1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
|
/* Copyright (c) 2014, 2023, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */
#ifndef PFS_BUFFER_CONTAINER_H
#define PFS_BUFFER_CONTAINER_H
#include "my_global.h"
#include "pfs.h" // PSI_COUNT_VOLATILITY
#include "pfs_lock.h"
#include "pfs_instr.h"
#include "pfs_setup_actor.h"
#include "pfs_setup_object.h"
#include "pfs_program.h"
#include "pfs_prepared_stmt.h"
#include "pfs_builtin_memory.h"
#define USE_SCALABLE
class PFS_opaque_container_page;
class PFS_opaque_container;
struct PFS_builtin_memory_class;
template <class T>
class PFS_buffer_const_iterator;
template <class T>
class PFS_buffer_processor;
template <class T, class U, class V>
class PFS_buffer_iterator;
template <class T, int PFS_PAGE_SIZE, int PFS_PAGE_COUNT, class U, class V>
class PFS_buffer_scalable_iterator;
template <class T>
class PFS_buffer_default_array;
template <class T>
class PFS_buffer_default_allocator;
template <class T, class U, class V>
class PFS_buffer_container;
template <class T, int PFS_PAGE_SIZE, int PFS_PAGE_COUNT, class U, class V>
class PFS_buffer_scalable_container;
template <class B, int COUNT>
class PFS_partitioned_buffer_scalable_iterator;
template <class B, int COUNT>
class PFS_partitioned_buffer_scalable_container;
template <class T>
class PFS_buffer_default_array
{
public:
typedef T value_type;
value_type *allocate(pfs_dirty_state *dirty_state)
{
uint index;
uint monotonic;
uint monotonic_max;
value_type *pfs;
if (m_full)
return NULL;
monotonic= m_monotonic.m_u32.fetch_add(1);
monotonic_max= monotonic + static_cast<uint>(m_max);
while (monotonic < monotonic_max)
{
index= monotonic % m_max;
pfs= m_ptr + index;
if (pfs->m_lock.free_to_dirty(dirty_state))
{
return pfs;
}
monotonic= m_monotonic.m_u32.fetch_add(1);
}
m_full= true;
return NULL;
}
void deallocate(value_type *pfs)
{
pfs->m_lock.allocated_to_free();
m_full= false;
}
T* get_first()
{
return m_ptr;
}
T* get_last()
{
return m_ptr + m_max;
}
bool m_full;
PFS_cacheline_uint32 m_monotonic;
T * m_ptr;
size_t m_max;
/** Container. */
PFS_opaque_container *m_container;
};
template <class T>
class PFS_buffer_default_allocator
{
public:
typedef PFS_buffer_default_array<T> array_type;
PFS_buffer_default_allocator(PFS_builtin_memory_class *klass)
: m_builtin_class(klass)
{}
int alloc_array(array_type *array)
{
array->m_ptr= NULL;
array->m_full= true;
array->m_monotonic.m_u32= 0;
if (array->m_max > 0)
{
array->m_ptr= PFS_MALLOC_ARRAY(m_builtin_class,
array->m_max, sizeof(T), T, MYF(MY_ZEROFILL));
if (array->m_ptr == NULL)
return 1;
array->m_full= false;
}
return 0;
}
void free_array(array_type *array)
{
assert(array->m_max > 0);
PFS_FREE_ARRAY(m_builtin_class,
array->m_max, sizeof(T), array->m_ptr);
array->m_ptr= NULL;
}
private:
PFS_builtin_memory_class *m_builtin_class;
};
template <class T,
class U = PFS_buffer_default_array<T>,
class V = PFS_buffer_default_allocator<T> >
class PFS_buffer_container
{
public:
friend class PFS_buffer_iterator<T, U, V>;
typedef T value_type;
typedef U array_type;
typedef V allocator_type;
typedef PFS_buffer_const_iterator<T> const_iterator_type;
typedef PFS_buffer_iterator<T, U, V> iterator_type;
typedef PFS_buffer_processor<T> processor_type;
typedef void (*function_type)(value_type *);
PFS_buffer_container(allocator_type *allocator)
{
m_array.m_full= true;
m_array.m_ptr= NULL;
m_array.m_max= 0;
m_array.m_monotonic.m_u32= 0;
m_lost= 0;
m_max= 0;
m_allocator= allocator;
}
int init(ulong max_size)
{
if (max_size > 0)
{
m_array.m_max= max_size;
int rc= m_allocator->alloc_array(& m_array);
if (rc != 0)
{
m_allocator->free_array(& m_array);
return 1;
}
m_max= max_size;
m_array.m_full= false;
}
return 0;
}
void cleanup()
{
m_allocator->free_array(& m_array);
}
ulong get_row_count() const
{
return m_max;
}
ulong get_row_size() const
{
return sizeof(value_type);
}
ulong get_memory() const
{
return get_row_count() * get_row_size();
}
value_type *allocate(pfs_dirty_state *dirty_state)
{
value_type *pfs;
pfs= m_array.allocate(dirty_state, m_max);
if (pfs == NULL)
{
m_lost++;
}
return pfs;
}
void deallocate(value_type *pfs)
{
m_array.deallocate(pfs);
}
iterator_type iterate()
{
return PFS_buffer_iterator<T, U, V>(this, 0);
}
iterator_type iterate(uint index)
{
assert(index <= m_max);
return PFS_buffer_iterator<T, U, V>(this, index);
}
void apply(function_type fct)
{
value_type *pfs= m_array.get_first();
value_type *pfs_last= m_array.get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
fct(pfs);
}
pfs++;
}
}
void apply_all(function_type fct)
{
value_type *pfs= m_array.get_first();
value_type *pfs_last= m_array.get_last();
while (pfs < pfs_last)
{
fct(pfs);
pfs++;
}
}
void apply(processor_type & proc)
{
value_type *pfs= m_array.get_first();
value_type *pfs_last= m_array.get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
proc(pfs);
}
pfs++;
}
}
void apply_all(processor_type & proc)
{
value_type *pfs= m_array.get_first();
value_type *pfs_last= m_array.get_last();
while (pfs < pfs_last)
{
proc(pfs);
pfs++;
}
}
inline value_type* get(uint index)
{
assert(index < m_max);
value_type *pfs= m_array.m_ptr + index;
if (pfs->m_lock.is_populated())
{
return pfs;
}
return NULL;
}
value_type* get(uint index, bool *has_more)
{
if (index >= m_max)
{
*has_more= false;
return NULL;
}
*has_more= true;
return get(index);
}
value_type *sanitize(value_type *unsafe)
{
intptr offset;
value_type *pfs= m_array.get_first();
value_type *pfs_last= m_array.get_last();
if ((pfs <= unsafe) &&
(unsafe < pfs_last))
{
offset= ((intptr) unsafe - (intptr) pfs) % sizeof(value_type);
if (offset == 0)
return unsafe;
}
return NULL;
}
ulong m_lost;
private:
value_type* scan_next(uint & index, uint * found_index)
{
assert(index <= m_max);
value_type *pfs_first= m_array.get_first();
value_type *pfs= pfs_first + index;
value_type *pfs_last= m_array.get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
uint found= pfs - pfs_first;
*found_index= found;
index= found + 1;
return pfs;
}
pfs++;
}
index= m_max;
return NULL;
}
ulong m_max;
array_type m_array;
allocator_type *m_allocator;
};
template <class T,
int PFS_PAGE_SIZE,
int PFS_PAGE_COUNT,
class U = PFS_buffer_default_array<T>,
class V = PFS_buffer_default_allocator<T> >
class PFS_buffer_scalable_container
{
public:
friend class PFS_buffer_scalable_iterator<T, PFS_PAGE_SIZE, PFS_PAGE_COUNT, U, V>;
/**
Type of elements in the buffer.
The following attributes are required:
- pfs_lock m_lock
- PFS_opaque_container_page *m_page
*/
typedef T value_type;
/**
Type of pages in the buffer.
The following attributes are required:
- PFS_opaque_container *m_container
*/
typedef U array_type;
typedef V allocator_type;
/** This container type */
typedef PFS_buffer_scalable_container<T, PFS_PAGE_SIZE, PFS_PAGE_COUNT, U, V> container_type;
typedef PFS_buffer_const_iterator<T> const_iterator_type;
typedef PFS_buffer_scalable_iterator<T, PFS_PAGE_SIZE, PFS_PAGE_COUNT, U, V> iterator_type;
typedef PFS_buffer_processor<T> processor_type;
typedef void (*function_type)(value_type *);
static const size_t MAX_SIZE= PFS_PAGE_SIZE*PFS_PAGE_COUNT;
PFS_buffer_scalable_container(allocator_type *allocator)
{
m_allocator= allocator;
m_initialized= false;
m_lost= 0;
}
int init(long max_size)
{
int i;
m_initialized= true;
m_full= true;
m_max= PFS_PAGE_COUNT * PFS_PAGE_SIZE;
m_max_page_count= PFS_PAGE_COUNT;
m_last_page_size= PFS_PAGE_SIZE;
m_lost= 0;
m_monotonic.m_u32= 0;
m_max_page_index.m_u32= 0;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
m_pages[i]= NULL;
}
if (max_size == 0)
{
/* No allocation. */
m_max_page_count= 0;
}
else if (max_size > 0)
{
if (max_size % PFS_PAGE_SIZE == 0)
{
m_max_page_count= max_size / PFS_PAGE_SIZE;
}
else
{
m_max_page_count= max_size / PFS_PAGE_SIZE + 1;
m_last_page_size= max_size % PFS_PAGE_SIZE;
}
/* Bounded allocation. */
m_full= false;
if (m_max_page_count > PFS_PAGE_COUNT)
{
m_max_page_count= PFS_PAGE_COUNT;
m_last_page_size= PFS_PAGE_SIZE;
}
}
else
{
/* max_size = -1 means unbounded allocation */
m_full= false;
}
assert(m_max_page_count <= PFS_PAGE_COUNT);
assert(0 < m_last_page_size);
assert(m_last_page_size <= PFS_PAGE_SIZE);
pthread_mutex_init(& m_critical_section, NULL);
return 0;
}
void cleanup()
{
int i;
array_type *page;
if (! m_initialized)
return;
pthread_mutex_lock(& m_critical_section);
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
m_allocator->free_array(page);
delete page;
m_pages[i]= NULL;
}
}
pthread_mutex_unlock(& m_critical_section);
pthread_mutex_destroy(& m_critical_section);
m_initialized= false;
}
ulong get_row_count()
{
ulong page_count= m_max_page_index.m_u32.load();
return page_count * PFS_PAGE_SIZE;
}
ulong get_row_size() const
{
return sizeof(value_type);
}
ulong get_memory()
{
return get_row_count() * get_row_size();
}
value_type *allocate(pfs_dirty_state *dirty_state)
{
if (m_full)
{
m_lost++;
return NULL;
}
uint index;
uint monotonic;
uint monotonic_max;
uint current_page_count;
value_type *pfs;
array_type *array;
void *addr;
void * volatile * typed_addr;
void *ptr;
/*
1: Try to find an available record within the existing pages
*/
current_page_count= m_max_page_index.m_u32.load();
if (current_page_count != 0)
{
monotonic= m_monotonic.m_u32.load();
monotonic_max= monotonic + current_page_count;
while (monotonic < monotonic_max)
{
/*
Scan in the [0 .. current_page_count - 1] range,
in parallel with m_monotonic (see below)
*/
index= monotonic % current_page_count;
/* Atomic Load, array= m_pages[index] */
addr= & m_pages[index];
typed_addr= static_cast<void * volatile *>(addr);
ptr= my_atomic_loadptr(typed_addr);
array= static_cast<array_type *>(ptr);
if (array != NULL)
{
pfs= array->allocate(dirty_state);
if (pfs != NULL)
{
/* Keep a pointer to the parent page, for deallocate(). */
pfs->m_page= reinterpret_cast<PFS_opaque_container_page *> (array);
return pfs;
}
}
/*
Parallel scans collaborate to increase
the common monotonic scan counter.
Note that when all the existing page are full,
one thread will eventually add a new page,
and cause m_max_page_index to increase,
which fools all the modulo logic for scans already in progress,
because the monotonic counter is not folded to the same place
(sometime modulo N, sometime modulo N+1).
This is actually ok: since all the pages are full anyway,
there is nothing to miss, so better increase the monotonic
counter faster and then move on to the detection of new pages,
in part 2: below.
*/
monotonic= m_monotonic.m_u32.fetch_add(1);
};
}
/*
2: Try to add a new page, beyond the m_max_page_index limit
*/
while (current_page_count < m_max_page_count)
{
/* Peek for pages added by collaborating threads */
/* (2-a) Atomic Load, array= m_pages[current_page_count] */
addr= & m_pages[current_page_count];
typed_addr= static_cast<void * volatile *>(addr);
ptr= my_atomic_loadptr(typed_addr);
array= static_cast<array_type *>(ptr);
if (array == NULL)
{
// ==================================================================
// BEGIN CRITICAL SECTION -- buffer expand
// ==================================================================
/*
On a fresh started server, buffers are typically empty.
When a sudden load spike is seen by the server,
multiple threads may want to expand the buffer at the same time.
Using a compare and swap to allow multiple pages to be added,
possibly freeing duplicate pages on collisions,
does not work well because the amount of code involved
when creating a new page can be significant (PFS_thread),
causing MANY collisions between (2-b) and (2-d).
A huge number of collisions (which can happen when thousands
of new connections hits the server after a restart)
leads to a huge memory consumption, and to OOM.
To mitigate this, we use here a mutex,
to enforce that only ONE page is added at a time,
so that scaling the buffer happens in a predictable
and controlled manner.
*/
pthread_mutex_lock(& m_critical_section);
/*
Peek again for pages added by collaborating threads,
this time as the only thread allowed to expand the buffer
*/
/* (2-b) Atomic Load, array= m_pages[current_page_count] */
ptr= my_atomic_loadptr(typed_addr);
array= static_cast<array_type *>(ptr);
if (array == NULL)
{
/* (2-c) Found no page, allocate a new one */
array= new array_type();
builtin_memory_scalable_buffer.count_alloc(sizeof (array_type));
array->m_max= get_page_logical_size(current_page_count);
int rc= m_allocator->alloc_array(array);
if (rc != 0)
{
m_allocator->free_array(array);
delete array;
builtin_memory_scalable_buffer.count_free(sizeof (array_type));
m_lost++;
pthread_mutex_unlock(& m_critical_section);
return NULL;
}
/* Keep a pointer to this container, for static_deallocate(). */
array->m_container= reinterpret_cast<PFS_opaque_container *> (this);
/* (2-d) Atomic STORE, m_pages[current_page_count] = array */
ptr= array;
my_atomic_storeptr(typed_addr, ptr);
/* Advertise the new page */
m_max_page_index.m_u32.fetch_add(1);
}
pthread_mutex_unlock(& m_critical_section);
// ==================================================================
// END CRITICAL SECTION -- buffer expand
// ==================================================================
}
assert(array != NULL);
pfs= array->allocate(dirty_state);
if (pfs != NULL)
{
/* Keep a pointer to the parent page, for deallocate(). */
pfs->m_page= reinterpret_cast<PFS_opaque_container_page *> (array);
return pfs;
}
current_page_count++;
}
m_lost++;
m_full= true;
return NULL;
}
void deallocate(value_type *safe_pfs)
{
/* Find the containing page */
PFS_opaque_container_page *opaque_page= safe_pfs->m_page;
array_type *page= reinterpret_cast<array_type *> (opaque_page);
/* Mark the object free */
safe_pfs->m_lock.allocated_to_free();
/* Flag the containing page as not full. */
page->m_full= false;
/* Flag the overall container as not full. */
m_full= false;
}
static void static_deallocate(value_type *safe_pfs)
{
/* Find the containing page */
PFS_opaque_container_page *opaque_page= safe_pfs->m_page;
array_type *page= reinterpret_cast<array_type *> (opaque_page);
/* Mark the object free */
safe_pfs->m_lock.allocated_to_free();
/* Flag the containing page as not full. */
page->m_full= false;
/* Find the containing buffer */
PFS_opaque_container *opaque_container= page->m_container;
PFS_buffer_scalable_container *container;
container= reinterpret_cast<container_type *> (opaque_container);
/* Flag the overall container as not full. */
container->m_full= false;
}
iterator_type iterate()
{
return PFS_buffer_scalable_iterator<T, PFS_PAGE_SIZE, PFS_PAGE_COUNT, U, V>(this, 0);
}
iterator_type iterate(uint index)
{
assert(index <= m_max);
return PFS_buffer_scalable_iterator<T, PFS_PAGE_SIZE, PFS_PAGE_COUNT, U, V>(this, index);
}
void apply(function_type fct)
{
uint i;
array_type *page;
value_type *pfs;
value_type *pfs_last;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
pfs= page->get_first();
pfs_last= page->get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
fct(pfs);
}
pfs++;
}
}
}
}
void apply_all(function_type fct)
{
uint i;
array_type *page;
value_type *pfs;
value_type *pfs_last;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
pfs= page->get_first();
pfs_last= page->get_last();
while (pfs < pfs_last)
{
fct(pfs);
pfs++;
}
}
}
}
void apply(processor_type & proc)
{
uint i;
array_type *page;
value_type *pfs;
value_type *pfs_last;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
pfs= page->get_first();
pfs_last= page->get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
proc(pfs);
}
pfs++;
}
}
}
}
void apply_all(processor_type & proc)
{
uint i;
array_type *page;
value_type *pfs;
value_type *pfs_last;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
pfs= page->get_first();
pfs_last= page->get_last();
while (pfs < pfs_last)
{
proc(pfs);
pfs++;
}
}
}
}
value_type* get(uint index)
{
assert(index < m_max);
uint index_1= index / PFS_PAGE_SIZE;
array_type *page= m_pages[index_1];
if (page != NULL)
{
uint index_2= index % PFS_PAGE_SIZE;
if (index_2 >= page->m_max)
{
return NULL;
}
value_type *pfs= page->m_ptr + index_2;
if (pfs->m_lock.is_populated())
{
return pfs;
}
}
return NULL;
}
value_type* get(uint index, bool *has_more)
{
if (index >= m_max)
{
*has_more= false;
return NULL;
}
uint index_1= index / PFS_PAGE_SIZE;
array_type *page= m_pages[index_1];
if (page == NULL)
{
*has_more= false;
return NULL;
}
uint index_2= index % PFS_PAGE_SIZE;
if (index_2 >= page->m_max)
{
*has_more= false;
return NULL;
}
*has_more= true;
value_type *pfs= page->m_ptr + index_2;
if (pfs->m_lock.is_populated())
{
return pfs;
}
return NULL;
}
value_type *sanitize(value_type *unsafe)
{
intptr offset;
uint i;
array_type *page;
value_type *pfs;
value_type *pfs_last;
for (i=0 ; i < PFS_PAGE_COUNT; i++)
{
page= m_pages[i];
if (page != NULL)
{
pfs= page->get_first();
pfs_last= page->get_last();
if ((pfs <= unsafe) &&
(unsafe < pfs_last))
{
offset= ((intptr) unsafe - (intptr) pfs) % sizeof(value_type);
if (offset == 0)
return unsafe;
}
}
}
return NULL;
}
ulong m_lost;
private:
uint get_page_logical_size(uint page_index)
{
if (page_index + 1 < m_max_page_count)
return PFS_PAGE_SIZE;
assert(page_index + 1 == m_max_page_count);
return m_last_page_size;
}
value_type* scan_next(uint & index, uint * found_index)
{
assert(index <= m_max);
uint index_1= index / PFS_PAGE_SIZE;
uint index_2= index % PFS_PAGE_SIZE;
array_type *page;
value_type *pfs_first;
value_type *pfs;
value_type *pfs_last;
while (index_1 < PFS_PAGE_COUNT)
{
page= m_pages[index_1];
if (page == NULL)
{
index= static_cast<uint>(m_max);
return NULL;
}
pfs_first= page->get_first();
pfs= pfs_first + index_2;
pfs_last= page->get_last();
while (pfs < pfs_last)
{
if (pfs->m_lock.is_populated())
{
uint found= index_1 * PFS_PAGE_SIZE + static_cast<uint>(pfs - pfs_first);
*found_index= found;
index= found + 1;
return pfs;
}
pfs++;
}
index_1++;
index_2= 0;
}
index= static_cast<uint>(m_max);
return NULL;
}
bool m_initialized;
bool m_full;
size_t m_max;
PFS_cacheline_uint32 m_monotonic;
PFS_cacheline_uint32 m_max_page_index;
ulong m_max_page_count;
ulong m_last_page_size;
array_type * m_pages[PFS_PAGE_COUNT];
allocator_type *m_allocator;
pthread_mutex_t m_critical_section;
};
template <class T, class U, class V>
class PFS_buffer_iterator
{
friend class PFS_buffer_container<T, U, V>;
typedef T value_type;
typedef PFS_buffer_container<T, U, V> container_type;
public:
value_type* scan_next()
{
uint unused;
return m_container->scan_next(m_index, & unused);
}
value_type* scan_next(uint * found_index)
{
return m_container->scan_next(m_index, found_index);
}
private:
PFS_buffer_iterator(container_type *container, uint index)
: m_container(container),
m_index(index)
{}
container_type *m_container;
uint m_index;
};
template <class T, int page_size, int page_count, class U, class V>
class PFS_buffer_scalable_iterator
{
friend class PFS_buffer_scalable_container<T, page_size, page_count, U, V>;
typedef T value_type;
typedef PFS_buffer_scalable_container<T, page_size, page_count, U, V> container_type;
public:
value_type* scan_next()
{
uint unused;
return m_container->scan_next(m_index, & unused);
}
value_type* scan_next(uint * found_index)
{
return m_container->scan_next(m_index, found_index);
}
private:
PFS_buffer_scalable_iterator(container_type *container, uint index)
: m_container(container),
m_index(index)
{}
container_type *m_container;
uint m_index;
};
template <class T>
class PFS_buffer_processor
{
public:
virtual ~PFS_buffer_processor()= default;
virtual void operator()(T *element) = 0;
};
template <class B, int PFS_PARTITION_COUNT>
class PFS_partitioned_buffer_scalable_container
{
public:
friend class PFS_partitioned_buffer_scalable_iterator<B, PFS_PARTITION_COUNT>;
typedef typename B::value_type value_type;
typedef typename B::allocator_type allocator_type;
typedef PFS_partitioned_buffer_scalable_iterator<B, PFS_PARTITION_COUNT> iterator_type;
typedef typename B::iterator_type sub_iterator_type;
typedef typename B::processor_type processor_type;
typedef typename B::function_type function_type;
PFS_partitioned_buffer_scalable_container(allocator_type *allocator)
{
for (int i=0 ; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]= new B(allocator);
}
}
~PFS_partitioned_buffer_scalable_container()
{
for (int i=0 ; i < PFS_PARTITION_COUNT; i++)
{
delete m_partitions[i];
}
}
int init(long max_size)
{
int rc= 0;
// FIXME: we have max_size * PFS_PARTITION_COUNT here
for (int i=0 ; i < PFS_PARTITION_COUNT; i++)
{
rc|= m_partitions[i]->init(max_size);
}
return rc;
}
void cleanup()
{
for (int i=0 ; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]->cleanup();
}
}
ulong get_row_count() const
{
ulong sum= 0;
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
sum += m_partitions[i]->get_row_count();
}
return sum;
}
ulong get_row_size() const
{
return sizeof(value_type);
}
ulong get_memory() const
{
ulong sum= 0;
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
sum += m_partitions[i]->get_memory();
}
return sum;
}
long get_lost_counter()
{
long sum= 0;
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
sum += m_partitions[i]->m_lost;
}
return sum;
}
value_type *allocate(pfs_dirty_state *dirty_state, uint partition)
{
assert(partition < PFS_PARTITION_COUNT);
return m_partitions[partition]->allocate(dirty_state);
}
void deallocate(value_type *safe_pfs)
{
/*
One issue here is that we do not know which partition
the record belongs to.
Each record points to the parent page,
and each page points to the parent buffer,
so using static_deallocate here,
which will find the correct partition by itself.
*/
B::static_deallocate(safe_pfs);
}
iterator_type iterate()
{
return iterator_type(this, 0, 0);
}
iterator_type iterate(uint user_index)
{
uint partition_index;
uint sub_index;
unpack_index(user_index, &partition_index, &sub_index);
return iterator_type(this, partition_index, sub_index);
}
void apply(function_type fct)
{
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]->apply(fct);
}
}
void apply_all(function_type fct)
{
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]->apply_all(fct);
}
}
void apply(processor_type & proc)
{
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]->apply(proc);
}
}
void apply_all(processor_type & proc)
{
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
m_partitions[i]->apply_all(proc);
}
}
value_type* get(uint user_index)
{
uint partition_index;
uint sub_index;
unpack_index(user_index, &partition_index, &sub_index);
if (partition_index >= PFS_PARTITION_COUNT)
{
return NULL;
}
return m_partitions[partition_index]->get(sub_index);
}
value_type* get(uint user_index, bool *has_more)
{
uint partition_index;
uint sub_index;
unpack_index(user_index, &partition_index, &sub_index);
if (partition_index >= PFS_PARTITION_COUNT)
{
*has_more= false;
return NULL;
}
*has_more= true;
return m_partitions[partition_index]->get(sub_index);
}
value_type *sanitize(value_type *unsafe)
{
value_type *safe= NULL;
for (int i=0; i < PFS_PARTITION_COUNT; i++)
{
safe= m_partitions[i]->sanitize(unsafe);
if (safe != NULL)
{
return safe;
}
}
return safe;
}
private:
static void pack_index(uint partition_index, uint sub_index, uint *user_index)
{
/* 2^8 = 256 partitions max */
compile_time_assert(PFS_PARTITION_COUNT <= (1 << 8));
/* 2^24 = 16777216 max per partitioned buffer. */
compile_time_assert((B::MAX_SIZE) <= (1 << 24));
*user_index= (partition_index << 24) + sub_index;
}
static void unpack_index(uint user_index, uint *partition_index, uint *sub_index)
{
*partition_index= user_index >> 24;
*sub_index= user_index & 0x00FFFFFF;
}
value_type* scan_next(uint & partition_index, uint & sub_index, uint * found_partition, uint * found_sub_index)
{
value_type *record= NULL;
assert(partition_index < PFS_PARTITION_COUNT);
while (partition_index < PFS_PARTITION_COUNT)
{
sub_iterator_type sub_iterator= m_partitions[partition_index]->iterate(sub_index);
record= sub_iterator.scan_next(found_sub_index);
if (record != NULL)
{
*found_partition= partition_index;
sub_index= *found_sub_index + 1;
return record;
}
partition_index++;
sub_index= 0;
}
*found_partition= PFS_PARTITION_COUNT;
*found_sub_index= 0;
sub_index= 0;
return NULL;
}
B *m_partitions[PFS_PARTITION_COUNT];
};
template <class B, int PFS_PARTITION_COUNT>
class PFS_partitioned_buffer_scalable_iterator
{
public:
friend class PFS_partitioned_buffer_scalable_container<B, PFS_PARTITION_COUNT>;
typedef typename B::value_type value_type;
typedef PFS_partitioned_buffer_scalable_container<B, PFS_PARTITION_COUNT> container_type;
value_type* scan_next()
{
uint unused_partition;
uint unused_sub_index;
return m_container->scan_next(m_partition, m_sub_index, & unused_partition, & unused_sub_index);
}
value_type* scan_next(uint *found_user_index)
{
uint found_partition;
uint found_sub_index;
value_type *record;
record= m_container->scan_next(m_partition, m_sub_index, &found_partition, &found_sub_index);
container_type::pack_index(found_partition, found_sub_index, found_user_index);
return record;
}
private:
PFS_partitioned_buffer_scalable_iterator(container_type *container, uint partition, uint sub_index)
: m_container(container),
m_partition(partition),
m_sub_index(sub_index)
{}
container_type *m_container;
uint m_partition;
uint m_sub_index;
};
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_mutex, 1024, 1024> PFS_mutex_basic_container;
typedef PFS_partitioned_buffer_scalable_container<PFS_mutex_basic_container, PSI_COUNT_VOLATILITY> PFS_mutex_container;
#else
typedef PFS_buffer_container<PFS_mutex> PFS_mutex_container;
#endif
typedef PFS_mutex_container::iterator_type PFS_mutex_iterator;
extern PFS_mutex_container global_mutex_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_rwlock, 1024, 1024> PFS_rwlock_container;
#else
typedef PFS_buffer_container<PFS_rwlock> PFS_rwlock_container;
#endif
typedef PFS_rwlock_container::iterator_type PFS_rwlock_iterator;
extern PFS_rwlock_container global_rwlock_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_cond, 256, 256> PFS_cond_container;
#else
typedef PFS_buffer_container<PFS_cond> PFS_cond_container;
#endif
typedef PFS_cond_container::iterator_type PFS_cond_iterator;
extern PFS_cond_container global_cond_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_file, 4 * 1024, 4 * 1024> PFS_file_container;
#else
typedef PFS_buffer_container<PFS_file> PFS_file_container;
#endif
typedef PFS_file_container::iterator_type PFS_file_iterator;
extern PFS_file_container global_file_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_socket, 256, 256> PFS_socket_container;
#else
typedef PFS_buffer_container<PFS_socket> PFS_socket_container;
#endif
typedef PFS_socket_container::iterator_type PFS_socket_iterator;
extern PFS_socket_container global_socket_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_metadata_lock, 1024, 1024> PFS_mdl_container;
#else
typedef PFS_buffer_container<PFS_metadata_lock> PFS_mdl_container;
#endif
typedef PFS_mdl_container::iterator_type PFS_mdl_iterator;
extern PFS_mdl_container global_mdl_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_setup_actor, 128, 1024> PFS_setup_actor_container;
#else
typedef PFS_buffer_container<PFS_setup_actor> PFS_setup_actor_container;
#endif
typedef PFS_setup_actor_container::iterator_type PFS_setup_actor_iterator;
extern PFS_setup_actor_container global_setup_actor_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_setup_object, 128, 1024> PFS_setup_object_container;
#else
typedef PFS_buffer_container<PFS_setup_object> PFS_setup_object_container;
#endif
typedef PFS_setup_object_container::iterator_type PFS_setup_object_iterator;
extern PFS_setup_object_container global_setup_object_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_table, 1024, 1024> PFS_table_container;
#else
typedef PFS_buffer_container<PFS_table> PFS_table_container;
#endif
typedef PFS_table_container::iterator_type PFS_table_iterator;
extern PFS_table_container global_table_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_table_share, 4 * 1024, 4 * 1024> PFS_table_share_container;
#else
typedef PFS_buffer_container<PFS_table_share> PFS_table_share_container;
#endif
typedef PFS_table_share_container::iterator_type PFS_table_share_iterator;
extern PFS_table_share_container global_table_share_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_table_share_index, 8 * 1024, 8 * 1024> PFS_table_share_index_container;
#else
typedef PFS_buffer_container<PFS_table_share_index> PFS_table_share_index_container;
#endif
typedef PFS_table_share_index_container::iterator_type PFS_table_share_index_iterator;
extern PFS_table_share_index_container global_table_share_index_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_table_share_lock, 4 * 1024, 4 * 1024> PFS_table_share_lock_container;
#else
typedef PFS_buffer_container<PFS_table_share_lock> PFS_table_share_lock_container;
#endif
typedef PFS_table_share_lock_container::iterator_type PFS_table_share_lock_iterator;
extern PFS_table_share_lock_container global_table_share_lock_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_program, 1024, 1024> PFS_program_container;
#else
typedef PFS_buffer_container<PFS_program> PFS_program_container;
#endif
typedef PFS_program_container::iterator_type PFS_program_iterator;
extern PFS_program_container global_program_container;
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_prepared_stmt, 1024, 1024> PFS_prepared_stmt_container;
#else
typedef PFS_buffer_container<PFS_prepared_stmt> PFS_prepared_stmt_container;
#endif
typedef PFS_prepared_stmt_container::iterator_type PFS_prepared_stmt_iterator;
extern PFS_prepared_stmt_container global_prepared_stmt_container;
class PFS_account_array : public PFS_buffer_default_array<PFS_account>
{
public:
PFS_single_stat *m_instr_class_waits_array;
PFS_stage_stat *m_instr_class_stages_array;
PFS_statement_stat *m_instr_class_statements_array;
PFS_transaction_stat *m_instr_class_transactions_array;
PFS_memory_stat *m_instr_class_memory_array;
};
class PFS_account_allocator
{
public:
int alloc_array(PFS_account_array *array);
void free_array(PFS_account_array *array);
};
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_account,
128,
128,
PFS_account_array,
PFS_account_allocator> PFS_account_container;
#else
typedef PFS_buffer_container<PFS_account,
PFS_account_array,
PFS_account_allocator> PFS_account_container;
#endif
typedef PFS_account_container::iterator_type PFS_account_iterator;
extern PFS_account_container global_account_container;
class PFS_host_array : public PFS_buffer_default_array<PFS_host>
{
public:
PFS_single_stat *m_instr_class_waits_array;
PFS_stage_stat *m_instr_class_stages_array;
PFS_statement_stat *m_instr_class_statements_array;
PFS_transaction_stat *m_instr_class_transactions_array;
PFS_memory_stat *m_instr_class_memory_array;
};
class PFS_host_allocator
{
public:
int alloc_array(PFS_host_array *array);
void free_array(PFS_host_array *array);
};
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_host,
128,
128,
PFS_host_array,
PFS_host_allocator> PFS_host_container;
#else
typedef PFS_buffer_container<PFS_host,
PFS_host_array,
PFS_host_allocator> PFS_host_container;
#endif
typedef PFS_host_container::iterator_type PFS_host_iterator;
extern PFS_host_container global_host_container;
class PFS_thread_array : public PFS_buffer_default_array<PFS_thread>
{
public:
PFS_single_stat *m_instr_class_waits_array;
PFS_stage_stat *m_instr_class_stages_array;
PFS_statement_stat *m_instr_class_statements_array;
PFS_transaction_stat *m_instr_class_transactions_array;
PFS_memory_stat *m_instr_class_memory_array;
PFS_events_waits *m_waits_history_array;
PFS_events_stages *m_stages_history_array;
PFS_events_statements *m_statements_history_array;
PFS_events_statements *m_statements_stack_array;
PFS_events_transactions *m_transactions_history_array;
char *m_session_connect_attrs_array;
char *m_current_stmts_text_array;
char *m_history_stmts_text_array;
unsigned char *m_current_stmts_digest_token_array;
unsigned char *m_history_stmts_digest_token_array;
};
class PFS_thread_allocator
{
public:
int alloc_array(PFS_thread_array *array);
void free_array(PFS_thread_array *array);
};
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_thread,
256,
256,
PFS_thread_array,
PFS_thread_allocator> PFS_thread_container;
#else
typedef PFS_buffer_container<PFS_thread,
PFS_thread_array,
PFS_thread_allocator> PFS_thread_container;
#endif
typedef PFS_thread_container::iterator_type PFS_thread_iterator;
extern PFS_thread_container global_thread_container;
class PFS_user_array : public PFS_buffer_default_array<PFS_user>
{
public:
PFS_single_stat *m_instr_class_waits_array;
PFS_stage_stat *m_instr_class_stages_array;
PFS_statement_stat *m_instr_class_statements_array;
PFS_transaction_stat *m_instr_class_transactions_array;
PFS_memory_stat *m_instr_class_memory_array;
};
class PFS_user_allocator
{
public:
int alloc_array(PFS_user_array *array);
void free_array(PFS_user_array *array);
};
#ifdef USE_SCALABLE
typedef PFS_buffer_scalable_container<PFS_user,
128,
128,
PFS_user_array,
PFS_user_allocator> PFS_user_container;
#else
typedef PFS_buffer_container<PFS_user,
PFS_user_array,
PFS_user_allocator> PFS_user_container;
#endif
typedef PFS_user_container::iterator_type PFS_user_iterator;
extern PFS_user_container global_user_container;
#endif
|