1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect all_algebra archimedean.
From mathcomp.classical Require Import boolp.
From mathcomp Require Import xfinmap constructive_ereal reals discrete realseq.
From mathcomp.classical Require Import classical_sets functions.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Unset SsrOldRewriteGoalsOrder.
Import Order.TTheory GRing.Theory Num.Theory.
From mathcomp.classical Require Import mathcomp_extra.
Local Open Scope fset_scope.
Local Open Scope ring_scope.
(* -------------------------------------------------------------------- *)
Local Notation "\`| f |" := (fun x => `|f x|) (at level 2).
Local Notation simpm := Monoid.simpm.
(* -------------------------------------------------------------------- *)
Section Summable.
Variables (T : choiceType) (R : realType) (f : T -> R).
Definition summable := exists (M : R), forall (J : {fset T}),
\sum_(x : J) `|f (val x)| <= M.
Lemma summableP : summable ->
{ M | 0 <= M & forall (J : {fset T}), \sum_(x : J) `|f (val x)| <= M }.
Proof.
move/asboolP/exists_asboolP=> h; have := (xchooseP h).
move: (xchoose _)=> {h} M /asboolP h; exists M => //.
by have := h fset0; rewrite big_pred0 // => -[x]; rewrite in_fset0.
Qed.
End Summable.
(* -------------------------------------------------------------------- *)
Section Sum.
Context {R : realType} {T : choiceType}.
Implicit Types f g : T -> R.
Definition fpos f := fun x => `|Num.max 0 (f x)|.
Definition fneg f := fun x => `|Num.min 0 (f x)|.
Lemma eq_fpos f g : f =1 g -> fpos f =1 fpos g.
Proof. by move=> eq_fg x; rewrite /fpos eq_fg. Qed.
Lemma eq_fneg f g : f =1 g -> fneg f =1 fneg g.
Proof. by move=> eq_fg x; rewrite /fneg eq_fg. Qed.
Lemma fpos0 x : fpos (fun _ : T => 0) x = 0 :> R.
Proof. by rewrite /fpos maxxx normr0. Qed.
Lemma fneg0 x : fneg (fun _ : T => 0) x = 0 :> R.
Proof. by rewrite /fneg minxx normr0. Qed.
Lemma fnegN f : fneg (- f) =1 fpos f.
Proof. by move=> x; rewrite /fpos /fneg -{1}oppr0 -oppr_max normrN. Qed.
Lemma fposN f : fpos (- f) =1 fneg f.
Proof. by move=> x; rewrite /fpos /fneg -{1}oppr0 -oppr_min normrN. Qed.
Lemma fposZ f c : 0 <= c -> fpos (c \*o f) =1 c \*o fpos f.
Proof.
move=> ge0_c x; rewrite /fpos /= -{1}(mulr0 c).
by rewrite -maxr_pMr // normrM ger0_norm.
Qed.
Lemma fnegZ f c : 0 <= c -> fneg (c \*o f) =1 c \*o fneg f.
Proof.
move=> ge0_c x; rewrite /= -!fposN; have /=<- := (fposZ (- f) ge0_c x).
by apply/eq_fpos=> y /=; rewrite mulrN.
Qed.
Lemma fpos_natrM f (n : T -> nat) x :
fpos (fun x => (n x)%:R * f x) x = (n x)%:R * fpos f x.
Proof.
rewrite /fpos -[in RHS]normr_nat -normrM.
by rewrite maxr_pMr ?ler0n // mulr0.
Qed.
Lemma fneg_natrM f (n : T -> nat) x :
fneg (fun x => (n x)%:R * f x) x = (n x)%:R * fneg f x.
Proof.
rewrite -[in RHS]fposN -fpos_natrM -fposN.
by apply/eq_fpos=> y; rewrite mulrN.
Qed.
Lemma fneg_ge0 f x : (forall x, 0 <= f x) -> fneg f x = 0.
Proof. by move=> ?; rewrite /fneg min_l ?normr0. Qed.
Lemma fpos_ge0 f x : (forall x, 0 <= f x ) -> fpos f x = f x.
Proof. by move=> ?; rewrite /fpos max_r ?ger0_norm. Qed.
Lemma ge0_fpos f x : 0 <= fpos f x.
Proof. by apply/normr_ge0. Qed.
Lemma ge0_fneg f x : 0 <= fneg f x.
Proof. by apply/normr_ge0. Qed.
Lemma le_fpos_norm f x : fpos f x <= `|f x|.
Proof.
rewrite /fpos ger0_norm ?(le_max, lexx) //.
by rewrite ge_max normr_ge0 ler_norm.
Qed.
Lemma le_fpos f1 f2 : f1 <=1 f2 -> fpos f1 <=1 fpos f2.
Proof.
move=> le_f x; rewrite /fpos !ger0_norm ?le_max ?lexx //.
by rewrite ge_max lexx /=; case: ltP => //=; rewrite le_f.
Qed.
Lemma fposBfneg f x : fpos f x - fneg f x = f x.
Proof.
rewrite /fpos /fneg maxC.
case: (leP (f x) 0); rewrite normr0 (subr0, sub0r) => ?.
by rewrite ler0_norm ?opprK.
by rewrite gtr0_norm.
Qed.
Definition psum f : R :=
(* We need some ticked `image` operator *)
let S := [set x | exists J : {fset T}, x = \sum_(x : J) `|f (val x)| ]%classic in
if `[<summable f>] then sup S else 0.
Definition sum f : R := psum (fpos f) - psum (fneg f).
End Sum.
(* -------------------------------------------------------------------- *)
Section SummableCountable.
Variable (T : choiceType) (R : realType) (f : T -> R).
Lemma summable_countn0 : summable f -> countable [pred x | f x != 0].
Proof.
case/summableP=> M ge0_M bM; pose E (p : nat) := [pred x | `|f x| > 1 / p.+1%:~R].
set F := [pred x | _]; have le: {subset F <= [pred x | `[< exists p, x \in E p >]]}.
move=> x; rewrite !inE => nz_fx; exists (Num.trunc `|f x|^-1).
rewrite inE mul1r invf_plt ?unfold_in /= ?normr_gt0 //.
by have/trunc_itv/andP[]: 0 <= `|f x|^-1 by rewrite invr_ge0 normr_ge0.
apply/(countable_sub le)/cunion_countable=> i /=.
case: (existsTP (fun s : seq T => {subset E i <= s}))=> /= [[s le_Eis]|].
by apply/finite_countable/finiteP; exists s => x /le_Eis.
move=> /finiteNP/(_ ((Num.trunc M).+1 * i.+1)%N)/asboolP/exists_asboolP h.
have/asboolP[] := xchooseP h.
set s := xchoose h=> eq_si uq_s le_sEi; pose J := [fset x in s].
suff: \sum_(x : J) `|f (val x)| > M by rewrite ltNge bM.
apply/(@lt_le_trans _ _ (\sum_(x : J) 1 / i.+1%:~R)); last first.
apply/ler_sum=> /= m _; apply/ltW.
by have:= fsvalP m; rewrite in_fset => /le_sEi.
rewrite mul1r sumr_const -cardfE card_fseq undup_id // eq_si.
rewrite -mulr_natr natrM mulrC mulfK ?pnatr_eq0//.
by case/trunc_itv/andP: ge0_M.
Qed.
End SummableCountable.
(* -------------------------------------------------------------------- *)
Section PosCnv.
Context {R : realType}.
Lemma ncvg_mono (u : nat -> R) :
(* {mono u : x y / (x <= y)%N >-> u x <= u y *)
(forall x y, (x <= y)%N -> u x <= u y)
-> exists2 l, (-oo < l)%E & ncvg u l.
Proof.
move=> mono_u; pose E := [set x | exists n, x = u n]%classic.
have nzE: nonempty E by exists (u 0%N); exists 0%N.
case: (pselect (has_sup E)); last first.
move/has_supPn=> -/(_ nzE) h; exists +oo%E => //; elim/nbh_pinfW => M /=.
case/(_ M): h=> x [K -> lt_MuK]; exists K=> n le_Kn; rewrite inE.
by apply/(lt_le_trans lt_MuK)/mono_u.
move=> supE; exists (sup E)%:E => //; first exact: ltNyr.
elim/nbh_finW=>e /= gt0_e.
case: (sup_adherent gt0_e supE)=> x [K ->] lt_uK.
exists K=> n le_Kn; rewrite inE distrC ger0_norm ?subr_ge0.
by move/ubP: (sup_upper_bound supE); apply; exists n.
rewrite ltrBlDr addrC -ltrBlDr.
by rewrite (lt_le_trans lt_uK) //; apply/mono_u.
Qed.
Lemma ncvg_mono_bnd (u : nat -> R) :
(* {mono u : x y / (x <= y)%N >-> u x <= u y *)
(forall x y, (x <= y)%N -> u x <= u y)
-> nbounded u -> exists l, ncvg u l%:E.
Proof.
case/ncvg_mono=> -[x||] // _ cu bdu; first by exists x.
case/asboolP/nboundedP: bdu=> M gt0_M bdu.
case/(_ (NPInf M)): cu => K /= /(_ K (leqnn _)).
rewrite inE/= => /ltW /le_trans /(_ (ler_norm _)).
by move/le_lt_trans/(_ (bdu _)); rewrite ltxx.
Qed.
End PosCnv.
(* -------------------------------------------------------------------- *)
Section SumTh.
Context {R : realType} (T : choiceType).
Implicit Type S : T -> R.
Lemma summable_sup (S : T -> R) : summable S -> has_sup
[set x | exists J : {fset T}, x = \sum_(j : J) `|S (val j)|]%classic.
Proof.
case/summableP=> M _ hbd; split.
by exists 0, fset0; rewrite big_fset0.
by exists M; apply/ubP=> y [J ->].
Qed.
Lemma psum_sup S : psum S =
sup [set x | exists J : {fset T}, x = \sum_(x : J) `|S (val x)|]%classic.
Proof.
rewrite /psum; case: ifPn => // /asboolPn h.
rewrite sup_out //; set X := [set r | _]%classic => hs.
apply: h; exists (sup X) => J.
by move/ubP : (sup_upper_bound hs); apply; exists J.
Qed.
Lemma psum_sup_seq S : psum S =
sup [set x | exists2 J : seq T,
uniq J & x = \sum_(x <- J) `|S x| ]%classic.
Proof.
rewrite psum_sup; congr sup; rewrite predeqE => x; split.
case=> J ->; exists (enum_fset J).
by case: J => /= J /canonical_uniq.
by rewrite (big_fset_seq \`|_|) /=.
case=> J uqJ ->; exists [fset x in J].
by rewrite (big_seq_fset \`|_|).
Qed.
Lemma eq_summable (S1 S2 : T -> R) :
(S1 =1 S2) -> summable S1 -> summable S2.
Proof.
move=> eq_12 [M h]; exists M => J; rewrite (le_trans _ (h J)) //.
rewrite le_eqVlt; apply/orP; left; apply/eqP/eq_bigr.
by move=> /= K _; rewrite eq_12.
Qed.
Lemma eq_summableb (S1 S2 : T -> R) :
(S1 =1 S2) -> `[< summable S2 >] = `[< summable S1 >].
Proof. by move=> eq_12; apply/asboolP/asboolP; apply/eq_summable. Qed.
Lemma eq_ppsum (F1 F2 : {fset T} -> R) : F1 =1 F2 ->
(sup [set x | exists J, x = F1 J] = sup [set x | exists J, x = F2 J])%classic.
Proof.
move=> eq_12; congr sup; rewrite predeqE => x.
by split=> -[J ->]; exists J.
Qed.
Lemma eq_psum (F1 F2 : T -> R) : F1 =1 F2 -> psum F1 = psum F2.
Proof.
move=> eq_12; rewrite /psum (eq_summableb eq_12).
case: `[< summable F1 >] => //.
congr sup.
rewrite predeqE => x; split=> -[J ->]; exists J;
by apply/eq_bigr=> /= K _; rewrite eq_12.
Qed.
Lemma eq_sum (F1 F2 : T -> R) : F1 =1 F2 -> sum F1 = sum F2.
Proof.
move=> eq_fg; rewrite /sum; congr (_ - _); apply/eq_psum.
by apply/eq_fpos. by apply/eq_fneg.
Qed.
Lemma le_summable (F1 F2 : T -> R) :
(forall x, 0 <= F1 x <= F2 x) -> summable F2 -> summable F1.
Proof.
move=> le_F [M leM]; exists M => J; apply/(le_trans _ (leM J)).
apply/ler_sum => /= j _; case/andP: (le_F (val j)) => h1 h2.
by rewrite !ger0_norm // (le_trans h1 h2).
Qed.
Lemma le_psum (F1 F2 : T -> R) :
(forall x, 0 <= F1 x <= F2 x) -> summable F2 -> psum F1 <= psum F2.
Proof.
move=> le_F smF2; have smF1: summable F1 by apply/(le_summable le_F).
rewrite /psum (asboolT smF1) (asboolT smF2); apply/le_sup; first last.
+ by apply/summable_sup.
+ by exists 0, fset0; rewrite big_fset0.
move=> x [J ->]; apply/downP; exists (\sum_(j : J) `|F2 (val j)|).
by exists J.
apply/ler_sum=> /= j _; case/andP: (le_F (val j)) => h1 h2.
by rewrite !ger0_norm // (le_trans h1 h2).
Qed.
Lemma psum_out S : ~ summable S -> psum S = 0.
Proof. by move/asboolPn/negbTE=> smN; rewrite /psum smN. Qed.
Lemma psumE S : (forall x, 0 <= S x) -> summable S -> psum S =
sup [set x | exists J : {fset T}, x = \sum_(j : J) S (val j)]%classic.
Proof.
move=> gt0_S smS; rewrite /psum (asboolT smS); apply/eq_ppsum=> /=.
by move=> J; apply/eq_bigr=> j _; rewrite ger0_norm.
Qed.
Lemma psum_absE S : summable S -> psum S =
sup [set x | exists J : {fset T}, x = \sum_(j : J) `|S (val j)|]%classic.
Proof. by move=> smS; rewrite /psum (asboolT smS). Qed.
Lemma summable_seqP S :
summable S <-> (exists2 M, 0 <= M &
forall s : seq T, uniq s -> \sum_(x <- s) `|S x| <= M).
Proof.
split=> [/summableP|] [M gt0_M h]; exists M => //.
by move=> s uq_s; have := h [fset x in s]; rewrite (big_seq_fset \`|S|).
by case=> J cJ; rewrite (big_fset_seq \`|_|) /=; apply/h/canonical_uniq.
Qed.
Lemma gerfin_psum S (J : {fset T}) :
summable S -> \sum_(j : J) `|S (val j)| <= psum S.
Proof.
move=> smS; rewrite /psum (asboolT smS).
by move/ubP : (sup_upper_bound (summable_sup smS)); apply; exists J.
Qed.
Lemma gerfinseq_psum S (r : seq T) :
uniq r -> summable S -> \sum_(j <- r) `|S j| <= psum S.
Proof.
move=> uq_r /gerfin_psum -/(_ [fset x in r]);
by rewrite (big_seq_fset \`|S|).
Qed.
Lemma psum_le S z :
(forall J, uniq J -> \sum_(j <- J) `|S j| <= z) -> psum S <= z.
Proof.
move=> le_z; have: summable S; first (apply/summable_seqP; exists z).
+ by apply/(le_trans _ (le_z [::] _)) => //; rewrite big_nil.
+ by move=> J uqJ; apply/le_z.
move/summable_sup=> [neS hsS]; rewrite psum_sup.
apply/sup_le_ub => //; apply/ubP=> r [J ->].
by rewrite (big_fset_seq \`|_|) le_z /=; case: J => J /= /canonical_uniq.
Qed.
Lemma lt_psum (F : T -> R) l :
summable F -> l < psum F ->
exists J : {fset T}, l < \sum_(j : J) `|F (val j)|.
Proof.
move=> smF; rewrite /psum (asboolT smF) => /lt_sup_imfset.
by case=> /= [|J lt_lJ _]; [apply/summable_sup | exists J].
Qed.
End SumTh.
(* -------------------------------------------------------------------- *)
Lemma max_sup {R : realType} x (E : set R) :
(E `&` ubound E)%classic x -> sup E = x.
Proof.
case=> /= xE xubE; have nzE: nonempty E by exists x.
apply/eqP; rewrite eq_le sup_le_ub //=.
have : has_sup E by split; exists x.
by move/sup_upper_bound/ubP; apply.
Qed.
(* -------------------------------------------------------------------- *)
Section FinSumTh.
Context {R : realType} (I : finType).
Lemma summable_fin (f : I -> R) : summable f.
Proof.
exists (\sum_(i : [fset i | i : I]) `|f (val i)|).
move=> J; apply: (big_fset_subset (F := \`|_|)).
by move=> x; rewrite normr_ge0.
by move=> i _; apply/imfsetP; exists i.
Qed.
Lemma psum_fin (f : I -> R) : psum f = \sum_i `|f i|.
Proof. (* FIXME *)
pose S := \sum_(i : [fset i | i : I]) `|f (val i)|.
rewrite /psum (asboolT (summable_fin f)) (@max_sup _ S).
rewrite /=; split; first by exists [fset i | i : I]%fset.
apply/ubP=> y [J ->]; apply/(big_fset_subset (F := \`|_|)).
by move=> i; rewrite normr_ge0.
by move=> j jJ; apply/in_imfset.
rewrite /S -(big_map val xpredT \`|f|); apply/perm_big.
rewrite /index_enum -!enumT; apply/(perm_trans _ enum_fsetT).
apply/uniq_perm; rewrite ?map_inj_uniq ?enum_uniq //=.
by apply/val_inj. by rewrite -enumT enum_uniq.
move=> i /=; rewrite mem_enum in_imfset //; apply/mapP.
have h: i \in [fset j | j : I] by rewrite in_imfset.
by exists (FSetSub h) => //; rewrite mem_enum.
Qed.
End FinSumTh.
(* -------------------------------------------------------------------- *)
Section PSumGe.
Context {R : realType} (T : choiceType).
Variable (S : T -> R).
Lemma ger_big_psum r : uniq r -> summable S ->
\sum_(x <- r) `|S x| <= psum S.
Proof.
move=> uq_r smS; rewrite /psum (asboolT smS).
set E := (X in sup X).
have : has_sup E by apply/summable_sup.
move/sup_upper_bound/ubP; apply.
by exists [fset x in r]; rewrite (big_seq_fset (fun i => `|S i|)).
Qed.
Lemma ger1_psum x : summable S -> `|S x| <= psum S.
Proof.
move=> smS; have h := @ger_big_psum [:: x] _ smS.
by rewrite (le_trans _ (h _)) ?big_seq1.
Qed.
Lemma ge0_psum : 0 <= psum S.
Proof. (* FIXME: asbool_spec *)
case/boolP: `[< summable S >] => [|/asboolPn/psum_out ->//].
move/asboolP=> smS; have h := @ger_big_psum [::] _ smS.
by rewrite (le_trans _ (h _)) ?big_nil.
Qed.
End PSumGe.
(* -------------------------------------------------------------------- *)
Section PSumNatGe.
Context {R : realType}.
Variable (S : nat -> R) (smS : summable S).
Lemma ger_big_ord_psum n : \sum_(i < n) `|S i| <= psum S.
Proof.
rewrite -(big_mkord predT (fun i => `|S i|)) /=.
by apply/ger_big_psum => //; rewrite iota_uniq.
Qed.
End PSumNatGe.
(* -------------------------------------------------------------------- *)
Section PSumCnv.
Context {R : realType}.
Variable (S : nat -> R).
Hypothesis ge0_S : (forall n, 0 <= S n).
Hypothesis smS : summable S.
Lemma ptsum_homo x y : (x <= y)%N -> (\sum_(i < x) S i <= \sum_(i < y) S i).
Proof.
move=> le_xy; rewrite -!(big_mkord predT) -(subnKC le_xy) /=.
by rewrite /index_iota !subn0 iotaD big_cat /= lerDl sumr_ge0.
Qed.
Lemma psummable_ptbounded : nbounded (fun n => \sum_(i < n) S i).
Proof.
apply/asboolP/nboundedP; exists (psum S + 1).
rewrite ltr_pwDr ?ltr01 1?(le_trans (normr_ge0 (S 0%N))) //.
by apply/ger1_psum.
move=> n; rewrite ltr_pwDr ?ltr01 // ger0_norm ?sumr_ge0 //.
apply/(le_trans _ (ger_big_ord_psum _ n)) => //.
by apply/ler_sum=> /= i _; apply/ler_norm.
Qed.
Lemma ncvg_sum : ncvg (fun n => \sum_(i < n) S i) (psum S)%:E.
Proof.
set u := (fun n => _); apply: contraPP smS => ncv _.
case: (ncvg_mono_bnd (u := u)) => //.
by apply/ptsum_homo. by apply/psummable_ptbounded.
move=> x cvux; suff xE: x = (psum S) by rewrite xE in cvux.
apply/eqP; case: (x =P _) => // /eqP /lt_total /orP[]; last first.
+ rewrite -lte_fin => /ncvg_gt /(_ cvux) [K /(_ _ (leqnn _))] /=.
rewrite ltNge lee_fin (le_trans _ (ger_big_ord_psum _ K)) //.
by apply/ler_sum=> /= i _; apply/ler_norm.
move=> lt_xS; pose e := psum S - x.
have ge0_e: 0 < e by rewrite subr_gt0.
case: (sup_adherent ge0_e (summable_sup smS)) => y.
case=> /= J ->; rewrite /e /psum (asboolT smS).
rewrite opprB addrCA subrr addr0 => lt_xSJ.
pose k := \max_(j : J) (val j); have lt_x_uSk: x < u k.+1.
apply/(lt_le_trans lt_xSJ); rewrite /u big_ord_mkfset.
rewrite (eq_bigr (S \o val)) => /= [j _|]; first by rewrite ger0_norm.
apply/big_fset_subset=> // j jJ; rewrite in_fset //.
by rewrite (mem_iota _ k.+1) /= add0n ltnS (leq_bigmax (FSetSub jJ)).
have /= := ncvg_homo_le ptsum_homo cvux k.+1; rewrite -/(u _).
by rewrite lee_fin => /le_lt_trans/(_ lt_x_uSk); rewrite ltxx.
Qed.
Lemma sum_ncvg l :
ncvg (fun n => \sum_(i < n) S i) l%:E -> summable S.
Proof using ge0_S. Abort.
End PSumCnv.
(* -------------------------------------------------------------------- *)
Section PSumAsLim.
Context {R : realType} {T : choiceType}.
Variable (S : T -> R) (P : nat -> {fset T}).
Hypothesis ge0_S : (forall x, 0 <= S x).
Hypothesis smS : summable S.
Hypothesis homo_P : forall n m, (n <= m)%N -> (P n `<=` P m).
Hypothesis cover_P : forall x, S x != 0 -> exists n, x \in P n.
Lemma psum_as_lim : psum S = fine (nlim (fun n => \sum_(j : P n) (S (val j)))).
Proof.
set v := fun n => _; have hm_v m n: (m <= n)%N -> v m <= v n.
by move=> le_mn; apply/big_fset_subset/fsubsetP/homo_P.
have bd_v n : v n <= psum S.
apply/(le_trans _ (gerfin_psum _ smS))/ler_sum.
by move=> J _; apply/ler_norm.
case: (ncvg_mono_bnd hm_v) => [|l cv].
apply/asboolP/nboundedP; exists (psum S + 1) => //.
by apply/(le_lt_trans (ge0_psum S)); rewrite ltrDl ltr01.
move=> n; rewrite ger0_norm ?sumr_ge0 //.
by rewrite (le_lt_trans (bd_v n)) // ltrDl ltr01.
have le_lS: l <= psum S by rewrite -lee_fin (ncvg_leC _ cv).
rewrite (nlimE cv) /= (rwP eqP) eq_le le_lS andbT.
rewrite leNgt; apply/negP=> {le_lS} /(lt_psum smS)[J].
rewrite (big_fset_seq \`|_|) /=; case: J => /= J.
move/canonical_uniq=> uqJ lt_jS; pose K := [seq x <- J | S x != 0].
have [n]: exists n, {subset K <= P n}; first rewrite {}/K.
elim: {uqJ lt_jS} J => /= [|x J [n ih]]; first by exists 0%N.
case: (S x =P 0) => /=; first by move=> _; exists n.
move/eqP/cover_P=> [k Pk_x]; exists (maxn n k)=> y.
rewrite inE => /orP[/eqP->|/=].
by apply/fsubsetP/homo_P/leq_maxr: x Pk_x.
by move/ih; apply/fsubsetP/homo_P/leq_maxl: y.
move=> le_K_Pn; have: l < v n; first apply/(lt_le_trans lt_jS).
rewrite (eq_bigr S) => [x _|]; first by rewrite ger0_norm.
rewrite /v (bigID (fun x => S x == 0)) /= big1 => [x /eqP|] //.
rewrite add0r -big_filter -/K -big_seq_fset ?filter_uniq //=.
by apply/big_fset_subset => // x; rewrite in_fset => /le_K_Pn.
by apply/negP; rewrite -leNgt -lee_fin ncvg_homo_le.
Qed.
End PSumAsLim.
(* -------------------------------------------------------------------- *)
Section SummableAlg.
Context {R : realType} (T : choiceType) (I : Type).
(* -------------------------------------------------------------------- *)
Lemma summable_addrC (S1 S2 : T -> R) :
summable (S1 \+ S2) -> summable (S2 \+ S1).
Proof. by apply/eq_summable => x; rewrite /= addrC. Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_mulrC (S1 S2 : T -> R) :
summable (S1 \* S2) -> summable (S2 \* S1).
Proof. by apply/eq_summable => x; rewrite /= mulrC. Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_abs (S : T -> R) : summable \`|S| <-> summable S.
Proof.
have h J: \sum_(j <- J) `| `|S j| | = \sum_(j <- J) `|S j|.
by apply/eq_bigr=> j _; rewrite normr_id.
split=> /summable_seqP[M ge0_M leM]; apply/summable_seqP;
by exists M=> // => J /leM; rewrite h.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable0 : summable (fun _ : T => 0 : R).
Proof. by exists 0 => J; rewrite big1 ?normr0. Qed.
(* -------------------------------------------------------------------- *)
Lemma summableD (S1 S2 : T -> R) :
summable S1 -> summable S2 -> summable (S1 \+ S2).
Proof.
case=> [M1 h1] [M2 h2]; exists (M1 + M2) => J /=.
pose M := \sum_(x : J) (`|S1 (val x)| + `|S2 (val x)|).
rewrite (@le_trans _ _ M) // ?ler_sum // => [K _|].
by rewrite ler_normD.
by rewrite /M big_split lerD ?(h1, h2).
Qed.
(* -------------------------------------------------------------------- *)
Lemma summableN (S : T -> R) : summable S -> summable (- S).
Proof.
case=> [M h]; exists M => J; rewrite (le_trans _ (h J)) //.
rewrite le_eqVlt; apply/orP; left; apply/eqP/eq_bigr.
by move=> /= K _; rewrite normrN.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summablebN (S : T -> R) :
`[< summable (- S)>] = `[< summable S >].
Proof.
apply/asboolP/asboolP => /summableN //.
by apply/eq_summable => x /=; rewrite opprK.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summablebDl (S1 S2 : T -> R) : summable S1 ->
`[< summable (S1 \+ S2) >] = `[< summable S2 >].
Proof.
move=> sm1; apply/asboolP/asboolP; last by apply/(summableD sm1).
move=> sm12; apply/(@eq_summable _ _ ((S1 \+ S2) \- S1)).
by move=> x /=; rewrite addrC addKr.
by apply/summableD/summableN.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summablebDr (S1 S2 : T -> R) : summable S2 ->
`[< summable (S1 \+ S2) >] = `[< summable S1 >].
Proof.
move=> sm1; rewrite (@eq_summableb _ _ (S2 \+ S1)) ?summablebDl //.
by move=> x /=; rewrite addrC.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summableZ (S : T -> R) c : summable S -> summable (c \*o S).
Proof.
case=> [M h]; exists (`|c| * M) => J; move/(_ J): h => /=.
move/(ler_wpM2l (normr_ge0 c)); rewrite mulr_sumr.
move/(le_trans _); apply; rewrite le_eqVlt; apply/orP.
by left; apply/eqP/eq_bigr=> j _; rewrite normrM.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summableZr (S : T -> R) (c : R) :
summable S -> summable (c \o* S).
Proof. by move=> smS; apply/summable_mulrC/summableZ. Qed.
(* -------------------------------------------------------------------- *)
Lemma summableMl (S1 S2 : T -> R) :
(exists M, forall x, `|S1 x| <= M) -> summable S2 -> summable (S1 \* S2).
Proof.
case=> M leM smS2; apply/summable_abs.
apply/(le_summable (F2 := M \*o \`|S2|)).
+ by move=> x /=; rewrite normr_ge0 /= normrM ler_wpM2r.
+ by apply/summableZ/summable_abs.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summableMr (S1 S2 : T -> R) :
(exists M, forall x, `|S2 x| <= M) -> summable S1 -> summable (S1 \* S2).
Proof. by move=> bd sm; apply/summable_mulrC/summableMl. Qed.
(* -------------------------------------------------------------------- *)
Lemma summableM (S1 S2 : T -> R) :
summable S1 -> summable S2 -> summable (S1 \* S2).
Proof.
move=> smS1 smS2; apply/summableMl => //; exists (psum S1).
by move=> x; apply/ger1_psum.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_fpos (f : T -> R) :
summable f -> summable (fpos f).
Proof.
move/summable_abs; apply/le_summable=> x.
by rewrite ge0_fpos /= le_fpos_norm.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_fneg (f : T -> R) :
summable f -> summable (fneg f).
Proof. by move/summableN/summable_fpos/(eq_summable (fposN _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_condl (S : T -> R) (P : pred T) :
summable S -> summable (fun x => (P x)%:R * S x).
Proof.
case/summable_seqP=> M ge0_M leM; apply/summable_seqP.
exists M => //; move=> J /leM /(le_trans _); apply.
apply/ler_sum=> x _; case: (P x); rewrite (mul1r, mul0r) //.
by rewrite normr0 normr_ge0.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_condr (S : T -> R) (P : pred T) :
summable S -> summable (fun x => S x * (P x)%:R).
Proof.
move=> /(summable_condl P) /eq_summable; apply.
by move=> x /=; rewrite mulrC.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_of_bd (S : T -> R) (d : R) :
(forall J, uniq J -> \sum_(x <- J) `|S x| <= d) ->
summable S /\ psum S <= d.
Proof.
move=> leS; have ge0_d: 0 <= d.
by apply/(le_trans _ (leS [::] _)); rewrite // big_nil.
have smS: summable S by apply/summable_seqP; exists d.
split=> //; rewrite /psum (asboolT smS); apply/sup_le_ub.
by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite (big_fset_seq \`|_|) /=.
by apply/leS; case: J => J /= /canonical_uniq.
Qed.
(* -------------------------------------------------------------------- *)
Lemma summable_sum (F : I -> T -> R) (P : pred I) r :
(forall i, P i -> summable (F i))
-> summable (fun x => \sum_(i <- r | P i) F i x).
Proof.
move=> sm_F; elim: r => [|i r ih].
by apply/(eq_summable _ summable0) => x; rewrite big_nil.
pose G x := (F i x) * (P i)%:R + \sum_(i <- r | P i) F i x.
apply/(eq_summable (S1 := G)) => [x|].
by rewrite {}/G big_cons; case: ifP=> Pi; rewrite !Monoid.simpm.
apply/summableD => //; case/boolP: (P i) => [|_].
by move/sm_F; apply/eq_summable => x; rewrite mulr1.
by apply/(eq_summable _ summable0) => x; rewrite mulr0.
Qed.
End SummableAlg.
(* -------------------------------------------------------------------- *)
Section StdSum.
Context {R : realType} (T : choiceType) (I : Type).
Implicit Type S : T -> R.
(* -------------------------------------------------------------------- *)
Lemma psum0 : psum (fun _ : T => 0) = 0 :> R.
Proof.
rewrite /psum asboolT; first by apply/summable0.
set S := [set x | _]%classic; suff: S = (set1 0).
by move => ->; rewrite sup1.
rewrite predeqE => x; split.
by case=> J -> /=; rewrite big1 // normr0.
by move=> ->; exists fset0; rewrite big_fset0.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psum_eq0 (f : T -> R) : (forall x, f x = 0) -> psum f = 0.
Proof. by move=> eq; rewrite (eq_psum eq) psum0. Qed.
(* -------------------------------------------------------------------- *)
Lemma eq0_psum (f : T -> R) :
summable f -> psum f = 0 -> (forall x : T, f x = 0).
Proof.
move=> sm psum_eq0 x; apply/eqP; rewrite -normr_eq0.
rewrite eq_le normr_ge0 andbT -psum_eq0.
apply/(le_trans _ (gerfinseq_psum (r := [:: x]) _ sm)) => //.
by rewrite big_seq1.
Qed.
(* -------------------------------------------------------------------- *)
Lemma neq0_psum (f : T -> R) : psum f <> 0 -> exists x : T, f x <> 0.
Proof.
by move=> nz_psum; apply/existsp_asboolPn/asboolPn => /psum_eq0.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psum_abs (S : T -> R) : psum \`|S| = psum S.
Proof.
rewrite /psum; do 2! case: ifPn => //; first last.
+ by move/asboolP/summable_abs/asboolP=> ->.
+ by move/asboolPn/summable_abs/asboolPn=> /negbTE->.
move=> _ _; congr sup; rewrite predeqE => x; split.
case=> J ->; exists J.
by under eq_bigr do rewrite normr_id.
case=> J ->; exists J.
by under [in RHS]eq_bigr do rewrite normr_id.
Qed.
(* -------------------------------------------------------------------- *)
Lemma eq_psum_abs (S1 S2 : T -> R) :
\`|S1| =1 \`|S2| -> psum S1 = psum S2.
Proof.
by move=> eqS; rewrite -[LHS]psum_abs -[RHS]psum_abs; apply/eq_psum.
Qed.
(* -------------------------------------------------------------------- *)
Lemma le_psum_abs (S1 S2 : T -> R) :
(forall x, `|S1 x| <= `|S2 x|) -> summable S2 -> psum S1 <= psum S2.
Proof.
move=> leS smS2; rewrite -[X in X<=_]psum_abs -[X in _<=X]psum_abs.
by apply/le_psum/summable_abs => // x; rewrite normr_ge0 leS.
Qed.
(* -------------------------------------------------------------------- *)
Lemma le_psum_condl (S : T -> R) (P : pred T) :
summable S -> psum (fun x => (P x)%:R * S x) <= psum S.
Proof.
move=> smS; apply/le_psum_abs=> // x; rewrite normrM.
by apply/ler_piMl => //; rewrite normr_nat lern1 leq_b1.
Qed.
(* -------------------------------------------------------------------- *)
Lemma le_psum_condr (S : T -> R) (P : pred T) :
summable S -> psum (fun x => S x * (P x)%:R) <= psum S.
Proof.
move=> smS; apply/(le_trans _ (le_psum_condl P smS)).
rewrite le_eqVlt -(rwP orP); left; apply/eqP/eq_psum.
by move=> x /=; rewrite mulrC.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psumN (S : T -> R) : psum (- S) = psum S.
Proof.
case/boolP: `[< summable S >] => h; last first.
by rewrite !psum_out ?oppr0 //; apply/asboolPn; rewrite ?summablebN.
rewrite /psum summablebN h; apply/eq_ppsum=> J /=.
by apply/eq_bigr=> j _; rewrite normrN.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psumD S1 S2 :
(forall x, 0 <= S1 x) -> (forall x, 0 <= S2 x)
-> summable S1 -> summable S2
-> psum (S1 \+ S2) = (psum S1 + psum S2).
Proof.
move=> ge0_S1 ge0_S2 smS1 smS2; have smD := summableD smS1 smS2.
have ge0D: forall x, 0 <= S1 x + S2 x by move=> x; rewrite addr_ge0.
rewrite !psumE // (rwP eqP) eq_le -(rwP andP); split.
apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite big_split /=.
apply/lerD; rewrite -psumE 1?(le_trans _ (gerfin_psum J _)) //.
+ by apply/ler_sum=> j _ /=; apply/ler_norm.
+ by apply/ler_sum=> j _ /=; apply/ler_norm.
rewrite -lerBrDr; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J1 ->]; rewrite lerBrDr addrC.
rewrite -lerBrDr; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J2 ->]; rewrite lerBrDr addrC.
pose J := J1 `|` J2; rewrite -psumE ?(le_trans _ (gerfin_psum J _)) //.
pose D := \sum_(j : J) (S1 (val j) + S2 (val j)).
apply/(@le_trans _ _ D); last by apply/ler_sum=> i _; apply/ler_norm.
rewrite /D big_split /=; apply/lerD; apply/big_fset_subset=> //.
+ by apply/fsubsetP/fsubsetUl. + by apply/fsubsetP/fsubsetUr.
Qed.
(* -------------------------------------------------------------------- *)
Lemma __admitted__psumB S1 S2 :
(forall x, 0 <= S2 x <= S1 x) -> summable S1
-> psum (S1 \- S2) = (psum S1 - psum S2).
Proof using Type. Admitted.
(* -------------------------------------------------------------------- *)
Lemma psumZ S c : 0 <= c -> psum (c \*o S) = c * psum S.
Proof.
rewrite le_eqVlt => /orP[/eqP<-|gt0_c].
by rewrite mul0r psum_eq0 // => x /=; rewrite mul0r.
case/asboolP: (summable S) => [smS|NsmS]; last first.
rewrite !psum_out ?mulr0 // => smZ; apply/NsmS.
move/(summableZ c^-1): smZ; apply/eq_summable=> x /=.
by rewrite mulKf // gt_eqF.
have smZ := summableZ c smS; rewrite (rwP eqP) eq_le.
apply/andP; split; first rewrite {1}/psum asboolT //.
apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite -ler_pdivrMl //.
rewrite mulr_sumr (le_trans _ (gerfin_psum J _)) //.
apply/ler_sum=> /= j _; rewrite normrM.
by rewrite gtr0_norm // mulKf ?gt_eqF.
rewrite -ler_pdivlMl // {1}/psum asboolT //; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite ler_pdivlMl //.
rewrite mulr_sumr; apply/(le_trans _ (gerfin_psum J _))=> //.
by apply/ler_sum=> /= j _; rewrite normrM (gtr0_norm gt0_c).
Qed.
(* -------------------------------------------------------------------- *)
Lemma psumZr S c :
0 <= c -> psum (c \o* S) = psum S * c.
Proof.
move=> ge0_c; rewrite [RHS]mulrC -psumZ //.
by apply/eq_psum => x /=; rewrite mulrC.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psum_bigop (F : I -> T -> R) P r :
(forall i x, 0 <= F i x) -> (forall i, summable (F i)) ->
\sum_(i <- r | P i) psum (F i) =
psum (fun x => \sum_(i <- r | P i) F i x).
Proof.
move=> ge0_F sm_F; elim: r => [|i r ih].
by rewrite big_nil; apply/esym/psum_eq0 => x; rewrite big_nil.
rewrite big_cons ih; case: ifP => Pi; last first.
by apply/eq_psum=> x /=; rewrite big_cons Pi.
rewrite -psumD //; first by move=> x; apply/sumr_ge0.
by apply/summable_sum.
by apply/eq_psum=> x /=; rewrite big_cons Pi.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psumID S (P : pred T) :
summable S -> psum S =
psum (fun x => (P x)%:R * S x) + psum (fun x => (~~P x)%:R * S x).
Proof.
have h x: `|S x| = (P x)%:R * `|S x| + (~~P x)%:R * `|S x|.
by case: (P x); rewrite !Monoid.simpm.
move=> smS; rewrite -[LHS]psum_abs (eq_psum h) psumD.
by move=> x; rewrite mulr_ge0. by move=> x; rewrite mulr_ge0.
by apply/summable_condl/summable_abs.
by apply/summable_condl/summable_abs.
congr (_ + _); apply/eq_psum_abs=> x /=.
by rewrite !normrM normr_nat normr_id.
by rewrite !normrM normr_nat normr_id.
Qed.
(* -------------------------------------------------------------------- *)
Lemma psum_finseq S (r : seq.seq T) :
uniq r -> {subset [pred x | S x != 0] <= r}
-> psum S = \sum_(x <- r) `|S x|.
Proof.
move=> eq_r ler; set s := RHS; have h J: uniq J -> \sum_(x <- J) `|S x| <= s.
move=> uqJ; rewrite (bigID (ssrbool.mem r)) /= addrC big1.
move=> x xNr; apply/eqP; apply/contraR: xNr.
by rewrite normr_eq0 => /ler.
rewrite add0r {}/s -big_filter; set s := seq.filter _ _.
rewrite [X in _<=X](bigID (ssrbool.mem J)) /=.
rewrite (perm_big [seq x <- r | x \in J]) /=.
apply/uniq_perm; rewrite ?filter_uniq // => x.
by rewrite !mem_filter andbC.
by rewrite big_filter lerDl sumr_ge0.
case/summable_of_bd: h => smS le_psum; apply/eqP.
by rewrite eq_le le_psum /=; apply/gerfinseq_psum.
Qed.
End StdSum.
#[deprecated(since="mathcomp-analysis 0.6.2",
note="lacks proof, use __admitted__psumB explicitly if you really want to")]
Notation psumB := __admitted__psumB.
(* -------------------------------------------------------------------- *)
Section PSumReindex.
Context {R : realType} {T U : choiceType}.
Context (S : T -> R) (P : pred T) (h : U -> T).
Lemma reindex_psum_onto h' :
(forall x, S x != 0 -> x \in P)
-> (forall i, i \in P -> omap h (h' i) = Some i)
-> (forall i, h i \in P -> h' (h i) = Some i)
-> psum S = psum (fun x : U => S (h x)).
Proof.
move=> PS hO hP; rewrite !psum_sup_seq; congr sup; rewrite predeqE => x.
split=> -[J uqJ ->] {x}; last first.
exists [seq h j | j <- J & S (h j) != 0].
rewrite map_inj_in_uniq ?filter_uniq // => y1 y2.
rewrite !mem_filter => /andP[nz_S1 _] /andP[nz_S2 _].
by move/(congr1 h'); rewrite !hP ?PS // => -[].
apply/eqP; rewrite big_map big_filter.
rewrite (bigID (fun i => S (h i) == 0)) /= big1 ?add0r //.
by move=> y /eqP->; rewrite normr0.
have uqpJ: uniq (pmap h' [seq j | j <- J & S j != 0]).
apply/(map_uniq (f := some)); rewrite pmapS_filter.
rewrite map_inj_in_uniq ?filter_uniq // => [y1 y2|]; last first.
by rewrite map_id filter_uniq.
rewrite !map_id !mem_filter => /andP[h'1 h1] /andP[h'2 h2].
case/andP: h1 => h1 _; case/andP: h2 => h2 _.
by move/(congr1 (omap h)); rewrite !hO ?PS // => -[].
exists (pmap h' [seq j | j <- J & S j != 0]) => //.
apply/eqP; rewrite -(big_map h predT \`|S|) (bigID [pred j | S j == 0]) /=.
rewrite big1 ?add0r => [i /eqP->|]; first by rewrite normr0.
rewrite -big_filter; apply/eqP; apply/perm_big/uniq_perm.
+ by rewrite filter_uniq.
+ rewrite map_inj_in_uniq // !map_id => y1 y2 h1 h2.
move/(congr1 h'); rewrite !hP ?PS //; last by case.
* move: h1; rewrite mem_pmap => /mapP[x1].
rewrite mem_filter => /andP[nz_Sx1 _] /(congr1 (omap h)) /=.
by rewrite hO ?PS // => -[->].
* move: h2; rewrite mem_pmap => /mapP[x2].
rewrite mem_filter => /andP[nz_Sx2 _] /(congr1 (omap h)) /=.
by rewrite hO ?PS // => -[->].
move=> x; rewrite !mem_filter; apply/andP/idP.
+ case=> nzSx Jx; apply/mapP; move/(_ x (PS _ nzSx)): hO.
case E: (h' x) => [u|] //= -[xE]; exists u => //.
rewrite mem_pmap; apply/mapP; exists x => //.
by rewrite map_id mem_filter nzSx.
+ case/mapP=> u; rewrite mem_pmap => /mapP[t]; rewrite map_id.
rewrite mem_filter=> /andP[h1 h2] /(congr1 (omap h)) /=.
by rewrite hO ?PS // => -[->] ->; split.
Qed.
Lemma reindex_psum :
(forall x, S x != 0 -> x \in P)
-> {on P, bijective h}
-> psum S = psum (fun x : U => S (h x)).
Proof.
move=> hP [hI h1 h2]; apply/(@reindex_psum_onto (some \o hI)) => //.
+ by move=> x Px /=; rewrite h2.
+ by move=> x Px /=; rewrite h1.
Qed.
End PSumReindex.
(* -------------------------------------------------------------------- *)
Section PSumPartition.
Context {R : realType} {T U : choiceType} (f : T -> U).
Let C y := `[< exists x : T, f x == y >].
Lemma partition_psum (S : T -> R) : summable S ->
psum S = psum (fun y => psum (fun x => S x * (f x == y)%:R)).
Proof. (* FIXME: this proof is a joke *)
move=> smS; rewrite (rwP eqP) eq_le -(rwP andP); split.
pose F x y := `|S x| * (f x == y :> U)%:R.
have smFy y: summable (F^~ y).
by apply/summable_condr/summable_abs.
set G := fun y : U => _; have: summable G.
case/summable_seqP: smS => M ge0_M leM.
apply/summable_seqP; exists M => // J uqJ; rewrite {}/G.
rewrite (eq_bigr (fun y => psum (F^~ y))) => [y _|].
rewrite ger0_norm ?ge0_psum //; apply/eq_psum_abs => x.
by rewrite !normrM [ `|_%:R|]ger0_norm ?(normr_id, ler0n).
rewrite psum_bigop // => [y x|].
by rewrite mulr_ge0 ?(normr_ge0, ler0n).
apply/psum_le=> L uqL; pose G x := \sum_(j <- J | f x == j) `|S x|.
rewrite (eq_bigr G) => [x _|]; first rewrite ger0_norm //.
+ by rewrite sumr_ge0 // => y _; rewrite mulr_ge0.
+ rewrite /G [RHS]big_mkcond /F /=; apply/eq_bigr=> y _.
by case: ifPn => //; rewrite !simpm.
rewrite {}/G /F; pose K := [seq x <- L | f x \in J].
apply/(le_trans _ (leM K _)); rewrite ?filter_uniq //.
rewrite le_eqVlt -(rwP orP); left; apply/eqP.
rewrite /K big_filter [RHS]big_mkcond /=; apply/eq_bigr.
move=> x _; case: ifPn => [fxJ|fxNJ].
rewrite big_mkcond (bigD1_seq _ fxJ uqJ) /= eqxx.
by rewrite big1 ?addr0 // => y; rewrite eq_sym => /negbTE=> ->.
rewrite big_seq_cond big1 // => y; rewrite andbC.
by case/andP=> /eqP<-; rewrite (negbTE fxNJ).
move=> smG; apply/psum_le => J uqJ; pose K := undup (map f J).
move/gerfinseq_psum: smG => /(_ K (undup_uniq _)).
move/(le_trans _); apply; rewrite {}/G.
pose G x y := `|S x| * (f x == y)%:R.
rewrite (eq_bigr (fun y => psum (G^~ y))).
move=> y _; rewrite ger0_norm ?ge0_psum //.
rewrite -psum_abs; apply/eq_psum=> x.
by rewrite normrM [ `|_%:R|]ger0_norm ?ler0n.
rewrite psum_bigop => [y x|y|]; first by rewrite mulr_ge0.
by apply/summable_condr/summable_abs.
rewrite (eq_psum (F2 := fun x => `|S x * (f x \in K)%:R|)).
move=> x; rewrite {}/G normrM. (*[ `|_%:R|]ger0_norm //.*)
case/boolP: (f x \in K); last first.
move=> fxNK.
rewrite [ `|_%:R|]ger0_norm // mulr0 big_seq big1 // => y.
apply/contraTeq; rewrite mulf_eq0 pnatr_eq0 eqb0.
by rewrite negb_or negbK => /andP[_ /eqP<-].
move=> fxK; rewrite (bigD1_seq (f x)) ?undup_uniq //=.
rewrite [ `|_%:R|]ger0_norm // ?ler01 // eqxx !mulr1 big1 ?addr0 // => y; rewrite eq_sym.
by move/negbTE=> ->; rewrite mulr0.
rewrite big_seq (eq_bigr (fun j => `|S j * (f j \in K)%:R|)) {}/G.
by move=> x /(map_f f); rewrite -mem_undup => ->; rewrite mulr1.
rewrite psum_abs; set G := (fun x : T => _ in X in _<=X).
have: summable G by apply/summable_condr.
move/gerfinseq_psum => /(_ _ uqJ) /(le_trans _); apply.
by rewrite -big_seq; apply/ler_sum => x _; rewrite normrM.
apply/psum_le=> J uqJ; pose F j := psum (fun x => `|S x| * (f x == j)%:R).
rewrite (eq_bigr F) => [y _|]; first rewrite ger0_norm ?ge0_psum //.
+ rewrite -psum_abs; apply/eq_psum => x; rewrite normrM.
by rewrite [ `|_%:R|]ger0_norm ?ler0n.
rewrite psum_bigop => [y x|y|].
+ by rewrite mulr_ge0 ?(normr_ge0, ler0n).
+ by apply/summable_condr/summable_abs.
apply/psum_le=> L uqL; pose K := [seq x <- L | f x \in J].
have /gerfinseq_psum: uniq K by rewrite filter_uniq.
move=> /(_ _ _ smS) /(le_trans _); apply; rewrite big_filter.
rewrite le_eqVlt -(rwP orP); left; apply/eqP.
rewrite [RHS]big_mkcond /=; apply/eq_bigr=> x _.
rewrite big_seq; case: ifPn => [fx_in_J|fx_Nin_J].
rewrite -big_seq (bigD1_seq _ fx_in_J uqJ) /= eqxx mulr1.
rewrite big1 ?addr0 ?normr_id // => y; rewrite eq_sym.
by move/negbTE=> ->; rewrite mulr0.
rewrite big1 ?normr0 // => y; apply/contraTeq.
rewrite mulf_eq0 pnatr_eq0 eqb0 negb_or negbK.
by case/andP => _ /eqP<-.
Qed.
Lemma partition_psum_cond (S : T -> R) : summable S ->
psum S = psum (fun y => (C y)%:R * psum (fun x => S x * (f x == y)%:R)).
Proof.
move=> smS; apply/(eq_trans (partition_psum smS)).
apply/eq_psum => y; case/boolP: (C y); rewrite !simpm //.
move=> NCy; rewrite psum_eq0 // => x; case: (_ =P y).
by move/eqP=> fxE; move/asboolP: NCy; case; exists x.
by rewrite mulr0.
Qed.
End PSumPartition.
(* -------------------------------------------------------------------- *)
Section PSumPair.
Context {R : realType} {T U : choiceType}.
Lemma psum_pair (S : T * U -> R) : summable S ->
psum S = psum (fun x => psum (fun y => S (x, y))).
Proof.
move=> sblS; rewrite (partition_psum fst) //; apply/eq_psum.
move=> x /=; pose P := [pred xy : T * U | xy.1 == x].
rewrite (reindex_psum (h := [eta pair x]) (P := P)) //=.
+ case=> x' y' /=; rewrite mulf_eq0 => /norP[_].
by rewrite pnatr_eq0 eqb0 negbK /P inE => /eqP->.
+ by exists snd => // -[x' y'] /eqP /= <-.
by apply/eq_psum=> y /=; rewrite eqxx mulr1.
Qed.
Lemma psum_pair_swap (S : T * U -> R) : summable S ->
psum S = psum (fun y => psum (fun x => S (x, y))).
Proof.
move=> sblS; rewrite (partition_psum snd) //; apply/eq_psum.
move=> y /=; pose P := [pred xy : T * U | xy.2 == y].
rewrite (reindex_psum (h := [eta pair^~ y]) (P := P)) //=.
+ case=> x' y' /=; rewrite mulf_eq0 => /norP[_].
by rewrite pnatr_eq0 eqb0 negbK /P inE => /eqP->.
+ by exists fst => // -[x' y'] /eqP /= <-.
by apply/eq_psum=> x /=; rewrite eqxx mulr1.
Qed.
End PSumPair.
(* -------------------------------------------------------------------- *)
(* FIXME: MOVE ME *)
Section SupInterchange.
Context {R : realType} {T U : Type}.
Lemma __admitted__interchange_sup (S : T -> U -> R) :
(forall x, has_sup [set r | exists y, r = S x y])
-> has_sup [set r | exists x, r = sup [set r | exists y, r = S x y]]
-> sup [set r | exists x, r = sup [set r | exists y, r = S x y]]
= sup [set r | exists y, r == sup [set r | exists x, r = S x y]].
Proof using Type. Admitted.
End SupInterchange.
#[deprecated(since="mathcomp-analysis 0.6.2",
note="lacks proof, use __admitted__interchange_sup explicitly if you really want to use this lemma")]
Notation interchange_sup := __admitted__interchange_sup.
(* -------------------------------------------------------------------- *)
Section PSumInterchange.
Context {R : realType} {T U : choiceType}.
Lemma __admitted__interchange_psum (S : T -> U -> R) :
(forall x, summable (S x))
-> summable (fun x => psum (fun y => S x y))
-> psum (fun x => psum (fun y => S x y)) = psum (fun y => psum (fun x => S x y)).
Proof using Type. Admitted.
End PSumInterchange.
#[deprecated(since="mathcomp-analysis 0.6.2",
note="lacks proof, use __admitted__interchange_psum explicitly if you really want to use this lemma")]
Notation interchange_psum := __admitted__interchange_psum.
(* -------------------------------------------------------------------- *)
Section SumTheory.
Context {R : realType} {T : choiceType}.
Implicit Types (S : T -> R).
Lemma psum_sum S : (forall x, 0 <= S x) -> psum S = sum S.
Proof.
move=> ge0_S; rewrite /sum [X in _-X]psum_eq0 ?subr0.
by move=> x; rewrite fneg_ge0.
by apply/eq_psum=> x; rewrite fpos_ge0.
Qed.
Lemma le_sum S1 S2 :
summable S1 -> summable S2 -> (S1 <=1 S2) ->
sum S1 <= sum S2.
Proof.
move=> smS1 smS2 leS; rewrite /sum lerB //.
apply/le_psum/summable_fpos => // x.
by rewrite ge0_fpos /= le_fpos.
apply/le_psum/summable_fneg => // x.
rewrite -!fposN ge0_fpos le_fpos // => y.
by rewrite lerN2.
Qed.
Lemma sum0 : sum (fun _ : T => 0) = 0 :> R.
Proof. by rewrite /sum !(eq_psum fpos0, eq_psum fneg0) !psum0 subr0. Qed.
Lemma sumN S : sum (- S) = - sum S.
Proof. by rewrite /sum (eq_psum (fnegN _)) (eq_psum (fposN _)) opprB. Qed.
Lemma sumZ S c : sum (c \*o S) = c * sum S.
Proof.
rewrite (eq_sum (F2 := fun x => Num.sg c * (`|c| * S x))).
by move=> x; rewrite mulrA -numEsg.
transitivity (Num.sg c * sum (`|c| \*o S)).
case: sgrP => [_|gt0_c|lt0_c]; rewrite ?Monoid.simpm.
+ by rewrite (eq_sum (F2 := fun _ => 0)) ?sum0 // => x; rewrite !mul0r.
+ by apply/eq_sum=> x; rewrite mul1r.
by rewrite mulN1r -sumN; apply/eq_sum=> x; rewrite !mulN1r.
rewrite {1}/sum !(eq_psum (fposZ _ _), eq_psum (fnegZ _ _)) //.
by rewrite !psumZ // -mulrBr mulrA -numEsg.
Qed.
Lemma sumID S (P : pred T) :
summable S -> sum S =
sum (fun x => (P x)%:R * S x) + sum (fun x => (~~ P x)%:R * S x).
Proof.
move=> sm_S; rewrite /sum addrACA -[in RHS]opprD; congr (_ - _).
+ rewrite (psumID P); first by apply/summable_fpos.
by congr (_ + _); apply/eq_psum => x; rewrite fpos_natrM.
+ rewrite (psumID P); first by apply/summable_fneg.
by congr (_ + _); apply/eq_psum => x; rewrite fneg_natrM.
Qed.
Lemma sum_finseq S (r : seq T) :
uniq r -> {subset [pred x | S x != 0] <= r} ->
sum S = \sum_(x <- r) S x.
Proof.
move=> eqr domS; rewrite /sum !(psum_finseq eqr).
+ move=> x; rewrite !inE => xPS; apply/domS; rewrite !inE.
move: xPS; rewrite /fpos normr_eq0.
by apply: contra => /eqP ->; rewrite maxxx.
+ move=> x; rewrite !inE => xPS; apply/domS; rewrite !inE.
move: xPS; rewrite /fneg normr_eq0.
by apply: contra => /eqP ->; rewrite minxx.
rewrite -sumrB; apply/eq_bigr=> i _.
by rewrite !ger0_norm ?(ge0_fpos, ge0_fneg) ?fposBfneg.
Qed.
Lemma sum_seq1 S x : (forall y, S y != 0 -> x == y) -> sum S = S x.
Proof.
move=> domS; rewrite (sum_finseq (r := [:: x])) ?big_seq1//.
by move=> y; rewrite !inE => /domS /eqP->.
Qed.
End SumTheory.
Arguments sum_seq1 {R T} [S] x _.
|