File: discrete.v

package info (click to toggle)
mathcomp-analysis 1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,308 kB
  • sloc: sh: 420; python: 76; sed: 25; makefile: 7
file content (196 lines) | stat: -rw-r--r-- 6,337 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute                *)
(* Copyright (c) - 2015--2018 - Inria                                   *)
(* Copyright (c) - 2016--2018 - Polytechnique                           *)

(* -------------------------------------------------------------------- *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp.classical Require Import boolp.
From mathcomp Require Import xfinmap reals.
From Coq Require Setoid.

(* -------------------------------------------------------------------- *)
Set   Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory Num.Theory.

Local Open Scope ring_scope.
Local Open Scope real_scope.

Section ProofIrrelevantChoice.

Context {T : choiceType}.

Lemma existsTP (P : T -> Prop) : { x : T | P x } + (forall x, ~ P x).
Proof.
case: (boolP `[<exists x : T, P x>]) => [/exists_asboolP | /asboolPn] h.
  by case/cid: h => w Pw; left; exists w; apply/asboolP.
by right=> x Px; apply/h; exists x.
Qed.

End ProofIrrelevantChoice.

(* -------------------------------------------------------------------- *)
Section PredSubtype.
Section Def.
Variable T : Type.
Variable E : pred T.

Record pred_sub : Type :=
  PSubSub { rsval :> T; rsvalP : rsval \in E }.

HB.instance Definition _ := [isSub for rsval].
End Def.

HB.instance Definition _ (T : eqType) (E : pred T) :=
  [Equality of pred_sub E by <:].

HB.instance Definition _ (T : choiceType) (E : pred T) :=
  [Choice of pred_sub E by <:].

HB.instance Definition _ (T : countType) (E : pred T) :=
  [Countable of pred_sub E by <:].
End PredSubtype.

Notation "[ 'psub' E ]" := (@pred_sub _ E)
  (format "[ 'psub'  E ]").

(* -------------------------------------------------------------------- *)
Section PIncl.
Variables (T : Type) (E F : pred T) (le : {subset E <= F}).

Definition pincl (x : [psub E]) : [psub F] :=
  PSubSub (le (valP x)).
End PIncl.

(* -------------------------------------------------------------------- *)
Section Countable.
Variable (T : Type) (E : pred T).

Variant countable : Type :=
  Countable
    (rpickle : [psub E] -> nat)
    (runpickle : nat -> option [psub E])
    of pcancel rpickle runpickle.

Definition rpickle (c : countable) :=
  let: Countable p _ _ := c in p.

Definition runpickle (c : countable) :=
  let: Countable _ p _ := c in p.

Lemma rpickleK c: pcancel (rpickle c) (runpickle c).
Proof. by case: c. Qed.
End Countable.

(* -------------------------------------------------------------------- *)
Section CountableTheory.
Lemma countable_countable (T : countType) (E : pred T) : countable E.
Proof. by exists choice.pickle choice.unpickle; apply/choice.pickleK. Qed.

Section CanCountable.
Variables (T : Type) (U : countType) (E : pred T).
Variables (f : [psub E] -> U) (g : U -> [psub E]).

Lemma can_countable : cancel f g -> countable E.
Proof.
pose p := choice.pickle \o f; pose u n := omap g (choice.unpickle n).
move=> can_fg; apply (@Countable _ E p u) => x.
by rewrite {}/u {}/p /= choice.pickleK /= can_fg.
Qed.
End CanCountable.

Section CountType.
Variables (T : eqType) (E : pred T) (c : countable E).

Definition countable_countMixin  := Countable.copy [psub E]
  (pcan_type (rpickleK c)).
Definition countable_choiceMixin := Choice.copy [psub E]
  (pcan_type (rpickleK c)).
End CountType.
End CountableTheory.

(* -------------------------------------------------------------------- *)
Section Finite.
Variables (T : eqType).

CoInductive finite (E : pred T) : Type :=
| Finite s of uniq s & {subset E <= s}.
End Finite.

(* -------------------------------------------------------------------- *)
Section FiniteTheory.
Context {T : choiceType}.


Lemma finiteP (E : pred T) : (exists s : seq T, {subset E <= s}) -> finite E.
Proof.
case/cid=> s sEs; exists (undup s); first by rewrite undup_uniq.
by move=> x; rewrite mem_undup; exact: sEs.
Qed.


Lemma finiteNP (E : pred T): (forall s : seq T, ~ {subset E <= s}) ->
  forall n, exists s : seq T, [/\ size s = n, uniq s & {subset s <= E}].
Proof.
move=> finN; elim=> [|n [s] [<- uq_s sE]]; first by exists [::].
have [x sxN xE]: exists2 x, x \notin s & x \in E.
  apply: contra_notP (finN (filter (mem E) s)) => /forall2NP finE x Ex.
  move/or_asboolP: (finE x).
  by rewrite !asbool_neg !asboolb negbK Ex mem_filter orbF [(mem E) x]Ex.
exists (x :: s) => /=; rewrite sxN; split=> // y.
by rewrite in_cons => /orP[/eqP->//|/sE].
Qed.

End FiniteTheory.

(* -------------------------------------------------------------------- *)
Section FiniteCountable.
Variables (T : eqType) (E : pred T).

Lemma finite_countable : finite E -> countable E.
Proof.
case=> s uqs Es; pose t := pmap (fun x => (insub x : option [psub E])) s.
pose f x := index x t; pose g i := nth None [seq Some x | x <- t] i.
apply (@Countable _ E f g) => x; rewrite {}/f {}/g /=.
have x_in_t: x \in t; first case: x => x h.
  by rewrite {}/t mem_pmap_sub /= Es.
by rewrite (nth_map x) ?index_mem ?nth_index.
Qed.
End FiniteCountable.

(* -------------------------------------------------------------------- *)
Section CountSub.
Variables (T : eqType) (E F : pred T).

Lemma countable_sub: {subset E <= F} -> countable F -> countable E.
Proof.
move=> le_EF [f g fgK]; pose f' (x : [psub E]) := f (pincl le_EF x).
pose g' x := obind (insub (sT := [psub E])) (omap val (g x)).
by exists f' g' => x; rewrite /f' /g' fgK /= valK.
Qed.
End CountSub.

(* -------------------------------------------------------------------- *)
Section CountableUnion.
Variables (T : eqType) (E : nat -> pred T).

Hypothesis cE : forall i, countable (E i).

Lemma cunion_countable : countable [pred x | `[< exists i, x \in E i >]].
Proof.
pose Ci i : countType := HB.pack [psub (E i)] (countable_countMixin (cE i)).
pose S := { i : nat & Ci i }; set F := [pred x | _].
have H: forall (x : [psub F]), exists i : nat, val x \in E i.
  by case=> x /= /asboolP[i] Eix; exists i.
have G: forall (x : S), val (tagged x) \in F.
  by case=> i [x /= Eix]; apply/asboolP; exists i.
pose f (x : [psub F]) : S := Tagged (fun i => [psub E i])
  (PSubSub (xchooseP (H x))).
pose g (x : S) := PSubSub (G x).
by have /can_countable: cancel f g by case=> x hx; apply/val_inj.
Qed.
End CountableUnion.