1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp Require Export finmap.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Asymmetric Patterns.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Open Scope fset_scope.
(* -------------------------------------------------------------------- *)
Lemma uniq_fset_keys {K : choiceType} (J : {fset K}) : uniq (enum_fset J).
Proof. by case: J => J /= /canonical_uniq. Qed.
#[global] Hint Resolve uniq_fset_keys : core.
(* -------------------------------------------------------------------- *)
Lemma enum_fset0 (T : choiceType) :
enum (fset0 : finType) = [::] :> seq (@fset0 T).
Proof. by rewrite enumT unlock. Qed.
Lemma enum_fset1 (T : choiceType) (x : T) :
enum ([fset x] : finType) = [:: [`fset11 x]].
Proof.
apply/perm_small_eq=> //; apply/uniq_perm => //.
by apply/enum_uniq.
case=> [y hy]; rewrite mem_seq1 mem_enum /in_mem /=.
by rewrite eqE /=; rewrite in_fset1 in hy.
Qed.
(* -------------------------------------------------------------------- *)
Section BigFSet.
Variable (R : Type) (idx : R) (op : Monoid.law idx).
Variable (I : choiceType).
Lemma big_fset0_cond (P : pred _) (F : _ -> R) :
\big[op/idx]_(i : @fset0 I | P i) F i = idx :> R.
Proof. by apply: big_pred0 => -[j hj]; have := hj; rewrite in_fset0. Qed.
Lemma big_fset0 (F : @fset0 I -> R) :
\big[op/idx]_(i : fset0) F i = idx.
Proof. by rewrite /index_enum -enumT /= enum_fset0 big_nil. Qed.
Lemma big_fset1 (a : I) (F : [fset a] -> R) :
\big[op/idx]_(i : [fset a]) F i = F (FSetSub (fset11 a)).
Proof. by rewrite /index_enum -enumT enum_fset1 big_seq1. Qed.
End BigFSet.
(* -------------------------------------------------------------------- *)
Section BigFSetCom.
Variable (R : Type) (idx : R).
Local Notation "1" := idx.
Variable op : Monoid.com_law 1.
Local Notation "'*%M'" := op (at level 0).
Local Notation "x * y" := (op x y).
Lemma big_fset_seq_cond (T : choiceType) (J : {fset T}) P F :
\big[*%M/1]_(x : J | P (val x)) F (val x)
= \big[*%M/1]_(x <- enum_fset J | P x) F x.
Proof.
case: J=> J c; rewrite -(big_map val) /index_enum.
by rewrite !unlock val_fset_sub_enum ?canonical_uniq.
Qed.
Lemma big_fset_seq (T : choiceType) (J : {fset T}) F :
\big[*%M/1]_(x : J) F (val x)
= \big[*%M/1]_(x <- enum_fset J) F x.
Proof. by apply/big_fset_seq_cond. Qed.
Lemma big_seq_fset_cond (T : choiceType) (s : seq T) P F : uniq s ->
\big[*%M/1]_(x : [fset x in s] | P (val x)) F (val x)
= \big[*%M/1]_(x <- s | P x) F x.
Proof.
move=> eq_s; rewrite big_fset_seq_cond; apply/perm_big.
by apply/uniq_perm=> //= x; rewrite in_fset.
Qed.
Lemma big_seq_fset (T : choiceType) (s : seq T) F : uniq s ->
\big[*%M/1]_(x : [fset x in s]) F (val x)
= \big[*%M/1]_(x <- s) F x.
Proof. by apply/big_seq_fset_cond. Qed.
End BigFSetCom.
Arguments big_fset_seq_cond [R idx op T J] P F.
Arguments big_fset_seq [R idx op T J] F.
Arguments big_seq_fset_cond [R idx op T s] P F _.
Arguments big_seq_fset [R idx op T s] F _.
(* -------------------------------------------------------------------- *)
Section BigFSetU.
Context {R : Type} {T : choiceType} (idx : R) (op : Monoid.com_law idx).
Lemma big_fsetU (A B : {fset T}) F : [disjoint A & B] ->
\big[op/idx]_(j : A `|` B) F (val j) =
op (\big[op/idx]_(j : A) F (val j))
(\big[op/idx]_(j : B) F (val j)).
Proof.
move=> dj_AB; rewrite !big_fset_seq -big_cat; apply/perm_big.
apply/uniq_perm=> //.
+ rewrite cat_uniq ?uniq_fset_keys !(andbT, andTb); apply/hasPn => x /=.
by apply/fdisjointP; rewrite fdisjoint_sym.
+ by move=> x; rewrite mem_cat in_fsetE.
Qed.
End BigFSetU.
(* -------------------------------------------------------------------- *)
Section BigFSetOrder.
Variable (R : realDomainType) (T : choiceType).
Lemma big_fset_subset (I J : {fset T}) (F : T -> R) :
(forall x, 0 <= F x) -> {subset I <= J} ->
\sum_(i : I) F (val i) <= \sum_(j : J) F (val j).
Proof.
move=> ge0_F le_IJ; rewrite !big_fset_seq /=.
rewrite [X in _<=X](bigID [pred j : T | j \in I]) /=.
rewrite ler_wpDr ?sumr_ge0 // -[X in _<=X]big_filter.
rewrite le_eqVlt; apply/orP; left; apply/eqP/perm_big.
apply/uniq_perm; rewrite ?filter_uniq //; last move=> i.
rewrite mem_filter; case/boolP: (_ \in _) => //=.
by move/le_IJ => ->.
Qed.
Lemma big_nat_mkfset (F : nat -> R) n :
\sum_(0 <= i < n) F i =
\sum_(i : [fset x in (iota 0 n)]) F (val i).
Proof.
rewrite -(big_map val xpredT) /=; apply/perm_big.
apply/uniq_perm; rewrite ?iota_uniq //.
rewrite map_inj_uniq /=; last apply/val_inj.
by rewrite /index_enum -enumT enum_uniq.
by move=> i; rewrite /index_enum -enumT -enum_fsetE in_fset /index_iota subn0.
Qed.
Lemma big_ord_mkfset (F : nat -> R) n :
\sum_(i < n) F i =
\sum_(i : [fset x in (iota 0 n)]) F (val i).
Proof. by rewrite -(big_mkord xpredT) big_nat_mkfset. Qed.
End BigFSetOrder.
(* -------------------------------------------------------------------- *)
Lemma enum_fsetT {I : finType} :
perm_eq (enum [fset i | i in I]) (enum I).
Proof.
apply/uniq_perm; rewrite ?enum_uniq //.
by move=> i /=; rewrite !mem_enum in_imfset.
Qed.
(* -------------------------------------------------------------------- *)
|