1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
/* massXpert - the true massist's program.
--------------------------------------
Copyright(C) 2006,2007 Filippo Rusconi
http://www.massxpert.org/massXpert
This file is part of the massXpert project.
The massxpert project is the successor to the "GNU polyxmass"
project that is an official GNU project package(see
www.gnu.org). The massXpert project is not endorsed by the GNU
project, although it is released ---in its entirety--- under the
GNU General Public License. A huge part of the code in massXpert
is actually a C++ rewrite of code in GNU polyxmass. As such
massXpert was started at the Centre National de la Recherche
Scientifique(FRANCE), that granted me the formal authorization to
publish it under this Free Software License.
This software is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License version 3, as published by the Free Software Foundation.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this software; if not, write to the
Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/////////////////////// Qt includes
#include <QtXml>
/////////////////////// Local includes
#include "atom.hpp"
namespace massXpert
{
//! Constructs an atom.
/*!
\param name name of the atom, ie "Hydrogen". Defaults to the null string.
\param symbol symbol of the atom, ie 'H'. Defaults to the null string.
*/
Atom::Atom(const QString &name, const QString &symbol)
{
if (!name.isNull())
m_name = name;
if (!symbol.isNull())
m_symbol = symbol;
}
//! Constructs a copy of \p other.
/*! \param other atom to be used as a mold.
*/
Atom::Atom(const Atom &other)
: Ponderable(static_cast<Ponderable>(other))
{
m_name = other.m_name;
m_symbol = other.m_symbol;
for (int iter = 0 ; iter < other.m_isotopeList.size(); ++iter)
{
Isotope *isotope = new Isotope(*other.m_isotopeList.at(iter));
m_isotopeList.append(isotope);
}
}
//! Destroys the atom.
Atom::~Atom()
{
while(!m_isotopeList.isEmpty())
delete m_isotopeList.takeFirst();
}
//! Creates a new atom initialized with \c this.
/*! The initialization of the new atom involves duplicating all the
data of \c this, including all the isotopes of the isotope list.
\return The newly created atom, which should be deleted when no
longer in use.
*/
Atom *
Atom::clone() const
{
Atom *other = new Atom(*this);
return other;
}
//! Modifies \p other to be identical to \p this.
/*! \param other atom.
*/
void
Atom::clone(Atom *other) const
{
Q_ASSERT(other);
if (other == this)
return;
other->m_name = m_name;
other->m_symbol = m_symbol;
Ponderable::clone(other);
while(!other->m_isotopeList.isEmpty())
delete other->m_isotopeList.takeFirst();
for (int iter = 0 ; iter < m_isotopeList.size(); ++iter)
{
Isotope *isotope = new Isotope(*m_isotopeList.at(iter));
other->m_isotopeList.append(isotope);
}
}
//! Modifies \p this to be identical to \p other.
/*! \param other atom to be used as a mold.
*/
void
Atom::mold(const Atom &other)
{
if (&other == this)
return;
m_name = other.m_name ;
m_symbol = other.m_symbol;
Ponderable::mold(other);
while(!m_isotopeList.isEmpty())
delete m_isotopeList.takeFirst();
for (int iter = 0 ; iter < other.m_isotopeList.size(); ++iter)
{
Isotope *isotope = new Isotope(*other.m_isotopeList.at(iter));
m_isotopeList.append(isotope);
}
}
//! Assigns other to \p this atom.
/*! \param other atom used as the mold to set values to \p this
instance.
\return a reference to \p this atom.
*/
Atom &
Atom::operator =(const Atom &other)
{
if (&other != this)
mold(other);
return *this;
}
//! Returns the isotope list.
/*! \return the isotope list.
*/
const QList<Isotope *> &
Atom::isotopeList() const
{
return m_isotopeList;
}
void
Atom::appendIsotope(Isotope *isotope)
{
Q_ASSERT(isotope);
m_isotopeList.append(isotope);
}
void
Atom::insertIsotopeAt(int index, Isotope *isotope)
{
Q_ASSERT(isotope);
Q_ASSERT(index >= 0);
if (index >= m_isotopeList.size())
appendIsotope(isotope);
else
m_isotopeList.insert(index, isotope);
}
void
Atom::removeIsotopeAt(int index)
{
Q_ASSERT(index >= 0 && index < m_isotopeList.size());
m_isotopeList.removeAt(index);
}
//! Sets the name.
/*! \param str new name.
*/
void
Atom::setName(const QString &str)
{
m_name = str;
}
//! Returns the name.
/*! \return the name.
*/
QString
Atom::name() const
{
return m_name;
}
//! Sets the symbol.
/*! \param str new symbol
*/
void
Atom::setSymbol(const QString &str)
{
m_symbol = str;
}
//! Returns the symbol.
/*! \return the symbol.
*/
QString
Atom::symbol() const
{
return m_symbol;
}
//! Calculates the masses(mono and avg).
/*! The calculation is actually performed by the two functions
calculateMono() and calculateAvg().
\return true if calculations were successful, false otherwise.
\sa calculateMono()
\sa calculateAvg()
*/
bool
Atom::calculateMasses()
{
double mono = calculateMono();
double avg = calculateAvg();
if (!mono || !avg)
return false;
return true;
}
//! Calculates the monoisotopic mass.
/*! Calculation is done by iterating in the isotope list and looking
for the lightest isotope.
\return the monoisotopic mass.
*/
double
Atom::calculateMono()
{
double temp = 0;
double mass = 0;
int idx = -1;
// All we have to do is find what's the isotope that has the lowest
// mass.
for (int iter = 0; iter < m_isotopeList.size(); ++iter)
{
mass = m_isotopeList.at(iter)->mass();
if(temp == 0)
{
temp = mass;
idx = iter;
}
else
{
if (mass < temp)
{
temp = mass;
idx = iter;
}
}
}
// At this point, we should have a idx variable greater than or
// equal to 0. Note, however, that it might happen that the monomer
// has no isotope in its list, for example, when the user is editing
// the atom definitions in the atom definition window.
if (idx == -1)
m_mono = 0;
else
m_mono = m_isotopeList.at(idx)->mass();
return m_mono;
}
//! Calculates the average mass.
/*! Calculation is done by taking into account all the isotopes of the
atom while compounding each isotope's mass with its corresponding
abundance.
\return the average mass.
*/
double
Atom::calculateAvg()
{
double total_abundance = 0;
double mass = 0;
double abundance = 0;
// By using the isotopeList of allocated Isotope instances, we
// can compute the average mass of the current atom instance.
for (int iter = 0; iter < m_isotopeList.size(); ++iter)
total_abundance += m_isotopeList.at(iter)->abundance();
m_avg = 0;
// Compute the average mass: sum of the product of each isotopic
// mass per the ratio of the related abundance over the total
// abundance.
for (int iter = 0; iter < m_isotopeList.size(); ++iter)
{
mass = m_isotopeList.at(iter)->mass();
abundance = m_isotopeList.at(iter)->abundance();
m_avg += mass *(abundance / total_abundance);
}
return m_avg;
}
//! Increments the masses in the arguments.
/*! The masses used for the accounting are are not found in \p this
instance, actually. First a reference atom is searched in \p reflist
using \p this atom's symbol as search criterion. The monoisotopic
and average masses of the found atom are used for the
computation. The values pointed to by the first two arguments are
updated by incrementation using the masses(monoisotopic and
average) compounded by the \p times argument.
For example, if \p times is 2 ; \p *mono is 100 and \p *avg is 101 ;
\p this atom's monoisotopic mass is 200 and average mass is 202,
then the computation leads to \p *mono = 100 + 2 * 200 and \p *avg =
101 + 2 * 202.
\param refList list of reference atoms.
\param mono monoisotopic mass to update. Defaults to 0, in which
case this mass is not updated.
\param avg average mass to update. Defaults to 0, in which case this
mass is not updated.
\param times times that the increment should be performed. Defaults
to 1.
\return true if successful, false otherwise(that is, if no
reference atom could be found in \p refList).
\sa accountMasses(double *mono, double *avg, int times)
*/
bool
Atom::accountMasses(const QList<Atom *> &refList,
double *mono, double *avg, int times)
{
int idx = -1;
// We have to find this atom in the reference List.
// When we have found it we get an index to that item. We'll get
// the masses out of the found item and multiply that mass by the
// times parameter. We'll increment the mass values in massPair
// accordingly.
idx = isSymbolKnown(refList);
if (idx == -1)
return false;
if (mono)
*mono += refList.at(idx)->m_mono * times;
if (avg)
*avg += refList.at(idx)->m_avg * times;
return true;
}
//! Increments the masses in the arguments.
/*! The values pointed to by the first two arguments are updated by
incrementation using the masses(monoisotopic and average)
compounded by the \p times argument.
For example, if \p times is 2 ; \p *mono is 100 and \p *avg is 101 ;
\p this atom's monoisotopic mass is 200 and average mass is 202,
then the computation leads to \p *mono = 100 + 2 * 200 and \p *avg =
101 + 2 * 202.
\param mono monoisotopic mass to update. Defaults to 0, in which
case this mass is not updated.
\param avg average mass to update. Defaults to 0, in which case this
mass is not updated.
\param times times that the increment should be performed. Defaults
to 1.
\return always true.
\sa accountMasses(const QList<Atom *> &refList, double *mono,
double *avg, int times)
*/
bool
Atom::accountMasses(double *mono, double *avg, int times) const
{
if (mono)
*mono += m_mono * times;
if (avg)
*avg += m_avg * times;
return true;
}
//! Searches \p this atom in an atom list according to the symbol.
/*! The list of reference atoms passed as argument is searched for an
atom instance that has the same symbol as \p this atom.
\param refList list of reference atoms.
\return the index of the found atom or -1 if none is found or if the
symbol is empty.
*/
int
Atom::isSymbolKnown(const QList<Atom *> &refList) const
{
if (m_symbol.isEmpty())
return -1;
for (int iter = 0; iter < refList.size(); ++iter)
{
if(refList.at(iter)->m_symbol == m_symbol)
return iter;
}
return -1;
}
//! Searches an atom in a list according to the \p str symbol.
/*! Searches for an atom instance having a symbol identical to
argument \p str in the atom list \p refList. If such atom is found,
and if \p other is non-0, \p this atom's data are copied into \p
other.
\param str symbol.
\param refList list of reference atoms.
\param other atom in which to copy the data from the found
atom. Defaults to 0, in which case no copying occurs.
\return the int index of the found atom or -1 if no atom instance is
found or if \p str is empty.
*/
int
Atom::isSymbolInList(const QString &str,
const QList<Atom *> &refList,
Atom *other)
{
Atom *atom = 0;
if (str.isEmpty())
return -1;
for (int iter = 0; iter < refList.size(); ++iter)
{
atom = refList.at(iter);
Q_ASSERT(atom);
if(atom->m_symbol == str)
{
if (other != 0)
atom->clone(other);
return iter;
}
}
return -1;
}
//! Searches \p this atom in an atom list according to the name.
/*! The list of reference atoms passed as argument is searched for an
atom instance that has the same name as \p this atom.
\param refList list of reference atoms.
\return the index of the found atom or -1 if no atom instance is
found or if the name is empty.
*/
int
Atom::isNameKnown(const QList<Atom *> &refList) const
{
if (m_name.isEmpty())
return -1;
for (int iter = 0; iter < refList.size(); ++iter)
{
if(refList.at(iter)->m_name == m_name)
return iter;
}
return -1;
}
//! Searches an atom in a list according to the \p str name.
/*! Searches for an atom instance having a name identical to
argument \p str in the atom list \p refList. If such atom is found,
and if \p other is non-0, \p this atom's data are copied into \p
other.
\param str name.
\param refList list of reference atoms.
\param other atom in which to copy the data from the found
atom. Defaults to 0, in which case no copying occurs.
\return the int index of the found atom or -1 if no atom instance is
found or if \p str is empty.
*/
int
Atom::isNameInList(const QString &str,
const QList<Atom *> &refList,
Atom *other)
{
Atom *atom = 0;
if (str.isEmpty())
return -1;
for (int iter = 0; iter < refList.size(); ++iter)
{
atom = refList.at(iter);
Q_ASSERT(atom);
if(atom->m_name == str)
{
if (other != 0)
atom->clone(other);
return iter;
}
}
return -1;
}
//! Validates \p this atom.
/*! Validation is performed by ensuring that all member data have sane
values. Note that the masses(monoisotopic and average) are not
concerned by the validation process because the presence of at least
one isotope in the isotope list essentially makes sure that masses
are available(see below).
\li the name of the atom cannot be empty;
\li the symbol of the atom cannot be empty or longer than 3 Unicode
\e letter characters. The first character has to be uppercase while
the remaining ones(if any) have to be lowercase;
\li the isotope list must at least have one isotope item.
\return true if the atom was successfully validated, false otherwise.
*/
bool
Atom::validate()
{
if (m_name.isEmpty())
return false;
if (m_symbol.isEmpty())
return false;
for (int iter = 0; iter < m_symbol.length(); ++iter)
{
QChar currentChar = m_symbol.at(iter);
int category = currentChar.category();
if(category != QChar::Letter_Uppercase &&
category != QChar::Letter_Lowercase)
return false;
if(!iter)
{
if (category != QChar::Letter_Uppercase)
return false;
}
else
{
if (category != QChar::Letter_Lowercase)
return false;
}
}
if (m_isotopeList.size() < 1)
return false;
return true;
}
//! Parses an atom XML element.
/*! Parses the atom XML element passed as argument and for each
encountered data will set the data to \p this atom(this is called
XML rendering). The masses are calculated by calling
calculateMasses() and \p this atom instance is validated by calling
validate().
\param element XML element to be parsed and rendered.
\return true if parsing and atom validation were successful, false
otherwise.
\sa formatXmlAtomElement(int offset, const QString &indent)
*/
bool
Atom::renderXmlAtomElement(const QDomElement &element, int version)
{
// For the time being the version is not necessary here. As of
// version up to 2, the current function works ok.
Isotope *isotope = 0;
QDomElement child;
QDomElement childIsotope;
/* We are willing to create a new PxmAtom instance based on the
* following xml data:
*
* <atom>
* <name>Hydrogen</name>
* <symbol>H</symbol>
* <isotope>
* <mass>1.0078250370</mass>
* <abundance>99.9885000000</abundance>
* </isotope>
* <isotope>
* <mass>2.0141017870</mass>
* <abundance>0.0115000000</abundance>
* </isotope>
* </atom>
*
* The element that is pointed to by element is the <atom> node:
*
* <atom> element tag:
* ^
* |
* +----- here we are right now.
*
* Which means that element.tagName() == "atom" and that
* we'll have to go one step down to the first child of the
* current node in order to get to the <name> element.
*/
if (element.tagName() != "atom")
return false;
child = element.firstChildElement("name");
if (child.isNull())
return false;
m_name = child.text();
child = child.nextSiblingElement("symbol");
if (child.isNull())
return false;
m_symbol = child.text();
// And now we have to deal with <isotope> elements, of which there
// might be one or more(but no zero).
childIsotope = child.nextSiblingElement("isotope");
while(!childIsotope.isNull())
{
// We have arrived to the first <isotope> element, for which we
// delegate the parsing to the appropriate function:
isotope = new(Isotope);
if(!isotope->renderXmlIsotopeElement(childIsotope, version))
{
delete isotope;
return false;
}
// Add the newly dynallocated isotope to the List.
m_isotopeList.append(isotope);
childIsotope = childIsotope.nextSiblingElement("isotope");
}
// Sort all the isotopes in mass-increasing order.
qSort(m_isotopeList.begin(), m_isotopeList.end(), Isotope::lessThan);
// for (int iter = 0; iter < m_isotopeList.size(); ++iter)
// qDebug() << __FILE__ << __LINE__
// << "After Sort Atom:" << m_name
// << m_isotopeList.at(iter)->mass();
// We have to compute the mono/avg masses so that the atom is
// immediately usable.
calculateMasses();
// qDebug() << "mono:" << m_mono << "avg:" << m_avg;
// Validate this atom.
if (!validate())
return false;
return true;
}
//! Formats a string suitable to use as an XML element.
/*! Formats a string suitable to be used as an XML element in a
polymer chemistry definition file. The typical atom element that is
generated in this function looks like this:
\verbatim
<atom>
<name>Hydrogen</name>
<symbol>H</symbol>
<isotope>
<mass>1.0078250370</mass>
<abundance>99.9885000000</abundance>
</isotope>
<isotope>
<mass>2.0141017870</mass>
<abundance>0.0115000000</abundance>
</isotope>
</atom>
\endverbatim
\param offset times the \p indent string must be used as a lead in the
formatting of elements.
\param indent string used to create the leading space that is placed
at the beginning of indented XML elements inside the XML
element. Defaults to two spaces(QString(" ")).
\return a dynamically allocated string that needs to be freed after
use.
\sa renderXmlAtomElement(const QDomElement &element)
*/
QString *
Atom::formatXmlAtomElement(int offset, const QString &indent)
{
int newOffset;
int iter = 0;
QString lead("");
QString *string = new QString();
Isotope *isotope = 0;
// Prepare the lead.
newOffset = offset;
while(iter < newOffset)
{
lead += indent;
++iter;
}
*string += QString("%1<atom>\n")
.arg(lead);
// Prepare the lead.
++newOffset;
lead.clear();
iter = 0;
while(iter < newOffset)
{
lead += indent;
++iter;
}
// Continue with indented elements.
*string += QString("%1<name>%2</name>\n")
.arg(lead)
.arg(m_name);
*string += QString("%1<symbol>%2</symbol>\n")
.arg(lead)
.arg(m_symbol);
// At this point we have the different isotope(s) of the atom. We
// delegate that to the appropriate function of the isotope class.
for (int jter = 0; jter < m_isotopeList.size(); ++jter)
{
isotope = m_isotopeList.at(jter);
QString *isotopeString = isotope->formatXmlIsotopeElement(newOffset);
*string += *isotopeString;
delete(isotopeString);
}
// Prepare the lead for the closing element.
--newOffset;
lead.clear();
iter = 0;
while(iter < newOffset)
{
lead += indent;
++iter;
}
*string += QString("%1</atom>\n")
.arg(lead);
return string;
}
} // namespace massXpert
|