1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
From mathcomp Require Import all_ssreflect ssralg ssrnum interval.
From mathcomp Require Import mathcomp_extra boolp classical_sets.
From HB Require Import structures.
From mathcomp Require Import functions set_interval.
(**md**************************************************************************)
(* # classical orders *)
(* *)
(* This file provides some additional order theory that requires stronger *)
(* axioms than mathcomp's own orders expect. *)
(* ``` *)
(* same_prefix n == two elements in a product space agree up n *)
(* first_diff x y == the first occurrence where x n != y n, or None *)
(* big_lexi_le == the (countably) infinite lexicographical ordering *)
(* big_lexi_order == an alias for attaching this order type *)
(* start_with n x y == x for the first n values, then switches to y *)
(* ``` *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Local Open Scope classical_set_scope.
Definition big_lexi_order {I : Type} (T : I -> Type) : Type := forall i, T i.
HB.instance Definition _ (I : Type) (K : I -> choiceType) :=
Choice.on (big_lexi_order K).
Section big_lexi_le.
Context {K : nat -> eqType}.
Definition same_prefix n (t1 t2 : forall n, K n) :=
forall m, (m < n)%O -> t1 m = t2 m.
Lemma same_prefix0 t1 t2 : same_prefix 0 t1 t2. Proof. by []. Qed.
Hint Resolve same_prefix0 : core.
Lemma same_prefix_sym n t1 t2 : same_prefix n t1 t2 <-> same_prefix n t2 t1.
Proof. by rewrite /same_prefix; split => + m mn => /(_ m mn). Qed.
Lemma same_prefix_leq n m t1 t2 :
n <= m -> same_prefix m t1 t2 -> same_prefix n t1 t2.
Proof.
move=> nm + r rn; apply.
by move: nm; rewrite leq_eqVlt => /predU1P[<-//|]; exact: ltn_trans.
Qed.
Lemma same_prefix_refl n x : same_prefix n x x. Proof. by []. Qed.
Lemma same_prefix_trans n x y z :
same_prefix n x y ->
same_prefix n y z ->
same_prefix n x z.
Proof. by move=> + + m mn => /(_ _ mn) ->; exact. Qed.
Definition first_diff (t1 t2 : forall n, K n) : option nat :=
xget None (Some @` [set n | same_prefix n t1 t2 /\ t1 n != t2 n]).
Lemma first_diff_sym t1 t2 : first_diff t1 t2 = first_diff t2 t1.
Proof.
rewrite /first_diff /=; congr (xget _ (image _ _)).
under eq_set do rewrite eq_sym.
by apply/seteqP; split => z/= [] /same_prefix_sym.
Qed.
Lemma first_diff_unique (x y : forall n, K n) n m :
same_prefix n x y -> x n != y n ->
same_prefix m x y -> x m != y m ->
n = m.
Proof.
move=> nfx xyn mfx xym; apply/eqP; rewrite eq_le 2!leNgt; apply/andP; split.
by apply/negP => /nfx; exact/eqP.
by apply/negP => /mfx; exact/eqP.
Qed.
Lemma first_diff_SomeP x y n :
first_diff x y = Some n <-> same_prefix n x y /\ x n != y n.
Proof.
split => [|[pfx xNy]]; rewrite /first_diff.
by case: xgetP=> //= -[m ->|//] [p + <-[]] => /[swap] ->.
case: xgetP => /=; last by move=> /(_ (Some n))/forall2NP/(_ n)[/not_andP[]|].
by move=> [m|? []//] -> [p [pxy xyp]] <-; rewrite (@first_diff_unique x y n p).
Qed.
Lemma first_diff_NoneP t1 t2 : t1 = t2 <-> first_diff t1 t2 = None.
Proof.
rewrite /first_diff; split => [->|].
by case: xgetP => //= -[n|//] -> [m []]; rewrite eqxx.
case: xgetP => [? -> [i /=] [?] ? <-//|/= R _].
apply/functional_extensionality_dep.
suff : forall n x, x < n -> t1 x = t2 x by move=> + n => /(_ n.+1)/(_ n); exact.
elim => [//|n ih x]; rewrite ltnS leq_eqVlt => /predU1P[->|xn]; last exact: ih.
by have /forall2NP/(_ n)[/not_andP[//|/negP/negPn/eqP]|] := R (Some n).
Qed.
Lemma first_diff_lt a x y n m :
n < m ->
first_diff a x = Some n ->
first_diff a y = Some m ->
first_diff x y = Some n.
Proof.
move=> nm /first_diff_SomeP [xpfx xE] /first_diff_SomeP [ypfx yE].
apply/first_diff_SomeP; split; last by rewrite -(ypfx _ nm) eq_sym.
by move=> o /[dup] on /xpfx <-; exact/ypfx/(ltn_trans on).
Qed.
Arguments first_diff_lt a {x y n m}.
Lemma first_diff_eq a x y n m :
first_diff a x = Some n ->
first_diff a y = Some n ->
first_diff x y = Some m ->
n <= m.
Proof.
case/first_diff_SomeP => axPfx axn /first_diff_SomeP[ayPfx ayn].
case/first_diff_SomeP => xyPfx; apply: contraNleq => mn.
by rewrite -(ayPfx _ mn) -(axPfx _ mn).
Qed.
Lemma first_diff_dfwith (x : forall n : nat, K n) i b :
x i != b <-> first_diff x (dfwith x i b) = Some i.
Proof.
split => [xBn|/first_diff_SomeP[_]]; last by rewrite dfwithin.
apply/first_diff_SomeP; split; last by rewrite dfwithin.
by move=> n ni; rewrite dfwithout// gt_eqF.
Qed.
Definition big_lexi_le
(R : forall n, K n -> K n -> bool) (t1 t2 : forall n, K n) :=
if first_diff t1 t2 is Some n then R n (t1 n) (t2 n) else true.
Lemma big_lexi_le_reflexive R : reflexive (big_lexi_le R).
Proof.
move=> x; rewrite /big_lexi_le /= /first_diff.
by case: xgetP => //= -[n _|//] [m []]; rewrite eqxx.
Qed.
Lemma big_lexi_le_anti R : (forall n, antisymmetric (R n)) ->
antisymmetric (big_lexi_le R).
Proof.
move=> antiR x y /andP[xy yx]; apply/first_diff_NoneP; move: xy yx.
rewrite /big_lexi_le first_diff_sym.
case E : (first_diff y x) => [n|]// Rxy Ryx.
case/first_diff_SomeP : E => _.
by apply: contra_neqP => _; apply/antiR; rewrite Ryx.
Qed.
Lemma big_lexi_le_trans R :
(forall n, transitive (R n)) ->
(forall n, antisymmetric (R n)) ->
transitive (big_lexi_le R).
Proof.
move=> Rtrans Ranti y x z; rewrite /big_lexi_le /=.
case Ep : (first_diff x y) => [p|]; last by move/first_diff_NoneP : Ep ->.
case Er : (first_diff x z) => [r|]; last by move/first_diff_NoneP : Er ->.
case Eq : (first_diff y z) => [q|]; first last.
by move: Ep Er; move/first_diff_NoneP: Eq => -> -> [->].
have [pq|qp|pqE]:= ltgtP p q.
- move: Er.
rewrite (first_diff_lt y pq)// 1?first_diff_sym// => -[<-] ? _.
by case/first_diff_SomeP : Eq => /(_ _ pq) <-.
- move: Er.
rewrite first_diff_sym (first_diff_lt y qp)// 1?first_diff_sym// => -[<-] _ ?.
by case/first_diff_SomeP: Ep => /(_ _ qp) ->.
- move: Ep Eq; rewrite pqE => Eqx Eqz.
rewrite first_diff_sym in Eqx; have := first_diff_eq Eqx Eqz Er.
rewrite leq_eqVlt => /predU1P[->|qr]; first exact: Rtrans.
case/first_diff_SomeP : Er => /(_ _ qr) -> _ qzy qyz.
case/first_diff_SomeP : Eqz => _; apply: contra_neqP => _.
by apply/Ranti/andP; split.
Qed.
Lemma big_lexi_le_total R : (forall n, total (R n)) -> total (big_lexi_le R).
Proof.
move=> Rtotal x y.
case E : (first_diff x y) => [n|]; first last.
by move/first_diff_NoneP : E ->; rewrite big_lexi_le_reflexive.
by rewrite /big_lexi_le E first_diff_sym E; exact: Rtotal.
Qed.
Definition start_with n (t1 t2 : forall n, K n) (i : nat) : K i :=
if (i < n)%O then t1 i else t2 i.
Lemma start_with_prefix n x y : same_prefix n x (start_with n x y).
Proof. by move=> r rn; rewrite /start_with rn. Qed.
End big_lexi_le.
Section big_lexi_porder.
Context {d} {K : nat -> porderType d}.
Let Rn n (k1 k2 : K n) := (k1 <= k2)%O.
Local Lemma big_lexi_ord_reflexive : reflexive (big_lexi_le Rn).
Proof. exact: big_lexi_le_reflexive. Qed.
Local Lemma big_lexi_ord_anti : antisymmetric (big_lexi_le Rn).
Proof. by apply: big_lexi_le_anti => n; exact: le_anti. Qed.
Local Lemma big_lexi_ord_trans : transitive (big_lexi_le Rn).
Proof. by apply: big_lexi_le_trans => n; [exact: le_trans|exact: le_anti]. Qed.
HB.instance Definition _ := Order.Le_isPOrder.Build d (big_lexi_order K)
big_lexi_ord_reflexive big_lexi_ord_anti big_lexi_ord_trans.
Lemma leEbig_lexi_order (a b : big_lexi_order K) :
(a <= b)%O = if first_diff a b is Some n then (a n <= b n)%O else true.
Proof. by []. Qed.
End big_lexi_porder.
Section big_lexi_total.
Context {d} {K : nat -> orderType d}.
Local Lemma big_lexi_ord_total : total (@Order.le _ (big_lexi_order K)).
Proof. by apply: big_lexi_le_total => ?; exact: le_total. Qed.
HB.instance Definition _ := Order.POrder_isTotal.Build _
(big_lexi_order K) big_lexi_ord_total.
End big_lexi_total.
Section big_lexi_bottom.
Context {d} {K : nat -> bPOrderType d}.
Let b : big_lexi_order K := (fun=> \bot)%O.
Local Lemma big_lex_bot (x : big_lexi_order K) : (b <= x)%O.
Proof.
by rewrite leEbig_lexi_order; case: first_diff => // ?; exact: Order.le0x.
Qed.
HB.instance Definition _ := @Order.hasBottom.Build _
(big_lexi_order K) b big_lex_bot.
End big_lexi_bottom.
Section big_lexi_top.
Context {d} {K : nat -> tPOrderType d}.
Let t : big_lexi_order K := (fun=> \top)%O.
Local Lemma big_lex_top (x : big_lexi_order K) : (x <= t)%O.
Proof.
by rewrite leEbig_lexi_order; case: first_diff => // ?; exact: Order.lex1.
Qed.
HB.instance Definition _ := @Order.hasTop.Build _
(big_lexi_order K) t big_lex_top.
End big_lexi_top.
Section big_lexi_intervals.
Context {d} {K : nat -> orderType d}.
Lemma big_lexi_order_prefix_lt (b a x: big_lexi_order K) n :
(a < b)%O ->
first_diff a b = Some n ->
same_prefix n.+1 x b ->
(a < x)%O.
Proof.
move=> + /[dup] abD /first_diff_SomeP[pfa abN].
case E1 : (first_diff a x) => [m|]; first last.
by move/first_diff_NoneP : E1 <- => _/(_ n (ltnSn _))/eqP/negPn; rewrite abN.
move=> ab pfx; rewrite lt_neqAle; apply/andP; split.
by apply/eqP => /first_diff_NoneP; rewrite E1.
move: ab; rewrite lt_neqAle => /andP[ba].
rewrite 2!leEbig_lexi_order E1 abD.
suff : n = m by have := pfx n (ltnSn _) => /[swap] -> ->.
apply: (@first_diff_unique _ a x) => //=; [| |by case/first_diff_SomeP : E1..].
- by apply/(same_prefix_trans pfa)/same_prefix_sym; exact: same_prefix_leq.
- by rewrite (pfx n (ltnSn _)).
Qed.
Lemma big_lexi_order_prefix_gt (b a x : big_lexi_order K) n :
(b < a)%O ->
first_diff a b = Some n ->
same_prefix n.+1 x b ->
(x < a)%O.
Proof.
move=> + /[dup] abD /first_diff_SomeP[pfa /eqP abN].
case E1 : (first_diff x a) => [m|]; first last.
by move/first_diff_NoneP : E1 -> => _ /(_ n (ltnSn _)).
move=> ab pfx; rewrite lt_neqAle; apply/andP; split.
by apply/negP => /eqP/first_diff_NoneP; rewrite E1.
move: ab; rewrite lt_neqAle => /andP[ba].
rewrite 2!leEbig_lexi_order (@first_diff_sym _ b a) E1 abD.
suff : n = m by have := pfx n (ltnSn _) => /[swap] -> ->.
apply: (@first_diff_unique _ x a) => //=; [| |by case/first_diff_SomeP : E1..].
- apply/same_prefix_sym/(same_prefix_trans pfa)/same_prefix_sym.
exact: same_prefix_leq.
- by rewrite (pfx n (ltnSn _)) eq_sym; exact/eqP.
Qed.
Lemma big_lexi_order_between (a x b : big_lexi_order K) n :
(a <= x <= b)%O ->
same_prefix n a b ->
same_prefix n x a.
Proof.
move=> axb; elim: n => // n IH pfxSn m mSn.
have pfxA : same_prefix n a x.
exact/same_prefix_sym/IH/(same_prefix_leq _ pfxSn).
have pfxB : same_prefix n x b.
apply: (@same_prefix_trans _ n x a b); first exact/same_prefix_sym.
exact: (same_prefix_leq _ pfxSn).
move: mSn; rewrite ltEnat/= ltnS leq_eqVlt => /predU1P[->|]; first last.
by move: pfxA; rewrite same_prefix_sym; exact.
apply: le_anti; apply/andP; split.
case/andP: axb => ? +; rewrite leEbig_lexi_order (pfxSn n (ltnSn _)).
case E : (first_diff x b) => [r|]; last by move/first_diff_NoneP : E ->.
move=> xrb; have : n <= r.
rewrite leqNgt; apply/negP=> /[dup] /pfxB xbE.
by case/first_diff_SomeP : E => _; rewrite xbE eqxx.
rewrite leq_eqVlt => /predU1P[->//|nr].
by case/first_diff_SomeP : E => /(_ n nr) ->.
case/andP : axb => + ?; rewrite leEbig_lexi_order.
case E : (first_diff a x) => [r|]; last by move/first_diff_NoneP : E => <-.
move=> xrb.
have : n <= r.
rewrite leqNgt; apply/negP => /[dup] /pfxA xbE.
by case/first_diff_SomeP : E => _; rewrite xbE eqxx.
rewrite leq_eqVlt => /predU1P[->//|nr].
by case/first_diff_SomeP : E => /(_ n nr) ->.
Qed.
Lemma big_lexi_order_interval_prefix (i : interval (big_lexi_order K))
(x : big_lexi_order K) :
itv_open_ends i -> x \in i ->
exists n, same_prefix n x `<=` [set` i].
Proof.
move: i; case=> [][[]l|[]] [[]r|[]] [][]; rewrite ?in_itv /= ?andbT.
- move=> /andP[lx xr].
case E1 : (first_diff l x) => [m|]; first last.
by move: lx; move/first_diff_NoneP : E1 ->; rewrite bnd_simp.
case E2 : (first_diff x r) => [n|]; first last.
by move: xr; move/first_diff_NoneP : E2 ->; rewrite bnd_simp.
exists (Order.max n m).+1 => p xppfx; rewrite set_itvE.
apply/andP; split.
apply: (big_lexi_order_prefix_lt lx E1) => w wm; apply/esym/xppfx.
by move/ltnSE/leq_ltn_trans : wm; apply; rewrite ltnS leq_max leqnn orbT.
rewrite first_diff_sym in E2.
apply: (big_lexi_order_prefix_gt xr E2) => w wm; apply/esym/xppfx.
by move/ltnSE/leq_ltn_trans : wm; apply; rewrite ltnS leq_max leqnn.
- move=> lx.
case E1 : (first_diff l x) => [m|]; first last.
by move: lx; move/first_diff_NoneP : E1 ->; rewrite bnd_simp.
exists m.+1 => p xppfx; rewrite set_itvE /=.
by apply: (big_lexi_order_prefix_lt lx E1) => w wm; exact/esym/xppfx.
- move=> xr.
case E2 : (first_diff x r) => [n|]; first last.
by move: xr; move/first_diff_NoneP : E2 ->; rewrite bnd_simp.
exists n.+1; rewrite first_diff_sym in E2 => p xppfx.
rewrite set_itvE /=.
by apply: (big_lexi_order_prefix_gt xr E2) => w wm; exact/esym/xppfx.
by move=> _; exists 0 => ? ?; rewrite set_itvE.
Qed.
End big_lexi_intervals.
|