1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
|
/*
Copyright (c) 2024, 2025, MariaDB plc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
*/
#include <my_global.h>
#include "key.h" // key_copy()
#include "create_options.h"
#include "table_cache.h"
#include "vector_mhnsw.h"
#include <scope.h>
#include <my_atomic_wrapper.h>
#include "bloom_filters.h"
// distance can be a little bit < 0 because of fast math
static constexpr float NEAREST = -1.0f;
// Algorithm parameters
static constexpr float alpha = 1.1f;
static constexpr uint ef_construction= 10;
static constexpr uint max_ef= 10000;
static ulonglong mhnsw_max_cache_size;
static MYSQL_SYSVAR_ULONGLONG(max_cache_size, mhnsw_max_cache_size,
PLUGIN_VAR_RQCMDARG, "Upper limit for one MHNSW vector index cache",
nullptr, nullptr, 16*1024*1024, 1024*1024, SIZE_T_MAX, 1);
static MYSQL_THDVAR_UINT(ef_search, PLUGIN_VAR_RQCMDARG,
"Larger values mean slower SELECTs but more accurate results. "
"Defines the minimal number of result candidates to look for in the "
"vector index for ORDER BY ... LIMIT N queries. The search will never "
"search for less rows than that, even if LIMIT is smaller",
nullptr, nullptr, 20, 1, max_ef, 1);
static MYSQL_THDVAR_UINT(default_m, PLUGIN_VAR_RQCMDARG,
"Larger values mean slower SELECTs and INSERTs, larger index size "
"and higher memory consumption but more accurate results",
nullptr, nullptr, 6, 3, 200, 1);
enum metric_type : uint { EUCLIDEAN, COSINE };
static const char *distance_names[]= { "euclidean", "cosine", nullptr };
static TYPELIB distances= CREATE_TYPELIB_FOR(distance_names);
static MYSQL_THDVAR_ENUM(default_distance, PLUGIN_VAR_RQCMDARG,
"Distance function to build the vector index for",
nullptr, nullptr, EUCLIDEAN, &distances);
struct ha_index_option_struct
{
ulonglong M; // option struct does not support uint
metric_type metric;
};
enum Graph_table_fields {
FIELD_LAYER, FIELD_TREF, FIELD_VEC, FIELD_NEIGHBORS
};
enum Graph_table_indices {
IDX_TREF, IDX_LAYER
};
class MHNSW_Share;
class FVectorNode;
/*
One vector, an array of coordinates in ctx->vec_len dimensions
*/
#pragma pack(push, 1)
struct FVector
{
static constexpr size_t data_header= sizeof(float);
static constexpr size_t alloc_header= data_header + sizeof(float);
float abs2, scale;
int16_t dims[4];
uchar *data() const { return (uchar*)(&scale); }
static size_t data_size(size_t n)
{ return data_header + n*2; }
static size_t data_to_value_size(size_t data_size)
{ return (data_size - data_header)*2; }
static const FVector *create(metric_type metric, void *mem, const void *src, size_t src_len)
{
float scale=0, *v= (float *)src;
size_t vec_len= src_len / sizeof(float);
for (size_t i= 0; i < vec_len; i++)
scale= std::max(scale, std::abs(get_float(v + i)));
FVector *vec= align_ptr(mem);
vec->scale= scale ? scale/32767 : 1;
if (std::round(scale/vec->scale) > 32767)
vec->scale= std::nextafter(vec->scale, FLT_MAX);
for (size_t i= 0; i < vec_len; i++)
vec->dims[i] = static_cast<int16_t>(std::round(get_float(v + i) / vec->scale));
vec->postprocess(vec_len);
if (metric == COSINE)
{
if (vec->abs2 > 0.0f)
vec->scale/= std::sqrt(2*vec->abs2);
vec->abs2= 0.5f;
}
return vec;
}
void postprocess(size_t vec_len)
{
fix_tail(vec_len);
abs2= scale * scale * dot_product(dims, dims, vec_len) / 2;
}
#ifdef AVX2_IMPLEMENTATION
/************* AVX2 *****************************************************/
static constexpr size_t AVX2_bytes= 256/8;
static constexpr size_t AVX2_dims= AVX2_bytes/sizeof(int16_t);
AVX2_IMPLEMENTATION
static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
{
typedef float v8f __attribute__((vector_size(AVX2_bytes)));
union { v8f v; __m256 i; } tmp;
__m256i *p1= (__m256i*)v1;
__m256i *p2= (__m256i*)v2;
v8f d= {0};
for (size_t i= 0; i < (len + AVX2_dims-1)/AVX2_dims; p1++, p2++, i++)
{
tmp.i= _mm256_cvtepi32_ps(_mm256_madd_epi16(*p1, *p2));
d+= tmp.v;
}
return d[0] + d[1] + d[2] + d[3] + d[4] + d[5] + d[6] + d[7];
}
AVX2_IMPLEMENTATION
static size_t alloc_size(size_t n)
{ return alloc_header + MY_ALIGN(n*2, AVX2_bytes) + AVX2_bytes - 1; }
AVX2_IMPLEMENTATION
static FVector *align_ptr(void *ptr)
{ return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, AVX2_bytes)
- alloc_header); }
AVX2_IMPLEMENTATION
void fix_tail(size_t vec_len)
{
bzero(dims + vec_len, (MY_ALIGN(vec_len, AVX2_dims) - vec_len)*2);
}
#endif
#ifdef AVX512_IMPLEMENTATION
/************* AVX512 ****************************************************/
static constexpr size_t AVX512_bytes= 512/8;
static constexpr size_t AVX512_dims= AVX512_bytes/sizeof(int16_t);
AVX512_IMPLEMENTATION
static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
{
__m512i *p1= (__m512i*)v1;
__m512i *p2= (__m512i*)v2;
__m512 d= _mm512_setzero_ps();
for (size_t i= 0; i < (len + AVX512_dims-1)/AVX512_dims; p1++, p2++, i++)
d= _mm512_add_ps(d, _mm512_cvtepi32_ps(_mm512_madd_epi16(*p1, *p2)));
return _mm512_reduce_add_ps(d);
}
AVX512_IMPLEMENTATION
static size_t alloc_size(size_t n)
{ return alloc_header + MY_ALIGN(n*2, AVX512_bytes) + AVX512_bytes - 1; }
AVX512_IMPLEMENTATION
static FVector *align_ptr(void *ptr)
{ return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, AVX512_bytes)
- alloc_header); }
AVX512_IMPLEMENTATION
void fix_tail(size_t vec_len)
{
bzero(dims + vec_len, (MY_ALIGN(vec_len, AVX512_dims) - vec_len)*2);
}
#endif
/*
ARM NEON implementation. A microbenchmark shows 1.7x dot_product() performance
improvement compared to regular -O2/-O3 builds and 2.4x compared to builds
with auto-vectorization disabled.
There seem to be no performance difference between vmull+vmull_high and
vmull+vmlal2_high implementations.
*/
#ifdef NEON_IMPLEMENTATION
static constexpr size_t NEON_bytes= 128 / 8;
static constexpr size_t NEON_dims= NEON_bytes / sizeof(int16_t);
static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
{
int64_t d= 0;
for (size_t i= 0; i < (len + NEON_dims - 1) / NEON_dims; i++)
{
int16x8_t p1= vld1q_s16(v1);
int16x8_t p2= vld1q_s16(v2);
d+= vaddlvq_s32(vmull_s16(vget_low_s16(p1), vget_low_s16(p2))) +
vaddlvq_s32(vmull_high_s16(p1, p2));
v1+= NEON_dims;
v2+= NEON_dims;
}
return static_cast<float>(d);
}
static size_t alloc_size(size_t n)
{ return alloc_header + MY_ALIGN(n * 2, NEON_bytes) + NEON_bytes - 1; }
static FVector *align_ptr(void *ptr)
{ return (FVector*) (MY_ALIGN(((intptr) ptr) + alloc_header, NEON_bytes)
- alloc_header); }
void fix_tail(size_t vec_len)
{
bzero(dims + vec_len, (MY_ALIGN(vec_len, NEON_dims) - vec_len) * 2);
}
#endif
#ifdef POWER_IMPLEMENTATION
/************* POWERPC *****************************************************/
static constexpr size_t POWER_bytes= 128 / 8; // Assume 128-bit vector width
static constexpr size_t POWER_dims= POWER_bytes / sizeof(int16_t);
static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
{
// Using vector long long for int64_t accumulation
vector long long ll_sum= {0, 0};
// Round up to process full vector, including padding
size_t base= ((len + POWER_dims - 1) / POWER_dims) * POWER_dims;
#pragma GCC unroll 4
for (size_t i= 0; i < base; i+= POWER_dims)
{
vector short x= vec_ld(0, &v1[i]);
vector short y= vec_ld(0, &v2[i]);
// Vectorized multiplication using vec_mule() and vec_mulo()
vector int product_hi= vec_mule(x, y);
vector int product_lo= vec_mulo(x, y);
// Extend vector int to vector long long for accumulation
vector long long llhi1= vec_unpackh(product_hi);
vector long long llhi2= vec_unpackl(product_hi);
vector long long lllo1= vec_unpackh(product_lo);
vector long long lllo2= vec_unpackl(product_lo);
ll_sum+= llhi1 + llhi2 + lllo1 + lllo2;
}
return static_cast<float>(static_cast<int64_t>(ll_sum[0]) +
static_cast<int64_t>(ll_sum[1]));
}
static size_t alloc_size(size_t n)
{
return alloc_header + MY_ALIGN(n * 2, POWER_bytes) + POWER_bytes - 1;
}
static FVector *align_ptr(void *ptr)
{
return (FVector*)(MY_ALIGN(((intptr)ptr) + alloc_header, POWER_bytes)
- alloc_header);
}
void fix_tail(size_t vec_len)
{
bzero(dims + vec_len, (MY_ALIGN(vec_len, POWER_dims) - vec_len) * 2);
}
#undef DEFAULT_IMPLEMENTATION
#endif
/************* no-SIMD default ******************************************/
#ifdef DEFAULT_IMPLEMENTATION
DEFAULT_IMPLEMENTATION
static float dot_product(const int16_t *v1, const int16_t *v2, size_t len)
{
int64_t d= 0;
for (size_t i= 0; i < len; i++)
d+= int32_t(v1[i]) * int32_t(v2[i]);
return static_cast<float>(d);
}
DEFAULT_IMPLEMENTATION
static size_t alloc_size(size_t n) { return alloc_header + n*2; }
DEFAULT_IMPLEMENTATION
static FVector *align_ptr(void *ptr) { return (FVector*)ptr; }
DEFAULT_IMPLEMENTATION
void fix_tail(size_t) { }
#endif
float distance_to(const FVector *other, size_t vec_len) const
{
return abs2 + other->abs2 - scale * other->scale *
dot_product(dims, other->dims, vec_len);
}
};
#pragma pack(pop)
/*
An array of pointers to graph nodes
It's mainly used to store all neighbors of a given node on a given layer.
An array is fixed size, 2*M for the zero layer, M for other layers
see MHNSW_Share::max_neighbors().
Number of neighbors is zero-padded to multiples of 8 (for SIMD Bloom filter).
Also used as a simply array of nodes in search_layer, the array size
then is defined by ef or efConstruction.
*/
struct Neighborhood: public Sql_alloc
{
FVectorNode **links;
size_t num;
FVectorNode **init(FVectorNode **ptr, size_t n)
{
num= 0;
links= ptr;
n= MY_ALIGN(n, 8);
bzero(ptr, n*sizeof(*ptr));
return ptr + n;
}
};
/*
One node in a graph = one row in the graph table
stores a vector itself, ref (= position) in the graph (= hlindex)
table, a ref in the main table, and an array of Neighborhood's, one
per layer.
It's lazily initialized, may know only gref, everything else is
loaded on demand.
On the other hand, on INSERT the new node knows everything except
gref - which only becomes known after ha_write_row.
Allocated on memroot in two chunks. One is the same size for all nodes
and stores FVectorNode object, gref, tref, and vector. The second
stores neighbors, all Neighborhood's together, its size depends
on the number of layers this node is on.
There can be millions of nodes in the cache and the cache size
is constrained by mhnsw_max_cache_size, so every byte matters here
*/
#pragma pack(push, 1)
class FVectorNode
{
private:
MHNSW_Share *ctx;
const FVector *make_vec(const void *v);
int alloc_neighborhood(uint8_t layer);
public:
const FVector *vec= nullptr;
Neighborhood *neighbors= nullptr;
uint8_t max_layer;
bool stored:1, deleted:1;
FVectorNode(MHNSW_Share *ctx_, const void *gref_);
FVectorNode(MHNSW_Share *ctx_, const void *tref_, uint8_t layer,
const void *vec_);
float distance_to(const FVector *other) const;
int load(TABLE *graph);
int load_from_record(TABLE *graph);
int save(TABLE *graph);
size_t tref_len() const;
size_t gref_len() const;
uchar *gref() const;
uchar *tref() const;
void push_neighbor(size_t layer, FVectorNode *v);
static const uchar *get_key(const void *elem, size_t *key_len, my_bool);
};
#pragma pack(pop)
/*
Shared algorithm context. The graph.
Stored in TABLE_SHARE and on TABLE_SHARE::mem_root.
Stores the complete graph in MHNSW_Share::root,
The mapping gref->FVectorNode is in the node_cache.
Both root and node_cache are protected by a cache_lock, but it's
needed when loading nodes and is not used when the whole graph is in memory.
Graph can be traversed concurrently by different threads, as traversal
changes neither nodes nor the ctx.
Nodes can be loaded concurrently by different threads, this is protected
by a partitioned node_lock.
reference counter allows flushing the graph without interrupting
concurrent searches.
MyISAM automatically gets exclusive write access because of the TL_WRITE,
but InnoDB has to use a dedicated ctx->commit_lock for that
*/
class MHNSW_Share : public Sql_alloc
{
mysql_mutex_t cache_lock;
mysql_mutex_t node_lock[8];
void cache_internal(FVectorNode *node)
{
DBUG_ASSERT(node->stored);
node_cache.insert(node);
}
void *alloc_node_internal()
{
return alloc_root(&root, sizeof(FVectorNode) + gref_len + tref_len
+ FVector::alloc_size(vec_len));
}
protected:
std::atomic<uint> refcnt{0};
MEM_ROOT root;
Hash_set<FVectorNode> node_cache{PSI_INSTRUMENT_MEM, FVectorNode::get_key};
public:
ulonglong version= 0; // protected by commit_lock
mysql_rwlock_t commit_lock;
size_t vec_len= 0;
size_t byte_len= 0;
Atomic_relaxed<double> ef_power{0.6}; // for the bloom filter size heuristic
Atomic_relaxed<float> diameter{0}; // for the generosity heuristic
FVectorNode *start= 0;
const uint tref_len;
const uint gref_len;
const uint M;
metric_type metric;
MHNSW_Share(TABLE *t)
: tref_len(t->file->ref_length),
gref_len(t->hlindex->file->ref_length),
M(static_cast<uint>(t->s->key_info[t->s->keys].option_struct->M)),
metric(t->s->key_info[t->s->keys].option_struct->metric)
{
mysql_rwlock_init(PSI_INSTRUMENT_ME, &commit_lock);
mysql_mutex_init(PSI_INSTRUMENT_ME, &cache_lock, MY_MUTEX_INIT_FAST);
for (uint i=0; i < array_elements(node_lock); i++)
mysql_mutex_init(PSI_INSTRUMENT_ME, node_lock + i, MY_MUTEX_INIT_SLOW);
init_alloc_root(PSI_INSTRUMENT_MEM, &root, 1024*1024, 0, MYF(0));
}
virtual ~MHNSW_Share()
{
free_root(&root, MYF(0));
mysql_rwlock_destroy(&commit_lock);
mysql_mutex_destroy(&cache_lock);
for (size_t i=0; i < array_elements(node_lock); i++)
mysql_mutex_destroy(node_lock + i);
}
uint lock_node(FVectorNode *ptr)
{
ulong nr1= 1, nr2= 4;
my_hash_sort_bin(0, (uchar*)&ptr, sizeof(ptr), &nr1, &nr2);
uint ticket= nr1 % array_elements(node_lock);
mysql_mutex_lock(node_lock + ticket);
return ticket;
}
void unlock_node(uint ticket)
{
mysql_mutex_unlock(node_lock + ticket);
}
uint max_neighbors(size_t layer) const
{
return (layer ? 1 : 2) * M; // heuristic from the paper
}
void set_lengths(size_t len)
{
byte_len= len;
vec_len= len / sizeof(float);
}
static int acquire(MHNSW_Share **ctx, TABLE *table, bool for_update);
static MHNSW_Share *get_from_share(TABLE_SHARE *share, TABLE *table);
virtual void reset(TABLE_SHARE *share)
{
share->lock_share();
if (static_cast<MHNSW_Share*>(share->hlindex->hlindex_data) == this)
{
share->hlindex->hlindex_data= nullptr;
--refcnt;
}
share->unlock_share();
}
void release(TABLE *table)
{
return release(table->file->has_transactions(), table->s);
}
virtual void release(bool can_commit, TABLE_SHARE *share)
{
if (can_commit)
mysql_rwlock_unlock(&commit_lock);
if (root_size(&root) > mhnsw_max_cache_size)
reset(share);
if (--refcnt == 0)
this->~MHNSW_Share(); // XXX reuse
}
virtual MHNSW_Share *dup(bool can_commit)
{
refcnt++;
if (can_commit)
mysql_rwlock_rdlock(&commit_lock);
return this;
}
FVectorNode *get_node(const void *gref)
{
mysql_mutex_lock(&cache_lock);
FVectorNode *node= node_cache.find(gref, gref_len);
if (!node)
{
node= new (alloc_node_internal()) FVectorNode(this, gref);
cache_internal(node);
}
mysql_mutex_unlock(&cache_lock);
return node;
}
/* used on INSERT, gref isn't known, so cannot cache the node yet */
void *alloc_node()
{
mysql_mutex_lock(&cache_lock);
auto p= alloc_node_internal();
mysql_mutex_unlock(&cache_lock);
return p;
}
/* explicitly cache the node after alloc_node() */
void cache_node(FVectorNode *node)
{
mysql_mutex_lock(&cache_lock);
cache_internal(node);
mysql_mutex_unlock(&cache_lock);
}
/* find the node without creating, only used on merging trx->ctx */
FVectorNode *find_node(const void *gref)
{
mysql_mutex_lock(&cache_lock);
FVectorNode *node= node_cache.find(gref, gref_len);
mysql_mutex_unlock(&cache_lock);
return node;
}
void *alloc_neighborhood(size_t max_layer)
{
mysql_mutex_lock(&cache_lock);
auto p= alloc_root(&root, sizeof(Neighborhood)*(max_layer+1) +
sizeof(FVectorNode*)*(MY_ALIGN(M, 4)*2 + MY_ALIGN(M,8)*max_layer));
mysql_mutex_unlock(&cache_lock);
return p;
}
};
/*
This is a non-shared context that exists within one transaction.
At the end of the transaction it's either discarded (on rollback)
or merged into the shared ctx (on commit).
trx's are stored in thd->ha_data[] in a single-linked list,
one instance of trx per TABLE_SHARE and allocated on the
thd->transaction->mem_root
*/
class MHNSW_Trx : public MHNSW_Share
{
public:
MDL_ticket *table_id;
bool list_of_nodes_is_lost= false;
MHNSW_Trx *next= nullptr;
MHNSW_Trx(TABLE *table) : MHNSW_Share(table), table_id(table->mdl_ticket) {}
void reset(TABLE_SHARE *) override
{
node_cache.clear();
free_root(&root, MYF(0));
start= 0;
list_of_nodes_is_lost= true;
}
void release(bool, TABLE_SHARE *) override
{
if (--refcnt == 0 && root_size(&root) > mhnsw_max_cache_size)
reset(nullptr);
}
virtual MHNSW_Share *dup(bool) override
{
refcnt++;
return this;
}
static MHNSW_Trx *get_from_thd(TABLE *table, bool for_update);
// it's okay in a transaction-local cache, there's no concurrent access
Hash_set<FVectorNode> &get_cache() { return node_cache; }
static transaction_participant tp;
static int do_commit(THD *thd, bool);
static int do_savepoint_rollback(THD *thd, void *);
static int do_rollback(THD *thd, bool);
static int do_prepare(THD *thd, bool);
};
struct transaction_participant MHNSW_Trx::tp=
{
0, 0, 0,
nullptr, /* close_connection */
[](THD *, void *){ return 0; }, /* savepoint_set */
MHNSW_Trx::do_savepoint_rollback,
[](THD *thd){ return true; }, /*savepoint_rollback_can_release_mdl*/
nullptr, /*savepoint_release*/
MHNSW_Trx::do_commit, MHNSW_Trx::do_rollback,
MHNSW_Trx::do_prepare, /* prepare */
nullptr, /* recover */
nullptr, nullptr, /* commit/rollback_by_xid */
nullptr, nullptr, /* recover_rollback_by_xid/recovery_done */
nullptr, nullptr, nullptr, /* snapshot, commit/prepare_ordered */
nullptr, nullptr /* checkpoint, versioned */
};
int MHNSW_Trx::do_savepoint_rollback(THD *thd, void *)
{
for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
trx; trx= trx->next)
trx->reset(nullptr);
return 0;
}
int MHNSW_Trx::do_rollback(THD *thd, bool all)
{
if (!all && thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
return do_savepoint_rollback(thd, nullptr);
MHNSW_Trx *trx_next;
for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
trx; trx= trx_next)
{
trx_next= trx->next;
trx->~MHNSW_Trx();
}
thd_set_ha_data(current_thd, &tp, nullptr);
return 0;
}
int MHNSW_Trx::do_commit(THD *thd, bool all)
{
if (!all && thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
return 0;
MHNSW_Trx *trx_next;
for (auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
trx; trx= trx_next)
{
trx_next= trx->next;
if (trx->table_id)
{
MDL_key *key= trx->table_id->get_key();
LEX_CSTRING db= {key->db_name(), key->db_name_length()},
tbl= {key->name(), key->name_length()};
TABLE_LIST tl;
tl.init_one_table(&db, &tbl, nullptr, TL_IGNORE);
TABLE_SHARE *share= tdc_acquire_share(thd, &tl, GTS_TABLE, nullptr);
if (share)
{
auto ctx= share->hlindex ? MHNSW_Share::get_from_share(share, nullptr)
: nullptr;
if (ctx)
{
mysql_rwlock_wrlock(&ctx->commit_lock);
ctx->version++;
if (trx->list_of_nodes_is_lost)
ctx->reset(share);
else
{
// consider copying nodes from trx to shared cache when it makes
// sense. for ann_benchmarks it does not.
// also, consider flushing only changed nodes (a flag in the node)
for (FVectorNode &from : trx->get_cache())
if (FVectorNode *node= ctx->find_node(from.gref()))
node->vec= nullptr;
ctx->start= nullptr;
}
ctx->release(true, share);
}
tdc_release_share(share);
}
}
trx->~MHNSW_Trx();
}
thd_set_ha_data(current_thd, &tp, nullptr);
return 0;
}
int MHNSW_Trx::do_prepare(THD *thd, bool)
{
/* Explicit XA is not supported yet */
return thd->transaction->xid_state.is_explicit_XA()
? HA_ERR_UNSUPPORTED : 0;
}
MHNSW_Trx *MHNSW_Trx::get_from_thd(TABLE *table, bool for_update)
{
if (!table->file->has_transactions())
return NULL;
THD *thd= table->in_use;
auto trx= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
if (!for_update && !trx)
return NULL;
while (trx && trx->table_id != table->mdl_ticket) trx= trx->next;
if (!trx)
{
trx= new (&thd->transaction->mem_root) MHNSW_Trx(table);
trx->next= static_cast<MHNSW_Trx*>(thd_get_ha_data(thd, &tp));
thd_set_ha_data(thd, &tp, trx);
if (!trx->next)
{
if (thd_test_options(thd, OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
trans_register_ha(thd, true, &tp, 0);
trans_register_ha(thd, false, &tp, 0);
}
}
trx->refcnt++;
return trx;
}
MHNSW_Share *MHNSW_Share::get_from_share(TABLE_SHARE *share, TABLE *table)
{
share->lock_share();
auto ctx= static_cast<MHNSW_Share*>(share->hlindex->hlindex_data);
if (!ctx && table)
{
ctx= new (&share->hlindex->mem_root) MHNSW_Share(table);
if (!ctx) return nullptr;
share->hlindex->hlindex_data= ctx;
ctx->refcnt++;
}
if (ctx)
ctx->refcnt++;
if (table) // hijack TABLE::used_stat_records
table->hlindex->used_stat_records= ctx->node_cache.size();
share->unlock_share();
return ctx;
}
int MHNSW_Share::acquire(MHNSW_Share **ctx, TABLE *table, bool for_update)
{
TABLE *graph= table->hlindex;
if (!(*ctx= MHNSW_Trx::get_from_thd(table, for_update)))
{
*ctx= MHNSW_Share::get_from_share(table->s, table);
if (table->file->has_transactions())
mysql_rwlock_rdlock(&(*ctx)->commit_lock);
}
if ((*ctx)->start)
return 0;
if (int err= graph->file->ha_index_init(IDX_LAYER, 1))
return err;
int err= graph->file->ha_index_last(graph->record[0]);
graph->file->ha_index_end();
if (err)
return err;
graph->file->position(graph->record[0]);
(*ctx)->set_lengths(FVector::data_to_value_size(graph->field[FIELD_VEC]->value_length()));
auto node= (*ctx)->get_node(graph->file->ref);
if ((err= node->load_from_record(graph)))
return err;
(*ctx)->start= node; // set the shared start only when node is fully loaded
return 0;
}
/* copy the vector, preprocessed as needed */
const FVector *FVectorNode::make_vec(const void *v)
{
return FVector::create(ctx->metric, tref() + tref_len(), v, ctx->byte_len);
}
FVectorNode::FVectorNode(MHNSW_Share *ctx_, const void *gref_)
: ctx(ctx_), stored(true), deleted(false)
{
memcpy(gref(), gref_, gref_len());
}
FVectorNode::FVectorNode(MHNSW_Share *ctx_, const void *tref_, uint8_t layer,
const void *vec_)
: ctx(ctx_), stored(false), deleted(false)
{
DBUG_ASSERT(tref_);
memset(gref(), 0xff, gref_len()); // important: larger than any real gref
memcpy(tref(), tref_, tref_len());
vec= make_vec(vec_);
alloc_neighborhood(layer);
}
float FVectorNode::distance_to(const FVector *other) const
{
return vec->distance_to(other, ctx->vec_len);
}
int FVectorNode::alloc_neighborhood(uint8_t layer)
{
if (neighbors)
return 0;
max_layer= layer;
neighbors= (Neighborhood*)ctx->alloc_neighborhood(layer);
auto ptr= (FVectorNode**)(neighbors + (layer+1));
for (size_t i= 0; i <= layer; i++)
ptr= neighbors[i].init(ptr, ctx->max_neighbors(i));
return 0;
}
int FVectorNode::load(TABLE *graph)
{
if (likely(vec))
return 0;
DBUG_ASSERT(stored);
// trx: consider loading nodes from shared, when it makes sense
// for ann_benchmarks it does not
if (int err= graph->file->ha_rnd_pos(graph->record[0], gref()))
return err;
return load_from_record(graph);
}
int FVectorNode::load_from_record(TABLE *graph)
{
DBUG_ASSERT(ctx->byte_len);
uint ticket= ctx->lock_node(this);
SCOPE_EXIT([this, ticket](){ ctx->unlock_node(ticket); });
if (vec)
return 0;
String buf, *v= graph->field[FIELD_TREF]->val_str(&buf);
deleted= graph->field[FIELD_TREF]->is_null();
if (!deleted)
{
if (unlikely(v->length() != tref_len()))
return my_errno= HA_ERR_CRASHED;
memcpy(tref(), v->ptr(), v->length());
}
v= graph->field[FIELD_VEC]->val_str(&buf);
if (unlikely(!v))
return my_errno= HA_ERR_CRASHED;
if (v->length() != FVector::data_size(ctx->vec_len))
return my_errno= HA_ERR_CRASHED;
FVector *vec_ptr= FVector::align_ptr(tref() + tref_len());
memcpy(vec_ptr->data(), v->ptr(), v->length());
vec_ptr->postprocess(ctx->vec_len);
longlong layer= graph->field[FIELD_LAYER]->val_int();
if (layer > 100) // 10e30 nodes at M=2, more at larger M's
return my_errno= HA_ERR_CRASHED;
if (int err= alloc_neighborhood(static_cast<uint8_t>(layer)))
return err;
v= graph->field[FIELD_NEIGHBORS]->val_str(&buf);
if (unlikely(!v))
return my_errno= HA_ERR_CRASHED;
// <N> <gref> <gref> ... <N> ...etc...
uchar *ptr= (uchar*)v->ptr(), *end= ptr + v->length();
for (size_t i=0; i <= max_layer; i++)
{
if (unlikely(ptr >= end))
return my_errno= HA_ERR_CRASHED;
size_t grefs= *ptr++;
if (unlikely(ptr + grefs * gref_len() > end))
return my_errno= HA_ERR_CRASHED;
neighbors[i].num= grefs;
for (size_t j=0; j < grefs; j++, ptr+= gref_len())
neighbors[i].links[j]= ctx->get_node(ptr);
}
vec= vec_ptr; // must be done at the very end
return 0;
}
void FVectorNode::push_neighbor(size_t layer, FVectorNode *other)
{
DBUG_ASSERT(neighbors[layer].num < ctx->max_neighbors(layer));
neighbors[layer].links[neighbors[layer].num++]= other;
}
size_t FVectorNode::tref_len() const { return ctx->tref_len; }
size_t FVectorNode::gref_len() const { return ctx->gref_len; }
uchar *FVectorNode::gref() const { return (uchar*)(this+1); }
uchar *FVectorNode::tref() const { return gref() + gref_len(); }
const uchar *FVectorNode::get_key(const void *elem, size_t *key_len, my_bool)
{
*key_len= static_cast<const FVectorNode*>(elem)->gref_len();
return static_cast<const FVectorNode*>(elem)->gref();
}
/* one visited node during the search. caches the distance to target */
struct Visited : public Sql_alloc
{
FVectorNode *node;
const float distance_to_target;
Visited(FVectorNode *n, float d) : node(n), distance_to_target(d) {}
static int cmp(void *, const void* a_, const void *b_)
{
const Visited *a= static_cast<const Visited*>(a_);
const Visited *b= static_cast<const Visited*>(b_);
return a->distance_to_target < b->distance_to_target ? -1 :
a->distance_to_target > b->distance_to_target ? 1 : 0;
}
};
/*
a factory to create Visited and keep track of already seen nodes
note that PatternedSimdBloomFilter works in blocks of 8 elements,
so on insert they're accumulated in nodes[], on search the caller
provides 8 addresses at once. we record 0x0 as "seen" so that
the caller could pad the input with nullptr's
*/
class VisitedSet
{
MEM_ROOT *root;
const FVector *target;
PatternedSimdBloomFilter<FVectorNode> map;
const FVectorNode *nodes[8]= {0,0,0,0,0,0,0,0};
size_t idx= 1; // to record 0 in the filter
public:
uint count= 0;
VisitedSet(MEM_ROOT *root, const FVector *target, uint size) :
root(root), target(target), map(size, 0.01f) {}
Visited *create(FVectorNode *node)
{
auto *v= new (root) Visited(node, node->distance_to(target));
insert(node);
count++;
return v;
}
void insert(const FVectorNode *n)
{
nodes[idx++]= n;
if (idx == 8) flush();
}
void flush() {
if (idx) map.Insert(nodes);
idx=0;
}
uint8_t seen(FVectorNode **nodes) { return map.Query(nodes); }
};
/*
selects best neighbors from the list of candidates plus one extra candidate
one extra candidate is specified separately to avoid appending it to
the Neighborhood candidates, which might be already at its max size.
*/
static int select_neighbors(MHNSW_Share *ctx, TABLE *graph, size_t layer,
FVectorNode &target, const Neighborhood &candidates,
FVectorNode *extra_candidate,
size_t max_neighbor_connections)
{
Queue<Visited> pq; // working queue
if (pq.init(max_ef, false, Visited::cmp))
return my_errno= HA_ERR_OUT_OF_MEM;
MEM_ROOT * const root= graph->in_use->mem_root;
auto discarded= (Visited**)my_safe_alloca(sizeof(Visited**)*max_neighbor_connections);
size_t discarded_num= 0;
Neighborhood &neighbors= target.neighbors[layer];
for (size_t i=0; i < candidates.num; i++)
{
FVectorNode *node= candidates.links[i];
if (int err= node->load(graph))
return err;
pq.push(new (root) Visited(node, node->distance_to(target.vec)));
}
if (extra_candidate)
pq.push(new (root) Visited(extra_candidate, extra_candidate->distance_to(target.vec)));
DBUG_ASSERT(pq.elements());
neighbors.num= 0;
while (pq.elements() && neighbors.num < max_neighbor_connections)
{
Visited *vec= pq.pop();
FVectorNode * const node= vec->node;
const float target_dista= std::max(32*FLT_EPSILON, vec->distance_to_target / alpha);
bool discard= false;
for (size_t i=0; i < neighbors.num; i++)
if ((discard= node->distance_to(neighbors.links[i]->vec) <= target_dista))
break;
if (!discard)
target.push_neighbor(layer, node);
else if (discarded_num + neighbors.num < max_neighbor_connections)
discarded[discarded_num++]= vec;
}
for (size_t i=0; i < discarded_num && neighbors.num < max_neighbor_connections; i++)
target.push_neighbor(layer, discarded[i]->node);
my_safe_afree(discarded, sizeof(Visited**)*max_neighbor_connections);
return 0;
}
int FVectorNode::save(TABLE *graph)
{
DBUG_ASSERT(vec);
DBUG_ASSERT(neighbors);
restore_record(graph, s->default_values);
graph->field[FIELD_LAYER]->store(max_layer, false);
if (deleted)
graph->field[FIELD_TREF]->set_null();
else
{
graph->field[FIELD_TREF]->set_notnull();
graph->field[FIELD_TREF]->store_binary(tref(), tref_len());
}
graph->field[FIELD_VEC]->store_binary(vec->data(), FVector::data_size(ctx->vec_len));
size_t total_size= 0;
for (size_t i=0; i <= max_layer; i++)
total_size+= 1 + gref_len() * neighbors[i].num;
uchar *neighbor_blob= static_cast<uchar *>(my_safe_alloca(total_size));
uchar *ptr= neighbor_blob;
for (size_t i= 0; i <= max_layer; i++)
{
*ptr++= (uchar)(neighbors[i].num);
for (size_t j= 0; j < neighbors[i].num; j++, ptr+= gref_len())
memcpy(ptr, neighbors[i].links[j]->gref(), gref_len());
}
graph->field[FIELD_NEIGHBORS]->store_binary(neighbor_blob, total_size);
int err;
if (stored)
{
if (!(err= graph->file->ha_rnd_pos(graph->record[1], gref())))
{
err= graph->file->ha_update_row(graph->record[1], graph->record[0]);
if (err == HA_ERR_RECORD_IS_THE_SAME)
err= 0;
}
}
else
{
err= graph->file->ha_write_row(graph->record[0]);
graph->file->position(graph->record[0]);
memcpy(gref(), graph->file->ref, gref_len());
stored= true;
ctx->cache_node(this);
}
my_safe_afree(neighbor_blob, total_size);
return err;
}
static int update_second_degree_neighbors(MHNSW_Share *ctx, TABLE *graph,
size_t layer, FVectorNode *node)
{
const uint max_neighbors= ctx->max_neighbors(layer);
// it seems that one could update nodes in the gref order
// to avoid InnoDB deadlocks, but it produces no noticeable effect
for (size_t i=0; i < node->neighbors[layer].num; i++)
{
FVectorNode *neigh= node->neighbors[layer].links[i];
Neighborhood &neighneighbors= neigh->neighbors[layer];
if (neighneighbors.num < max_neighbors)
neigh->push_neighbor(layer, node);
else
if (int err= select_neighbors(ctx, graph, layer, *neigh, neighneighbors,
node, max_neighbors))
return err;
if (int err= neigh->save(graph))
return err;
}
return 0;
}
static inline float generous_furthest(const Queue<Visited> &q, float maxd, float g)
{
float d0=maxd*g/2;
float d= q.top()->distance_to_target;
float k= 5;
float x= (d-d0)/d0;
float sigmoid= k*x/std::sqrt(1+(k*k-1)*x*x); // or any other sigmoid
return d*(1 + (g - 1)/2 * (1 - sigmoid));
}
/*
@param[in/out] inout in: start nodes, out: result nodes
*/
static int search_layer(MHNSW_Share *ctx, TABLE *graph, const FVector *target,
float threshold, uint result_size,
size_t layer, Neighborhood *inout, bool construction)
{
DBUG_ASSERT(inout->num > 0);
MEM_ROOT * const root= graph->in_use->mem_root;
Queue<Visited> candidates, best;
bool skip_deleted;
uint ef= result_size;
float generosity= 1.1f + ctx->M/500.0f;
if (construction)
{
skip_deleted= false;
if (ef > 1)
ef= std::max(ef_construction, ef);
}
else
{
skip_deleted= layer == 0;
if (ef > 1 || layer == 0)
ef= std::max(THDVAR(graph->in_use, ef_search), ef);
}
// WARNING! heuristic here
const double est_heuristic= 8 * std::sqrt(ctx->max_neighbors(layer));
double est_size= est_heuristic * std::pow(ef, ctx->ef_power);
set_if_smaller(est_size, graph->used_stat_records/1.3);
VisitedSet visited(root, target, static_cast<uint>(est_size));
candidates.init(max_ef, false, Visited::cmp);
best.init(ef, true, Visited::cmp);
DBUG_ASSERT(inout->num <= result_size);
float max_distance= ctx->diameter;
for (size_t i=0; i < inout->num; i++)
{
Visited *v= visited.create(inout->links[i]);
max_distance= std::max(max_distance, v->distance_to_target);
candidates.push(v);
if ((skip_deleted && v->node->deleted) || threshold > NEAREST)
continue;
best.push(v);
}
float furthest_best= best.is_empty() ? FLT_MAX
: generous_furthest(best, max_distance, generosity);
while (candidates.elements())
{
const Visited &cur= *candidates.pop();
if (cur.distance_to_target > furthest_best && best.is_full())
break; // All possible candidates are worse than what we have
visited.flush();
Neighborhood &neighbors= cur.node->neighbors[layer];
FVectorNode **links= neighbors.links, **end= links + neighbors.num;
for (; links < end; links+= 8)
{
uint8_t res= visited.seen(links);
if (res == 0xff)
continue;
for (size_t i= 0; i < 8; i++)
{
if (res & (1 << i))
continue;
if (int err= links[i]->load(graph))
return err;
Visited *v= visited.create(links[i]);
if (v->distance_to_target <= threshold)
continue;
if (!best.is_full())
{
max_distance= std::max(max_distance, v->distance_to_target);
candidates.safe_push(v);
if (skip_deleted && v->node->deleted)
continue;
best.push(v);
furthest_best= generous_furthest(best, max_distance, generosity);
}
else if (v->distance_to_target < furthest_best)
{
candidates.safe_push(v);
if (skip_deleted && v->node->deleted)
continue;
if (v->distance_to_target < best.top()->distance_to_target)
{
best.replace_top(v);
furthest_best= generous_furthest(best, max_distance, generosity);
}
}
}
}
}
set_if_bigger(ctx->diameter, max_distance); // not atomic, but it's ok
if (ef > 1 && visited.count > est_size)
{
double ef_power= std::log(visited.count/est_heuristic) / std::log(ef);
set_if_bigger(ctx->ef_power, ef_power); // not atomic, but it's ok
}
while (best.elements() > result_size)
best.pop();
inout->num= best.elements();
for (FVectorNode **links= inout->links + inout->num; best.elements();)
*--links= best.pop()->node;
return 0;
}
int mhnsw_insert(TABLE *table, KEY *keyinfo)
{
THD *thd= table->in_use;
TABLE *graph= table->hlindex;
MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
Field *vec_field= keyinfo->key_part->field;
String buf, *res= vec_field->val_str(&buf);
MHNSW_Share *ctx;
/* metadata are checked on open */
DBUG_ASSERT(graph);
DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
DBUG_ASSERT(keyinfo->usable_key_parts == 1);
DBUG_ASSERT(vec_field->binary());
DBUG_ASSERT(vec_field->cmp_type() == STRING_RESULT);
DBUG_ASSERT(res); // ER_INDEX_CANNOT_HAVE_NULL
DBUG_ASSERT(table->file->ref_length <= graph->field[FIELD_TREF]->field_length);
DBUG_ASSERT(res->length() > 0 && res->length() % 4 == 0);
table->file->position(table->record[0]);
int err= MHNSW_Share::acquire(&ctx, table, true);
SCOPE_EXIT([ctx, table](){ ctx->release(table); });
if (err)
{
if (err != HA_ERR_END_OF_FILE)
return err;
// First insert!
ctx->set_lengths(res->length());
FVectorNode *target= new (ctx->alloc_node())
FVectorNode(ctx, table->file->ref, 0, res->ptr());
if (!((err= target->save(graph))))
ctx->start= target;
return err;
}
if (ctx->byte_len != res->length())
return my_errno= HA_ERR_CRASHED;
MEM_ROOT_SAVEPOINT memroot_sv;
root_make_savepoint(thd->mem_root, &memroot_sv);
SCOPE_EXIT([memroot_sv](){ root_free_to_savepoint(&memroot_sv); });
const size_t max_found= ctx->max_neighbors(0);
Neighborhood candidates;
candidates.init(thd->alloc<FVectorNode*>(max_found + 7), max_found);
candidates.links[candidates.num++]= ctx->start;
const double NORMALIZATION_FACTOR= 1 / std::log(ctx->M);
double log= -std::log(my_rnd(&thd->rand)) * NORMALIZATION_FACTOR;
const uint8_t max_layer= candidates.links[0]->max_layer;
uint8_t target_layer= std::min<uint8_t>(static_cast<uint8_t>(std::floor(log)), max_layer + 1);
int cur_layer;
FVectorNode *target= new (ctx->alloc_node())
FVectorNode(ctx, table->file->ref, target_layer, res->ptr());
if (int err= graph->file->ha_rnd_init(0))
return err;
SCOPE_EXIT([graph](){ graph->file->ha_rnd_end(); });
for (cur_layer= max_layer; cur_layer > target_layer; cur_layer--)
{
if (int err= search_layer(ctx, graph, target->vec, NEAREST,
1, cur_layer, &candidates, false))
return err;
}
for (; cur_layer >= 0; cur_layer--)
{
uint max_neighbors= ctx->max_neighbors(cur_layer);
if (int err= search_layer(ctx, graph, target->vec, NEAREST,
max_neighbors, cur_layer, &candidates, true))
return err;
if (int err= select_neighbors(ctx, graph, cur_layer, *target, candidates,
0, max_neighbors))
return err;
}
if (int err= target->save(graph))
return err;
if (target_layer > max_layer)
ctx->start= target;
for (cur_layer= target_layer; cur_layer >= 0; cur_layer--)
{
if (int err= update_second_degree_neighbors(ctx, graph, cur_layer, target))
return err;
}
dbug_tmp_restore_column_map(&table->read_set, old_map);
return 0;
}
struct Search_context: public Sql_alloc
{
Neighborhood found;
MHNSW_Share *ctx;
const FVector *target;
ulonglong ctx_version;
size_t pos= 0;
float threshold= NEAREST/2;
Search_context(Neighborhood *n, MHNSW_Share *s, const FVector *v)
: found(*n), ctx(s->dup(false)), target(v), ctx_version(ctx->version) {}
};
int mhnsw_read_first(TABLE *table, KEY *keyinfo, Item *dist, ulonglong limit)
{
THD *thd= table->in_use;
TABLE *graph= table->hlindex;
auto *fun= static_cast<Item_func_vec_distance*>(dist->real_item());
DBUG_ASSERT(fun);
limit= std::min<ulonglong>(limit, max_ef);
String buf, *res= fun->get_const_arg()->val_str(&buf);
MHNSW_Share *ctx;
if (int err= table->file->ha_rnd_init(0))
return err;
int err= MHNSW_Share::acquire(&ctx, table, false);
SCOPE_EXIT([ctx, table](){ ctx->release(table); });
if (err)
return err;
Neighborhood candidates;
candidates.init(thd->alloc<FVectorNode*>(limit + 7), limit);
// one could put all max_layer nodes in candidates
// but it has no effect on the recall or speed
candidates.links[candidates.num++]= ctx->start;
/*
if the query vector is NULL or invalid, VEC_DISTANCE will return
NULL, so the result is basically unsorted, we can return rows
in any order. Let's use some hardcoded value here
*/
if (!res || ctx->byte_len != res->length())
{
res= &buf;
buf.alloc(ctx->byte_len);
buf.length(ctx->byte_len);
for (size_t i=0; i < ctx->vec_len; i++)
((float*)buf.ptr())[i]= i == 0;
}
const longlong max_layer= candidates.links[0]->max_layer;
auto target= FVector::create(ctx->metric, thd->alloc(FVector::alloc_size(ctx->vec_len)),
res->ptr(), res->length());
if (int err= graph->file->ha_rnd_init(0))
return err;
for (size_t cur_layer= max_layer; cur_layer > 0; cur_layer--)
{
if (int err= search_layer(ctx, graph, target, NEAREST,
1, cur_layer, &candidates, false))
{
graph->file->ha_rnd_end();
return err;
}
}
if (int err= search_layer(ctx, graph, target, NEAREST,
static_cast<uint>(limit), 0, &candidates, false))
{
graph->file->ha_rnd_end();
return err;
}
auto result= new (thd->mem_root) Search_context(&candidates, ctx, target);
graph->context= result;
return mhnsw_read_next(table);
}
int mhnsw_read_next(TABLE *table)
{
auto result= static_cast<Search_context*>(table->hlindex->context);
if (result->pos < result->found.num)
{
uchar *ref= result->found.links[result->pos++]->tref();
return table->file->ha_rnd_pos(table->record[0], ref);
}
if (!result->found.num)
return my_errno= HA_ERR_END_OF_FILE;
TABLE *graph= table->hlindex;
MHNSW_Share *ctx= result->ctx->dup(table->file->has_transactions());
SCOPE_EXIT([&ctx, table](){ ctx->release(table); });
if (ctx->version != result->ctx_version)
{
// oops, shared ctx was modified, need to switch to MHNSW_Trx
MHNSW_Share *trx;
graph->file->ha_rnd_end();
int err= MHNSW_Share::acquire(&trx, table, true);
SCOPE_EXIT([&trx, table](){ trx->release(table); });
if (int err2= graph->file->ha_rnd_init(0))
err= err ? err : err2;
if (err)
return err;
for (size_t i=0; i < result->found.num; i++)
{
FVectorNode *node= trx->get_node(result->found.links[i]->gref());
if (!node)
return my_errno= HA_ERR_OUT_OF_MEM;
if ((err= node->load(graph)))
return err;
result->found.links[i]= node;
}
ctx->release(false, table->s); // release shared ctx
result->ctx= trx->dup(false); // replace it with trx
result->ctx_version= trx->version;
std::swap(trx, ctx); // free shared ctx in this scope, keep trx
}
float new_threshold= result->found.links[result->found.num-1]->distance_to(result->target);
if (int err= search_layer(ctx, graph, result->target, result->threshold,
static_cast<uint>(result->pos), 0, &result->found, false))
return err;
result->pos= 0;
result->threshold= new_threshold + FLT_EPSILON;
return mhnsw_read_next(table);
}
int mhnsw_read_end(TABLE *table)
{
auto result= static_cast<Search_context*>(table->hlindex->context);
result->ctx->release(false, table->s);
table->hlindex->context= 0;
table->hlindex->file->ha_rnd_end();
return 0;
}
void mhnsw_free(TABLE_SHARE *share)
{
TABLE_SHARE *graph_share= share->hlindex;
if (!graph_share->hlindex_data)
return;
static_cast<MHNSW_Share*>(graph_share->hlindex_data)->~MHNSW_Share();
graph_share->hlindex_data= 0;
}
int mhnsw_invalidate(TABLE *table, const uchar *rec, KEY *keyinfo)
{
TABLE *graph= table->hlindex;
handler *h= table->file;
MHNSW_Share *ctx;
int err= MHNSW_Share::acquire(&ctx, table, true);
SCOPE_EXIT([ctx, table](){ ctx->release(table); });
if (err)
return err;
/* metadata are checked on open */
DBUG_ASSERT(graph);
DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
DBUG_ASSERT(keyinfo->usable_key_parts == 1);
DBUG_ASSERT(h->ref_length <= graph->field[FIELD_TREF]->field_length);
// target record:
h->position(rec);
graph->field[FIELD_TREF]->set_notnull();
graph->field[FIELD_TREF]->store_binary(h->ref, h->ref_length);
uchar *key= (uchar*)alloca(graph->key_info[IDX_TREF].key_length);
key_copy(key, graph->record[0], &graph->key_info[IDX_TREF],
graph->key_info[IDX_TREF].key_length);
if (int err= graph->file->ha_index_read_idx_map(graph->record[1], IDX_TREF,
key, HA_WHOLE_KEY, HA_READ_KEY_EXACT))
return err;
restore_record(graph, record[1]);
graph->field[FIELD_TREF]->set_null();
if (int err= graph->file->ha_update_row(graph->record[1], graph->record[0]))
return err;
graph->file->position(graph->record[0]);
FVectorNode *node= ctx->get_node(graph->file->ref);
node->deleted= true;
return 0;
}
int mhnsw_delete_all(TABLE *table, KEY *keyinfo, bool truncate)
{
TABLE *graph= table->hlindex;
/* metadata are checked on open */
DBUG_ASSERT(graph);
DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
DBUG_ASSERT(keyinfo->usable_key_parts == 1);
if (int err= truncate ? graph->file->truncate()
: graph->file->delete_all_rows())
return err;
MHNSW_Share *ctx;
if (!MHNSW_Share::acquire(&ctx, table, true))
{
ctx->reset(table->s);
}
ctx->release(table);
return 0;
}
const LEX_CSTRING mhnsw_hlindex_table_def(THD *thd, uint ref_length)
{
constexpr int max_ref_length= 256; // arbitrary limit < max key length
if (ref_length > max_ref_length)
{
my_printf_error(ER_TOO_LONG_KEY, "Primary key was too long for vector "
"indexes, max length is %d bytes", MYF(0), max_ref_length);
return { nullptr, 0 };
}
const char templ[]="CREATE TABLE i ( "
" layer tinyint not null, "
" tref varbinary(%u), "
" vec blob not null, "
" neighbors blob not null, "
" unique (tref), "
" key (layer)) ";
size_t len= sizeof(templ) + 32;
char *s= thd->alloc(len);
len= my_snprintf(s, len, templ, ref_length);
return {s, len};
}
Item_func_vec_distance::distance_kind mhnsw_uses_distance(const TABLE *table, KEY *keyinfo)
{
if (keyinfo->option_struct->metric == EUCLIDEAN)
return Item_func_vec_distance::EUCLIDEAN;
return Item_func_vec_distance::COSINE;
}
/*
Declare the plugin and index options
*/
ha_create_table_option mhnsw_index_options[]=
{
HA_IOPTION_SYSVAR("m", M, default_m),
HA_IOPTION_SYSVAR("distance", metric, default_distance),
HA_IOPTION_END
};
st_plugin_int *mhnsw_plugin;
static int mhnsw_init(void *p)
{
mhnsw_plugin= (st_plugin_int *)p;
mhnsw_plugin->data= &MHNSW_Trx::tp;
if (setup_transaction_participant(mhnsw_plugin))
return 1;
return resolve_sysvar_table_options(mhnsw_index_options);
}
static int mhnsw_deinit(void *)
{
free_sysvar_table_options(mhnsw_index_options);
return 0;
}
static struct st_mysql_storage_engine mhnsw_daemon=
{ MYSQL_DAEMON_INTERFACE_VERSION };
static struct st_mysql_sys_var *mhnsw_sys_vars[]=
{
MYSQL_SYSVAR(max_cache_size),
MYSQL_SYSVAR(default_m),
MYSQL_SYSVAR(default_distance),
MYSQL_SYSVAR(ef_search),
NULL
};
maria_declare_plugin(mhnsw)
{
MYSQL_DAEMON_PLUGIN,
&mhnsw_daemon, "mhnsw", "MariaDB plc",
"A plugin for mhnsw vector index algorithm",
PLUGIN_LICENSE_GPL, mhnsw_init, mhnsw_deinit, 0x0100, NULL,
mhnsw_sys_vars, "1.0", MariaDB_PLUGIN_MATURITY_STABLE
}
maria_declare_plugin_end;
|