1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
(**md**************************************************************************)
(* # Compatibility with the real numbers of Coq *)
(* *)
(* Lemmas about continuity *)
(******************************************************************************)
Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.
Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.
Require Import Rtrigo1 Reals.
From mathcomp Require Import all_ssreflect ssralg poly mxpoly ssrnum.
From mathcomp Require Import archimedean.
From HB Require Import structures.
From mathcomp Require Import mathcomp_extra.
From mathcomp Require Import boolp classical_sets.
From mathcomp Require Import reals interval_inference.
From mathcomp Require Import topology.
From mathcomp Require Export Rstruct.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope R_scope.
Local Open Scope ring_scope.
Section analysis_struct.
HB.instance Definition _ := PseudoMetric.copy R R^o.
HB.instance Definition _ := Pointed.copy R R^o.
(* TODO: express using ball?*)
Lemma continuity_pt_nbhs (f : R -> R) x :
continuity_pt f x <->
forall eps : {posnum R}, nbhs x (fun u => `|f u - f x| < eps%:num).
Proof.
split=> [fcont e|fcont _/RltP/posnumP[e]]; last first.
have [_/posnumP[d] xd_fxe] := fcont e.
exists d%:num; split; first by apply/RltP; have := [gt0 of d%:num].
by move=> y [_ /RltP yxd]; apply/RltP/xd_fxe; rewrite /= distrC.
have /RltP egt0 := [gt0 of e%:num].
have [_ [/RltP/posnumP[d] dx_fxe]] := fcont e%:num egt0.
exists d%:num => //= y xyd; case: (eqVneq x y) => [->|xney].
by rewrite subrr normr0.
apply/RltP/dx_fxe; split; first by split=> //; apply/eqP.
by have /RltP := xyd; rewrite distrC.
Qed.
Lemma continuity_pt_cvg (f : R -> R) (x : R) :
continuity_pt f x <-> {for x, continuous f}.
Proof.
eapply iff_trans; first exact: continuity_pt_nbhs.
apply iff_sym.
have FF : Filter (f @ x)%classic.
by typeclasses eauto.
(*by apply fmap_filter; apply: @filter_filter' (locally_filter _).*)
case: (@fcvg_ballP _ _ (f @ x)%classic FF (f x)) => {FF}H1 H2.
(* TODO: in need for lemmas and/or refactoring of already existing lemmas (ball vs. Rabs) *)
split => [{H2} - /H1 {}H1 eps|{H1} H].
- have {H1} [//|_/posnumP[x0] Hx0] := H1 eps%:num.
exists x0%:num => //= Hx0' /Hx0 /=.
by rewrite /= distrC; apply.
- apply H2 => _ /posnumP[eps]; move: (H eps) => {H} [_ /posnumP[x0] Hx0].
exists x0%:num => //= y /Hx0 /= {}Hx0.
by rewrite /ball /= distrC.
Qed.
Lemma continuity_ptE (f : R -> R) (x : R) :
continuity_pt f x <-> {for x, continuous f}.
Proof. exact: continuity_pt_cvg. Qed.
Local Open Scope classical_set_scope.
Lemma continuity_pt_cvg' f x :
continuity_pt f x <-> f @ x^' --> f x.
Proof. by rewrite continuity_ptE continuous_withinNx. Qed.
Lemma continuity_pt_dnbhs f x :
continuity_pt f x <->
forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps).
Proof.
by rewrite continuity_pt_cvg' -filter_fromP cvg_ballP -filter_fromP.
Qed.
Lemma nbhs_pt_comp (P : R -> Prop) (f : R -> R) (x : R) :
nbhs (f x) P -> continuity_pt f x -> \near x, P (f x).
Proof. by move=> Lf /continuity_pt_cvg; apply. Qed.
End analysis_struct.
|