_to_target < b->distance_to_target ? -1 :
           a->distance_to_target > b->distance_to_target ?  1 : 0;
  }
};

/*
  a factory to create Visited and keep track of already seen nodes

  note that PatternedSimdBloomFilter works in blocks of 8 elements,
  so on insert they're accumulated in nodes[], on search the caller
  provides 8 addresses at once. we record 0x0 as "seen" so that
  the caller could pad the input with nullptr's
*/
class VisitedSet
{
  MEM_ROOT *root;
  const FVector *target;
  PatternedSimdBloomFilter<FVectorNode> map;
  const FVectorNode *nodes[8]= {0,0,0,0,0,0,0,0};
  size_t idx= 1; // to record 0 in the filter
  public:
  uint count= 0;
  VisitedSet(MEM_ROOT *root, const FVector *target, uint size) :
    root(root), target(target), map(size, 0.01f) {}
  Visited *create(FVectorNode *node)
  {
    auto *v= new (root) Visited(node, node->distance_to(target));
    insert(node);
    count++;
    return v;
  }
  void insert(const FVectorNode *n)
  {
    nodes[idx++]= n;
    if (idx == 8) flush();
  }
  void flush() {
    if (idx) map.Insert(nodes);
    idx=0;
  }
  uint8_t seen(FVectorNode **nodes) { return map.Query(nodes); }
};


/*
  selects best neighbors from the list of candidates plus one extra candidate

  one extra candidate is specified separately to avoid appending it to
  the Neighborhood candidates, which might be already at its max size.
*/
static int select_neighbors(MHNSW_Share *ctx, TABLE *graph, size_t layer,
                            FVectorNode &target, const Neighborhood &candidates,
                            FVectorNode *extra_candidate,
                            size_t max_neighbor_connections)
{
  Queue<Visited> pq; // working queue

  if (pq.init(max_ef, false, Visited::cmp))
    return my_errno= HA_ERR_OUT_OF_MEM;

  MEM_ROOT * const root= graph->in_use->mem_root;
  auto discarded= (Visited**)my_safe_alloca(sizeof(Visited**)*max_neighbor_connections);
  size_t discarded_num= 0;
  Neighborhood &neighbors= target.neighbors[layer];

  for (size_t i=0; i < candidates.num; i++)
  {
    FVectorNode *node= candidates.links[i];
    if (int err= node->load(graph))
      return err;
    pq.push(new (root) Visited(node, node->distance_to(target.vec)));
  }
  if (extra_candidate)
    pq.push(new (root) Visited(extra_candidate, extra_candidate->distance_to(target.vec)));

  DBUG_ASSERT(pq.elements());
  neighbors.num= 0;

  while (pq.elements() && neighbors.num < max_neighbor_connections)
  {
    Visited *vec= pq.pop();
    FVectorNode * const node= vec->node;
    const float target_dista= std::max(32*FLT_EPSILON, vec->distance_to_target / alpha);
    bool discard= false;
    for (size_t i=0; i < neighbors.num; i++)
      if ((discard= node->distance_to(neighbors.links[i]->vec) <= target_dista))
        break;
    if (!discard)
      target.push_neighbor(layer, node);
    else if (discarded_num + neighbors.num < max_neighbor_connections)
      discarded[discarded_num++]= vec;
  }

  for (size_t i=0; i < discarded_num && neighbors.num < max_neighbor_connections; i++)
    target.push_neighbor(layer, discarded[i]->node);

  my_safe_afree(discarded, sizeof(Visited**)*max_neighbor_connections);
  return 0;
}


int FVectorNode::save(TABLE *graph)
{
  DBUG_ASSERT(vec);
  DBUG_ASSERT(neighbors);

  restore_record(graph, s->default_values);
  graph->field[FIELD_LAYER]->store(max_layer, false);
  if (deleted)
    graph->field[FIELD_TREF]->set_null();
  else
  {
    graph->field[FIELD_TREF]->set_notnull();
    graph->field[FIELD_TREF]->store_binary(tref(), tref_len());
  }
  graph->field[FIELD_VEC]->store_binary(vec->data(), FVector::data_size(ctx->vec_len));

  size_t total_size= 0;
  for (size_t i=0; i <= max_layer; i++)
    total_size+= 1 + gref_len() * neighbors[i].num;

  uchar *neighbor_blob= static_cast<uchar *>(my_safe_alloca(total_size));
  uchar *ptr= neighbor_blob;
  for (size_t i= 0; i <= max_layer; i++)
  {
    *ptr++= (uchar)(neighbors[i].num);
    for (size_t j= 0; j < neighbors[i].num; j++, ptr+= gref_len())
      memcpy(ptr, neighbors[i].links[j]->gref(), gref_len());
  }
  graph->field[FIELD_NEIGHBORS]->store_binary(neighbor_blob, total_size);

  int err;
  if (stored)
  {
    if (!(err= graph->file->ha_rnd_pos(graph->record[1], gref())))
    {
      err= graph->file->ha_update_row(graph->record[1], graph->record[0]);
      if (err == HA_ERR_RECORD_IS_THE_SAME)
        err= 0;
    }
  }
  else
  {
    err= graph->file->ha_write_row(graph->record[0]);
    graph->file->position(graph->record[0]);
    memcpy(gref(), graph->file->ref, gref_len());
    stored= true;
    ctx->cache_node(this);
  }
  my_safe_afree(neighbor_blob, total_size);
  return err;
}

static int update_second_degree_neighbors(MHNSW_Share *ctx, TABLE *graph,
                                          size_t layer, FVectorNode *node)
{
  const uint max_neighbors= ctx->max_neighbors(layer);
  // it seems that one could update nodes in the gref order
  // to avoid InnoDB deadlocks, but it produces no noticeable effect
  for (size_t i=0; i < node->neighbors[layer].num; i++)
  {
    FVectorNode *neigh= node->neighbors[layer].links[i];
    Neighborhood &neighneighbors= neigh->neighbors[layer];
    if (neighneighbors.num < max_neighbors)
      neigh->push_neighbor(layer, node);
    else
      if (int err= select_neighbors(ctx, graph, layer, *neigh, neighneighbors,
                                    node, max_neighbors))
        return err;
    if (int err= neigh->save(graph))
      return err;
  }
  return 0;
}


static inline float generous_furthest(const Queue<Visited> &q, float maxd, float g)
{
  float d0=maxd*g/2;
  float d= q.top()->distance_to_target;
  float k= 5;
  float x= (d-d0)/d0;
  float sigmoid= k*x/std::sqrt(1+(k*k-1)*x*x); // or any other sigmoid
  return d*(1 + (g - 1)/2 * (1 - sigmoid));
}

/*
  @param[in/out] inout    in: start nodes, out: result nodes
*/
static int search_layer(MHNSW_Share *ctx, TABLE *graph, const FVector *target,
                        float threshold, uint result_size,
                        size_t layer, Neighborhood *inout, bool construction)
{
  DBUG_ASSERT(inout->num > 0);

  MEM_ROOT * const root= graph->in_use->mem_root;
  Queue<Visited> candidates, best;
  bool skip_deleted;
  uint ef= result_size;
  float generosity= 1.1f + ctx->M/500.0f;

  if (construction)
  {
    skip_deleted= false;
    if (ef > 1)
      ef= std::max(ef_construction, ef);
  }
  else
  {
    skip_deleted= layer == 0;
    if (ef > 1 || layer == 0)
      ef= std::max(THDVAR(graph->in_use, ef_search), ef);
  }

  // WARNING! heuristic here
  const double est_heuristic= 8 * std::sqrt(ctx->max_neighbors(layer));
  double est_size= est_heuristic * std::pow(ef, ctx->ef_power);
  set_if_smaller(est_size, graph->used_stat_records/1.3);
  VisitedSet visited(root, target, static_cast<uint>(est_size));

  candidates.init(max_ef, false, Visited::cmp);
  best.init(ef, true, Visited::cmp);

  DBUG_ASSERT(inout->num <= result_size);
  float max_distance= ctx->diameter;
  for (size_t i=0; i < inout->num; i++)
  {
    Visited *v= visited.create(inout->links[i]);
    max_distance= std::max(max_distance, v->distance_to_target);
    candidates.push(v);
    if ((skip_deleted && v->node->deleted) || threshold > NEAREST)
      continue;
    best.push(v);
  }

  float furthest_best= best.is_empty() ? FLT_MAX
                       : generous_furthest(best, max_distance, generosity);
  while (candidates.elements())
  {
    const Visited &cur= *candidates.pop();
    if (cur.distance_to_target > furthest_best && best.is_full())
      break; // All possible candidates are worse than what we have

    visited.flush();

    Neighborhood &neighbors= cur.node->neighbors[layer];
    FVectorNode **links= neighbors.links, **end= links + neighbors.num;
    for (; links < end; links+= 8)
    {
      uint8_t res= visited.seen(links);
      if (res == 0xff)
        continue;

      for (size_t i= 0; i < 8; i++)
      {
        if (res & (1 << i))
          continue;
        if (int err= links[i]->load(graph))
          return err;
        Visited *v= visited.create(links[i]);
        if (v->distance_to_target <= threshold)
          continue;
        if (!best.is_full())
        {
          max_distance= std::max(max_distance, v->distance_to_target);
          candidates.safe_push(v);
          if (skip_deleted && v->node->deleted)
            continue;
          best.push(v);
          furthest_best= generous_furthest(best, max_distance, generosity);
        }
        else if (v->distance_to_target < furthest_best)
        {
          candidates.safe_push(v);
          if (skip_deleted && v->node->deleted)
            continue;
          if (v->distance_to_target < best.top()->distance_to_target)
          {
            best.replace_top(v);
            furthest_best= generous_furthest(best, max_distance, generosity);
          }
        }
      }
    }
  }
  set_if_bigger(ctx->diameter, max_distance); // not atomic, but it's ok
  if (ef > 1 && visited.count > est_size)
  {
    double ef_power= std::log(visited.count/est_heuristic) / std::log(ef);
    set_if_bigger(ctx->ef_power, ef_power); // not atomic, but it's ok
  }

  while (best.elements() > result_size)
    best.pop();

  inout->num= best.elements();
  for (FVectorNode **links= inout->links + inout->num; best.elements();)
    *--links= best.pop()->node;

  return 0;
}


int mhnsw_insert(TABLE *table, KEY *keyinfo)
{
  THD *thd= table->in_use;
  TABLE *graph= table->hlindex;
  MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
  Field *vec_field= keyinfo->key_part->field;
  String buf, *res= vec_field->val_str(&buf);
  MHNSW_Share *ctx;

  /* metadata are checked on open */
  DBUG_ASSERT(graph);
  DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
  DBUG_ASSERT(keyinfo->usable_key_parts == 1);
  DBUG_ASSERT(vec_field->binary());
  DBUG_ASSERT(vec_field->cmp_type() == STRING_RESULT);
  DBUG_ASSERT(res); // ER_INDEX_CANNOT_HAVE_NULL
  DBUG_ASSERT(table->file->ref_length <= graph->field[FIELD_TREF]->field_length);
  DBUG_ASSERT(res->length() > 0 && res->length() % 4 == 0);

  table->file->position(table->record[0]);

  int err= MHNSW_Share::acquire(&ctx, table, true);
  SCOPE_EXIT([ctx, table](){ ctx->release(table); });
  if (err)
  {
    if (err != HA_ERR_END_OF_FILE)
      return err;

    // First insert!
    ctx->set_lengths(res->length());
    FVectorNode *target= new (ctx->alloc_node())
                   FVectorNode(ctx, table->file->ref, 0, res->ptr());
    if (!((err= target->save(graph))))
      ctx->start= target;
    return err;
  }

  if (ctx->byte_len != res->length())
    return my_errno= HA_ERR_CRASHED;

  MEM_ROOT_SAVEPOINT memroot_sv;
  root_make_savepoint(thd->mem_root, &memroot_sv);
  SCOPE_EXIT([memroot_sv](){ root_free_to_savepoint(&memroot_sv); });

  const size_t max_found= ctx->max_neighbors(0);
  Neighborhood candidates;
  candidates.init(thd->alloc<FVectorNode*>(max_found + 7), max_found);
  candidates.links[candidates.num++]= ctx->start;

  const double NORMALIZATION_FACTOR= 1 / std::log(ctx->M);
  double log= -std::log(my_rnd(&thd->rand)) * NORMALIZATION_FACTOR;
  const uint8_t max_layer= candidates.links[0]->max_layer;
  uint8_t target_layer= std::min<uint8_t>(static_cast<uint8_t>(std::floor(log)), max_layer + 1);
  int cur_layer;

  FVectorNode *target= new (ctx->alloc_node())
                 FVectorNode(ctx, table->file->ref, target_layer, res->ptr());

  if (int err= graph->file->ha_rnd_init(0))
    return err;
  SCOPE_EXIT([graph](){ graph->file->ha_rnd_end(); });

  for (cur_layer= max_layer; cur_layer > target_layer; cur_layer--)
  {
    if (int err= search_layer(ctx, graph, target->vec, NEAREST,
                              1, cur_layer, &candidates, false))
      return err;
  }

  for (; cur_layer >= 0; cur_layer--)
  {
    uint max_neighbors= ctx->max_neighbors(cur_layer);
    if (int err= search_layer(ctx, graph, target->vec, NEAREST,
                              max_neighbors, cur_layer, &candidates, true))
      return err;

    if (int err= select_neighbors(ctx, graph, cur_layer, *target, candidates,
                                  0, max_neighbors))
      return err;
  }

  if (int err= target->save(graph))
    return err;

  if (target_layer > max_layer)
    ctx->start= target;

  for (cur_layer= target_layer; cur_layer >= 0; cur_layer--)
  {
    if (int err= update_second_degree_neighbors(ctx, graph, cur_layer, target))
      return err;
  }

  dbug_tmp_restore_column_map(&table->read_set, old_map);

  return 0;
}


struct Search_context: public Sql_alloc
{
  Neighborhood found;
  MHNSW_Share *ctx;
  const FVector *target;
  ulonglong ctx_version;
  size_t pos= 0;
  float threshold= NEAREST/2;
  Search_context(Neighborhood *n, MHNSW_Share *s, const FVector *v)
    : found(*n), ctx(s->dup(false)), target(v), ctx_version(ctx->version) {}
};


int mhnsw_read_first(TABLE *table, KEY *keyinfo, Item *dist, ulonglong limit)
{
  THD *thd= table->in_use;
  TABLE *graph= table->hlindex;
  auto *fun= static_cast<Item_func_vec_distance*>(dist->real_item());
  DBUG_ASSERT(fun);

  limit= std::min<ulonglong>(limit, max_ef);

  String buf, *res= fun->get_const_arg()->val_str(&buf);
  MHNSW_Share *ctx;

  if (int err= table->file->ha_rnd_init(0))
    return err;

  int err= MHNSW_Share::acquire(&ctx, table, false);
  SCOPE_EXIT([ctx, table](){ ctx->release(table); });
  if (err)
    return err;

  Neighborhood candidates;
  candidates.init(thd->alloc<FVectorNode*>(limit + 7), limit);

  // one could put all max_layer nodes in candidates
  // but it has no effect on the recall or speed
  candidates.links[candidates.num++]= ctx->start;

  /*
    if the query vector is NULL or invalid, VEC_DISTANCE will return
    NULL, so the result is basically unsorted, we can return rows
    in any order. Let's use some hardcoded value here
  */
  if (!res || ctx->byte_len != res->length())
  {
    res= &buf;
    buf.alloc(ctx->byte_len);
    buf.length(ctx->byte_len);
    for (size_t i=0; i < ctx->vec_len; i++)
      ((float*)buf.ptr())[i]= i == 0;
  }

  const longlong max_layer= candidates.links[0]->max_layer;
  auto target= FVector::create(ctx->metric, thd->alloc(FVector::alloc_size(ctx->vec_len)),
                               res->ptr(), res->length());

  if (int err= graph->file->ha_rnd_init(0))
    return err;

  for (size_t cur_layer= max_layer; cur_layer > 0; cur_layer--)
  {
    if (int err= search_layer(ctx, graph, target, NEAREST,
                              1, cur_layer, &candidates, false))
    {
      graph->file->ha_rnd_end();
      return err;
    }
  }

  if (int err= search_layer(ctx, graph, target, NEAREST,
                            static_cast<uint>(limit), 0, &candidates, false))
  {
    graph->file->ha_rnd_end();
    return err;
  }

  auto result= new (thd->mem_root) Search_context(&candidates, ctx, target);
  graph->context= result;

  return mhnsw_read_next(table);
}

int mhnsw_read_next(TABLE *table)
{
  auto result= static_cast<Search_context*>(table->hlindex->context);
  if (result->pos < result->found.num)
  {
    uchar *ref= result->found.links[result->pos++]->tref();
    return table->file->ha_rnd_pos(table->record[0], ref);
  }
  if (!result->found.num)
    return my_errno= HA_ERR_END_OF_FILE;

  TABLE *graph= table->hlindex;
  MHNSW_Share *ctx= result->ctx->dup(table->file->has_transactions());
  SCOPE_EXIT([&ctx, table](){ ctx->release(table); });

  if (ctx->version != result->ctx_version)
  {
    // oops, shared ctx was modified, need to switch to MHNSW_Trx
    MHNSW_Share *trx;
    graph->file->ha_rnd_end();
    int err= MHNSW_Share::acquire(&trx, table, true);
    SCOPE_EXIT([&trx, table](){ trx->release(table); });
    if (int err2= graph->file->ha_rnd_init(0))
      err= err ?  err :  err2;
    if (err)
      return err;
    for (size_t i=0; i < result->found.num; i++)
    {
      FVectorNode *node= trx->get_node(result->found.links[i]->gref());
      if (!node)
        return my_errno= HA_ERR_OUT_OF_MEM;
      if ((err= node->load(graph)))
        return err;
      result->found.links[i]= node;
    }
    ctx->release(false, table->s);      // release shared ctx
    result->ctx= trx->dup(false);       // replace it with trx
    result->ctx_version= trx->version;
    std::swap(trx, ctx);        // free shared ctx in this scope, keep trx
  }

  float new_threshold= result->found.links[result->found.num-1]->distance_to(result->target);

  if (int err= search_layer(ctx, graph, result->target, result->threshold,
                   static_cast<uint>(result->pos), 0, &result->found, false))
    return err;
  result->pos= 0;
  result->threshold= new_threshold + FLT_EPSILON;
  return mhnsw_read_next(table);
}

int mhnsw_read_end(TABLE *table)
{
  auto result= static_cast<Search_context*>(table->hlindex->context);
  result->ctx->release(false, table->s);
  table->hlindex->context= 0;
  table->hlindex->file->ha_rnd_end();
  return 0;
}

void mhnsw_free(TABLE_SHARE *share)
{
  TABLE_SHARE *graph_share= share->hlindex;
  if (!graph_share->hlindex_data)
    return;

  static_cast<MHNSW_Share*>(graph_share->hlindex_data)->~MHNSW_Share();
  graph_share->hlindex_data= 0;
}

int mhnsw_invalidate(TABLE *table, const uchar *rec, KEY *keyinfo)
{
  TABLE *graph= table->hlindex;
  handler *h= table->file;
  MHNSW_Share *ctx;

  int err= MHNSW_Share::acquire(&ctx, table, true);
  SCOPE_EXIT([ctx, table](){ ctx->release(table); });
  if (err)
    return err;

  /* metadata are checked on open */
  DBUG_ASSERT(graph);
  DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
  DBUG_ASSERT(keyinfo->usable_key_parts == 1);
  DBUG_ASSERT(h->ref_length <= graph->field[FIELD_TREF]->field_length);

  // target record:
  h->position(rec);
  graph->field[FIELD_TREF]->set_notnull();
  graph->field[FIELD_TREF]->store_binary(h->ref, h->ref_length);

  uchar *key= (uchar*)alloca(graph->key_info[IDX_TREF].key_length);
  key_copy(key, graph->record[0], &graph->key_info[IDX_TREF],
           graph->key_info[IDX_TREF].key_length);

  if (int err= graph->file->ha_index_read_idx_map(graph->record[1], IDX_TREF,
                                        key, HA_WHOLE_KEY, HA_READ_KEY_EXACT))
   return err;

  restore_record(graph, record[1]);
  graph->field[FIELD_TREF]->set_null();
  if (int err= graph->file->ha_update_row(graph->record[1], graph->record[0]))
    return err;

  graph->file->position(graph->record[0]);
  FVectorNode *node= ctx->get_node(graph->file->ref);
  node->deleted= true;

  return 0;
}

int mhnsw_delete_all(TABLE *table, KEY *keyinfo, bool truncate)
{
  TABLE *graph= table->hlindex;

  /* metadata are checked on open */
  DBUG_ASSERT(graph);
  DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
  DBUG_ASSERT(keyinfo->usable_key_parts == 1);

  if (int err= truncate ? graph->file->truncate()
                        : graph->file->delete_all_rows())
   return err;

  MHNSW_Share *ctx;
  if (!MHNSW_Share::acquire(&ctx, table, true))
  {
    ctx->reset(table->s);
  }

  ctx->release(table);
  return 0;
}

const LEX_CSTRING mhnsw_hlindex_table_def(THD *thd, uint ref_length)
{
  constexpr int max_ref_length= 256; // arbitrary limit < max key length
  if (ref_length > max_ref_length)
  {
    my_printf_error(ER_TOO_LONG_KEY, "Primary key was too long for vector "
                    "indexes, max length is %d bytes", MYF(0), max_ref_length);
    return { nullptr, 0 };
  }
  const char templ[]="CREATE TABLE i (                   "
                     "  layer tinyint not null,          "
                     "  tref varbinary(%u),              "
                     "  vec blob not null,               "
                     "  neighbors blob not null,         "
                     "  unique (tref),                   "
                     "  key (layer))                     ";
  size_t len= sizeof(templ) + 32;
  char *s= thd->alloc(len);
  len= my_snprintf(s, len, templ, ref_length);
  return {s, len};
}

Item_func_vec_distance::distance_kind mhnsw_uses_distance(const TABLE *table, KEY *keyinfo)
{
  if (keyinfo->option_struct->metric == EUCLIDEAN)
    return Item_func_vec_distance::EUCLIDEAN;
  return Item_func_vec_distance::COSINE;
}

/*
  Declare the plugin and index options
*/

ha_create_table_option mhnsw_index_options[]=
{
  HA_IOPTION_SYSVAR("m", M, default_m),
  HA_IOPTION_SYSVAR("distance", metric, default_distance),
  HA_IOPTION_END
};

st_plugin_int *mhnsw_plugin;

static int mhnsw_init(void *p)
{
  mhnsw_plugin= (st_plugin_int *)p;
  mhnsw_plugin->data= &MHNSW_Trx::tp;
  if (setup_transaction_participant(mhnsw_plugin))
    return 1;

  return resolve_sysvar_table_options(mhnsw_index_options);
}

static int mhnsw_deinit(void *)
{
  free_sysvar_table_options(mhnsw_index_options);
  return 0;
}

static struct st_mysql_storage_engine mhnsw_daemon=
{ MYSQL_DAEMON_INTERFACE_VERSION };

static struct st_mysql_sys_var *mhnsw_sys_vars[]=
{
  MYSQL_SYSVAR(max_cache_size),
  MYSQL_SYSVAR(default_m),
  MYSQL_SYSVAR(default_distance),
  MYSQL_SYSVAR(ef_search),
  NULL
};

maria_declare_plugin(mhnsw)
{
  MYSQL_DAEMON_PLUGIN,
  &mhnsw_daemon, "mhnsw", "MariaDB plc",
  "A plugin for mhnsw vector index algorithm",
  PLUGIN_LICENSE_GPL, mhnsw_init, mhnsw_deinit, 0x0100, NULL,
  mhnsw_sys_vars, "1.0", MariaDB_PLUGIN_MATURITY_STABLE
}
maria_declare_plugin_end;