File: realsum.v

package info (click to toggle)
mathcomp-analysis 1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,308 kB
  • sloc: sh: 420; python: 76; sed: 25; makefile: 7
file content (1205 lines) | stat: -rw-r--r-- 46,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute                *)
(* Copyright (c) - 2015--2018 - Inria                                   *)
(* Copyright (c) - 2016--2018 - Polytechnique                           *)
(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect all_algebra archimedean.
From mathcomp.classical Require Import boolp.
From mathcomp Require Import xfinmap constructive_ereal reals discrete realseq.
From mathcomp.classical Require Import classical_sets functions.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Unset SsrOldRewriteGoalsOrder.

Import Order.TTheory GRing.Theory Num.Theory.
From mathcomp.classical Require Import mathcomp_extra.

Local Open Scope fset_scope.
Local Open Scope ring_scope.

(* -------------------------------------------------------------------- *)
Local Notation "\`| f |" := (fun x => `|f x|) (at level 2).
Local Notation simpm := Monoid.simpm.

(* -------------------------------------------------------------------- *)
Section Summable.
Variables (T : choiceType) (R : realType) (f : T -> R).

Definition summable := exists (M : R), forall (J : {fset T}),
  \sum_(x : J) `|f (val x)| <= M.

Lemma summableP : summable ->
  { M | 0 <= M & forall (J : {fset T}), \sum_(x : J) `|f (val x)| <= M }.
Proof.
move/asboolP/exists_asboolP=> h; have := (xchooseP h).
move: (xchoose _)=> {h} M /asboolP h; exists M => //.
by have := h fset0; rewrite big_pred0 // => -[x]; rewrite in_fset0.
Qed.
End Summable.

(* -------------------------------------------------------------------- *)
Section Sum.
Context {R : realType} {T : choiceType}.

Implicit Types f g : T -> R.

Definition fpos f := fun x => `|Num.max 0 (f x)|.
Definition fneg f := fun x => `|Num.min 0 (f x)|.

Lemma eq_fpos f g : f =1 g -> fpos f =1 fpos g.
Proof. by move=> eq_fg x; rewrite /fpos eq_fg. Qed.

Lemma eq_fneg f g : f =1 g -> fneg f =1 fneg g.
Proof. by move=> eq_fg x; rewrite /fneg eq_fg. Qed.

Lemma fpos0 x : fpos (fun _ : T => 0) x = 0 :> R.
Proof. by rewrite /fpos maxxx normr0. Qed.

Lemma fneg0 x : fneg (fun _ : T => 0) x = 0 :> R.
Proof. by rewrite /fneg minxx normr0. Qed.

Lemma fnegN f : fneg (- f) =1 fpos f.
Proof. by move=> x; rewrite /fpos /fneg -{1}oppr0 -oppr_max normrN. Qed.

Lemma fposN f : fpos (- f) =1 fneg f.
Proof. by move=> x; rewrite /fpos /fneg -{1}oppr0 -oppr_min normrN. Qed.

Lemma fposZ f c : 0 <= c -> fpos (c \*o f) =1 c \*o fpos f.
Proof.
move=> ge0_c x; rewrite /fpos /= -{1}(mulr0 c).
by rewrite -maxr_pMr // normrM ger0_norm.
Qed.

Lemma fnegZ f c : 0 <= c -> fneg (c \*o f) =1 c \*o fneg f.
Proof.
move=> ge0_c x; rewrite /= -!fposN; have /=<- := (fposZ (- f) ge0_c x).
by apply/eq_fpos=> y /=; rewrite mulrN.
Qed.

Lemma fpos_natrM f (n : T -> nat) x :
  fpos (fun x => (n x)%:R * f x) x = (n x)%:R * fpos f x.
Proof.
rewrite /fpos -[in RHS]normr_nat -normrM.
by rewrite maxr_pMr ?ler0n // mulr0.
Qed.

Lemma fneg_natrM f (n : T -> nat) x :
  fneg (fun x => (n x)%:R * f x) x = (n x)%:R * fneg f x.
Proof.
rewrite -[in RHS]fposN -fpos_natrM -fposN.
by apply/eq_fpos=> y; rewrite mulrN.
Qed.

Lemma fneg_ge0 f x : (forall x, 0 <= f x) -> fneg f x = 0.
Proof. by move=> ?; rewrite /fneg min_l ?normr0. Qed.

Lemma fpos_ge0 f x : (forall x, 0 <= f x ) -> fpos f x = f x.
Proof. by move=> ?; rewrite /fpos max_r ?ger0_norm. Qed.

Lemma ge0_fpos f x : 0 <= fpos f x.
Proof. by apply/normr_ge0. Qed.

Lemma ge0_fneg f x : 0 <= fneg f x.
Proof. by apply/normr_ge0. Qed.

Lemma le_fpos_norm f x : fpos f x <= `|f x|.
Proof.
rewrite /fpos ger0_norm ?(le_max, lexx) //.
by rewrite ge_max normr_ge0 ler_norm.
Qed.

Lemma le_fpos f1 f2 : f1 <=1 f2 -> fpos f1 <=1 fpos f2.
Proof.
move=> le_f x; rewrite /fpos !ger0_norm ?le_max ?lexx //.
by rewrite ge_max lexx /=; case: ltP => //=; rewrite le_f.
Qed.

Lemma fposBfneg f x : fpos f x - fneg f x = f x.
Proof.
rewrite /fpos /fneg maxC.
case: (leP (f x) 0); rewrite normr0 (subr0, sub0r) => ?.
  by rewrite ler0_norm ?opprK.
by rewrite gtr0_norm.
Qed.

Definition psum f : R :=
  (* We need some ticked `image` operator *)
  let S := [set x | exists J : {fset T}, x = \sum_(x : J) `|f (val x)| ]%classic in
  if `[<summable f>] then sup S else 0.

Definition sum f : R := psum (fpos f) - psum (fneg f).
End Sum.

(* -------------------------------------------------------------------- *)
Section SummableCountable.
Variable (T : choiceType) (R : realType) (f : T -> R).

Lemma summable_countn0 : summable f -> countable [pred x | f x != 0].
Proof.
case/summableP=> M ge0_M bM; pose E (p : nat) := [pred x | `|f x| > 1 / p.+1%:~R].
set F := [pred x | _]; have le: {subset F <= [pred x | `[< exists p, x \in E p >]]}.
  move=> x; rewrite !inE => nz_fx; exists (Num.trunc `|f x|^-1).
  rewrite inE mul1r invf_plt ?unfold_in /= ?normr_gt0 //.
  by have/trunc_itv/andP[]: 0 <= `|f x|^-1 by rewrite invr_ge0 normr_ge0.
apply/(countable_sub le)/cunion_countable=> i /=.
case: (existsTP (fun s : seq T => {subset E i <= s}))=> /= [[s le_Eis]|].
  by apply/finite_countable/finiteP; exists s => x /le_Eis.
move=> /finiteNP/(_ ((Num.trunc M).+1 * i.+1)%N)/asboolP/exists_asboolP h.
have/asboolP[] := xchooseP h.
set s := xchoose h=> eq_si uq_s le_sEi; pose J := [fset x in s].
suff: \sum_(x : J) `|f (val x)| > M by rewrite ltNge bM.
apply/(@lt_le_trans _ _ (\sum_(x : J) 1 / i.+1%:~R)); last first.
  apply/ler_sum=> /= m _; apply/ltW.
  by have:= fsvalP m; rewrite in_fset => /le_sEi.
rewrite mul1r sumr_const -cardfE card_fseq undup_id // eq_si.
rewrite -mulr_natr natrM mulrC mulfK ?pnatr_eq0//.
by case/trunc_itv/andP: ge0_M.
Qed.

End SummableCountable.

(* -------------------------------------------------------------------- *)
Section PosCnv.
Context {R : realType}.

Lemma ncvg_mono (u : nat -> R) :
    (* {mono u : x y / (x <= y)%N >-> u x <= u y *)
    (forall x y, (x <= y)%N -> u x <= u y)
  -> exists2 l, (-oo < l)%E & ncvg u l.
Proof.
move=> mono_u; pose E := [set x | exists n, x = u n]%classic.
have nzE: nonempty E by exists (u 0%N); exists 0%N.
case: (pselect (has_sup E)); last first.
  move/has_supPn=> -/(_ nzE) h; exists +oo%E => //; elim/nbh_pinfW => M /=.
  case/(_ M): h=> x [K -> lt_MuK]; exists K=> n le_Kn; rewrite inE.
  by apply/(lt_le_trans lt_MuK)/mono_u.
move=> supE; exists (sup E)%:E => //; first exact: ltNyr.
elim/nbh_finW=>e /= gt0_e.
case: (sup_adherent gt0_e supE)=> x [K ->] lt_uK.
exists K=> n le_Kn; rewrite inE distrC ger0_norm ?subr_ge0.
  by move/ubP: (sup_upper_bound supE); apply; exists n.
rewrite ltrBlDr addrC -ltrBlDr.
by rewrite (lt_le_trans lt_uK) //; apply/mono_u.
Qed.

Lemma ncvg_mono_bnd (u : nat -> R) :
    (* {mono u : x y / (x <= y)%N >-> u x <= u y *)
    (forall x y, (x <= y)%N -> u x <= u y)
  -> nbounded u -> exists l, ncvg u l%:E.
Proof.
case/ncvg_mono=> -[x||] // _ cu bdu; first by exists x.
case/asboolP/nboundedP: bdu=> M gt0_M bdu.
case/(_ (NPInf M)): cu => K /= /(_ K (leqnn _)).
rewrite inE/= => /ltW /le_trans /(_ (ler_norm _)).
by move/le_lt_trans/(_ (bdu _)); rewrite ltxx.
Qed.
End PosCnv.

(* -------------------------------------------------------------------- *)
Section SumTh.
Context {R : realType} (T : choiceType).

Implicit Type S : T -> R.

Lemma summable_sup (S : T -> R) : summable S -> has_sup
  [set x | exists J : {fset T}, x = \sum_(j : J) `|S (val j)|]%classic.
Proof.
case/summableP=> M _ hbd; split.
  by exists 0, fset0; rewrite big_fset0.
by exists M; apply/ubP=> y [J ->].
Qed.

Lemma psum_sup S : psum S =
  sup [set x | exists J : {fset T}, x = \sum_(x : J) `|S (val x)|]%classic.
Proof.
rewrite /psum; case: ifPn => // /asboolPn h.
rewrite sup_out //; set X := [set r | _]%classic => hs.
apply: h; exists (sup X) => J.
by move/ubP : (sup_upper_bound hs); apply; exists J.
Qed.

Lemma psum_sup_seq S : psum S =
  sup [set x | exists2 J : seq T,
    uniq J & x = \sum_(x <- J) `|S x| ]%classic.
Proof.
rewrite psum_sup; congr sup; rewrite predeqE => x; split.
  case=> J ->; exists (enum_fset J).
    by case: J => /= J /canonical_uniq.
  by rewrite (big_fset_seq \`|_|) /=.
case=> J uqJ ->; exists [fset x in J].
by rewrite (big_seq_fset \`|_|).
Qed.

Lemma eq_summable (S1 S2 : T -> R) :
  (S1 =1 S2) -> summable S1 -> summable S2.
Proof.
move=> eq_12 [M h]; exists M => J; rewrite (le_trans _ (h J)) //.
rewrite le_eqVlt; apply/orP; left; apply/eqP/eq_bigr.
by move=> /= K _; rewrite eq_12.
Qed.

Lemma eq_summableb (S1 S2 : T -> R) :
  (S1 =1 S2) -> `[< summable S2 >] = `[< summable S1 >].
Proof. by move=> eq_12; apply/asboolP/asboolP; apply/eq_summable. Qed.

Lemma eq_ppsum (F1 F2 : {fset T} -> R) : F1 =1 F2 ->
  (sup [set x | exists J, x = F1 J] = sup [set x | exists J, x = F2 J])%classic.
Proof.
move=> eq_12; congr sup; rewrite predeqE => x.
by split=> -[J ->]; exists J.
Qed.

Lemma eq_psum (F1 F2 : T -> R) : F1 =1 F2 -> psum F1 = psum F2.
Proof.
move=> eq_12; rewrite /psum (eq_summableb eq_12).
case: `[< summable F1 >] => //.
congr sup.
rewrite predeqE => x; split=> -[J ->]; exists J;
  by apply/eq_bigr=> /= K _; rewrite eq_12.
Qed.

Lemma eq_sum (F1 F2 : T -> R) : F1 =1 F2 -> sum F1 = sum F2.
Proof.
move=> eq_fg; rewrite /sum; congr (_ - _); apply/eq_psum.
  by apply/eq_fpos. by apply/eq_fneg.
Qed.

Lemma le_summable (F1 F2 : T -> R) :
  (forall x, 0 <= F1 x <= F2 x) -> summable F2 -> summable F1.
Proof.
move=> le_F [M leM]; exists M => J; apply/(le_trans _ (leM J)).
apply/ler_sum => /= j _; case/andP: (le_F (val j)) => h1 h2.
by rewrite !ger0_norm // (le_trans h1 h2).
Qed.

Lemma le_psum (F1 F2 : T -> R) :
  (forall x, 0 <= F1 x <= F2 x) -> summable F2 -> psum F1 <= psum F2.
Proof.
move=> le_F smF2; have smF1: summable F1 by apply/(le_summable le_F).
rewrite /psum (asboolT smF1) (asboolT smF2); apply/le_sup; first last.
+ by apply/summable_sup.
+ by exists 0, fset0; rewrite big_fset0.
move=> x [J ->]; apply/downP; exists (\sum_(j : J) `|F2 (val j)|).
  by exists J.
apply/ler_sum=> /= j _; case/andP: (le_F (val j)) => h1 h2.
by rewrite !ger0_norm // (le_trans h1 h2).
Qed.

Lemma psum_out S : ~ summable S -> psum S = 0.
Proof. by move/asboolPn/negbTE=> smN; rewrite /psum smN. Qed.

Lemma psumE S : (forall x, 0 <= S x) -> summable S -> psum S =
  sup [set x | exists J : {fset T}, x = \sum_(j : J) S (val j)]%classic.
Proof.
move=> gt0_S smS; rewrite /psum (asboolT smS); apply/eq_ppsum=> /=.
by move=> J; apply/eq_bigr=> j _; rewrite ger0_norm.
Qed.

Lemma psum_absE S : summable S -> psum S =
  sup [set x | exists J : {fset T}, x = \sum_(j : J) `|S (val j)|]%classic.
Proof. by move=> smS; rewrite /psum (asboolT smS). Qed.

Lemma summable_seqP S :
  summable S <-> (exists2 M, 0 <= M &
    forall s : seq T, uniq s -> \sum_(x <- s) `|S x| <= M).
Proof.
split=> [/summableP|] [M gt0_M h]; exists M => //.
  by move=> s uq_s; have := h [fset x in s]; rewrite (big_seq_fset \`|S|).
by case=> J cJ; rewrite (big_fset_seq \`|_|) /=; apply/h/canonical_uniq.
Qed.

Lemma gerfin_psum S (J : {fset T}) :
  summable S -> \sum_(j : J) `|S (val j)| <= psum S.
Proof.
move=> smS; rewrite /psum (asboolT smS).
by move/ubP : (sup_upper_bound (summable_sup smS)); apply; exists J.
Qed.

Lemma gerfinseq_psum S (r : seq T) :
  uniq r -> summable S -> \sum_(j <- r) `|S j| <= psum S.
Proof.
move=> uq_r /gerfin_psum -/(_ [fset x in r]);
  by rewrite (big_seq_fset \`|S|).
Qed.

Lemma psum_le S z :
  (forall J, uniq J -> \sum_(j <- J) `|S j| <= z) -> psum S <= z.
Proof.
move=> le_z; have: summable S; first (apply/summable_seqP; exists z).
+ by apply/(le_trans _ (le_z [::] _)) => //; rewrite big_nil.
+ by move=> J uqJ; apply/le_z.
move/summable_sup=> [neS hsS]; rewrite psum_sup.
apply/sup_le_ub => //; apply/ubP=> r [J ->].
by rewrite (big_fset_seq \`|_|) le_z /=; case: J => J /= /canonical_uniq.
Qed.

Lemma lt_psum (F : T -> R) l :
  summable F -> l < psum F ->
    exists J : {fset T}, l < \sum_(j : J) `|F (val j)|.
Proof.
move=> smF; rewrite /psum (asboolT smF) => /lt_sup_imfset.
by case=> /= [|J lt_lJ _]; [apply/summable_sup | exists J].
Qed.
End SumTh.

(* -------------------------------------------------------------------- *)
Lemma max_sup {R : realType} x (E : set R) :
  (E `&` ubound E)%classic x -> sup E = x.
Proof.
case=> /= xE xubE; have nzE: nonempty E by exists x.
apply/eqP; rewrite eq_le sup_le_ub //=.
have : has_sup E by split; exists x.
by move/sup_upper_bound/ubP; apply.
Qed.

(* -------------------------------------------------------------------- *)
Section FinSumTh.
Context {R : realType} (I : finType).

Lemma summable_fin (f : I -> R) : summable f.
Proof.
exists (\sum_(i : [fset i | i : I]) `|f (val i)|).
move=> J; apply: (big_fset_subset (F := \`|_|)).
  by move=> x; rewrite normr_ge0.
by move=> i _; apply/imfsetP; exists i.
Qed.

Lemma psum_fin (f : I -> R) : psum f = \sum_i `|f i|.
Proof.                          (* FIXME *)
pose S := \sum_(i : [fset i | i : I]) `|f (val i)|.
rewrite /psum (asboolT (summable_fin f)) (@max_sup _ S).
  rewrite /=; split; first by exists [fset i | i : I]%fset.
  apply/ubP=> y [J ->]; apply/(big_fset_subset (F := \`|_|)).
    by move=> i; rewrite normr_ge0.
  by move=> j jJ; apply/in_imfset.
rewrite /S -(big_map val xpredT \`|f|); apply/perm_big.
rewrite /index_enum -!enumT; apply/(perm_trans _ enum_fsetT).
apply/uniq_perm; rewrite ?map_inj_uniq ?enum_uniq //=.
  by apply/val_inj. by rewrite -enumT enum_uniq.
move=> i /=; rewrite mem_enum in_imfset //; apply/mapP.
have h: i \in [fset j | j : I] by rewrite in_imfset.
by exists (FSetSub h) => //; rewrite mem_enum.
Qed.
End FinSumTh.

(* -------------------------------------------------------------------- *)
Section PSumGe.
Context {R : realType} (T : choiceType).

Variable (S : T -> R).

Lemma ger_big_psum r : uniq r -> summable S ->
  \sum_(x <- r) `|S x| <= psum S.
Proof.
move=> uq_r smS; rewrite /psum (asboolT smS).
set E := (X in sup X).
have : has_sup E by apply/summable_sup.
move/sup_upper_bound/ubP; apply.
by exists [fset x in r]; rewrite (big_seq_fset (fun i => `|S i|)).
Qed.

Lemma ger1_psum x : summable S -> `|S x| <= psum S.
Proof.
move=> smS; have h := @ger_big_psum [:: x] _ smS.
by rewrite (le_trans _ (h _)) ?big_seq1.
Qed.

Lemma ge0_psum : 0 <= psum S.
Proof.                          (* FIXME: asbool_spec *)
case/boolP: `[< summable S >] => [|/asboolPn/psum_out ->//].
move/asboolP=> smS; have h := @ger_big_psum [::] _ smS.
by rewrite (le_trans _ (h _)) ?big_nil.
Qed.
End PSumGe.

(* -------------------------------------------------------------------- *)
Section PSumNatGe.
Context {R : realType}.

Variable (S : nat -> R) (smS : summable S).

Lemma ger_big_ord_psum n : \sum_(i < n) `|S i| <= psum S.
Proof.
rewrite -(big_mkord predT (fun i => `|S i|)) /=.
by apply/ger_big_psum => //; rewrite iota_uniq.
Qed.
End PSumNatGe.

(* -------------------------------------------------------------------- *)
Section PSumCnv.
Context {R : realType}.

Variable (S : nat -> R).

Hypothesis ge0_S : (forall n, 0 <= S n).
Hypothesis smS   : summable S.

Lemma ptsum_homo x y : (x <= y)%N -> (\sum_(i < x) S i <= \sum_(i < y) S i).
Proof.
move=> le_xy; rewrite -!(big_mkord predT) -(subnKC le_xy) /=.
by rewrite /index_iota !subn0 iotaD big_cat /= lerDl sumr_ge0.
Qed.

Lemma psummable_ptbounded : nbounded (fun n => \sum_(i < n) S i).
Proof.
apply/asboolP/nboundedP; exists (psum S + 1).
  rewrite ltr_pwDr ?ltr01 1?(le_trans (normr_ge0 (S 0%N))) //.
  by apply/ger1_psum.
move=> n; rewrite ltr_pwDr ?ltr01 // ger0_norm ?sumr_ge0 //.
apply/(le_trans _ (ger_big_ord_psum _ n)) => //.
by apply/ler_sum=> /= i _; apply/ler_norm.
Qed.

Lemma ncvg_sum : ncvg (fun n => \sum_(i < n) S i) (psum S)%:E.
Proof.
set u := (fun n => _); apply: contraPP smS => ncv _.
case: (ncvg_mono_bnd (u := u)) => //.
  by apply/ptsum_homo. by apply/psummable_ptbounded.
move=> x cvux; suff xE: x = (psum S) by rewrite xE in cvux.
apply/eqP; case: (x =P _) => // /eqP /lt_total /orP[]; last first.
+ rewrite -lte_fin => /ncvg_gt /(_ cvux) [K /(_ _ (leqnn _))] /=.
  rewrite ltNge lee_fin (le_trans _ (ger_big_ord_psum _ K)) //.
  by apply/ler_sum=> /= i _; apply/ler_norm.
move=> lt_xS; pose e := psum S - x.
  have ge0_e: 0 < e by rewrite subr_gt0.
case: (sup_adherent ge0_e (summable_sup smS)) => y.
case=> /= J ->; rewrite /e /psum (asboolT smS).
rewrite opprB addrCA subrr addr0 => lt_xSJ.
pose k := \max_(j : J) (val j); have lt_x_uSk: x < u k.+1.
  apply/(lt_le_trans lt_xSJ); rewrite /u big_ord_mkfset.
  rewrite (eq_bigr (S \o val)) => /= [j _|]; first by rewrite ger0_norm.
  apply/big_fset_subset=> // j jJ; rewrite in_fset //.
  by rewrite (mem_iota _ k.+1) /= add0n ltnS (leq_bigmax (FSetSub jJ)).
have /= := ncvg_homo_le ptsum_homo cvux k.+1; rewrite -/(u _).
by rewrite lee_fin => /le_lt_trans/(_ lt_x_uSk); rewrite ltxx.
Qed.

Lemma sum_ncvg l :
  ncvg (fun n => \sum_(i < n) S i) l%:E -> summable S.
Proof using ge0_S. Abort.
End PSumCnv.

(* -------------------------------------------------------------------- *)
Section PSumAsLim.
Context {R : realType} {T : choiceType}.

Variable (S : T -> R) (P : nat -> {fset T}).

Hypothesis ge0_S   : (forall x, 0 <= S x).
Hypothesis smS     : summable S.
Hypothesis homo_P  : forall n m, (n <= m)%N -> (P n `<=` P m).
Hypothesis cover_P : forall x, S x != 0 -> exists n, x \in P n.

Lemma psum_as_lim : psum S = fine (nlim (fun n => \sum_(j : P n) (S (val j)))).
Proof.
set v := fun n => _; have hm_v m n: (m <= n)%N -> v m <= v n.
  by move=> le_mn; apply/big_fset_subset/fsubsetP/homo_P.
have bd_v n : v n <= psum S.
  apply/(le_trans _ (gerfin_psum _ smS))/ler_sum.
  by move=> J _; apply/ler_norm.
case: (ncvg_mono_bnd hm_v) => [|l cv].
  apply/asboolP/nboundedP; exists (psum S + 1) => //.
    by apply/(le_lt_trans (ge0_psum S)); rewrite ltrDl ltr01.
  move=> n; rewrite ger0_norm ?sumr_ge0 //.
  by rewrite (le_lt_trans (bd_v n)) // ltrDl ltr01.
have le_lS: l <= psum S by rewrite -lee_fin (ncvg_leC _ cv).
rewrite (nlimE cv) /= (rwP eqP) eq_le le_lS andbT.
rewrite leNgt; apply/negP=> {le_lS} /(lt_psum smS)[J].
rewrite (big_fset_seq \`|_|) /=; case: J => /= J.
move/canonical_uniq=> uqJ lt_jS; pose K := [seq x <- J | S x != 0].
have [n]: exists n, {subset K <= P n}; first rewrite {}/K.
  elim: {uqJ lt_jS} J => /= [|x J [n ih]]; first by exists 0%N.
  case: (S x =P 0) => /=; first by move=> _; exists n.
  move/eqP/cover_P=> [k Pk_x]; exists (maxn n k)=> y.
  rewrite inE => /orP[/eqP->|/=].
    by apply/fsubsetP/homo_P/leq_maxr: x Pk_x.
  by move/ih; apply/fsubsetP/homo_P/leq_maxl: y.
move=> le_K_Pn; have: l < v n; first apply/(lt_le_trans lt_jS).
  rewrite (eq_bigr S) => [x _|]; first by rewrite ger0_norm.
  rewrite /v (bigID (fun x => S x == 0)) /= big1 => [x /eqP|] //.
  rewrite add0r -big_filter -/K -big_seq_fset ?filter_uniq //=.
  by apply/big_fset_subset => // x; rewrite in_fset => /le_K_Pn.
by apply/negP; rewrite -leNgt -lee_fin ncvg_homo_le.
Qed.
End PSumAsLim.

(* -------------------------------------------------------------------- *)
Section SummableAlg.
Context {R : realType} (T : choiceType) (I : Type).

(* -------------------------------------------------------------------- *)
Lemma summable_addrC (S1 S2 : T -> R) :
  summable (S1 \+ S2) -> summable (S2 \+ S1).
Proof. by apply/eq_summable => x; rewrite /= addrC. Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_mulrC (S1 S2 : T -> R) :
  summable (S1 \* S2) -> summable (S2 \* S1).
Proof. by apply/eq_summable => x; rewrite /= mulrC. Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_abs (S : T -> R) : summable \`|S| <-> summable S.
Proof.
have h J: \sum_(j <- J) `| `|S j| | = \sum_(j <- J) `|S j|.
  by apply/eq_bigr=> j _; rewrite normr_id.
split=> /summable_seqP[M ge0_M leM]; apply/summable_seqP;
  by exists M=> // => J /leM; rewrite h.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable0 : summable (fun _ : T => 0 : R).
Proof. by exists 0 => J; rewrite big1 ?normr0. Qed.

(* -------------------------------------------------------------------- *)
Lemma summableD (S1 S2 : T -> R) :
  summable S1 -> summable S2 -> summable (S1 \+ S2).
Proof.
case=> [M1 h1] [M2 h2]; exists (M1 + M2) => J /=.
pose M := \sum_(x : J) (`|S1 (val x)| + `|S2 (val x)|).
rewrite (@le_trans _ _ M) // ?ler_sum // => [K _|].
  by rewrite ler_normD.
by rewrite /M big_split lerD ?(h1, h2).
Qed.

(* -------------------------------------------------------------------- *)
Lemma summableN (S : T -> R) : summable S -> summable (- S).
Proof.
case=> [M h]; exists M => J; rewrite (le_trans _ (h J)) //.
rewrite le_eqVlt; apply/orP; left; apply/eqP/eq_bigr.
by move=> /= K _; rewrite normrN.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summablebN (S : T -> R) :
  `[< summable (- S)>] = `[< summable S >].
Proof.
apply/asboolP/asboolP => /summableN //.
by apply/eq_summable => x /=; rewrite opprK.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summablebDl (S1 S2 : T -> R) : summable S1 ->
  `[< summable (S1 \+ S2) >] = `[< summable S2 >].
Proof.
move=> sm1; apply/asboolP/asboolP; last by apply/(summableD sm1).
move=> sm12; apply/(@eq_summable _ _ ((S1 \+ S2) \- S1)).
  by move=> x /=; rewrite addrC addKr.
by apply/summableD/summableN.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summablebDr (S1 S2 : T -> R) : summable S2 ->
  `[< summable (S1 \+ S2) >] = `[< summable S1 >].
Proof.
move=> sm1; rewrite (@eq_summableb _ _ (S2 \+ S1)) ?summablebDl //.
by move=> x /=; rewrite addrC.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summableZ (S : T -> R) c : summable S -> summable (c \*o S).
Proof.
case=> [M h]; exists (`|c| * M) => J; move/(_ J): h => /=.
move/(ler_wpM2l (normr_ge0 c)); rewrite mulr_sumr.
move/(le_trans _); apply; rewrite le_eqVlt; apply/orP.
by left; apply/eqP/eq_bigr=> j _; rewrite normrM.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summableZr (S : T -> R) (c : R) :
  summable S -> summable (c \o* S).
Proof. by move=> smS; apply/summable_mulrC/summableZ. Qed.

(* -------------------------------------------------------------------- *)
Lemma summableMl (S1 S2 : T -> R) :
  (exists M, forall x, `|S1 x| <= M) -> summable S2 -> summable (S1 \* S2).
Proof.
case=> M leM smS2; apply/summable_abs.
apply/(le_summable (F2 := M \*o \`|S2|)).
+ by move=> x /=; rewrite normr_ge0 /= normrM ler_wpM2r.
+ by apply/summableZ/summable_abs.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summableMr (S1 S2 : T -> R) :
  (exists M, forall x, `|S2 x| <= M) -> summable S1 -> summable (S1 \* S2).
Proof. by move=> bd sm; apply/summable_mulrC/summableMl. Qed.

(* -------------------------------------------------------------------- *)
Lemma summableM (S1 S2 : T -> R) :
  summable S1 -> summable S2 -> summable (S1 \* S2).
Proof.
move=> smS1 smS2; apply/summableMl => //; exists (psum S1).
by move=> x; apply/ger1_psum.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_fpos (f : T -> R) :
  summable f -> summable (fpos f).
Proof.
move/summable_abs; apply/le_summable=> x.
by rewrite ge0_fpos /= le_fpos_norm.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_fneg (f : T -> R) :
  summable f -> summable (fneg f).
Proof. by move/summableN/summable_fpos/(eq_summable (fposN _)). Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_condl (S : T -> R) (P : pred T) :
  summable S -> summable (fun x => (P x)%:R * S x).
Proof.
case/summable_seqP=> M ge0_M leM; apply/summable_seqP.
exists M => //; move=> J /leM /(le_trans _); apply.
apply/ler_sum=> x _; case: (P x); rewrite (mul1r, mul0r) //.
by rewrite normr0 normr_ge0.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_condr (S : T -> R) (P : pred T) :
  summable S -> summable (fun x => S x * (P x)%:R).
Proof.
move=> /(summable_condl P) /eq_summable; apply.
by move=> x /=; rewrite mulrC.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_of_bd (S : T -> R) (d : R) :
  (forall J, uniq J -> \sum_(x <- J) `|S x| <= d) ->
    summable S /\ psum S <= d.
Proof.
move=> leS; have ge0_d: 0 <= d.
  by apply/(le_trans _ (leS [::] _)); rewrite // big_nil.
have smS: summable S by apply/summable_seqP; exists d.
split=> //; rewrite /psum (asboolT smS); apply/sup_le_ub.
  by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite (big_fset_seq \`|_|) /=.
by apply/leS; case: J => J /= /canonical_uniq.
Qed.

(* -------------------------------------------------------------------- *)
Lemma summable_sum (F : I -> T -> R) (P : pred I) r :
    (forall i, P i -> summable (F i))
  -> summable (fun x => \sum_(i <- r | P i) F i x).
Proof.
move=> sm_F; elim: r => [|i r ih].
  by apply/(eq_summable _ summable0) => x; rewrite big_nil.
pose G x := (F i x) * (P i)%:R + \sum_(i <- r | P i) F i x.
apply/(eq_summable (S1 := G)) => [x|].
  by rewrite {}/G big_cons; case: ifP=> Pi; rewrite !Monoid.simpm.
apply/summableD => //; case/boolP: (P i) => [|_].
  by move/sm_F; apply/eq_summable => x; rewrite mulr1.
by apply/(eq_summable _ summable0) => x; rewrite mulr0.
Qed.

End SummableAlg.

(* -------------------------------------------------------------------- *)
Section StdSum.
Context {R : realType} (T : choiceType) (I : Type).

Implicit Type S : T -> R.

(* -------------------------------------------------------------------- *)
Lemma psum0 : psum (fun _ : T => 0) = 0 :> R.
Proof.
rewrite /psum asboolT; first by apply/summable0.
set S := [set x | _]%classic; suff: S = (set1 0).
  by move => ->; rewrite sup1.
rewrite predeqE => x; split.
  by case=> J -> /=; rewrite big1 // normr0.
by move=> ->; exists fset0; rewrite big_fset0.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psum_eq0 (f : T -> R) : (forall x, f x = 0) -> psum f = 0.
Proof. by move=> eq; rewrite (eq_psum eq) psum0. Qed.

(* -------------------------------------------------------------------- *)
Lemma eq0_psum (f : T -> R) :
  summable f -> psum f = 0 -> (forall x : T, f x = 0).
Proof.
move=> sm psum_eq0 x; apply/eqP; rewrite -normr_eq0.
rewrite eq_le normr_ge0 andbT -psum_eq0.
apply/(le_trans _ (gerfinseq_psum (r := [:: x]) _ sm)) => //.
by rewrite big_seq1.
Qed.

(* -------------------------------------------------------------------- *)
Lemma neq0_psum (f : T -> R) : psum f <> 0 -> exists x : T, f x <> 0.
Proof.
by move=> nz_psum; apply/existsp_asboolPn/asboolPn => /psum_eq0.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psum_abs (S : T -> R) : psum \`|S| = psum S.
Proof.
rewrite /psum; do 2! case: ifPn => //; first last.
+ by move/asboolP/summable_abs/asboolP=> ->.
+ by move/asboolPn/summable_abs/asboolPn=> /negbTE->.
move=> _ _; congr sup; rewrite predeqE => x; split.
  case=> J ->; exists J.
  by under eq_bigr do rewrite normr_id.
case=> J ->; exists J.
by under [in RHS]eq_bigr do rewrite normr_id.
Qed.

(* -------------------------------------------------------------------- *)
Lemma eq_psum_abs (S1 S2 : T -> R) :
  \`|S1| =1 \`|S2| -> psum S1 = psum S2.
Proof.
by move=> eqS; rewrite -[LHS]psum_abs -[RHS]psum_abs; apply/eq_psum.
Qed.

(* -------------------------------------------------------------------- *)
Lemma le_psum_abs (S1 S2 : T -> R) :
  (forall x, `|S1 x| <= `|S2 x|) -> summable S2 -> psum S1 <= psum S2.
Proof.
move=> leS smS2; rewrite -[X in X<=_]psum_abs -[X in _<=X]psum_abs.
by apply/le_psum/summable_abs => // x; rewrite normr_ge0 leS.
Qed.

(* -------------------------------------------------------------------- *)
Lemma le_psum_condl (S : T -> R) (P : pred T) :
  summable S -> psum (fun x => (P x)%:R * S x) <= psum S.
Proof.
move=> smS; apply/le_psum_abs=> // x; rewrite normrM.
by apply/ler_piMl => //; rewrite normr_nat lern1 leq_b1.
Qed.

(* -------------------------------------------------------------------- *)
Lemma le_psum_condr (S : T -> R) (P : pred T) :
  summable S -> psum (fun x => S x * (P x)%:R) <= psum S.
Proof.
move=> smS; apply/(le_trans _ (le_psum_condl P smS)).
rewrite le_eqVlt -(rwP orP); left; apply/eqP/eq_psum.
by move=> x /=; rewrite mulrC.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psumN (S : T -> R) : psum (- S) = psum S.
Proof.
case/boolP: `[< summable S >] => h; last first.
  by rewrite !psum_out ?oppr0 //; apply/asboolPn; rewrite ?summablebN.
rewrite /psum summablebN h; apply/eq_ppsum=> J /=.
by apply/eq_bigr=> j _; rewrite normrN.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psumD S1 S2 :
    (forall x, 0 <= S1 x) -> (forall x, 0 <= S2 x)
  -> summable S1 -> summable S2
  -> psum (S1 \+ S2) = (psum S1 + psum S2).
Proof.
move=> ge0_S1 ge0_S2 smS1 smS2; have smD := summableD smS1 smS2.
have ge0D: forall x, 0 <= S1 x + S2 x by move=> x; rewrite addr_ge0.
rewrite !psumE // (rwP eqP) eq_le -(rwP andP); split.
  apply/sup_le_ub.
  + by exists 0, fset0; rewrite big_fset0.
  apply/ubP=> _ [J ->]; rewrite big_split /=.
  apply/lerD; rewrite -psumE 1?(le_trans _ (gerfin_psum J _)) //.
  + by apply/ler_sum=> j _ /=; apply/ler_norm.
  + by apply/ler_sum=> j _ /=; apply/ler_norm.
rewrite -lerBrDr; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J1 ->]; rewrite lerBrDr addrC.
rewrite -lerBrDr; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J2 ->]; rewrite lerBrDr addrC.
pose J := J1 `|` J2; rewrite -psumE ?(le_trans _ (gerfin_psum J _)) //.
pose D := \sum_(j : J) (S1 (val j) + S2 (val j)).
apply/(@le_trans _ _ D); last by apply/ler_sum=> i _; apply/ler_norm.
rewrite /D big_split /=; apply/lerD; apply/big_fset_subset=> //.
+ by apply/fsubsetP/fsubsetUl. + by apply/fsubsetP/fsubsetUr.
Qed.

(* -------------------------------------------------------------------- *)
Lemma __admitted__psumB S1 S2 :
    (forall x, 0 <= S2 x <= S1 x) -> summable S1
  -> psum (S1 \- S2) = (psum S1 - psum S2).
Proof using Type. Admitted.

(* -------------------------------------------------------------------- *)
Lemma psumZ S c : 0 <= c -> psum (c \*o S) = c * psum S.
Proof.
rewrite le_eqVlt => /orP[/eqP<-|gt0_c].
  by rewrite mul0r psum_eq0 // => x /=; rewrite mul0r.
case/asboolP: (summable S) => [smS|NsmS]; last first.
  rewrite !psum_out ?mulr0 // => smZ; apply/NsmS.
  move/(summableZ c^-1): smZ; apply/eq_summable=> x /=.
  by rewrite mulKf // gt_eqF.
have smZ := summableZ c smS; rewrite (rwP eqP) eq_le.
apply/andP; split; first rewrite {1}/psum asboolT //.
  apply/sup_le_ub.
  + by exists 0, fset0; rewrite big_fset0.
  apply/ubP=> _ [J ->]; rewrite -ler_pdivrMl //.
  rewrite mulr_sumr (le_trans _ (gerfin_psum J _)) //.
  apply/ler_sum=> /= j _; rewrite normrM.
  by rewrite gtr0_norm // mulKf ?gt_eqF.
rewrite -ler_pdivlMl // {1}/psum asboolT //; apply/sup_le_ub.
+ by exists 0, fset0; rewrite big_fset0.
apply/ubP=> _ [J ->]; rewrite ler_pdivlMl //.
rewrite mulr_sumr; apply/(le_trans _ (gerfin_psum J _))=> //.
by apply/ler_sum=> /= j _; rewrite normrM (gtr0_norm gt0_c).
Qed.

(* -------------------------------------------------------------------- *)
Lemma psumZr S c :
  0 <= c -> psum (c \o* S) = psum S * c.
Proof.
move=> ge0_c; rewrite [RHS]mulrC -psumZ //.
by apply/eq_psum => x /=; rewrite mulrC.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psum_bigop (F : I -> T -> R) P r :
    (forall i x, 0 <= F i x) -> (forall i, summable (F i)) ->
  \sum_(i <- r | P i) psum (F i) =
    psum (fun x => \sum_(i <- r | P i) F i x).
Proof.
move=> ge0_F sm_F; elim: r => [|i r ih].
  by rewrite big_nil; apply/esym/psum_eq0 => x; rewrite big_nil.
rewrite big_cons ih; case: ifP => Pi; last first.
  by apply/eq_psum=> x /=; rewrite big_cons Pi.
rewrite -psumD //; first by move=> x; apply/sumr_ge0.
  by apply/summable_sum.
by apply/eq_psum=> x /=; rewrite big_cons Pi.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psumID S (P : pred T) :
  summable S -> psum S =
    psum (fun x => (P x)%:R * S x) + psum (fun x => (~~P x)%:R * S x).
Proof.
have h x: `|S x| = (P x)%:R * `|S x| + (~~P x)%:R * `|S x|.
  by case: (P x); rewrite !Monoid.simpm.
move=> smS; rewrite -[LHS]psum_abs (eq_psum h) psumD.
  by move=> x; rewrite mulr_ge0. by move=> x; rewrite mulr_ge0.
  by apply/summable_condl/summable_abs.
  by apply/summable_condl/summable_abs.
congr (_ + _); apply/eq_psum_abs=> x /=.
  by rewrite !normrM normr_nat normr_id.
  by rewrite !normrM normr_nat normr_id.
Qed.

(* -------------------------------------------------------------------- *)
Lemma psum_finseq S (r : seq.seq T) :
    uniq r -> {subset [pred x | S x != 0] <= r}
  -> psum S = \sum_(x <- r) `|S x|.
Proof.
move=> eq_r ler; set s := RHS; have h J: uniq J -> \sum_(x <- J) `|S x| <= s.
  move=> uqJ; rewrite (bigID (ssrbool.mem r)) /= addrC big1.
    move=> x xNr; apply/eqP; apply/contraR: xNr.
    by rewrite normr_eq0 => /ler.
  rewrite add0r {}/s -big_filter; set s := seq.filter _ _.
  rewrite [X in _<=X](bigID (ssrbool.mem J)) /=.
  rewrite (perm_big [seq x <- r | x \in J]) /=.
    apply/uniq_perm; rewrite ?filter_uniq // => x.
    by rewrite !mem_filter andbC.
  by rewrite big_filter lerDl sumr_ge0.
case/summable_of_bd: h => smS le_psum; apply/eqP.
by rewrite eq_le le_psum /=; apply/gerfinseq_psum.
Qed.
End StdSum.

#[deprecated(since="mathcomp-analysis 0.6.2",
  note="lacks proof, use __admitted__psumB explicitly if you really want to")]
Notation psumB := __admitted__psumB.

(* -------------------------------------------------------------------- *)
Section PSumReindex.
Context {R : realType} {T U : choiceType}.
Context (S : T -> R) (P : pred T) (h : U -> T).


Lemma reindex_psum_onto h' :
     (forall x, S x != 0 -> x \in P)
  -> (forall i, i \in P -> omap h (h' i) = Some i)
  -> (forall i, h i \in P -> h' (h i) = Some i)
  -> psum S = psum (fun x : U => S (h x)).
Proof.
move=> PS hO hP; rewrite !psum_sup_seq; congr sup; rewrite predeqE => x.
split=> -[J uqJ ->] {x}; last first.
  exists [seq h j | j <- J & S (h j) != 0].
    rewrite map_inj_in_uniq ?filter_uniq // => y1 y2.
    rewrite !mem_filter => /andP[nz_S1 _] /andP[nz_S2 _].
    by move/(congr1 h'); rewrite !hP ?PS // => -[].
  apply/eqP; rewrite big_map big_filter.
  rewrite (bigID (fun i => S (h i) == 0)) /= big1 ?add0r //.
  by move=> y /eqP->; rewrite normr0.
have uqpJ: uniq (pmap h' [seq j | j <- J & S j != 0]).
  apply/(map_uniq (f := some)); rewrite pmapS_filter.
  rewrite map_inj_in_uniq ?filter_uniq // => [y1 y2|]; last first.
    by rewrite map_id filter_uniq.
  rewrite !map_id !mem_filter => /andP[h'1 h1] /andP[h'2 h2].
  case/andP: h1 => h1 _; case/andP: h2 => h2 _.
  by move/(congr1 (omap h)); rewrite !hO ?PS // => -[].
exists (pmap h' [seq j | j <- J & S j != 0]) => //.
apply/eqP; rewrite -(big_map h predT \`|S|) (bigID [pred j | S j == 0]) /=.
rewrite big1 ?add0r => [i /eqP->|]; first by rewrite normr0.
rewrite -big_filter; apply/eqP; apply/perm_big/uniq_perm.
+ by rewrite filter_uniq.
+ rewrite map_inj_in_uniq // !map_id => y1 y2 h1 h2.
  move/(congr1 h'); rewrite !hP ?PS //; last by case.
  * move: h1; rewrite mem_pmap => /mapP[x1].
    rewrite mem_filter => /andP[nz_Sx1 _] /(congr1 (omap h)) /=.
    by rewrite hO ?PS // => -[->].
  * move: h2; rewrite mem_pmap => /mapP[x2].
    rewrite mem_filter => /andP[nz_Sx2 _] /(congr1 (omap h)) /=.
    by rewrite hO ?PS // => -[->].
move=> x; rewrite !mem_filter; apply/andP/idP.
+ case=> nzSx Jx; apply/mapP; move/(_ x (PS _ nzSx)): hO.
  case E: (h' x) => [u|] //= -[xE]; exists u => //.
  rewrite mem_pmap; apply/mapP; exists x => //.
  by rewrite map_id mem_filter nzSx.
+ case/mapP=> u; rewrite mem_pmap => /mapP[t]; rewrite map_id.
  rewrite mem_filter=> /andP[h1 h2] /(congr1 (omap h)) /=.
  by rewrite hO ?PS // => -[->] ->; split.
Qed.

Lemma reindex_psum :
     (forall x, S x != 0 -> x \in P)
  -> {on P, bijective h}
  -> psum S = psum (fun x : U => S (h x)).
Proof.
move=> hP [hI h1 h2]; apply/(@reindex_psum_onto (some \o hI)) => //.
+ by move=> x Px /=; rewrite h2.
+ by move=> x Px /=; rewrite h1.
Qed.
End PSumReindex.

(* -------------------------------------------------------------------- *)
Section PSumPartition.
Context {R : realType} {T U : choiceType} (f : T -> U).

Let C y := `[< exists x : T, f x == y >].

Lemma partition_psum (S : T -> R) : summable S ->
  psum S = psum (fun y => psum (fun x => S x * (f x == y)%:R)).
Proof.                          (* FIXME: this proof is a joke *)
move=> smS; rewrite (rwP eqP) eq_le -(rwP andP); split.
  pose F x y := `|S x| * (f x == y :> U)%:R.
  have smFy y: summable (F^~ y).
    by apply/summable_condr/summable_abs.
  set G := fun y : U => _; have: summable G.
    case/summable_seqP: smS => M ge0_M leM.
    apply/summable_seqP; exists M => // J uqJ; rewrite {}/G.
    rewrite (eq_bigr (fun y => psum (F^~ y))) => [y _|].
      rewrite ger0_norm ?ge0_psum //; apply/eq_psum_abs => x.
      by rewrite !normrM [ `|_%:R|]ger0_norm ?(normr_id, ler0n).
    rewrite psum_bigop // => [y x|].
      by rewrite mulr_ge0 ?(normr_ge0, ler0n).
    apply/psum_le=> L uqL; pose G x := \sum_(j <- J | f x == j) `|S x|.
    rewrite (eq_bigr G) => [x _|]; first rewrite ger0_norm //.
    + by rewrite sumr_ge0 // => y _; rewrite mulr_ge0.
    + rewrite /G [RHS]big_mkcond /F /=; apply/eq_bigr=> y _.
      by case: ifPn => //; rewrite !simpm.
    rewrite {}/G /F; pose K := [seq x <- L | f x \in J].
    apply/(le_trans _ (leM K _)); rewrite ?filter_uniq //.
    rewrite le_eqVlt -(rwP orP); left; apply/eqP.
    rewrite /K big_filter [RHS]big_mkcond /=; apply/eq_bigr.
    move=> x _; case: ifPn => [fxJ|fxNJ].
      rewrite big_mkcond (bigD1_seq _ fxJ uqJ) /= eqxx.
      by rewrite big1 ?addr0 // => y; rewrite eq_sym => /negbTE=> ->.
    rewrite big_seq_cond big1 // => y; rewrite andbC.
    by case/andP=> /eqP<-; rewrite (negbTE fxNJ).
  move=> smG; apply/psum_le => J uqJ; pose K := undup (map f J).
  move/gerfinseq_psum: smG => /(_ K (undup_uniq _)).
  move/(le_trans _); apply; rewrite {}/G.
  pose G x y := `|S x| * (f x == y)%:R.
  rewrite (eq_bigr (fun y => psum (G^~ y))).
    move=> y _; rewrite ger0_norm ?ge0_psum //.
    rewrite -psum_abs; apply/eq_psum=> x.
    by rewrite normrM [ `|_%:R|]ger0_norm ?ler0n.
  rewrite psum_bigop => [y x|y|]; first by rewrite mulr_ge0.
    by apply/summable_condr/summable_abs.
  rewrite (eq_psum (F2 := fun x => `|S x * (f x \in K)%:R|)).
    move=> x; rewrite {}/G normrM. (*[ `|_%:R|]ger0_norm //.*)
    case/boolP: (f x \in K); last first.
      move=> fxNK.
      rewrite [ `|_%:R|]ger0_norm // mulr0 big_seq big1 // => y.
      apply/contraTeq; rewrite mulf_eq0 pnatr_eq0 eqb0.
      by rewrite negb_or negbK => /andP[_ /eqP<-].
    move=> fxK; rewrite (bigD1_seq (f x)) ?undup_uniq //=.
    rewrite [ `|_%:R|]ger0_norm // ?ler01 // eqxx !mulr1 big1 ?addr0 // => y; rewrite eq_sym.
    by move/negbTE=> ->; rewrite mulr0.
  rewrite big_seq (eq_bigr (fun j => `|S j * (f j \in K)%:R|)) {}/G.
    by move=> x /(map_f f); rewrite -mem_undup => ->; rewrite mulr1.
  rewrite psum_abs; set G := (fun x : T => _ in X in _<=X).
  have: summable G by apply/summable_condr.
  move/gerfinseq_psum => /(_ _ uqJ) /(le_trans _); apply.
  by rewrite -big_seq; apply/ler_sum => x _; rewrite normrM.
apply/psum_le=> J uqJ; pose F j := psum (fun x => `|S x| * (f x == j)%:R).
rewrite (eq_bigr F) => [y _|]; first rewrite ger0_norm ?ge0_psum //.
+ rewrite -psum_abs; apply/eq_psum => x; rewrite normrM.
  by rewrite [ `|_%:R|]ger0_norm ?ler0n.
rewrite psum_bigop => [y x|y|].
+ by rewrite mulr_ge0 ?(normr_ge0, ler0n).
+ by apply/summable_condr/summable_abs.
apply/psum_le=> L uqL; pose K := [seq x <- L | f x \in J].
have /gerfinseq_psum: uniq K by rewrite filter_uniq.
move=> /(_ _ _ smS) /(le_trans _); apply; rewrite big_filter.
rewrite le_eqVlt -(rwP orP); left; apply/eqP.
rewrite [RHS]big_mkcond /=; apply/eq_bigr=> x _.
rewrite big_seq; case: ifPn => [fx_in_J|fx_Nin_J].
  rewrite -big_seq (bigD1_seq _ fx_in_J uqJ) /= eqxx mulr1.
  rewrite big1 ?addr0 ?normr_id // => y; rewrite eq_sym.
  by move/negbTE=> ->; rewrite mulr0.
rewrite big1 ?normr0 // => y; apply/contraTeq.
rewrite mulf_eq0 pnatr_eq0 eqb0 negb_or negbK.
by case/andP => _ /eqP<-.
Qed.

Lemma partition_psum_cond (S : T -> R) : summable S ->
  psum S = psum (fun y => (C y)%:R * psum (fun x => S x * (f x == y)%:R)).
Proof.
move=> smS; apply/(eq_trans (partition_psum smS)).
apply/eq_psum => y; case/boolP: (C y); rewrite !simpm //.
move=> NCy; rewrite psum_eq0 // => x; case: (_ =P y).
  by move/eqP=> fxE; move/asboolP: NCy; case; exists x.
by rewrite mulr0.
Qed.
End PSumPartition.

(* -------------------------------------------------------------------- *)
Section PSumPair.
Context {R : realType} {T U : choiceType}.

Lemma psum_pair (S : T * U -> R) : summable S ->
  psum S = psum (fun x => psum (fun y => S (x, y))).
Proof.
move=> sblS; rewrite (partition_psum fst) //; apply/eq_psum.
move=> x /=; pose P := [pred xy : T * U | xy.1 == x].
rewrite (reindex_psum (h := [eta pair x]) (P := P)) //=.
+ case=> x' y' /=; rewrite mulf_eq0 => /norP[_].
  by rewrite pnatr_eq0 eqb0 negbK /P inE => /eqP->.
+ by exists snd => // -[x' y'] /eqP /= <-.
by apply/eq_psum=> y /=; rewrite eqxx mulr1.
Qed.

Lemma psum_pair_swap (S : T * U -> R) : summable S ->
  psum S = psum (fun y => psum (fun x => S (x, y))).
Proof.
move=> sblS; rewrite (partition_psum snd) //; apply/eq_psum.
move=> y /=; pose P := [pred xy : T * U | xy.2 == y].
rewrite (reindex_psum (h := [eta pair^~ y]) (P := P)) //=.
+ case=> x' y' /=; rewrite mulf_eq0 => /norP[_].
  by rewrite pnatr_eq0 eqb0 negbK /P inE => /eqP->.
+ by exists fst => // -[x' y'] /eqP /= <-.
by apply/eq_psum=> x /=; rewrite eqxx mulr1.
Qed.
End PSumPair.

(* -------------------------------------------------------------------- *)
(* FIXME: MOVE ME                                                       *)
Section SupInterchange.
Context {R : realType} {T U : Type}.

Lemma __admitted__interchange_sup (S : T -> U -> R) :
    (forall x, has_sup [set r | exists y, r = S x y])
  -> has_sup [set r | exists x, r = sup [set r | exists y, r = S x y]]
  -> sup [set r | exists x, r = sup [set r | exists y, r = S x y]]
  = sup [set r | exists y, r == sup [set r | exists x, r = S x y]].
Proof using Type. Admitted.
End SupInterchange.

#[deprecated(since="mathcomp-analysis 0.6.2",
  note="lacks proof, use __admitted__interchange_sup explicitly if you really want to use this lemma")]
Notation interchange_sup := __admitted__interchange_sup.

(* -------------------------------------------------------------------- *)
Section PSumInterchange.
Context {R : realType} {T U : choiceType}.

Lemma __admitted__interchange_psum (S : T -> U -> R) :
    (forall x, summable (S x))
  -> summable (fun x => psum (fun y => S x y))
  -> psum (fun x => psum (fun y => S x y)) = psum (fun y => psum (fun x => S x y)).
Proof using Type. Admitted.
End PSumInterchange.

#[deprecated(since="mathcomp-analysis 0.6.2",
  note="lacks proof, use __admitted__interchange_psum explicitly if you really want to use this lemma")]
Notation interchange_psum := __admitted__interchange_psum.

(* -------------------------------------------------------------------- *)
Section SumTheory.
Context {R : realType} {T : choiceType}.

Implicit Types (S : T -> R).

Lemma psum_sum S : (forall x, 0 <= S x) -> psum S = sum S.
Proof.
move=> ge0_S; rewrite /sum [X in _-X]psum_eq0 ?subr0.
  by move=> x; rewrite fneg_ge0.
by apply/eq_psum=> x; rewrite fpos_ge0.
Qed.

Lemma le_sum S1 S2 :
  summable S1 -> summable S2 -> (S1 <=1 S2) ->
    sum S1 <= sum S2.
Proof.
move=> smS1 smS2 leS; rewrite /sum lerB //.
  apply/le_psum/summable_fpos => // x.
  by rewrite ge0_fpos /= le_fpos.
apply/le_psum/summable_fneg => // x.
rewrite -!fposN ge0_fpos le_fpos // => y.
by rewrite lerN2.
Qed.

Lemma sum0 : sum (fun _ : T => 0) = 0 :> R.
Proof. by rewrite /sum !(eq_psum fpos0, eq_psum fneg0) !psum0 subr0. Qed.

Lemma sumN S : sum (- S) = - sum S.
Proof. by rewrite /sum (eq_psum (fnegN _)) (eq_psum (fposN _)) opprB. Qed.

Lemma sumZ S c : sum (c \*o S) = c * sum S.
Proof.
rewrite (eq_sum (F2 := fun x => Num.sg c * (`|c| * S x))).
  by move=> x; rewrite mulrA -numEsg.
transitivity (Num.sg c * sum (`|c| \*o S)).
  case: sgrP => [_|gt0_c|lt0_c]; rewrite ?Monoid.simpm.
  + by rewrite (eq_sum (F2 := fun _ => 0)) ?sum0 // => x; rewrite !mul0r.
  + by apply/eq_sum=> x; rewrite mul1r.
  by rewrite mulN1r -sumN; apply/eq_sum=> x; rewrite !mulN1r.
rewrite {1}/sum !(eq_psum (fposZ _ _), eq_psum (fnegZ _ _)) //.
by rewrite !psumZ // -mulrBr mulrA -numEsg.
Qed.

Lemma sumID S (P : pred T) :
  summable S -> sum S =
    sum (fun x => (P x)%:R * S x) + sum (fun x => (~~ P x)%:R * S x).
Proof.
move=> sm_S; rewrite /sum addrACA -[in RHS]opprD; congr (_ - _).
+ rewrite (psumID P); first by apply/summable_fpos.
  by congr (_ + _); apply/eq_psum => x; rewrite fpos_natrM.
+ rewrite (psumID P); first by apply/summable_fneg.
  by congr (_ + _); apply/eq_psum => x; rewrite fneg_natrM.
Qed.

Lemma sum_finseq S (r : seq T) :
  uniq r -> {subset [pred x | S x != 0] <= r} ->
    sum S = \sum_(x <- r) S x.
Proof.
move=> eqr domS; rewrite /sum !(psum_finseq eqr).
+ move=> x; rewrite !inE => xPS; apply/domS; rewrite !inE.
  move: xPS; rewrite /fpos normr_eq0.
  by apply: contra => /eqP ->; rewrite maxxx.
+ move=> x; rewrite !inE => xPS; apply/domS; rewrite !inE.
  move: xPS; rewrite /fneg normr_eq0.
  by apply: contra => /eqP ->; rewrite minxx.
rewrite -sumrB; apply/eq_bigr=> i _.
by rewrite !ger0_norm ?(ge0_fpos, ge0_fneg) ?fposBfneg.
Qed.

Lemma sum_seq1 S x : (forall y, S y != 0 -> x == y) -> sum S = S x.
Proof.
move=> domS; rewrite (sum_finseq (r := [:: x])) ?big_seq1//.
by move=> y; rewrite !inE => /domS /eqP->.
Qed.

End SumTheory.

Arguments sum_seq1 {R T} [S] x _.