File: Rstruct_topology.v

package info (click to toggle)
mathcomp-analysis 1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,308 kB
  • sloc: sh: 420; python: 76; sed: 25; makefile: 7
file content (89 lines) | stat: -rw-r--r-- 3,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
(**md**************************************************************************)
(* # Compatibility with the real numbers of Coq                               *)
(*                                                                            *)
(* Lemmas about continuity                                                    *)
(******************************************************************************)

Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.
Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.
Require Import Rtrigo1 Reals.
From mathcomp Require Import all_ssreflect ssralg poly mxpoly ssrnum.
From mathcomp Require Import archimedean.
From HB Require Import structures.
From mathcomp Require Import mathcomp_extra.
From mathcomp Require Import boolp classical_sets.
From mathcomp Require Import reals interval_inference.
From mathcomp Require Import topology.
From mathcomp Require Export Rstruct.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.

Local Open Scope R_scope.
Local Open Scope ring_scope.

Section analysis_struct.

HB.instance Definition _ := PseudoMetric.copy R R^o.
HB.instance Definition _ := Pointed.copy R R^o.

(* TODO: express using ball?*)
Lemma continuity_pt_nbhs (f : R -> R) x :
  continuity_pt f x <->
  forall eps : {posnum R}, nbhs x (fun u => `|f u - f x| < eps%:num).
Proof.
split=> [fcont e|fcont _/RltP/posnumP[e]]; last first.
  have [_/posnumP[d] xd_fxe] := fcont e.
  exists d%:num; split; first by apply/RltP; have := [gt0 of d%:num].
  by move=> y [_ /RltP yxd]; apply/RltP/xd_fxe; rewrite /= distrC.
have /RltP egt0 := [gt0 of e%:num].
have [_ [/RltP/posnumP[d] dx_fxe]] := fcont e%:num egt0.
exists d%:num => //= y xyd; case: (eqVneq x y) => [->|xney].
  by rewrite subrr normr0.
apply/RltP/dx_fxe; split; first by split=> //; apply/eqP.
by have /RltP := xyd; rewrite distrC.
Qed.

Lemma continuity_pt_cvg (f : R -> R) (x : R) :
  continuity_pt f x <-> {for x, continuous f}.
Proof.
eapply iff_trans; first exact: continuity_pt_nbhs.
apply iff_sym.
have FF : Filter (f @ x)%classic.
  by typeclasses eauto.
  (*by apply fmap_filter; apply: @filter_filter' (locally_filter _).*)
case: (@fcvg_ballP _ _ (f @ x)%classic FF (f x)) => {FF}H1 H2.
(* TODO: in need for lemmas and/or refactoring of already existing lemmas (ball vs. Rabs) *)
split => [{H2} - /H1 {}H1 eps|{H1} H].
- have {H1} [//|_/posnumP[x0] Hx0] := H1 eps%:num.
  exists x0%:num => //= Hx0' /Hx0 /=.
  by rewrite /= distrC; apply.
- apply H2 => _ /posnumP[eps]; move: (H eps) => {H} [_ /posnumP[x0] Hx0].
  exists x0%:num => //= y /Hx0 /= {}Hx0.
  by rewrite /ball /= distrC.
Qed.

Lemma continuity_ptE (f : R -> R) (x : R) :
  continuity_pt f x <-> {for x, continuous f}.
Proof. exact: continuity_pt_cvg. Qed.

Local Open Scope classical_set_scope.

Lemma continuity_pt_cvg' f x :
  continuity_pt f x <-> f @ x^' --> f x.
Proof. by rewrite continuity_ptE continuous_withinNx. Qed.

Lemma continuity_pt_dnbhs f x :
  continuity_pt f x <->
  forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps).
Proof.
by rewrite continuity_pt_cvg' -filter_fromP cvg_ballP -filter_fromP.
Qed.

Lemma nbhs_pt_comp (P : R -> Prop) (f : R -> R) (x : R) :
  nbhs (f x) P -> continuity_pt f x -> \near x, P (f x).
Proof. by move=> Lf /continuity_pt_cvg; apply. Qed.

End analysis_struct.