1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp.classical Require Import boolp.
From mathcomp Require Import xfinmap reals.
From Coq Require Setoid.
(* -------------------------------------------------------------------- *)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Open Scope real_scope.
Section ProofIrrelevantChoice.
Context {T : choiceType}.
Lemma existsTP (P : T -> Prop) : { x : T | P x } + (forall x, ~ P x).
Proof.
case: (boolP `[<exists x : T, P x>]) => [/exists_asboolP | /asboolPn] h.
by case/cid: h => w Pw; left; exists w; apply/asboolP.
by right=> x Px; apply/h; exists x.
Qed.
End ProofIrrelevantChoice.
(* -------------------------------------------------------------------- *)
Section PredSubtype.
Section Def.
Variable T : Type.
Variable E : pred T.
Record pred_sub : Type :=
PSubSub { rsval :> T; rsvalP : rsval \in E }.
HB.instance Definition _ := [isSub for rsval].
End Def.
HB.instance Definition _ (T : eqType) (E : pred T) :=
[Equality of pred_sub E by <:].
HB.instance Definition _ (T : choiceType) (E : pred T) :=
[Choice of pred_sub E by <:].
HB.instance Definition _ (T : countType) (E : pred T) :=
[Countable of pred_sub E by <:].
End PredSubtype.
Notation "[ 'psub' E ]" := (@pred_sub _ E)
(format "[ 'psub' E ]").
(* -------------------------------------------------------------------- *)
Section PIncl.
Variables (T : Type) (E F : pred T) (le : {subset E <= F}).
Definition pincl (x : [psub E]) : [psub F] :=
PSubSub (le (valP x)).
End PIncl.
(* -------------------------------------------------------------------- *)
Section Countable.
Variable (T : Type) (E : pred T).
Variant countable : Type :=
Countable
(rpickle : [psub E] -> nat)
(runpickle : nat -> option [psub E])
of pcancel rpickle runpickle.
Definition rpickle (c : countable) :=
let: Countable p _ _ := c in p.
Definition runpickle (c : countable) :=
let: Countable _ p _ := c in p.
Lemma rpickleK c: pcancel (rpickle c) (runpickle c).
Proof. by case: c. Qed.
End Countable.
(* -------------------------------------------------------------------- *)
Section CountableTheory.
Lemma countable_countable (T : countType) (E : pred T) : countable E.
Proof. by exists choice.pickle choice.unpickle; apply/choice.pickleK. Qed.
Section CanCountable.
Variables (T : Type) (U : countType) (E : pred T).
Variables (f : [psub E] -> U) (g : U -> [psub E]).
Lemma can_countable : cancel f g -> countable E.
Proof.
pose p := choice.pickle \o f; pose u n := omap g (choice.unpickle n).
move=> can_fg; apply (@Countable _ E p u) => x.
by rewrite {}/u {}/p /= choice.pickleK /= can_fg.
Qed.
End CanCountable.
Section CountType.
Variables (T : eqType) (E : pred T) (c : countable E).
Definition countable_countMixin := Countable.copy [psub E]
(pcan_type (rpickleK c)).
Definition countable_choiceMixin := Choice.copy [psub E]
(pcan_type (rpickleK c)).
End CountType.
End CountableTheory.
(* -------------------------------------------------------------------- *)
Section Finite.
Variables (T : eqType).
CoInductive finite (E : pred T) : Type :=
| Finite s of uniq s & {subset E <= s}.
End Finite.
(* -------------------------------------------------------------------- *)
Section FiniteTheory.
Context {T : choiceType}.
Lemma finiteP (E : pred T) : (exists s : seq T, {subset E <= s}) -> finite E.
Proof.
case/cid=> s sEs; exists (undup s); first by rewrite undup_uniq.
by move=> x; rewrite mem_undup; exact: sEs.
Qed.
Lemma finiteNP (E : pred T): (forall s : seq T, ~ {subset E <= s}) ->
forall n, exists s : seq T, [/\ size s = n, uniq s & {subset s <= E}].
Proof.
move=> finN; elim=> [|n [s] [<- uq_s sE]]; first by exists [::].
have [x sxN xE]: exists2 x, x \notin s & x \in E.
apply: contra_notP (finN (filter (mem E) s)) => /forall2NP finE x Ex.
move/or_asboolP: (finE x).
by rewrite !asbool_neg !asboolb negbK Ex mem_filter orbF [(mem E) x]Ex.
exists (x :: s) => /=; rewrite sxN; split=> // y.
by rewrite in_cons => /orP[/eqP->//|/sE].
Qed.
End FiniteTheory.
(* -------------------------------------------------------------------- *)
Section FiniteCountable.
Variables (T : eqType) (E : pred T).
Lemma finite_countable : finite E -> countable E.
Proof.
case=> s uqs Es; pose t := pmap (fun x => (insub x : option [psub E])) s.
pose f x := index x t; pose g i := nth None [seq Some x | x <- t] i.
apply (@Countable _ E f g) => x; rewrite {}/f {}/g /=.
have x_in_t: x \in t; first case: x => x h.
by rewrite {}/t mem_pmap_sub /= Es.
by rewrite (nth_map x) ?index_mem ?nth_index.
Qed.
End FiniteCountable.
(* -------------------------------------------------------------------- *)
Section CountSub.
Variables (T : eqType) (E F : pred T).
Lemma countable_sub: {subset E <= F} -> countable F -> countable E.
Proof.
move=> le_EF [f g fgK]; pose f' (x : [psub E]) := f (pincl le_EF x).
pose g' x := obind (insub (sT := [psub E])) (omap val (g x)).
by exists f' g' => x; rewrite /f' /g' fgK /= valK.
Qed.
End CountSub.
(* -------------------------------------------------------------------- *)
Section CountableUnion.
Variables (T : eqType) (E : nat -> pred T).
Hypothesis cE : forall i, countable (E i).
Lemma cunion_countable : countable [pred x | `[< exists i, x \in E i >]].
Proof.
pose Ci i : countType := HB.pack [psub (E i)] (countable_countMixin (cE i)).
pose S := { i : nat & Ci i }; set F := [pred x | _].
have H: forall (x : [psub F]), exists i : nat, val x \in E i.
by case=> x /= /asboolP[i] Eix; exists i.
have G: forall (x : S), val (tagged x) \in F.
by case=> i [x /= Eix]; apply/asboolP; exists i.
pose f (x : [psub F]) : S := Tagged (fun i => [psub E i])
(PSubSub (xchooseP (H x))).
pose g (x : S) := PSubSub (G x).
by have /can_countable: cancel f g by case=> x hx; apply/val_inj.
Qed.
End CountableUnion.
|