1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
|
/* massXpert - the true massist's program.
--------------------------------------
Copyright(C) 2006,2007 Filippo Rusconi
http://www.massxpert.org/massXpert
This file is part of the massXpert project.
The massxpert project is the successor to the "GNU polyxmass"
project that is an official GNU project package(see
www.gnu.org). The massXpert project is not endorsed by the GNU
project, although it is released ---in its entirety--- under the
GNU General Public License. A huge part of the code in massXpert
is actually a C++ rewrite of code in GNU polyxmass. As such
massXpert was started at the Centre National de la Recherche
Scientifique(FRANCE), that granted me the formal authorization to
publish it under this Free Software License.
This software is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License version 3, as published by the Free Software Foundation.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this software; if not, write to the
Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/////////////////////// Std includes
#include <cmath>
/////////////////////// Local includes
#include "pkaPhPi.hpp"
namespace massXpert
{
PkaPhPi::PkaPhPi(Polymer &polymer,
CalcOptions &calcOptions,
QList<Monomer *> *monomerList,
QList<Modif *> *modifList)
: m_polymer(polymer),
m_calcOptions(calcOptions),
mpa_monomerList(monomerList),
mpa_modifList(modifList)
{
m_ph = 7;
m_pi = 7;
m_positiveCharges = 0;
m_negativeCharges = 0;
mp_aborted = 0;
mp_progress = 0;
}
PkaPhPi::~PkaPhPi()
{
if (mpa_monomerList)
{
while(!mpa_monomerList->isEmpty())
delete mpa_monomerList->takeFirst();
delete mpa_monomerList;
mpa_monomerList = 0;
}
if (mpa_modifList)
{
while(!mpa_modifList->isEmpty())
delete mpa_modifList->takeFirst();
delete mpa_modifList;
mpa_modifList = 0;
}
}
void
PkaPhPi::setPh(double ph)
{
Q_ASSERT(ph > 0 && ph < 14);
m_ph = ph;
}
double
PkaPhPi::ph()
{
return m_ph;
}
double
PkaPhPi::pi()
{
return m_pi;
}
double
PkaPhPi::positiveCharges()
{
return m_positiveCharges;
}
double
PkaPhPi::negativeCharges()
{
return m_negativeCharges;
}
void
PkaPhPi::setCalcOptions(const CalcOptions &calcOptions)
{
m_calcOptions = calcOptions;
}
void
PkaPhPi::setMonomerList(QList<Monomer *> *monomerList)
{
Q_ASSERT(monomerList);
mpa_monomerList = monomerList;
}
void
PkaPhPi::setModifList(QList<Modif *> *modifList)
{
Q_ASSERT(modifList);
mpa_modifList = modifList;
}
int
PkaPhPi::calculateCharges()
{
int processedChemicalGroups = 0;
m_positiveCharges = 0;
m_negativeCharges = 0;
// We of course need monomers ! Instead, we may not need modifs.
if (!mpa_monomerList)
return -1;
int polymerSize = m_polymer.size();
// The general scheme is :
// Get the list of the coordinates of the different region
// selections. For each first monomer and end monomer of a given
// region selection, check if the the region is an oligomer or a
// residual chain(m_selectionType of CalcOptions); act
// accordingly. Also, check for each selection region if it
// encompasses the polymer left/right end. If the left/right end
// modifications are to be taken into account, act accordingly.
const CoordinateList &coordinateList = m_calcOptions.coordinateList();
for (int iter = 0; iter < coordinateList.size(); ++iter)
{
Coordinates *coordinates = coordinateList.at(iter);
int startIndex = coordinates->start();
int endIndex = coordinates->end();
bool leftMostCoordinates =
coordinateList.isLeftMostCoordinates(coordinates);
bool rightMostCoordinates =
coordinateList.isRightMostCoordinates(coordinates);
for(int jter = startIndex; jter < endIndex + 1; ++jter)
{
const Monomer *seqMonomer = m_polymer.at(jter);
// qDebug() << __FILE__ << __LINE__
// << "-- Monomer:" << seqMonomer->name()
// << "position:" << jter + 1;
// Find a monomer by the same code in our list of monomers
// that have been fed with chemical group data. Note that
// all the monomers in a given sequence must not
// necessarily have a counterpart in the local list of
// monoemers. For example, there might be cases in which a
// given monomer might not bring any charge whatsoever.
int index = Monomer::isCodeInList(seqMonomer->code(),
*mpa_monomerList);
if (index == -1)
return -1;
const Monomer *monomer = mpa_monomerList->at(index);
Q_ASSERT(monomer);
// A monomer can have multiple such "CHEMICAL_GROUP"
// properties. Indeed, for example for proteins, a monomer
// might have three such chemical groups(and thus three
// Prop objects): one for the alpha NH2, one for the alpha
// COOH and one for a residual chain chemical group, like
// epsilon NH2 for lysine.
for (int kter = 0; kter < monomer->propList().size(); ++kter)
{
Prop *prop = monomer->propList().at(kter);
if(prop->name() != "CHEMICAL_GROUP")
continue;
// qDebug() << __FILE__ << __LINE__
// << "Monomer has property CHEMICAL_GROUP...";
// Get the chemical group out of the property.
ChemicalGroup *chemicalGroup =
static_cast<ChemicalGroup *>(prop->data());
if(chemicalGroup->polRule() & MXP_CHEMGROUP_LEFT_TRAPPED)
{
// qDebug() << __FILE__ << __LINE__
// << "... that is MXP_CHEMGROUP_LEFT_TRAPPED";
// The chemical group we are dealing with is trapped
// when the monomer is polymerized on the left end, that
// is if the monomer is not the left end monomer of the
// sequence being analyzed.
// Thus we only can take it into account if one of
// two conditions are met:
// 1. The monomer is the left end monomer of the
// whole polymer sequence.
// 2. The monomer is the left end monomer of the
// region selection AND the selection type is
// oligomers(thus it does not get polymerized to
// the previous selection region).
if (jter > 0)
{
// Clearly we are not dealing with the left
// end of the polymer, so check if we have to
// account for this chemical group or not.
if(!leftMostCoordinates)
{
// The current Coordinates is not the
// left-most Coordinates in the
// CoordinateList, thus we cannot consider
// it to be the "left end coordinates" of
// the CoordinateList. Just continue
// without exploring any more.
continue;
}
if(jter == startIndex)
{
// The current monomer is the first
// monomer of Coordinates. We only take
// into account the chemical group if each
// Coordinates is to be considered an
// oligomer.
if (m_calcOptions.selectionType() !=
SELECTION_TYPE_OLIGOMERS)
continue;
}
}
}
if(chemicalGroup->polRule() & MXP_CHEMGROUP_RIGHT_TRAPPED)
{
// qDebug() << __FILE__ << __LINE__
// << "... that is MXP_CHEMGROUP_RIGHT_TRAPPED";
// See explanations above.
if (jter < polymerSize - 1)
{
// Clearly, we are not dealing with the right
// end of the polymer.
if(!rightMostCoordinates)
{
// The current Coordinates is not the
// right-most Coordinates of the
// CoordinateList, thus we cannot consider
// it to be the "right end coordinates" of
// the CoordinateList. Just continue
// without exploring anymore.
continue;
}
if(jter == endIndex)
{
// The current monomer is the last monomer
// of Coordinates. We only take into
// account the chemical group if each
// Coordinates is to be considered an
// oligomer(and not a residual chain).
if (m_calcOptions.selectionType() !=
SELECTION_TYPE_OLIGOMERS)
continue;
}
}
}
if(iter == 0 &&
m_calcOptions.polymerEntities() &
MXT_POLYMER_CHEMENT_LEFT_END_MODIF)
{
// We are iterating in the monomer that is at the
// beginning of the polymer sequence. We should
// test if the chemical group we are dealing with
// right now has a special rule for the left end
// of the polymer sequence region.
int ret =
accountPolymerEndModif(MXT_POLYMER_CHEMENT_LEFT_END_MODIF,
*chemicalGroup);
if (ret >= 0)
{
// qDebug() << __FILE__ << __LINE__
// << "Accounted for left end modif.";
processedChemicalGroups += ret;
continue;
}
}
if(iter == polymerSize -1 &&
m_calcOptions.polymerEntities() &
MXT_POLYMER_CHEMENT_RIGHT_END_MODIF)
{
int ret =
accountPolymerEndModif(MXT_POLYMER_CHEMENT_RIGHT_END_MODIF,
*chemicalGroup);
if (ret >= 0)
{
// qDebug() << __FILE__ << __LINE__
// << "Accounted for right end modif.";
processedChemicalGroups += ret;
continue;
}
}
if(m_calcOptions.monomerEntities() &
MXT_MONOMER_CHEMENT_MODIF &&
seqMonomer->isModified())
{
int ret = accountMonomerModif(*seqMonomer, *chemicalGroup);
if (ret >= 0)
{
// qDebug() << __FILE__ << __LINE__
// << "Accounted for monomer modif.";
processedChemicalGroups += ret;
continue;
}
}
double charge =
calculateChargeRatio(chemicalGroup->pka(),
chemicalGroup->isAcidCharged());
// qDebug() << __FILE__ << __LINE__
// << "Charge:" << charge;
if(charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
// qDebug() << __FILE__ << __LINE__
// << "Pos =" << m_positiveCharges
// << "Neg = " << m_negativeCharges;
++processedChemicalGroups;
}
// End of
// for (int kter = 0; kter < monomer->propList().size(); ++kter)
// qDebug() << __FILE__ << __LINE__
// << "End dealing with Monomer:" << seqMonomer->name()
// << "position:" << jter + 1;
}
// End of
// for (int jter = startIndex; jter < endIndex + 1; ++jter)
// qDebug() << __FILE__ << __LINE__
// << "End dealing with Coordinates";
}
// End of
// for (int iter = 0; iter < coordinateList.size(); ++iter)
// We have finished processing all the Coordinates in the list.
return processedChemicalGroups;
}
int
PkaPhPi::calculatePi()
{
int processedChemicalGroups = 0;
int iteration = 0;
double netCharge = 0;
double firstCharge = 0;
double thirdCharge = 0;
// We of course need monomers ! Instead, we may not need modifs.
if (!mpa_monomerList)
{
m_pi = 0;
m_ph= 0;
return -1;
}
m_ph = 0;
while(true)
{
// qDebug() << "Current pH being tested:" << m_ph;
processedChemicalGroups = calculateCharges();
if(processedChemicalGroups == -1)
{
qDebug() << "Failed to calculate net charge for pH" << m_ph;
m_pi = 0;
m_ph= 0;
return -1;
}
netCharge = m_positiveCharges + m_negativeCharges;
// Note that if the 0.01 tested_ph step is enough to switch the
// net charge from one excess value to another excess value in
// the opposite direction, we'll enter an infinite loop.
//
// The evidence for such loop is that every other two measures,
// the net charge of the polymer sequence will be the same.
//
// Here we test this so that we can break the loop.
++iteration;
if(iteration == 1)
{
firstCharge = netCharge;
}
else if (iteration == 3)
{
thirdCharge = netCharge;
if (firstCharge == thirdCharge)
break;
iteration = 0;
firstCharge = netCharge;
}
// At this point we have to test the net charge:
if(netCharge >= -0.1 && netCharge <= 0.1)
{
// qDebug() << "Breaking loop with netCharge:" << netCharge;
break;
}
if(netCharge > 0)
{
// The test ph is too low.
m_ph += 0.01;
// qDebug() << "Set new pH m_ph += 0.01:" << m_ph
// << "netCharge:" << netCharge;
continue;
}
if(netCharge < 0)
{
// The test ph is too high.
m_ph -= 0.01;
// qDebug() << "Set new pH m_ph -= 0.01:" << m_ph
// << "netCharge:" << netCharge;
continue;
}
}
// End of
// while(true)
// At this point m_pi is m_ph.
m_pi = m_ph;
// qDebug() << "pi is:" << m_pi;
return processedChemicalGroups;
}
double
PkaPhPi::calculateChargeRatio(double pka, bool acidCharged)
{
double aOverAh = 0;
if (pka < 0)
return 0;
if (pka > 14)
return 0;
if (m_ph < 0)
return 0;
if (m_ph > 14)
return 0;
// Example with pKa = 4.25(Glu) ; pH = 4.16, thus we are more
// acidic than pKa, we expect AH to be greater than A by a small
// margin.
aOverAh =(double) pow(10,(m_ph - pka));
// aOverAh = 0.81283051616409951(confirmed manually)
if (aOverAh < 1)
{
/* The solution contains more acid forms(AH) than basic forms
(A).
*/
if(acidCharged)
return(1 - aOverAh);
else
// The acid is not charged, that is, it is a COOH.
// AH = 1 - A
// A = aOverAh.AH
// A = aOverAh.(1-A)
// A = aOverAh - aOverAh.A
// A(1+aOverAh) = aOverAh
// A = aOverAh /(1+aOverAh), for us this is
// A = 0.81283 / 1.81283 = 0.448
// And not - aOverAh, that is - aOverAh.
// Below seems faulty(20071204)
// return(- aOverAh);
// Tentative correction(20071204)
return(-(aOverAh /(1 + aOverAh)));
}
else if (aOverAh > 1)
{
/* The solution contains more basic forms(A) than acid forms
(AH).
*/
if(acidCharged)
return(1 / aOverAh);
else
return(-(1 -(1 / aOverAh)));
}
else if (aOverAh == 1)
{
/* The solution contains as many acid forms(AH) as basic forms
(H).
*/
if(acidCharged)
return(aOverAh / 2);
else
return(- aOverAh / 2);
}
else
Q_ASSERT(0);
return 0;
}
int
PkaPhPi::accountPolymerEndModif(int endModif,
const ChemicalGroup &group)
{
QString modifName;
ChemicalGroupRule *rule = 0;
int count = 0;
// Get the name of the modification of the polymer(if any) and get
// the rule dealing with that polymer modification(if any).
if (endModif == MXT_POLYMER_CHEMENT_LEFT_END_MODIF)
{
modifName = m_polymer.leftEndModif().name();
rule = group.findRule("LE_PLM_MODIF", modifName);
// Remember a chemical group is defined like this:
// <mnmchemgroup>
// <name>N-term NH2</name>
// <pka>9.6</pka>
// <acidcharged>TRUE</acidcharged>
// <polrule>left_trapped</polrule>
// <chemgrouprule>
// <entity>LE_PLM_MODIF</entity>
// <name>Acetylation</name>
// <outcome>LOST</outcome>
// </chemgrouprule>
// </mnmchemgroup>
}
else if (endModif == MXT_POLYMER_CHEMENT_RIGHT_END_MODIF)
{
modifName = m_polymer.rightEndModif().name();
rule = group.findRule("RE_PLM_MODIF", modifName);
}
else
Q_ASSERT(0);
// The polymer might not be modified, and also the chemical group
// passed as parameter might not contain any rule about any polymer
// modification. In that case we just have nothing to do.
if (modifName.isEmpty())
{
if(rule)
{
double charge = calculateChargeRatio(group.pka(),
group.isAcidCharged());
if (charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
return ++count;
}
else
{
// The polymer end was NOT modified and the chemical group
// was NOT eligible for a polymer end modification. This
// means that we do not have to process it, and we return -1
// so that the caller function knows we did not do anything
// and that this chemical group should continue to undergo
// analysis without skipping it.
return -1;
}
}
// End of
// if (modifName.isEmpty())
if (!rule)
{
// This chemical group was not "designed" to receive any polymer
// end modification, so we have nothing to do with it and we
// return -1 so that the caller function knows we did not do
// anything and that this chemical group should continue to
// undergo analysis without skipping it.
return -1;
}
// At this point we know that the chemical group 'group' we are
// analyzing is eligible for a polymer left end modification and
// that it is indeed modified with a correcct modification. So we
// have a rule for it. Let's continue the analysis.
// Apparently the rule has data matching the ones we are looking
// for. At this point we should now what action to take for this
// group.
if (rule->outcome() == MXP_CHEMGROUP_RULE_LOST)
{
// We do not use the current chemical group 'group' because the
// polymer end's modification has abolished it.
}
else if (rule->outcome() == MXP_CHEMGROUP_RULE_PRESERVED)
{
double charge = calculateChargeRatio(group.pka(),
group.isAcidCharged());
if(charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
return ++count;
}
else
Q_ASSERT(0);
// Whatever we should do with the left/right end monomer's chemgroup,
// we should take into account the modification itself that might
// have brought chemgroup(s) worth calculating their intrinsic
// charges!
// Find a modif object in the local list of modif objects, that has
// the same name as the modification with which the left/right end
// of the polymer is modified. We'll see what chemgroup(s) this
// modification brings to the polymer sequence.
int index = Modif::isNameInList(modifName, *mpa_modifList);
if (index == -1)
{
// qDebug() << __FILE__ << __LINE__
// << "Information: following modif not in local list:"
// << modifName;
return count;
}
const Modif *modif = mpa_modifList->at(index);
Q_ASSERT(modif);
for (int jter = 0; jter < modif->propList().size(); ++jter)
{
Prop *prop = modif->propList().at(jter);
if(prop->name() != "CHEMICAL_GROUP")
continue;
// Get the chemical group out of the property.
const ChemicalGroup *chemicalGroup =
static_cast<const ChemicalGroup *>(prop->data());
double charge =
calculateChargeRatio(chemicalGroup->pka(),
chemicalGroup->isAcidCharged());
if(charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
++count;
}
return count;
}
int
PkaPhPi::accountMonomerModif(const Monomer &monomer,
ChemicalGroup &group)
{
QString modifName;
ChemicalGroupRule *rule = 0;
int count = 0;
// For each modification in the monomer, make the accounting work.
Q_ASSERT(mpa_modifList);
Q_ASSERT(mpa_modifList->size());
for (int iter = 0; iter < monomer.modifList()->size(); ++iter)
{
Modif *iterModif = monomer.modifList()->at(iter);
// Get the name of the modification of the monomer(if any) and get
// the rule dealing with that monomer modification(if any).
modifName = iterModif->name();
rule = group.findRule("MONOMER_MODIF", modifName);
if(modifName.isEmpty())
{
// The monomer does not seem to be modified. However, we still
// have to make sure that the chemgroup that we were parsing is
// actually a chemgroup suitable for a modif. If this chemgroup
// was actually suitable for a monomer modif, but it is not
// effectively modified, that means that we have to calculate
// the charge for the non-modified chemgroup...
if (rule)
{
double charge = calculateChargeRatio(group.pka(),
group.isAcidCharged());
if(charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
return ++count;
}
else
{
// The current monomer was NOT modified, and the chemgroup
// was NOT eligible for a monomer modification. This means
// that we do not have to process it, and we return -1 so
// that the caller function knows we did not do anything and
// that this chemgroup should continue to undergo analysis
// without skipping it.
return -1;
}
}
// End of
// if (modifName.isEmpty())
if(!rule)
{
// This chemgroup was not "designed" to receive any
// modification, so we have nothing to do with it, and we return
// -1 to let the caller know that its processing should be
// continued in the caller's function space.
return -1;
}
// At this point, we know that the chemgroup we are analyzing is
// eligible for a modification and that we have a rule for it. Let's
// continue the analysis:
// Apparently, a rule object has member data matching the ones we
// were looking for. At this point we should know what action to
// take for this chemgroup.
if(rule->outcome() == MXP_CHEMGROUP_RULE_LOST)
{
// We do not use the current chemical group 'group' because the
// monomer modification has abolished it.
}
else if (rule->outcome() == MXP_CHEMGROUP_RULE_PRESERVED)
{
double charge = calculateChargeRatio(group.pka(),
group.isAcidCharged());
if (charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
return ++count;
}
else
Q_ASSERT(0);
// Whatever we should do with this monomer's chemgroup, we should
// take into account the modification itself that might have brought
// chemgroup(s) worth calculating their intrinsic charges!
// Find a modif object in the local list of modif objects, that has
// the same name as the modification with which the monomer is
// modified. We'll see what chemgroup(s) this modification brings to
// the polymer sequence.
int index = Modif::isNameInList(modifName, *mpa_modifList);
if(index == -1)
{
// qDebug() << __FILE__ << __LINE__
// << "Information: following modif not in local list:"
// << modifName;
return count;
}
Modif *modif = mpa_modifList->at(index);
Q_ASSERT(modif);
for(int jter = 0; jter < modif->propList().size(); ++jter)
{
Prop *prop = modif->propList().at(jter);
if (prop->name() != "CHEMICAL_GROUP")
continue;
// Get the chemical group out of the property.
const ChemicalGroup *chemicalGroup =
static_cast<const ChemicalGroup *>(prop->data());
double charge =
calculateChargeRatio(chemicalGroup->pka(),
chemicalGroup->isAcidCharged());
if (charge < 0)
m_negativeCharges += charge;
else if (charge > 0)
m_positiveCharges += charge;
++count;
}
}
return count;
}
} // namespace massXpert
|