1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
|
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
(* TODO: merge this with table.v in real-closed
(c.f. https://github.com/math-comp/real-closed/pull/29 ) and
incorporate it into mathcomp proper where it could then be used for
bounds of intervals*)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra finmap.
From mathcomp Require Import mathcomp_extra interval_inference.
(**md**************************************************************************)
(* # Extended real numbers $\overline{R}$ *)
(* *)
(* Given a type R for numbers, `\bar R` is the type `R` extended with symbols *)
(* `-oo` and `+oo` (notation scope: `%E`), suitable to represent extended *)
(* real numbers. When `R` is a `numDomainType`, `\bar R` is equipped with a *)
(* canonical `porderType` and operations for addition/opposite. When `R` is a *)
(* `realDomainType`, `\bar R` is equipped with a canonical `orderType`. *)
(* *)
(* Naming convention: in definition/lemma identifiers, "e" stands for an *)
(* extended number and "y" and "Ny" for `+oo` and `-oo` respectively. *)
(* *)
(* Examples of notations: *)
(* | Coq definitions | | Meaning | *)
(* |-----------------------:|--|--------------------------------------------| *)
(* | `\bar R` |==| coproduct of `R` and $\{+\infty, -\infty\}$| *)
(* | | | notation for `extended (R:Type)` | *)
(* | `r%:E` |==| injects real numbers into `\bar R` | *)
(* | `+%E, -%E, *%E` |==| addition/opposite/multiplication for | *)
(* | | | extended reals | *)
(* | `er_map (f : T -> T')` |==| the `\bar T -> \bar T'` lifting of `f` | *)
(* | `sqrte` |==| square root for extended reals | *)
(* | `` `\| x \|%E `` |==| the absolute value of `x` | *)
(* | `x ^+ n` |==| iterated multiplication | *)
(* | `x *+ n` |==| iterated addition | *)
(* | `+%dE, (x *+ n)%dE` |==| dual addition/dual iterated addition | *)
(* | | | ($-\infty + +\infty = +\infty$) | *)
(* | | | Import DualAddTheory for related lemmas | *)
(* | `x +? y` |==| the addition of `x` and `y` is defined | *)
(* | | | it is neither $+\infty - \infty$ | *)
(* | | | nor $-\infty + \infty$ | *)
(* | `x *? y` |==| the multiplication of `x` and `y` is not | *)
(* | | | of the form $0 * +\infty$ or $0 * -\infty$ | *)
(* | `(_ <= _)%E`, `(_ < _)%E`,|==| comparison relations for extended reals | *)
(* | `(_ >= _)%E`, `(_ > _)%E` | | | *)
(* | `(\sum_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *)
(* |`(\prod_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *)
(* | `maxe x y, mine x y` |==| notation for the maximum/minimum | *)
(* *)
(* Detailed documentation: *)
(* ``` *)
(* \bar R == coproduct of R and {+oo, -oo}; *)
(* notation for extended (R:Type) *)
(* r%:E == injects real numbers into \bar R *)
(* +%E, -%E, *%E == addition/opposite/multiplication for extended *)
(* reals *)
(* er_map (f : T -> T') == the \bar T -> \bar T' lifting of f *)
(* sqrte == square root for extended reals *)
(* `| x |%E == the absolute value of x *)
(* x ^+ n == iterated multiplication *)
(* x *+ n == iterated addition *)
(* +%dE, (x *+ n)%dE == dual addition/dual iterated addition for *)
(* extended reals (-oo + +oo = +oo instead of -oo) *)
(* Import DualAddTheory for related lemmas *)
(* x +? y == the addition of the extended real numbers x and *)
(* and y is defined, i.e., it is neither +oo - oo *)
(* nor -oo + oo *)
(* x *? y == the multiplication of the extended real numbers *)
(* x and y is not of the form 0 * +oo or 0 * -oo *)
(* (_ <= _)%E, (_ < _)%E, == comparison relations for extended reals *)
(* (_ >= _)%E, (_ > _)%E *)
(* (\sum_(i in A) f i)%E == bigop-like notation in scope %E *)
(* (\prod_(i in A) f i)%E == bigop-like notation in scope %E *)
(* maxe x y, mine x y == notation for the maximum/minimum of two *)
(* extended real numbers *)
(* ``` *)
(* *)
(* ## Signed extended real numbers *)
(* ``` *)
(* {posnum \bar R} == interface type for elements in \bar R that are *)
(* positive, c.f., interval_inference.v, *)
(* notation in scope %E *)
(* {nonneg \bar R} == interface types for elements in \bar R that are *)
(* non-negative, c.f. interval_inference.v, *)
(* notation in scope %E *)
(* x%:pos == explicitly casts x to {posnum \bar R}, in scope %E *)
(* x%:nng == explicitly casts x to {nonneg \bar R}, in scope %E *)
(* ``` *)
(* *)
(* ## Topology of extended real numbers *)
(* ``` *)
(* contract == order-preserving bijective function *)
(* from extended real numbers to [-1; 1] *)
(* expand == function from real numbers to extended *)
(* real numbers that cancels contract in *)
(* [-1; 1] *)
(* ``` *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "x %:E" (at level 2, format "x %:E").
Reserved Notation "x %:dE" (at level 2, format "x %:dE").
Reserved Notation "x +? y" (at level 50, format "x +? y").
Reserved Notation "x *? y" (at level 50, format "x *? y").
Reserved Notation "'\bar' x" (at level 2, format "'\bar' x").
Reserved Notation "'\bar' '^d' x" (at level 2, format "'\bar' '^d' x").
Reserved Notation "{ 'posnum' '\bar' R }" (at level 0,
format "{ 'posnum' '\bar' R }").
Reserved Notation "{ 'nonneg' '\bar' R }" (at level 0,
format "{ 'nonneg' '\bar' R }").
Declare Scope ereal_dual_scope.
Declare Scope ereal_scope.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Variant extended (R : Type) := EFin of R | EPInf | ENInf.
Arguments EFin {R}.
Lemma EFin_inj T : injective (@EFin T).
Proof. by move=> a b; case. Qed.
Definition dual_extended := extended.
Definition dEFin : forall {R}, R -> dual_extended R := @EFin.
(* Notations in ereal_dual_scope should be kept *before* the
corresponding notation in ereal_scope, otherwise when none of the
scope is open (lte x y) would be displayed as (x < y)%dE, instead
of (x < y)%E, for instance. *)
Notation "+oo" := (@EPInf _ : dual_extended _) : ereal_dual_scope.
Notation "+oo" := (@EPInf _) : ereal_scope.
Notation "-oo" := (@ENInf _ : dual_extended _) : ereal_dual_scope.
Notation "-oo" := (@ENInf _) : ereal_scope.
Notation "r %:dE" := (@EFin _ r%R : dual_extended _) : ereal_dual_scope.
Notation "r %:E" := (@EFin _ r%R : dual_extended _) : ereal_dual_scope.
Notation "r %:E" := (@EFin _ r%R).
Notation "'\bar' R" := (extended R) : type_scope.
Notation "'\bar' '^d' R" := (dual_extended R) : type_scope.
Notation "0" := (@GRing.zero (\bar^d _)) : ereal_dual_scope.
Notation "0" := (@GRing.zero (\bar _)) : ereal_scope.
Notation "1" := (1%R%:E : dual_extended _) : ereal_dual_scope.
Notation "1" := (1%R%:E) : ereal_scope.
Bind Scope ereal_dual_scope with dual_extended.
Bind Scope ereal_scope with extended.
Delimit Scope ereal_dual_scope with dE.
Delimit Scope ereal_scope with E.
Local Open Scope ereal_scope.
Definition er_map T T' (f : T -> T') (x : \bar T) : \bar T' :=
match x with
| r%:E => (f r)%:E
| +oo => +oo
| -oo => -oo
end.
Lemma er_map_idfun T (x : \bar T) : er_map idfun x = x.
Proof. by case: x. Qed.
Definition fine {R : zmodType} x : R := if x is EFin v then v else 0.
Section EqEReal.
Variable (R : eqType).
Definition eq_ereal (x y : \bar R) :=
match x, y with
| x%:E, y%:E => x == y
| +oo, +oo => true
| -oo, -oo => true
| _, _ => false
end.
Lemma ereal_eqP : Equality.axiom eq_ereal.
Proof. by case=> [?||][?||]; apply: (iffP idP) => //= [/eqP|[]] ->. Qed.
HB.instance Definition _ := hasDecEq.Build (\bar R) ereal_eqP.
Lemma eqe (r1 r2 : R) : (r1%:E == r2%:E) = (r1 == r2). Proof. by []. Qed.
End EqEReal.
Section ERealChoice.
Variable (R : choiceType).
Definition code (x : \bar R) :=
match x with
| r%:E => GenTree.Node 0 [:: GenTree.Leaf r]
| +oo => GenTree.Node 1 [::]
| -oo => GenTree.Node 2 [::]
end.
Definition decode (x : GenTree.tree R) : option (\bar R) :=
match x with
| GenTree.Node 0 [:: GenTree.Leaf r] => Some r%:E
| GenTree.Node 1 [::] => Some +oo
| GenTree.Node 2 [::] => Some -oo
| _ => None
end.
Lemma codeK : pcancel code decode. Proof. by case. Qed.
HB.instance Definition _ := Choice.copy (\bar R) (pcan_type codeK).
End ERealChoice.
Section ERealCount.
Variable (R : countType).
HB.instance Definition _ := PCanIsCountable (@codeK R).
End ERealCount.
Section ERealOrder.
Context {R : numDomainType}.
Implicit Types x y : \bar R.
Definition le_ereal x1 x2 :=
match x1, x2 with
| -oo, r%:E | r%:E, +oo => r \is Num.real
| r1%:E, r2%:E => r1 <= r2
| -oo, _ | _, +oo => true
| +oo, _ | _, -oo => false
end.
Definition lt_ereal x1 x2 :=
match x1, x2 with
| -oo, r%:E | r%:E, +oo => r \is Num.real
| r1%:E, r2%:E => r1 < r2
| -oo, -oo | +oo, +oo => false
| +oo, _ | _ , -oo => false
| -oo, _ => true
end.
Lemma lt_def_ereal x y : lt_ereal x y = (y != x) && le_ereal x y.
Proof. by case: x y => [?||][?||] //=; rewrite lt_def eqe. Qed.
Lemma le_refl_ereal : reflexive le_ereal.
Proof. by case => /=. Qed.
Lemma le_anti_ereal : ssrbool.antisymmetric le_ereal.
Proof. by case=> [?||][?||]/=; rewrite ?andbF => // /le_anti ->. Qed.
Lemma le_trans_ereal : ssrbool.transitive le_ereal.
Proof.
case=> [?||][?||][?||] //=; rewrite -?comparabler0; first exact: le_trans.
by move=> /le_comparable cmp /(comparabler_trans cmp).
by move=> cmp /ge_comparable /comparabler_trans; apply.
Qed.
Fact ereal_display : Order.disp_t. Proof. by []. Qed.
HB.instance Definition _ := Order.isPOrder.Build ereal_display (\bar R)
lt_def_ereal le_refl_ereal le_anti_ereal le_trans_ereal.
Lemma leEereal x y : (x <= y)%O = le_ereal x y. Proof. by []. Qed.
Lemma ltEereal x y : (x < y)%O = lt_ereal x y. Proof. by []. Qed.
End ERealOrder.
Notation lee := (@Order.le ereal_display _) (only parsing).
Notation "@ 'lee' R" :=
(@Order.le ereal_display R) (at level 10, R at level 8, only parsing).
Notation lte := (@Order.lt ereal_display _) (only parsing).
Notation "@ 'lte' R" :=
(@Order.lt ereal_display R) (at level 10, R at level 8, only parsing).
Notation gee := (@Order.ge ereal_display _) (only parsing).
Notation "@ 'gee' R" :=
(@Order.ge ereal_display R) (at level 10, R at level 8, only parsing).
Notation gte := (@Order.gt ereal_display _) (only parsing).
Notation "@ 'gte' R" :=
(@Order.gt ereal_display R) (at level 10, R at level 8, only parsing).
Notation "x <= y" := (lee x y) (only printing) : ereal_dual_scope.
Notation "x <= y" := (lee x y) (only printing) : ereal_scope.
Notation "x < y" := (lte x y) (only printing) : ereal_dual_scope.
Notation "x < y" := (lte x y) (only printing) : ereal_scope.
Notation "x <= y <= z" := ((lee x y) && (lee y z)) (only printing) : ereal_dual_scope.
Notation "x <= y <= z" := ((lee x y) && (lee y z)) (only printing) : ereal_scope.
Notation "x < y <= z" := ((lte x y) && (lee y z)) (only printing) : ereal_dual_scope.
Notation "x < y <= z" := ((lte x y) && (lee y z)) (only printing) : ereal_scope.
Notation "x <= y < z" := ((lee x y) && (lte y z)) (only printing) : ereal_dual_scope.
Notation "x <= y < z" := ((lee x y) && (lte y z)) (only printing) : ereal_scope.
Notation "x < y < z" := ((lte x y) && (lte y z)) (only printing) : ereal_dual_scope.
Notation "x < y < z" := ((lte x y) && (lte y z)) (only printing) : ereal_scope.
Notation "x <= y" := (lee (x%dE : dual_extended _) (y%dE : dual_extended _)) : ereal_dual_scope.
Notation "x <= y" := (lee (x : extended _) (y : extended _)) : ereal_scope.
Notation "x < y" := (lte (x%dE : dual_extended _) (y%dE : dual_extended _)) : ereal_dual_scope.
Notation "x < y" := (lte (x : extended _) (y : extended _)) : ereal_scope.
Notation "x >= y" := (y <= x) (only parsing) : ereal_dual_scope.
Notation "x >= y" := (y <= x) (only parsing) : ereal_scope.
Notation "x > y" := (y < x) (only parsing) : ereal_dual_scope.
Notation "x > y" := (y < x) (only parsing) : ereal_scope.
Notation "x <= y <= z" := ((x <= y) && (y <= z)) : ereal_dual_scope.
Notation "x <= y <= z" := ((x <= y) && (y <= z)) : ereal_scope.
Notation "x < y <= z" := ((x < y) && (y <= z)) : ereal_dual_scope.
Notation "x < y <= z" := ((x < y) && (y <= z)) : ereal_scope.
Notation "x <= y < z" := ((x <= y) && (y < z)) : ereal_dual_scope.
Notation "x <= y < z" := ((x <= y) && (y < z)) : ereal_scope.
Notation "x < y < z" := ((x < y) && (y < z)) : ereal_dual_scope.
Notation "x < y < z" := ((x < y) && (y < z)) : ereal_scope.
Notation "x <= y :> T" := ((x : T) <= (y : T)) (only parsing) : ereal_scope.
Notation "x < y :> T" := ((x : T) < (y : T)) (only parsing) : ereal_scope.
Section ERealZsemimodule.
Context {R : nmodType}.
Implicit Types x y z : \bar R.
Definition adde x y :=
match x, y with
| x%:E , y%:E => (x + y)%:E
| -oo, _ => -oo
| _ , -oo => -oo
| +oo, _ => +oo
| _ , +oo => +oo
end.
Arguments adde : simpl never.
Definition dual_adde x y :=
match x, y with
| x%:E , y%:E => (x + y)%R%:E
| +oo, _ => +oo
| _ , +oo => +oo
| -oo, _ => -oo
| _ , -oo => -oo
end.
Arguments dual_adde : simpl never.
Lemma addeA_subproof : associative (S := \bar R) adde.
Proof. by case=> [x||] [y||] [z||] //; rewrite /adde /= addrA. Qed.
Lemma addeC_subproof : commutative (S := \bar R) adde.
Proof. by case=> [x||] [y||] //; rewrite /adde /= addrC. Qed.
Lemma add0e_subproof : left_id (0%:E : \bar R) adde.
Proof. by case=> // r; rewrite /adde /= add0r. Qed.
HB.instance Definition _ := GRing.isNmodule.Build (\bar R)
addeA_subproof addeC_subproof add0e_subproof.
Lemma daddeA_subproof : associative (S := \bar^d R) dual_adde.
Proof. by case=> [x||] [y||] [z||] //; rewrite /dual_adde /= addrA. Qed.
Lemma daddeC_subproof : commutative (S := \bar^d R) dual_adde.
Proof. by case=> [x||] [y||] //; rewrite /dual_adde /= addrC. Qed.
Lemma dadd0e_subproof : left_id (0%:dE%dE : \bar^d R) dual_adde.
Proof. by case=> // r; rewrite /dual_adde /= add0r. Qed.
HB.instance Definition _ := Choice.on (\bar^d R).
HB.instance Definition _ := GRing.isNmodule.Build (\bar^d R)
daddeA_subproof daddeC_subproof dadd0e_subproof.
Definition enatmul x n : \bar R := iterop n +%R x 0.
Definition ednatmul (x : \bar^d R) n : \bar^d R := iterop n +%R x 0.
End ERealZsemimodule.
Arguments adde : simpl never.
Arguments dual_adde : simpl never.
Section ERealOrder_numDomainType.
Context {R : numDomainType}.
Implicit Types (x y : \bar R) (r : R).
Lemma lee_fin (r s : R) : (r%:E <= s%:E) = (r <= s)%R. Proof. by []. Qed.
Lemma lte_fin (r s : R) : (r%:E < s%:E) = (r < s)%R. Proof. by []. Qed.
Lemma lee01 : 0 <= 1 :> \bar R. Proof. by rewrite lee_fin. Qed.
Lemma lte01 : 0 < 1 :> \bar R. Proof. by rewrite lte_fin. Qed.
Lemma leeNy_eq x : (x <= -oo) = (x == -oo). Proof. by case: x. Qed.
Lemma leye_eq x : (+oo <= x) = (x == +oo). Proof. by case: x. Qed.
Lemma lt0y : (0 : \bar R) < +oo. Proof. exact: real0. Qed.
Lemma ltNy0 : -oo < (0 : \bar R). Proof. exact: real0. Qed.
Lemma le0y : (0 : \bar R) <= +oo. Proof. exact: real0. Qed.
Lemma leNy0 : -oo <= (0 : \bar R). Proof. exact: real0. Qed.
Lemma cmp0y : ((0 : \bar R) >=< +oo%E)%O.
Proof. by rewrite /Order.comparable le0y. Qed.
Lemma cmp0Ny : ((0 : \bar R) >=< -oo%E)%O.
Proof. by rewrite /Order.comparable leNy0 orbT. Qed.
Lemma lt0e x : (0 < x) = (x != 0) && (0 <= x).
Proof. by case: x => [r| |]//; rewrite lte_fin lee_fin lt0r. Qed.
Lemma ereal_comparable x y : (0%E >=< x)%O -> (0%E >=< y)%O -> (x >=< y)%O.
Proof.
move: x y => [x||] [y||] //; rewrite /Order.comparable !lee_fin -!realE.
- exact: real_comparable.
- by rewrite /lee/= => ->.
- by rewrite /lee/= => _ ->.
Qed.
Lemma real_ltry r : r%:E < +oo = (r \is Num.real). Proof. by []. Qed.
Lemma real_ltNyr r : -oo < r%:E = (r \is Num.real). Proof. by []. Qed.
Lemma real_leey x : (x <= +oo) = (fine x \is Num.real).
Proof. by case: x => //=; rewrite real0. Qed.
Lemma real_leNye x : (-oo <= x) = (fine x \is Num.real).
Proof. by case: x => //=; rewrite real0. Qed.
Lemma minye : left_id (+oo : \bar R) Order.min.
Proof. by case. Qed.
Lemma real_miney (x : \bar R) : (0 >=< x)%O -> Order.min x +oo = x.
Proof.
by case: x => [x |//|//] rx; rewrite minEle real_leey [_ \in Num.real]rx.
Qed.
Lemma real_minNye (x : \bar R) : (0 >=< x)%O -> Order.min -oo%E x = -oo%E.
Proof.
by case: x => [x |//|//] rx; rewrite minEle real_leNye [_ \in Num.real]rx.
Qed.
Lemma mineNy : right_zero (-oo : \bar R) Order.min.
Proof. by case=> [x |//|//]; rewrite minElt. Qed.
Lemma maxye : left_zero (+oo : \bar R) Order.max.
Proof. by case. Qed.
Lemma real_maxey (x : \bar R) : (0 >=< x)%O -> Order.max x +oo = +oo.
Proof.
by case: x => [x |//|//] rx; rewrite maxEle real_leey [_ \in Num.real]rx.
Qed.
Lemma real_maxNye (x : \bar R) : (0 >=< x)%O -> Order.max -oo%E x = x.
Proof.
by case: x => [x |//|//] rx; rewrite maxEle real_leNye [_ \in Num.real]rx.
Qed.
Lemma maxeNy : right_id (-oo : \bar R) Order.max.
Proof. by case=> [x |//|//]; rewrite maxElt. Qed.
Lemma gee0P x : 0 <= x <-> x = +oo \/ exists2 r, (r >= 0)%R & x = r%:E.
Proof.
split=> [|[->|[r r0 ->//]]]; last by rewrite real_leey/=.
by case: x => [r r0 | _ |//]; [right; exists r|left].
Qed.
Lemma fine0 : fine 0 = 0%R :> R. Proof. by []. Qed.
Lemma fine1 : fine 1 = 1%R :> R. Proof. by []. Qed.
End ERealOrder_numDomainType.
#[global] Hint Resolve lee01 lte01 : core.
Section ERealOrder_realDomainType.
Context {R : realDomainType}.
Implicit Types (x y : \bar R) (r : R).
Lemma ltry r : r%:E < +oo. Proof. exact: num_real. Qed.
Lemma ltey x : (x < +oo) = (x != +oo).
Proof. by case: x => // r; rewrite ltry. Qed.
Lemma ltNyr r : -oo < r%:E. Proof. exact: num_real. Qed.
Lemma ltNye x : (-oo < x) = (x != -oo).
Proof. by case: x => // r; rewrite ltNyr. Qed.
Lemma leey x : x <= +oo. Proof. by case: x => //= r; exact: num_real. Qed.
Lemma leNye x : -oo <= x. Proof. by case: x => //= r; exact: num_real. Qed.
Definition lteey := (ltey, leey).
Definition lteNye := (ltNye, leNye).
Lemma le_er_map (f : R -> R) : {homo f : x y / (x <= y)%R} ->
{homo er_map f : x y / x <= y}.
Proof.
move=> ndf.
by move=> [r| |] [l| |]//=; rewrite ?leey ?leNye// !lee_fin; exact: ndf.
Qed.
Lemma le_total_ereal : total (Order.le : rel (\bar R)).
Proof.
by move=> [?||][?||]//=; rewrite (ltEereal, leEereal)/= ?num_real ?le_total.
Qed.
HB.instance Definition _ := Order.POrder_isTotal.Build ereal_display (\bar R)
le_total_ereal.
HB.instance Definition _ := Order.hasBottom.Build ereal_display (\bar R) leNye.
HB.instance Definition _ := Order.hasTop.Build ereal_display (\bar R) leey.
End ERealOrder_realDomainType.
Section ERealZmodule.
Context {R : zmodType}.
Implicit Types x y z : \bar R.
Definition oppe x :=
match x with
| r%:E => (- r)%:E
| -oo => +oo
| +oo => -oo
end.
End ERealZmodule.
Section ERealArith.
Context {R : numDomainType}.
Implicit Types x y z : \bar R.
Definition mule x y :=
match x, y with
| x%:E , y%:E => (x * y)%:E
| -oo, y | y, -oo => if y == 0 then 0 else if 0 < y then -oo else +oo
| +oo, y | y, +oo => if y == 0 then 0 else if 0 < y then +oo else -oo
end.
Arguments mule : simpl never.
Definition abse x : \bar R := if x is r%:E then `|r|%:E else +oo.
Definition expe x n := iterop n mule x 1.
End ERealArith.
Arguments mule : simpl never.
Notation "+%dE" := (@GRing.add (\bar^d _)).
Notation "+%E" := (@GRing.add (\bar _)).
Notation "-%E" := oppe.
Notation "x + y" := (GRing.add (x%dE : \bar^d _) y%dE) : ereal_dual_scope.
Notation "x + y" := (GRing.add x%E y%E) : ereal_scope.
Notation "x - y" := ((x%dE : \bar^d _) + oppe y%dE) : ereal_dual_scope.
Notation "x - y" := (x%E + (oppe y%E)) : ereal_scope.
Notation "- x" := (oppe x%dE : \bar^d _) : ereal_dual_scope.
Notation "- x" := (oppe x%E) : ereal_scope.
Notation "*%E" := mule.
Notation "x * y" := (mule x%dE y%dE : \bar^d _) : ereal_dual_scope.
Notation "x * y" := (mule x%E y%E) : ereal_scope.
Notation "`| x |" := (abse x%dE : \bar^d _) : ereal_dual_scope.
Notation "`| x |" := (abse x%E) : ereal_scope.
Arguments abse {R}.
Notation "x ^+ n" := (expe x%dE n : \bar^d _) : ereal_dual_scope.
Notation "x ^+ n" := (expe x%E n) : ereal_scope.
Notation "x *+ n" := (ednatmul x%dE n) : ereal_dual_scope.
Notation "x *+ n" := (enatmul x%E n) : ereal_scope.
Notation "\- f" := (fun x => - f x)%dE : ereal_dual_scope.
Notation "\- f" := (fun x => - f x)%E : ereal_scope.
Notation "f \+ g" := (fun x => f x + g x)%dE : ereal_dual_scope.
Notation "f \+ g" := (fun x => f x + g x)%E : ereal_scope.
Notation "f \* g" := (fun x => f x * g x)%dE : ereal_dual_scope.
Notation "f \* g" := (fun x => f x * g x)%E : ereal_scope.
Notation "f \- g" := (fun x => f x - g x)%dE : ereal_dual_scope.
Notation "f \- g" := (fun x => f x - g x)%E : ereal_scope.
Notation "\sum_ ( i <- r | P ) F" :=
(\big[+%dE/0%dE]_(i <- r | P%B) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i <- r | P ) F" :=
(\big[+%E/0%E]_(i <- r | P%B) F%E) : ereal_scope.
Notation "\sum_ ( i <- r ) F" :=
(\big[+%dE/0%dE]_(i <- r) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i <- r ) F" :=
(\big[+%E/0%E]_(i <- r) F%E) : ereal_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
(\big[+%dE/0%dE]_(m <= i < n | P%B) F%dE) : ereal_dual_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
(\big[+%E/0%E]_(m <= i < n | P%B) F%E) : ereal_scope.
Notation "\sum_ ( m <= i < n ) F" :=
(\big[+%dE/0%dE]_(m <= i < n) F%dE) : ereal_dual_scope.
Notation "\sum_ ( m <= i < n ) F" :=
(\big[+%E/0%E]_(m <= i < n) F%E) : ereal_scope.
Notation "\sum_ ( i | P ) F" :=
(\big[+%dE/0%dE]_(i | P%B) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i | P ) F" :=
(\big[+%E/0%E]_(i | P%B) F%E) : ereal_scope.
Notation "\sum_ i F" :=
(\big[+%dE/0%dE]_i F%dE) : ereal_dual_scope.
Notation "\sum_ i F" :=
(\big[+%E/0%E]_i F%E) : ereal_scope.
Notation "\sum_ ( i : t | P ) F" :=
(\big[+%dE/0%dE]_(i : t | P%B) F%dE) (only parsing) : ereal_dual_scope.
Notation "\sum_ ( i : t | P ) F" :=
(\big[+%E/0%E]_(i : t | P%B) F%E) (only parsing) : ereal_scope.
Notation "\sum_ ( i : t ) F" :=
(\big[+%dE/0%dE]_(i : t) F%dE) (only parsing) : ereal_dual_scope.
Notation "\sum_ ( i : t ) F" :=
(\big[+%E/0%E]_(i : t) F%E) (only parsing) : ereal_scope.
Notation "\sum_ ( i < n | P ) F" :=
(\big[+%dE/0%dE]_(i < n | P%B) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i < n | P ) F" :=
(\big[+%E/0%E]_(i < n | P%B) F%E) : ereal_scope.
Notation "\sum_ ( i < n ) F" :=
(\big[+%dE/0%dE]_(i < n) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i < n ) F" :=
(\big[+%E/0%E]_(i < n) F%E) : ereal_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
(\big[+%dE/0%dE]_(i in A | P%B) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
(\big[+%E/0%E]_(i in A | P%B) F%E) : ereal_scope.
Notation "\sum_ ( i 'in' A ) F" :=
(\big[+%dE/0%dE]_(i in A) F%dE) : ereal_dual_scope.
Notation "\sum_ ( i 'in' A ) F" :=
(\big[+%E/0%E]_(i in A) F%E) : ereal_scope.
Notation "\prod_ ( i <- r | P ) F" :=
(\big[*%E/1%:E]_(i <- r | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i <- r ) F" :=
(\big[*%E/1%:E]_(i <- r) F%E) : ereal_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
(\big[*%E/1%:E]_(m <= i < n | P%B) F%E) : ereal_scope.
Notation "\prod_ ( m <= i < n ) F" :=
(\big[*%E/1%:E]_(m <= i < n) F%E) : ereal_scope.
Notation "\prod_ ( i | P ) F" :=
(\big[*%E/1%:E]_(i | P%B) F%E) : ereal_scope.
Notation "\prod_ i F" :=
(\big[*%E/1%:E]_i F%E) : ereal_scope.
Notation "\prod_ ( i : t | P ) F" :=
(\big[*%E/1%:E]_(i : t | P%B) F%E) (only parsing) : ereal_scope.
Notation "\prod_ ( i : t ) F" :=
(\big[*%E/1%:E]_(i : t) F%E) (only parsing) : ereal_scope.
Notation "\prod_ ( i < n | P ) F" :=
(\big[*%E/1%:E]_(i < n | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i < n ) F" :=
(\big[*%E/1%:E]_(i < n) F%E) : ereal_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
(\big[*%E/1%:E]_(i in A | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i 'in' A ) F" :=
(\big[*%E/1%:E]_(i in A) F%E) : ereal_scope.
Section ERealOrderTheory.
Context {R : numDomainType}.
Implicit Types x y z : \bar R.
Local Tactic Notation "elift" constr(lm) ":" ident(x) :=
by case: x => [||?]; first by rewrite ?eqe; apply: lm.
Local Tactic Notation "elift" constr(lm) ":" ident(x) ident(y) :=
by case: x y => [?||] [?||]; first by rewrite ?eqe; apply: lm.
Local Tactic Notation "elift" constr(lm) ":" ident(x) ident(y) ident(z) :=
by case: x y z => [?||] [?||] [?||]; first by rewrite ?eqe; apply: lm.
Lemma lee0N1 : 0 <= (-1)%:E :> \bar R = false.
Proof. by rewrite lee_fin ler0N1. Qed.
Lemma lte0N1 : 0 < (-1)%:E :> \bar R = false.
Proof. by rewrite lte_fin ltr0N1. Qed.
Lemma lteN10 : - 1%E < 0 :> \bar R.
Proof. by rewrite lte_fin ltrN10. Qed.
Lemma leeN10 : - 1%E <= 0 :> \bar R.
Proof. by rewrite lee_fin lerN10. Qed.
Lemma lte0n n : (0 < n%:R%:E :> \bar R) = (0 < n)%N.
Proof. by rewrite lte_fin ltr0n. Qed.
Lemma lee0n n : (0 <= n%:R%:E :> \bar R) = (0 <= n)%N.
Proof. by rewrite lee_fin ler0n. Qed.
Lemma lte1n n : (1 < n%:R%:E :> \bar R) = (1 < n)%N.
Proof. by rewrite lte_fin ltr1n. Qed.
Lemma lee1n n : (1 <= n%:R%:E :> \bar R) = (1 <= n)%N.
Proof. by rewrite lee_fin ler1n. Qed.
Lemma fine_ge0 x : 0 <= x -> (0 <= fine x)%R.
Proof. by case: x. Qed.
Lemma fine_gt0 x : 0 < x < +oo -> (0 < fine x)%R.
Proof. by move: x => [x| |] //=; rewrite ?ltxx ?andbF// lte_fin => /andP[]. Qed.
Lemma fine_lt0 x : -oo < x < 0 -> (fine x < 0)%R.
Proof. by move: x => [x| |] //= /andP[_]; rewrite lte_fin. Qed.
Lemma fine_le0 x : x <= 0 -> (fine x <= 0)%R.
Proof. by case: x. Qed.
Lemma lee_tofin (r0 r1 : R) : (r0 <= r1)%R -> r0%:E <= r1%:E.
Proof. by []. Qed.
Lemma lte_tofin (r0 r1 : R) : (r0 < r1)%R -> r0%:E < r1%:E.
Proof. by []. Qed.
Lemma enatmul_pinfty n : +oo *+ n.+1 = +oo :> \bar R.
Proof. by elim: n => //= n ->. Qed.
Lemma enatmul_ninfty n : -oo *+ n.+1 = -oo :> \bar R.
Proof. by elim: n => //= n ->. Qed.
Lemma EFin_natmul (r : R) n : (r *+ n.+1)%:E = r%:E *+ n.+1.
Proof. by elim: n => //= n <-. Qed.
Lemma mule2n x : x *+ 2 = x + x. Proof. by []. Qed.
Lemma expe2 x : x ^+ 2 = x * x. Proof. by []. Qed.
Lemma leeN2 : {mono @oppe R : x y /~ x <= y}.
Proof.
move=> x y; case: x y => [?||] [?||] //; first by rewrite !lee_fin !lerN2.
by rewrite /Order.le/= realN.
by rewrite /Order.le/= realN.
Qed.
Lemma lteN2 : {mono @oppe R : x y /~ x < y}.
Proof.
move=> x y; case: x y => [?||] [?||] //; first by rewrite !lte_fin !ltrN2.
by rewrite /Order.lt/= realN.
by rewrite /Order.lt/= realN.
Qed.
End ERealOrderTheory.
#[global] Hint Resolve leeN10 lteN10 : core.
Section finNumPred.
Context {R : numDomainType}.
Implicit Type (x : \bar R).
Definition fin_num := [qualify a x : \bar R | (x != -oo) && (x != +oo)].
Fact fin_num_key : pred_key fin_num. Proof. by []. Qed.
(*Canonical fin_num_keyd := KeyedQualifier fin_num_key.*)
Lemma fin_numE x : (x \is a fin_num) = (x != -oo) && (x != +oo).
Proof. by []. Qed.
Lemma fin_numP x : reflect ((x != -oo) /\ (x != +oo)) (x \is a fin_num).
Proof. by apply/(iffP idP) => [/andP//|/andP]. Qed.
Lemma fin_numEn x : (x \isn't a fin_num) = (x == -oo) || (x == +oo).
Proof. by rewrite fin_numE negb_and ?negbK. Qed.
Lemma fin_numPn x : reflect (x = -oo \/ x = +oo) (x \isn't a fin_num).
Proof. by rewrite fin_numEn; apply: (iffP orP) => -[]/eqP; by [left|right]. Qed.
Lemma fin_real x : -oo < x < +oo -> x \is a fin_num.
Proof. by move=> /andP[oox xoo]; rewrite fin_numE gt_eqF ?lt_eqF. Qed.
Lemma fin_num_abs x : (x \is a fin_num) = (`| x | < +oo)%E.
Proof. by rewrite fin_numE; case: x => // r; rewrite real_ltry normr_real. Qed.
End finNumPred.
Section ERealArithTh_numDomainType.
Context {R : numDomainType}.
Implicit Types (x y z : \bar R) (r : R).
Lemma fine_le : {in fin_num &, {homo @fine R : x y / x <= y >-> (x <= y)%R}}.
Proof. by move=> [? [?| |]| |]. Qed.
Lemma fine_lt : {in fin_num &, {homo @fine R : x y / x < y >-> (x < y)%R}}.
Proof. by move=> [? [?| |]| |]. Qed.
Lemma abse_EFin r : `|r%:E|%E = `|r|%:E.
Proof. by []. Qed.
Lemma fine_abse : {in fin_num, {morph @fine R : x / `|x| >-> `|x|%R}}.
Proof. by case. Qed.
Lemma abse_fin_num x : (`|x| \is a fin_num) = (x \is a fin_num).
Proof. by case: x. Qed.
Lemma fine_eq0 x : x \is a fin_num -> (fine x == 0%R) = (x == 0).
Proof. by move: x => [//| |] /=; rewrite fin_numE. Qed.
Lemma EFinN r : (- r)%:E = (- r%:E). Proof. by []. Qed.
Lemma fineN x : fine (- x) = (- fine x)%R.
Proof. by case: x => //=; rewrite oppr0. Qed.
Lemma EFinD r r' : (r + r')%:E = r%:E + r'%:E. Proof. by []. Qed.
Lemma EFin_semi_additive : @semi_additive _ (\bar R) EFin. Proof. by split. Qed.
HB.instance Definition _ := GRing.isSemiAdditive.Build R (\bar R) EFin
EFin_semi_additive.
Lemma EFinB r r' : (r - r')%:E = r%:E - r'%:E. Proof. by []. Qed.
Lemma EFinM r r' : (r * r')%:E = r%:E * r'%:E. Proof. by []. Qed.
Lemma sumEFin I s P (F : I -> R) :
\sum_(i <- s | P i) (F i)%:E = (\sum_(i <- s | P i) F i)%:E.
Proof. by rewrite (big_morph _ EFinD erefl). Qed.
Lemma EFin_min : {morph (@EFin R) : r s / Num.min r s >-> Order.min r s}.
Proof. by move=> x y; rewrite !minElt lte_fin -fun_if. Qed.
Lemma EFin_max : {morph (@EFin R) : r s / Num.max r s >-> Order.max r s}.
Proof. by move=> x y; rewrite !maxElt lte_fin -fun_if. Qed.
Definition adde_def x y :=
~~ ((x == +oo) && (y == -oo)) && ~~ ((x == -oo) && (y == +oo)).
Local Notation "x +? y" := (adde_def x y).
Lemma adde_defC x y : x +? y = y +? x.
Proof. by rewrite /adde_def andbC (andbC (x == -oo)) (andbC (x == +oo)). Qed.
Lemma fin_num_adde_defr x y : x \is a fin_num -> x +? y.
Proof. by move: x y => [x| |] [y | |]. Qed.
Lemma fin_num_adde_defl x y : y \is a fin_num -> x +? y.
Proof. by rewrite adde_defC; exact: fin_num_adde_defr. Qed.
Lemma adde_defN x y : x +? - y = - x +? y.
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma adde_defDr x y z : x +? y -> x +? z -> x +? (y + z).
Proof. by move: x y z => [x||] [y||] [z||]. Qed.
Lemma adde_defEninfty x : (x +? -oo) = (x != +oo).
Proof. by case: x. Qed.
Lemma ge0_adde_def : {in [pred x | x >= 0] &, forall x y, x +? y}.
Proof. by move=> [x| |] [y| |]. Qed.
Lemma addeC : commutative (S := \bar R) +%E. Proof. exact: addrC. Qed.
Lemma adde0 : right_id (0 : \bar R) +%E. Proof. exact: addr0. Qed.
Lemma add0e : left_id (0 : \bar R) +%E. Proof. exact: add0r. Qed.
Lemma addeA : associative (S := \bar R) +%E. Proof. exact: addrA. Qed.
Lemma adde_def_sum I h t (P : pred I) (f : I -> \bar R) :
{in P, forall i : I, f h +? f i} ->
f h +? \sum_(j <- t | P j) f j.
Proof.
move=> fhi; elim/big_rec : _; first by rewrite fin_num_adde_defl.
by move=> i x Pi fhx; rewrite adde_defDr// fhi.
Qed.
Lemma addeAC : @right_commutative (\bar R) _ +%E.
Proof. exact: Monoid.mulmAC. Qed.
Lemma addeCA : @left_commutative (\bar R) _ +%E.
Proof. exact: Monoid.mulmCA. Qed.
Lemma addeACA : @interchange (\bar R) +%E +%E.
Proof. exact: Monoid.mulmACA. Qed.
Lemma adde_gt0 x y : 0 < x -> 0 < y -> 0 < x + y.
Proof.
by move: x y => [x| |] [y| |] //; rewrite !lte_fin; exact: addr_gt0.
Qed.
Lemma padde_eq0 x y : 0 <= x -> 0 <= y -> (x + y == 0) = (x == 0) && (y == 0).
Proof.
move: x y => [x| |] [y| |]//; rewrite !lee_fin; first exact: paddr_eq0.
by move=> x0 _ /=; rewrite andbF.
Qed.
Lemma nadde_eq0 x y : x <= 0 -> y <= 0 -> (x + y == 0) = (x == 0) && (y == 0).
Proof.
move: x y => [x| |] [y| |]//; rewrite !lee_fin; first exact: naddr_eq0.
by move=> x0 _ /=; rewrite andbF.
Qed.
Lemma realDe x y : (0%E >=< x)%O -> (0%E >=< y)%O -> (0%E >=< x + y)%O.
Proof. case: x y => [x||] [y||] //; exact: realD. Qed.
Lemma oppe0 : - 0 = 0 :> \bar R.
Proof. by rewrite /= oppr0. Qed.
Lemma oppeK : involutive (A := \bar R) -%E.
Proof. by case=> [x||] //=; rewrite opprK. Qed.
Lemma oppe_inj : @injective (\bar R) _ -%E.
Proof. exact: inv_inj oppeK. Qed.
Lemma adde_defNN x y : - x +? - y = x +? y.
Proof. by rewrite adde_defN oppeK. Qed.
Lemma oppe_eq0 x : (- x == 0)%E = (x == 0)%E.
Proof. by rewrite -(can_eq oppeK) oppe0. Qed.
Lemma oppeD x y : x +? y -> - (x + y) = - x - y.
Proof. by move: x y => [x| |] [y| |] //= _; rewrite opprD. Qed.
Lemma fin_num_oppeD x y : y \is a fin_num -> - (x + y) = - x - y.
Proof. by move=> finy; rewrite oppeD// fin_num_adde_defl. Qed.
Lemma sube0 x : x - 0 = x.
Proof. by move: x => [x| |] //; rewrite -EFinB subr0. Qed.
Lemma sub0e x : 0 - x = - x.
Proof. by move: x => [x| |] //; rewrite -EFinB sub0r. Qed.
Lemma muleC x y : x * y = y * x.
Proof. by move: x y => [r||] [s||]//=; rewrite -EFinM mulrC. Qed.
Lemma onee_neq0 : 1 != 0 :> \bar R. Proof. exact: oner_neq0. Qed.
Lemma onee_eq0 : 1 == 0 :> \bar R = false. Proof. exact: oner_eq0. Qed.
Lemma mule1 x : x * 1 = x.
Proof.
by move: x=> [r||]/=; rewrite /mule/= ?mulr1 ?(negbTE onee_neq0) ?lte_tofin.
Qed.
Lemma mul1e x : 1 * x = x.
Proof. by rewrite muleC mule1. Qed.
Lemma mule0 x : x * 0 = 0.
Proof. by move: x => [r| |] //=; rewrite /mule/= ?mulr0// eqxx. Qed.
Lemma mul0e x : 0 * x = 0.
Proof. by move: x => [r| |]/=; rewrite /mule/= ?mul0r// eqxx. Qed.
HB.instance Definition _ := Monoid.isMulLaw.Build (\bar R) 0 mule mul0e mule0.
Lemma expeS x n : x ^+ n.+1 = x * x ^+ n.
Proof. by case: n => //=; rewrite mule1. Qed.
Lemma EFin_expe r n : (r ^+ n)%:E = r%:E ^+ n.
Proof. by elim: n => [//|n IHn]; rewrite exprS EFinM IHn expeS. Qed.
Definition mule_def x y :=
~~ (((x == 0) && (`| y | == +oo)) || ((y == 0) && (`| x | == +oo))).
Local Notation "x *? y" := (mule_def x y).
Lemma mule_defC x y : x *? y = y *? x.
Proof. by rewrite [in LHS]/mule_def orbC. Qed.
Lemma mule_def_fin x y : x \is a fin_num -> y \is a fin_num -> x *? y.
Proof.
move: x y => [x| |] [y| |] finx finy//.
by rewrite /mule_def negb_or 2!negb_and/= 2!orbT.
Qed.
Lemma mule_def_neq0_infty x y : x != 0 -> y \isn't a fin_num -> x *? y.
Proof. by move: x y => [x| |] [y| |]// x0 _; rewrite /mule_def (negbTE x0). Qed.
Lemma mule_def_infty_neq0 x y : x \isn't a fin_num -> y!= 0 -> x *? y.
Proof. by move: x y => [x| |] [y| |]// _ y0; rewrite /mule_def (negbTE y0). Qed.
Lemma neq0_mule_def x y : x * y != 0 -> x *? y.
Proof.
move: x y => [x| |] [y| |] //; first by rewrite mule_def_fin.
- by have [->|?] := eqVneq x 0%R; rewrite ?mul0e ?eqxx// mule_def_neq0_infty.
- by have [->|?] := eqVneq x 0%R; rewrite ?mul0e ?eqxx// mule_def_neq0_infty.
- by have [->|?] := eqVneq y 0%R; rewrite ?mule0 ?eqxx// mule_def_infty_neq0.
- by have [->|?] := eqVneq y 0%R; rewrite ?mule0 ?eqxx// mule_def_infty_neq0.
Qed.
Lemma ltpinfty_adde_def : {in [pred x | x < +oo] &, forall x y, x +? y}.
Proof. by move=> [x| |] [y| |]. Qed.
Lemma ltninfty_adde_def : {in [pred x | -oo < x] &, forall x y, x +? y}.
Proof. by move=> [x| |] [y| |]. Qed.
Lemma abse_eq0 x : (`|x| == 0) = (x == 0).
Proof. by move: x => [| |] //= r; rewrite !eqe normr_eq0. Qed.
Lemma abse0 : `|0| = 0 :> \bar R. Proof. by rewrite /abse/= normr0. Qed.
Lemma abse1 : `|1| = 1 :> \bar R. Proof. by rewrite /abse normr1. Qed.
Lemma abseN x : `|- x| = `|x|.
Proof. by case: x => [r||]; rewrite //= normrN. Qed.
Lemma eqe_opp x y : (- x == - y) = (x == y).
Proof.
move: x y => [r| |] [r'| |] //=; apply/idP/idP => [|/eqP[->]//].
by move/eqP => -[] /eqP; rewrite eqr_opp => /eqP ->.
Qed.
Lemma eqe_oppP x y : (- x = - y) <-> (x = y).
Proof. by split=> [/eqP | -> //]; rewrite eqe_opp => /eqP. Qed.
Lemma eqe_oppLR x y : (- x == y) = (x == - y).
Proof. by move: x y => [r0| |] [r1| |] //=; rewrite !eqe eqr_oppLR. Qed.
Lemma eqe_oppLRP x y : (- x = y) <-> (x = - y).
Proof.
split=> /eqP; first by rewrite eqe_oppLR => /eqP.
by rewrite -eqe_oppLR => /eqP.
Qed.
Lemma fin_numN x : (- x \is a fin_num) = (x \is a fin_num).
Proof. by rewrite !fin_num_abs abseN. Qed.
Lemma oppeB x y : x +? - y -> - (x - y) = - x + y.
Proof. by move=> xy; rewrite oppeD// oppeK. Qed.
Lemma fin_num_oppeB x y : y \is a fin_num -> - (x - y) = - x + y.
Proof. by move=> ?; rewrite oppeB// adde_defN fin_num_adde_defl. Qed.
Lemma fin_numD x y :
(x + y \is a fin_num) = (x \is a fin_num) && (y \is a fin_num).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma sum_fin_num (T : Type) (s : seq T) (P : pred T) (f : T -> \bar R) :
\sum_(i <- s | P i) f i \is a fin_num =
all [pred x | x \is a fin_num] [seq f i | i <- s & P i].
Proof.
by rewrite -big_all big_map big_filter; exact: (big_morph _ fin_numD).
Qed.
Lemma sum_fin_numP (T : eqType) (s : seq T) (P : pred T) (f : T -> \bar R) :
reflect (forall i, i \in s -> P i -> f i \is a fin_num)
(\sum_(i <- s | P i) f i \is a fin_num).
Proof.
rewrite sum_fin_num; apply: (iffP allP) => /=.
by move=> + x xs Px; apply; rewrite map_f// mem_filter Px.
by move=> + _ /mapP[x /[!mem_filter]/andP[Px xs] ->]; apply.
Qed.
Lemma fin_numB x y :
(x - y \is a fin_num) = (x \is a fin_num) && (y \is a fin_num).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma fin_numM x y : x \is a fin_num -> y \is a fin_num ->
x * y \is a fin_num.
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma prode_fin_num (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) :
(forall i, P i -> f i \is a fin_num) ->
\prod_(i <- s | P i) f i \is a fin_num.
Proof. by move=> ffin; elim/big_ind : _ => // x y x0 y0; rewrite fin_numM. Qed.
Lemma fin_numX x n : x \is a fin_num -> x ^+ n \is a fin_num.
Proof. by elim: n x => // n ih x finx; rewrite expeS fin_numM// ih. Qed.
Lemma fineD : {in @fin_num R &, {morph fine : x y / x + y >-> (x + y)%R}}.
Proof. by move=> [r| |] [s| |]. Qed.
Lemma fineB : {in @fin_num R &, {morph fine : x y / x - y >-> (x - y)%R}}.
Proof. by move=> [r| |] [s| |]. Qed.
Lemma fineM : {in @fin_num R &, {morph fine : x y / x * y >-> (x * y)%R}}.
Proof. by move=> [x| |] [y| |]. Qed.
Lemma fineK x : x \is a fin_num -> (fine x)%:E = x.
Proof. by case: x. Qed.
Lemma EFin_sum_fine (I : Type) s (P : pred I) (f : I -> \bar R) :
(forall i, P i -> f i \is a fin_num) ->
(\sum_(i <- s | P i) fine (f i))%:E = \sum_(i <- s | P i) f i.
Proof.
by move=> h; rewrite -sumEFin; apply: eq_bigr => i Pi; rewrite fineK// h.
Qed.
Lemma sum_fine (I : Type) s (P : pred I) (F : I -> \bar R) :
(forall i, P i -> F i \is a fin_num) ->
(\sum_(i <- s | P i) fine (F i) = fine (\sum_(i <- s | P i) F i))%R.
Proof. by move=> h; rewrite -EFin_sum_fine. Qed.
Lemma sumeN I s (P : pred I) (f : I -> \bar R) :
{in P &, forall i j, f i +? f j} ->
\sum_(i <- s | P i) - f i = - \sum_(i <- s | P i) f i.
Proof.
elim: s => [|a b ih h]; first by rewrite !big_nil oppe0.
rewrite !big_cons; case: ifPn => Pa; last by rewrite ih.
by rewrite oppeD ?ih// adde_def_sum// => i Pi; rewrite h.
Qed.
Lemma fin_num_sumeN I s (P : pred I) (f : I -> \bar R) :
(forall i, P i -> f i \is a fin_num) ->
\sum_(i <- s | P i) - f i = - \sum_(i <- s | P i) f i.
Proof.
by move=> h; rewrite sumeN// => i j Pi Pj; rewrite fin_num_adde_defl// h.
Qed.
Lemma telescope_sume n m (f : nat -> \bar R) :
(forall i, (n <= i <= m)%N -> f i \is a fin_num) -> (n <= m)%N ->
\sum_(n <= k < m) (f k.+1 - f k) = f m - f n.
Proof.
move=> nmf nm; under eq_big_nat => i /andP[ni im] do
rewrite -[f i.+1]fineK -1?[f i]fineK ?(nmf, ni, im) 1?ltnW//= -EFinD.
by rewrite sumEFin telescope_sumr// EFinB !fineK ?nmf ?nm ?leqnn.
Qed.
Lemma addeK x y : x \is a fin_num -> y + x - x = y.
Proof. by move: x y => [x| |] [y| |] //; rewrite -EFinD -EFinB addrK. Qed.
Lemma subeK x y : y \is a fin_num -> x - y + y = x.
Proof. by move: x y => [x| |] [y| |] //; rewrite -EFinD subrK. Qed.
Lemma subee x : x \is a fin_num -> x - x = 0.
Proof. by move: x => [r _| |] //; rewrite -EFinB subrr. Qed.
Lemma sube_eq x y z : x \is a fin_num -> (y +? z) ->
(x - z == y) = (x == y + z).
Proof.
by move: x y z => [x| |] [y| |] [z| |] // _ _; rewrite !eqe subr_eq.
Qed.
Lemma adde_eq_ninfty x y : (x + y == -oo) = ((x == -oo) || (y == -oo)).
Proof. by move: x y => [?| |] [?| |]. Qed.
Lemma addye x : x != -oo -> +oo + x = +oo. Proof. by case: x. Qed.
Lemma addey x : x != -oo -> x + +oo = +oo. Proof. by case: x. Qed.
Lemma addNye x : -oo + x = -oo. Proof. by []. Qed.
Lemma addeNy x : x + -oo = -oo. Proof. by case: x. Qed.
Lemma adde_Neq_pinfty x y : x != -oo -> y != -oo ->
(x + y != +oo) = (x != +oo) && (y != +oo).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma adde_Neq_ninfty x y : x != +oo -> y != +oo ->
(x + y != -oo) = (x != -oo) && (y != -oo).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma adde_ss_eq0 x y : (0 <= x) && (0 <= y) || (x <= 0) && (y <= 0) ->
x + y == 0 = (x == 0) && (y == 0).
Proof. by move=> /orP[|] /andP[]; [exact: padde_eq0|exact: nadde_eq0]. Qed.
Lemma esum_eqNyP (T : eqType) (s : seq T) (P : pred T) (f : T -> \bar R) :
\sum_(i <- s | P i) f i = -oo <-> exists i, [/\ i \in s, P i & f i = -oo].
Proof.
split=> [|[i [si Pi fi]]].
rewrite big_seq_cond; elim/big_ind: _ => // [[?| |] [?| |]//|].
by move=> i /andP[si Pi] fioo; exists i; rewrite si Pi fioo.
rewrite big_mkcond (bigID (xpred1 i))/= (eq_bigr (fun _ => -oo)); last first.
by move=> j /eqP ->; rewrite Pi.
rewrite big_const_seq/= [X in X + _](_ : _ = -oo)//.
elim: s i Pi fi si => // h t ih i Pi fi.
rewrite inE => /predU1P[<-/=|it]; first by rewrite eqxx.
by rewrite /= iterD ih//=; case: (_ == _).
Qed.
Lemma esum_eqNy (I : finType) (f : I -> \bar R) (P : {pred I}) :
(\sum_(i | P i) f i == -oo) = [exists i in P, f i == -oo].
Proof.
apply/idP/idP => [/eqP/esum_eqNyP|/existsP[i /andP[Pi /eqP fi]]].
by move=> -[i [_ Pi fi]]; apply/existsP; exists i; rewrite fi eqxx andbT.
by apply/eqP/esum_eqNyP; exists i.
Qed.
Lemma esum_eqyP (T : eqType) (s : seq T) (P : pred T) (f : T -> \bar R) :
(forall i, P i -> f i != -oo) ->
\sum_(i <- s | P i) f i = +oo <-> exists i, [/\ i \in s, P i & f i = +oo].
Proof.
move=> finoo; split=> [|[i [si Pi fi]]].
rewrite big_seq_cond; elim/big_ind: _ => // [[?| |] [?| |]//|].
by move=> i /andP[si Pi] fioo; exists i; rewrite si Pi fioo.
elim: s i Pi fi si => // h t ih i Pi fi.
rewrite inE => /predU1P[<-/=|it].
rewrite big_cons Pi fi addye//.
by apply/eqP => /esum_eqNyP[j [jt /finoo/negbTE/eqP]].
by rewrite big_cons; case: ifPn => Ph; rewrite (ih i)// addey// finoo.
Qed.
Lemma esum_eqy (I : finType) (P : {pred I}) (f : I -> \bar R) :
(forall i, P i -> f i != -oo) ->
(\sum_(i | P i) f i == +oo) = [exists i in P, f i == +oo].
Proof.
move=> fio; apply/idP/existsP => [/eqP /=|[/= i /andP[Pi /eqP fi]]].
have {}fio : (forall i, P i -> f i != -oo) by move=> i Pi; exact: fio.
by move=> /(esum_eqyP _ fio)[i [_ Pi fi]]; exists i; rewrite fi eqxx andbT.
by apply/eqP/esum_eqyP => //; exists i.
Qed.
#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `esum_eqNyP`")]
Notation esum_ninftyP := esum_eqNyP (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `esum_eqNy`")]
Notation esum_ninfty := esum_eqNy (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `esum_eqyP`")]
Notation esum_pinftyP := esum_eqyP (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `esum_eqy`")]
Notation esum_pinfty := esum_eqy (only parsing).
Lemma adde_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof. by move: x y => [r0| |] [r1| |] // ? ?; rewrite !lee_fin addr_ge0. Qed.
Lemma adde_le0 x y : x <= 0 -> y <= 0 -> x + y <= 0.
Proof.
move: x y => [r0||] [r1||]// ? ?; rewrite !lee_fin -(addr0 0%R); exact: lerD.
Qed.
Lemma oppe_gt0 x : (0 < - x) = (x < 0).
Proof. move: x => [x||] //; exact: oppr_gt0. Qed.
Lemma oppe_lt0 x : (- x < 0) = (0 < x).
Proof. move: x => [x||] //; exact: oppr_lt0. Qed.
Lemma oppe_ge0 x : (0 <= - x) = (x <= 0).
Proof. move: x => [x||] //; exact: oppr_ge0. Qed.
Lemma oppe_le0 x : (- x <= 0) = (0 <= x).
Proof. move: x => [x||] //; exact: oppr_le0. Qed.
Lemma oppe_cmp0 x : (0 >=< - x)%O = (0 >=< x)%O.
Proof. by rewrite /Order.comparable oppe_ge0 oppe_le0 orbC. Qed.
Lemma sume_ge0 T (f : T -> \bar R) (P : pred T) :
(forall t, P t -> 0 <= f t) -> forall l, 0 <= \sum_(i <- l | P i) f i.
Proof. by move=> f0 l; elim/big_rec : _ => // t x Pt; apply/adde_ge0/f0. Qed.
Lemma sume_le0 T (f : T -> \bar R) (P : pred T) :
(forall t, P t -> f t <= 0) -> forall l, \sum_(i <- l | P i) f i <= 0.
Proof. by move=> f0 l; elim/big_rec : _ => // t x Pt; apply/adde_le0/f0. Qed.
Lemma mulNyy : -oo * +oo = -oo :> \bar R. Proof. by rewrite /mule /= lt0y. Qed.
Lemma mulyNy : +oo * -oo = -oo :> \bar R. Proof. by rewrite muleC mulNyy. Qed.
Lemma mulyy : +oo * +oo = +oo :> \bar R. Proof. by rewrite /mule /= lt0y. Qed.
Lemma mulNyNy : -oo * -oo = +oo :> \bar R. Proof. by []. Qed.
Lemma real_mulry r : r \is Num.real -> r%:E * +oo = (Num.sg r)%:E * +oo.
Proof.
move=> rreal; rewrite /mule/= !eqe sgr_eq0; case: ifP => [//|rn0].
move: rreal => /orP[|]; rewrite le_eqVlt.
by rewrite eq_sym rn0/= => rgt0; rewrite lte_fin rgt0 gtr0_sg// lte01.
by rewrite rn0/= => rlt0; rewrite lt_def lt_geF// andbF ltr0_sg// lte0N1.
Qed.
Lemma real_mulyr r : r \is Num.real -> +oo * r%:E = (Num.sg r)%:E * +oo.
Proof. by move=> rreal; rewrite muleC real_mulry. Qed.
Lemma real_mulrNy r : r \is Num.real -> r%:E * -oo = (Num.sg r)%:E * -oo.
Proof.
move=> rreal; rewrite /mule/= !eqe sgr_eq0; case: ifP => [//|rn0].
move: rreal => /orP[|]; rewrite le_eqVlt.
by rewrite eq_sym rn0/= => rgt0; rewrite lte_fin rgt0 gtr0_sg// lte01.
by rewrite rn0/= => rlt0; rewrite lt_def lt_geF// andbF ltr0_sg// lte0N1.
Qed.
Lemma real_mulNyr r : r \is Num.real -> -oo * r%:E = (Num.sg r)%:E * -oo.
Proof. by move=> rreal; rewrite muleC real_mulrNy. Qed.
Definition real_mulr_infty := (real_mulry, real_mulyr, real_mulrNy, real_mulNyr).
Lemma mulN1e x : - 1%E * x = - x.
Proof.
rewrite -EFinN /mule/=; case: x => [x||];
do ?[by rewrite mulN1r|by rewrite eqe oppr_eq0 oner_eq0 lte_fin ltr0N1].
Qed.
Lemma muleN1 x : x * - 1%E = - x. Proof. by rewrite muleC mulN1e. Qed.
Lemma mule_neq0 x y : x != 0 -> y != 0 -> x * y != 0.
Proof.
move: x y => [x||] [y||] x0 y0 //; rewrite /mule/= ?(lt0y,mulf_neq0)//;
try by (rewrite (negbTE x0); case: ifPn) ||
by (rewrite (negbTE y0); case: ifPn).
Qed.
Lemma mule_eq0 x y : (x * y == 0) = (x == 0) || (y == 0).
Proof.
apply/idP/idP => [|/orP[] /eqP->]; rewrite ?(mule0, mul0e)//.
by apply: contraTT => /norP[]; apply: mule_neq0.
Qed.
Lemma mule_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x * y.
Proof.
move: x y => [x||] [y||]//=; rewrite /mule/= ?(lee_fin, eqe, lte_fin, lt0y)//.
- exact: mulr_ge0.
- rewrite le_eqVlt => /predU1P[<- _|x0 _]; first by rewrite eqxx.
by rewrite gt_eqF // x0 le0y.
- move=> _; rewrite le_eqVlt => /predU1P[<-|y0]; first by rewrite eqxx.
by rewrite gt_eqF // y0 le0y.
Qed.
Lemma prode_ge0 (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) :
(forall i, P i -> 0 <= f i) -> 0 <= \prod_(i <- s | P i) f i.
Proof. by move=> f0; elim/big_ind : _ => // x y x0 y0; rewrite mule_ge0. Qed.
Lemma mule_gt0 x y : 0 < x -> 0 < y -> 0 < x * y.
Proof.
by rewrite !lt_def => /andP[? ?] /andP[? ?]; rewrite mule_neq0 ?mule_ge0.
Qed.
Lemma mule_le0 x y : x <= 0 -> y <= 0 -> 0 <= x * y.
Proof.
move: x y => [x||] [y||]//=; rewrite /mule/= ?(lee_fin, eqe, lte_fin)//.
- exact: mulr_le0.
- by rewrite lt_leAnge => -> _; case: ifP => _ //; rewrite andbF le0y.
- by rewrite lt_leAnge => _ ->; case: ifP => _ //; rewrite andbF le0y.
Qed.
Lemma mule_le0_ge0 x y : x <= 0 -> 0 <= y -> x * y <= 0.
Proof.
move: x y => [x| |] [y| |] //; rewrite /mule/= ?(lee_fin, lte_fin).
- exact: mulr_le0_ge0.
- by move=> x0 _; case: ifP => _ //; rewrite lt_leAnge /= x0 andbF leNy0.
- move=> _; rewrite le_eqVlt => /predU1P[<-|->]; first by rewrite eqxx.
by case: ifP => _ //; rewrite leNy0.
- by rewrite lt0y leNy0.
Qed.
Lemma mule_ge0_le0 x y : 0 <= x -> y <= 0 -> x * y <= 0.
Proof. by move=> x0 y0; rewrite muleC mule_le0_ge0. Qed.
Lemma mule_lt0_lt0 x y : x < 0 -> y < 0 -> 0 < x * y.
Proof.
by rewrite !lt_neqAle => /andP[? ?]/andP[*]; rewrite eq_sym mule_neq0 ?mule_le0.
Qed.
Lemma mule_gt0_lt0 x y : 0 < x -> y < 0 -> x * y < 0.
Proof.
rewrite lt_def !lt_neqAle => /andP[? ?]/andP[? ?].
by rewrite mule_neq0 ?mule_ge0_le0.
Qed.
Lemma mule_lt0_gt0 x y : x < 0 -> 0 < y -> x * y < 0.
Proof. by move=> x0 y0; rewrite muleC mule_gt0_lt0. Qed.
Lemma gteN x : 0 < x -> - x < x.
Proof. by case: x => //= r; rewrite !lte_fin; apply: gtrN. Qed.
Lemma realMe x y : (0%E >=< x)%O -> (0%E >=< y)%O -> (0%E >=< x * y)%O.
Proof.
case: x y => [x||] [y||]// rx ry;
do ?[exact: realM
|by rewrite /mule/= lt0y
|by rewrite real_mulr_infty ?realE -?lee_fin// /Num.sg;
case: ifP; [|case: ifP]; rewrite ?mul0e /Order.comparable ?lexx;
rewrite ?mulN1e ?leNy0 ?mul1e ?le0y
|by rewrite mulNyNy /Order.comparable le0y].
Qed.
Lemma real_fine (x : \bar R) : (0 >=< x)%O = (fine x \in Num.real).
Proof. by case: x => [x //||//]; rewrite /= real0 /Order.comparable le0y. Qed.
Lemma real_muleN (x y : \bar R) : (0 >=< x)%O -> (0 >=< y)%O ->
x * - y = - (x * y).
Proof.
rewrite !real_fine; case: x y => [x||] [y||] /= xr yr; rewrite /mule/=.
- by rewrite mulrN.
- by case: ifP; rewrite ?oppe0//; case: ifP.
- by case: ifP; rewrite ?oppe0//; case: ifP.
- rewrite EFinN oppe_eq0; case: ifP; rewrite ?oppe0// oppe_gt0 !lte_fin.
by case: (real_ltgtP xr yr) => // <-; rewrite eqxx.
- by case: ifP.
- by case: ifP.
- rewrite EFinN oppe_eq0; case: ifP; rewrite ?oppe0// oppe_gt0 !lte_fin.
by case: (real_ltgtP xr yr) => // <-; rewrite eqxx.
- by rewrite lt0y.
- by rewrite lt0y.
Qed.
Lemma real_mulNe (x y : \bar R) : (0 >=< x)%O -> (0 >=< y)%O ->
- x * y = - (x * y).
Proof. by move=> rx ry; rewrite muleC real_muleN 1?muleC. Qed.
Lemma real_muleNN (x y : \bar R) : (0 >=< x)%O -> (0 >=< y)%O ->
- x * - y = x * y.
Proof. by move=> rx ry; rewrite real_muleN ?real_mulNe ?oppeK ?oppe_cmp0. Qed.
Lemma sqreD x y : x + y \is a fin_num ->
(x + y) ^+ 2 = x ^+ 2 + x * y *+ 2 + y ^+ 2.
Proof.
case: x y => [x||] [y||] // _.
by rewrite -EFinM -EFin_natmul -!EFin_expe -!EFinD sqrrD.
Qed.
Lemma abse_ge0 x : 0 <= `|x|.
Proof. by move: x => [x| |] /=; rewrite ?le0y ?lee_fin. Qed.
Lemma gee0_abs x : 0 <= x -> `|x| = x.
Proof.
by move: x => [x| |]//; rewrite lee_fin => x0; apply/eqP; rewrite eqe ger0_norm.
Qed.
Lemma gte0_abs x : 0 < x -> `|x| = x. Proof. by move=> /ltW/gee0_abs. Qed.
Lemma lee0_abs x : x <= 0 -> `|x| = - x.
Proof.
by move: x => [x| |]//; rewrite lee_fin => x0; apply/eqP; rewrite eqe ler0_norm.
Qed.
Lemma lte0_abs x : x < 0 -> `|x| = - x.
Proof. by move=> /ltW/lee0_abs. Qed.
End ERealArithTh_numDomainType.
Notation "x +? y" := (adde_def x%dE y%dE) : ereal_dual_scope.
Notation "x +? y" := (adde_def x y) : ereal_scope.
Notation "x *? y" := (mule_def x%dE y%dE) : ereal_dual_scope.
Notation "x *? y" := (mule_def x y) : ereal_scope.
Notation maxe := (@Order.max ereal_display _).
Notation "@ 'maxe' R" := (@Order.max ereal_display R)
(at level 10, R at level 8, only parsing) : function_scope.
Notation mine := (@Order.min ereal_display _).
Notation "@ 'mine' R" := (@Order.min ereal_display R)
(at level 10, R at level 8, only parsing) : function_scope.
Module DualAddTheoryNumDomain.
Section DualERealArithTh_numDomainType.
Local Open Scope ereal_dual_scope.
Context {R : numDomainType}.
Implicit Types x y z : \bar^d R.
Lemma dual_addeE x y : (x + y)%dE = - ((- x) + (- y))%E.
Proof. by case: x => [x| |]; case: y => [y| |] //=; rewrite opprD !opprK. Qed.
Lemma dual_sumeE I (r : seq I) (P : pred I) (F : I -> \bar^d R) :
(\sum_(i <- r | P i) F i)%dE = - (\sum_(i <- r | P i) (- F i)%E)%E.
Proof.
apply: (big_ind2 (fun x y => x = - y)%E) => [|_ x _ y -> ->|i _].
- by rewrite oppe0.
- by rewrite dual_addeE !oppeK.
- by rewrite oppeK.
Qed.
Lemma dual_addeE_def x y : x +? y -> (x + y)%dE = (x + y)%E.
Proof. by case: x => [x| |]; case: y. Qed.
Lemma dEFinD (r r' : R) : (r + r')%R%:E = r%:E + r'%:E.
Proof. by []. Qed.
Lemma dEFinE (r : R) : dEFin r = r%:E. Proof. by []. Qed.
Lemma dEFin_semi_additive : @semi_additive _ (\bar^d R) dEFin.
Proof. by split. Qed.
#[export]
HB.instance Definition _ := GRing.isSemiAdditive.Build R (\bar^d R) dEFin
dEFin_semi_additive.
Lemma dEFinB (r r' : R) : (r - r')%R%:E = r%:E - r'%:E.
Proof. by []. Qed.
Lemma dsumEFin I r P (F : I -> R) :
\sum_(i <- r | P i) (F i)%:E = (\sum_(i <- r | P i) F i)%R%:E.
Proof. by rewrite dual_sumeE fin_num_sumeN// oppeK sumEFin. Qed.
Lemma daddeC : commutative (S := \bar^d R) +%dE. Proof. exact: addrC. Qed.
Lemma dadde0 : right_id (0 : \bar^d R) +%dE. Proof. exact: addr0. Qed.
Lemma dadd0e : left_id (0 : \bar^d R) +%dE. Proof. exact: add0r. Qed.
Lemma daddeA : associative (S := \bar^d R) +%dE. Proof. exact: addrA. Qed.
Lemma daddeAC : right_commutative (S := \bar^d R) +%dE.
Proof. exact: Monoid.mulmAC. Qed.
Lemma daddeCA : left_commutative (S := \bar^d R) +%dE.
Proof. exact: Monoid.mulmCA. Qed.
Lemma daddeACA : @interchange (\bar^d R) +%dE +%dE.
Proof. exact: Monoid.mulmACA. Qed.
Lemma realDed x y : (0%dE >=< x)%O -> (0%dE >=< y)%O -> (0%dE >=< x + y)%O.
Proof. case: x y => [x||] [y||] //; exact: realD. Qed.
Lemma doppeD x y : x +? y -> - (x + y) = - x - y.
Proof. by move: x y => [x| |] [y| |] //= _; rewrite opprD. Qed.
Lemma fin_num_doppeD x y : y \is a fin_num -> - (x + y) = - x - y.
Proof. by move=> finy; rewrite doppeD// fin_num_adde_defl. Qed.
Lemma dsube0 x : x - 0 = x.
Proof. by move: x => [x| |] //; rewrite -dEFinB subr0. Qed.
Lemma dsub0e x : 0 - x = - x.
Proof. by move: x => [x| |] //; rewrite -dEFinB sub0r. Qed.
Lemma doppeB x y : x +? - y -> - (x - y) = - x + y.
Proof. by move=> xy; rewrite doppeD// oppeK. Qed.
Lemma fin_num_doppeB x y : y \is a fin_num -> - (x - y) = - x + y.
Proof. by move=> ?; rewrite doppeB// fin_num_adde_defl// fin_numN. Qed.
Lemma dfin_numD x y :
(x + y \is a fin_num) = (x \is a fin_num) && (y \is a fin_num).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma dfineD :
{in (@fin_num R) &, {morph fine : x y / x + y >-> (x + y)%R}}.
Proof. by move=> [r| |] [s| |]. Qed.
Lemma dfineB : {in @fin_num R &, {morph fine : x y / x - y >-> (x - y)%R}}.
Proof. by move=> [r| |] [s| |]. Qed.
Lemma daddeK x y : x \is a fin_num -> y + x - x = y.
Proof. by move=> fx; rewrite !dual_addeE oppeK addeK ?oppeK; case: x fx. Qed.
Lemma dsubeK x y : y \is a fin_num -> x - y + y = x.
Proof. by move=> fy; rewrite !dual_addeE oppeK subeK ?oppeK; case: y fy. Qed.
Lemma dsubee x : x \is a fin_num -> x - x = 0.
Proof. by move=> fx; rewrite dual_addeE subee ?oppe0; case: x fx. Qed.
Lemma dsube_eq x y z : x \is a fin_num -> (y +? z) ->
(x - z == y) = (x == y + z).
Proof.
by move: x y z => [x| |] [y| |] [z| |] // _ _; rewrite !eqe subr_eq.
Qed.
Lemma dadde_eq_pinfty x y : (x + y == +oo) = ((x == +oo) || (y == +oo)).
Proof. by move: x y => [?| |] [?| |]. Qed.
Lemma daddye x : +oo + x = +oo. Proof. by []. Qed.
Lemma daddey x : x + +oo = +oo. Proof. by case: x. Qed.
Lemma daddNye x : x != +oo -> -oo + x = -oo. Proof. by case: x. Qed.
Lemma daddeNy x : x != +oo -> x + -oo = -oo. Proof. by case: x. Qed.
Lemma dadde_Neq_pinfty x y : x != -oo -> y != -oo ->
(x + y != +oo) = (x != +oo) && (y != +oo).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma dadde_Neq_ninfty x y : x != +oo -> y != +oo ->
(x + y != -oo) = (x != -oo) && (y != -oo).
Proof. by move: x y => [x| |] [y| |]. Qed.
Lemma ndadde_eq0 x y : x <= 0 -> y <= 0 -> x + y == 0 = (x == 0) && (y == 0).
Proof.
move: x y => [x||] [y||] //.
- by rewrite !lee_fin -dEFinD !eqe; exact: naddr_eq0.
- by rewrite /adde/= (_ : -oo == 0 = false)// andbF.
Qed.
Lemma pdadde_eq0 x y : 0 <= x -> 0 <= y -> x + y == 0 = (x == 0) && (y == 0).
Proof.
move: x y => [x||] [y||] //.
- by rewrite !lee_fin -dEFinD !eqe; exact: paddr_eq0.
- by rewrite /adde/= (_ : +oo == 0 = false)// andbF.
Qed.
Lemma dadde_ss_eq0 x y : (0 <= x) && (0 <= y) || (x <= 0) && (y <= 0) ->
x + y == 0 = (x == 0) && (y == 0).
Proof. move=> /orP[|] /andP[]; [exact: pdadde_eq0|exact: ndadde_eq0]. Qed.
Lemma desum_eqyP (T : eqType) (s : seq T) (P : pred T) (f : T -> \bar^d R) :
\sum_(i <- s | P i) f i = +oo <-> exists i, [/\ i \in s, P i & f i = +oo].
Proof.
rewrite dual_sumeE eqe_oppLRP /= esum_eqNyP.
by split=> -[i + /ltac:(exists i)] => [|] []; [|split]; rewrite // eqe_oppLRP.
Qed.
Lemma desum_eqy (I : finType) (f : I -> \bar R) (P : {pred I}) :
(\sum_(i | P i) f i == +oo) = [exists i in P, f i == +oo].
Proof.
rewrite dual_sumeE eqe_oppLR esum_eqNy.
by under eq_existsb => i do rewrite eqe_oppLR.
Qed.
Lemma desum_eqNyP
(T : eqType) (s : seq T) (P : pred T) (f : T -> \bar^d R) :
(forall i, P i -> f i != +oo) ->
\sum_(i <- s | P i) f i = -oo <-> exists i, [/\ i \in s, P i & f i = -oo].
Proof.
move=> fioo.
rewrite dual_sumeE eqe_oppLRP /= esum_eqyP => [|i Pi]; last first.
by rewrite eqe_oppLR fioo.
by split=> -[i + /ltac:(exists i)] => [|] []; [|split]; rewrite // eqe_oppLRP.
Qed.
Lemma desum_eqNy (I : finType) (f : I -> \bar^d R) (P : {pred I}) :
(forall i, f i != +oo) ->
(\sum_(i | P i) f i == -oo) = [exists i in P, f i == -oo].
Proof.
move=> finoo.
rewrite dual_sumeE eqe_oppLR /= esum_eqy => [|i]; rewrite ?eqe_oppLR //.
by under eq_existsb => i do rewrite eqe_oppLR.
Qed.
Lemma dadde_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof. rewrite dual_addeE oppe_ge0 -!oppe_le0; exact: adde_le0. Qed.
Lemma dadde_le0 x y : x <= 0 -> y <= 0 -> x + y <= 0.
Proof. rewrite dual_addeE oppe_le0 -!oppe_ge0; exact: adde_ge0. Qed.
Lemma dsume_ge0 T (f : T -> \bar^d R) (P : pred T) :
(forall n, P n -> 0 <= f n) -> forall l, 0 <= \sum_(i <- l | P i) f i.
Proof.
move=> u0 l; rewrite dual_sumeE oppe_ge0 sume_le0 // => t Pt.
rewrite oppe_le0; exact: u0.
Qed.
Lemma dsume_le0 T (f : T -> \bar^d R) (P : pred T) :
(forall n, P n -> f n <= 0) -> forall l, \sum_(i <- l | P i) f i <= 0.
Proof.
move=> u0 l; rewrite dual_sumeE oppe_le0 sume_ge0 // => t Pt.
rewrite oppe_ge0; exact: u0.
Qed.
Lemma gte_dN (r : \bar^d R) : (0 < r)%E -> (- r < r)%E.
Proof. by case: r => //= r; rewrite !lte_fin; apply: gtrN. Qed.
Lemma ednatmul_pinfty n : +oo *+ n.+1 = +oo :> \bar^d R.
Proof. by elim: n => //= n ->. Qed.
Lemma ednatmul_ninfty n : -oo *+ n.+1 = -oo :> \bar^d R.
Proof. by elim: n => //= n ->. Qed.
Lemma EFin_dnatmul (r : R) n : (r *+ n.+1)%:E = r%:E *+ n.+1.
Proof. by elim: n => //= n <-. Qed.
Lemma ednatmulE x n : x *+ n = (x *+ n)%E.
Proof.
case: x => [x| |]; case: n => [//|n].
- by rewrite -EFin_natmul -EFin_dnatmul.
- by rewrite enatmul_pinfty ednatmul_pinfty.
- by rewrite enatmul_ninfty ednatmul_ninfty.
Qed.
Lemma dmule2n x : x *+ 2 = x + x. Proof. by []. Qed.
Lemma sqredD x y : x + y \is a fin_num ->
(x + y) ^+ 2 = x ^+ 2 + x * y *+ 2 + y ^+ 2.
Proof.
case: x y => [x||] [y||] // _.
by rewrite -EFinM -EFin_dnatmul -!EFin_expe -!dEFinD sqrrD.
Qed.
End DualERealArithTh_numDomainType.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gte_dN`")]
Notation gte_dopp := gte_dN (only parsing).
End DualAddTheoryNumDomain.
Section ERealArithTh_realDomainType.
Context {R : realDomainType}.
Implicit Types (x y z u a b : \bar R) (r : R).
Lemma fin_numElt x : (x \is a fin_num) = (-oo < x < +oo).
Proof. by rewrite fin_numE -leye_eq -leeNy_eq -2!ltNge. Qed.
Lemma fin_numPlt x : reflect (-oo < x < +oo) (x \is a fin_num).
Proof. by rewrite fin_numElt; exact: idP. Qed.
Lemma ltey_eq x : (x < +oo) = (x \is a fin_num) || (x == -oo).
Proof. by case: x => // x //=; exact: ltry. Qed.
Lemma ltNye_eq x : (-oo < x) = (x \is a fin_num) || (x == +oo).
Proof. by case: x => // x //=; exact: ltNyr. Qed.
Lemma ge0_fin_numE x : 0 <= x -> (x \is a fin_num) = (x < +oo).
Proof. by move: x => [x| |] => // x0; rewrite fin_numElt ltNyr. Qed.
Lemma gt0_fin_numE x : 0 < x -> (x \is a fin_num) = (x < +oo).
Proof. by move/ltW; exact: ge0_fin_numE. Qed.
Lemma le0_fin_numE x : x <= 0 -> (x \is a fin_num) = (-oo < x).
Proof. by move: x => [x| |]//=; rewrite lee_fin => x0; rewrite ltNyr. Qed.
Lemma lt0_fin_numE x : x < 0 -> (x \is a fin_num) = (-oo < x).
Proof. by move/ltW; exact: le0_fin_numE. Qed.
Lemma eqyP x : x = +oo <-> (forall A, (0 < A)%R -> A%:E <= x).
Proof.
split=> [-> // A A0|Ax]; first by rewrite leey.
apply/eqP; rewrite eq_le leey /= leNgt; apply/negP.
case: x Ax => [x Ax _|//|/(_ _ ltr01)//].
suff: ~ x%:E < (Order.max 0 x + 1)%:E.
by apply; rewrite lte_fin ltr_pwDr// le_max lexx orbT.
by apply/negP; rewrite -leNgt; apply/Ax/ltr_pwDr; rewrite // le_max lexx.
Qed.
Lemma seq_psume_eq0 (I : choiceType) (r : seq I)
(P : pred I) (F : I -> \bar R) : (forall i, P i -> 0 <= F i)%E ->
(\sum_(i <- r | P i) F i == 0)%E = all (fun i => P i ==> (F i == 0%E)) r.
Proof.
move=> F0; apply/eqP/allP => PF0; last first.
rewrite big_seq_cond big1// => i /andP[ir Pi].
by have := PF0 _ ir; rewrite Pi implyTb => /eqP.
move=> i ir; apply/implyP => Pi; apply/eqP.
have rPF : {in r, forall i, P i ==> (F i \is a fin_num)}.
move=> j jr; apply/implyP => Pj; rewrite fin_numElt; apply/andP; split.
by rewrite (lt_le_trans _ (F0 _ Pj))// ltNyr.
rewrite ltNge; apply/eqP; rewrite leye_eq; apply/eqP/negP => /eqP Fjoo.
have PFninfty k : P k -> F k != -oo%E.
by move=> Pk; rewrite gt_eqF// (lt_le_trans _ (F0 _ Pk))// ltNyr.
have /esum_eqyP : exists i, [/\ i \in r, P i & F i = +oo%E] by exists j.
by move=> /(_ PFninfty); rewrite PF0.
have ? : (\sum_(i <- r | P i) (fine \o F) i == 0)%R.
apply/eqP/EFin_inj; rewrite big_seq_cond -sumEFin.
rewrite (eq_bigr (fun i0 => F i0)); last first.
move=> j /andP[jr Pj] /=; rewrite fineK//.
by have := rPF _ jr; rewrite Pj implyTb.
by rewrite -big_seq_cond PF0.
have /allP/(_ _ ir) : all (fun i => P i ==> ((fine \o F) i == 0))%R r.
by rewrite -psumr_eq0// => j Pj/=; apply/fine_ge0/F0.
rewrite Pi implyTb => /= => /eqP Fi0.
rewrite -(@fineK _ (F i))//; last by have := rPF _ ir; rewrite Pi implyTb.
by rewrite Fi0.
Qed.
Lemma lte_add_pinfty x y : x < +oo -> y < +oo -> x + y < +oo.
Proof. by move: x y => -[r [r'| |]| |] // ? ?; rewrite -EFinD ltry. Qed.
Lemma lte_sum_pinfty I (s : seq I) (P : pred I) (f : I -> \bar R) :
(forall i, P i -> f i < +oo) -> \sum_(i <- s | P i) f i < +oo.
Proof.
elim/big_ind : _ => [_|x y xoo yoo foo|i ?]; [exact: ltry| |exact].
by apply: lte_add_pinfty; [exact: xoo| exact: yoo].
Qed.
Lemma sube_gt0 x y : (0 < y - x) = (x < y).
Proof.
by move: x y => [r | |] [r'| |] //=; rewrite ?(ltry, ltNyr)// !lte_fin subr_gt0.
Qed.
Lemma sube_le0 x y : (y - x <= 0) = (y <= x).
Proof. by rewrite !leNgt sube_gt0. Qed.
Lemma suber_ge0 y x : y \is a fin_num -> (0 <= x - y) = (y <= x).
Proof.
by move: x y => [x| |] [y| |] //= _; rewrite ?(leey, lee_fin, subr_ge0).
Qed.
Lemma subre_ge0 x y : y \is a fin_num -> (0 <= y - x) = (x <= y).
Proof.
by move: x y => [x| |] [y| |] //=; rewrite ?(leey, leNye, lee_fin) //= subr_ge0.
Qed.
Lemma sube_ge0 x y : (x \is a fin_num) || (y \is a fin_num) ->
(0 <= y - x) = (x <= y).
Proof. by move=> /orP[?|?]; [rewrite suber_ge0|rewrite subre_ge0]. Qed.
Lemma lteNl x y : (- x < y) = (- y < x).
Proof.
by move: x y => [r| |] [r'| |] //=; rewrite ?(ltry, ltNyr)// !lte_fin ltrNl.
Qed.
Lemma lteNr x y : (x < - y) = (y < - x).
Proof.
by move: x y => [r| |] [r'| |] //=; rewrite ?(ltry, ltNyr)// !lte_fin ltrNr.
Qed.
Lemma leeNr x y : (x <= - y) = (y <= - x).
Proof.
by move: x y => [r0| |] [r1| |] //=; rewrite ?(leey, leNye)// !lee_fin lerNr.
Qed.
Lemma leeNl x y : (- x <= y) = (- y <= x).
Proof.
by move: x y => [r0| |] [r1| |] //=; rewrite ?(leey, leNye)// !lee_fin lerNl.
Qed.
Lemma muleN x y : x * - y = - (x * y).
Proof. by rewrite real_muleN ?real_fine ?num_real. Qed.
Lemma mulNe x y : - x * y = - (x * y). Proof. by rewrite muleC muleN muleC. Qed.
Lemma muleNN x y : - x * - y = x * y. Proof. by rewrite mulNe muleN oppeK. Qed.
Lemma mulry r : r%:E * +oo%E = (Num.sg r)%:E * +oo%E.
Proof. by rewrite [LHS]real_mulry// num_real. Qed.
Lemma mulyr r : +oo%E * r%:E = (Num.sg r)%:E * +oo%E.
Proof. by rewrite muleC mulry. Qed.
Lemma mulrNy r : r%:E * -oo%E = (Num.sg r)%:E * -oo%E.
Proof. by rewrite [LHS]real_mulrNy// num_real. Qed.
Lemma mulNyr r : -oo%E * r%:E = (Num.sg r)%:E * -oo%E.
Proof. by rewrite muleC mulrNy. Qed.
Definition mulr_infty := (mulry, mulyr, mulrNy, mulNyr).
Lemma lte_mul_pinfty x y : 0 <= x -> x \is a fin_num -> y < +oo -> x * y < +oo.
Proof.
move: x y => [x| |] [y| |] // x0 xfin _; first by rewrite -EFinM ltry.
rewrite mulr_infty; move: x0; rewrite lee_fin le_eqVlt => /predU1P[<-|x0].
- by rewrite sgr0 mul0e ltry.
- by rewrite gtr0_sg // mul1e.
Qed.
Lemma mule_ge0_gt0 x y : 0 <= x -> 0 <= y -> (0 < x * y) = (0 < x) && (0 < y).
Proof.
move: x y => [x| |] [y| |] //; rewrite ?lee_fin.
- by move=> x0 y0; rewrite !lte_fin; exact: mulr_ge0_gt0.
- rewrite le_eqVlt => /predU1P[<-|x0] _; first by rewrite mul0e ltxx.
by rewrite ltry andbT mulr_infty gtr0_sg// mul1e lte_fin x0 ltry.
- move=> _; rewrite le_eqVlt => /predU1P[<-|x0].
by rewrite mule0 ltxx andbC.
by rewrite ltry/= mulr_infty gtr0_sg// mul1e lte_fin x0 ltry.
- by move=> _ _; rewrite mulyy ltry.
Qed.
Lemma gt0_mulye x : (0 < x -> +oo * x = +oo)%E.
Proof.
move: x => [x|_|//]; last by rewrite mulyy.
by rewrite lte_fin => x0; rewrite muleC mulr_infty gtr0_sg// mul1e.
Qed.
Lemma lt0_mulye x : (x < 0 -> +oo * x = -oo)%E.
Proof.
move: x => [x|//|_]; last by rewrite mulyNy.
by rewrite lte_fin => x0; rewrite muleC mulr_infty ltr0_sg// mulN1e.
Qed.
Lemma gt0_mulNye x : (0 < x -> -oo * x = -oo)%E.
Proof.
move: x => [x|_|//]; last by rewrite mulNyy.
by rewrite lte_fin => x0; rewrite muleC mulr_infty gtr0_sg// mul1e.
Qed.
Lemma lt0_mulNye x : (x < 0 -> -oo * x = +oo)%E.
Proof.
move: x => [x|//|_]; last by rewrite mulNyNy.
by rewrite lte_fin => x0; rewrite muleC mulr_infty ltr0_sg// mulN1e.
Qed.
Lemma gt0_muley x : (0 < x -> x * +oo = +oo)%E.
Proof. by move=> /gt0_mulye; rewrite muleC; apply. Qed.
Lemma lt0_muley x : (x < 0 -> x * +oo = -oo)%E.
Proof. by move=> /lt0_mulye; rewrite muleC; apply. Qed.
Lemma gt0_muleNy x : (0 < x -> x * -oo = -oo)%E.
Proof. by move=> /gt0_mulNye; rewrite muleC; apply. Qed.
Lemma lt0_muleNy x : (x < 0 -> x * -oo = +oo)%E.
Proof. by move=> /lt0_mulNye; rewrite muleC; apply. Qed.
Lemma mule_eq_pinfty x y : (x * y == +oo) =
[|| (x > 0) && (y == +oo), (x < 0) && (y == -oo),
(x == +oo) && (y > 0) | (x == -oo) && (y < 0)].
Proof.
move: x y => [x| |] [y| |]; rewrite ?(lte_fin,andbF,andbT,orbF,eqxx,andbT)//=.
- by rewrite mulr_infty; have [/ltr0_sg|/gtr0_sg|] := ltgtP x 0%R;
move=> ->; rewrite ?(mulN1e,mul1e,sgr0,mul0e).
- by rewrite mulr_infty; have [/ltr0_sg|/gtr0_sg|] := ltgtP x 0%R;
move=> ->; rewrite ?(mulN1e,mul1e,sgr0,mul0e).
- by rewrite mulr_infty; have [/ltr0_sg|/gtr0_sg|] := ltgtP y 0%R;
move=> ->; rewrite ?(mulN1e,mul1e,sgr0,mul0e).
- by rewrite mulyy ltry.
- by rewrite mulyNy.
- by rewrite mulr_infty; have [/ltr0_sg|/gtr0_sg|] := ltgtP y 0%R;
move=> ->; rewrite ?(mulN1e,mul1e,sgr0,mul0e).
- by rewrite mulNyy.
- by rewrite ltNyr.
Qed.
Lemma mule_eq_ninfty x y : (x * y == -oo) =
[|| (x > 0) && (y == -oo), (x < 0) && (y == +oo),
(x == -oo) && (y > 0) | (x == +oo) && (y < 0)].
Proof.
have := mule_eq_pinfty x (- y); rewrite muleN eqe_oppLR => ->.
by rewrite !eqe_oppLR lteNr lteNl oppe0 (orbC _ ((x == -oo) && _)).
Qed.
Lemma lteD a b x y : a < b -> x < y -> a + x < b + y.
Proof.
move: a b x y=> [a| |] [b| |] [x| |] [y| |]; rewrite ?(ltry,ltNyr)//.
by rewrite !lte_fin; exact: ltrD.
Qed.
Lemma leeDl x y : 0 <= y -> x <= x + y.
Proof.
move: x y => -[ x [y| |]//= | [| |]// | [| | ]//];
by [rewrite !lee_fin lerDl | move=> _; exact: leey].
Qed.
Lemma leeDr x y : 0 <= y -> x <= y + x.
Proof. by rewrite addeC; exact: leeDl. Qed.
Lemma geeDl x y : y <= 0 -> x + y <= x.
Proof.
move: x y => -[ x [y| |]//= | [| |]// | [| | ]//];
by [rewrite !lee_fin gerDl | move=> _; exact: leNye].
Qed.
Lemma geeDr x y : y <= 0 -> y + x <= x. Proof. rewrite addeC; exact: geeDl. Qed.
Lemma lteDl y x : y \is a fin_num -> (y < y + x) = (0 < x).
Proof.
by move: x y => [x| |] [y| |] _ //; rewrite ?ltry ?ltNyr // !lte_fin ltrDl.
Qed.
Lemma lteDr y x : y \is a fin_num -> (y < x + y) = (0 < x).
Proof. rewrite addeC; exact: lteDl. Qed.
Lemma gte_subl y x : y \is a fin_num -> (y - x < y) = (0 < x).
Proof.
move: y x => [x| |] [y| |] _ //; rewrite addeC /= ?ltNyr ?ltry//.
by rewrite !lte_fin gtrDr ltrNl oppr0.
Qed.
Lemma gte_subr y x : y \is a fin_num -> (- x + y < y) = (0 < x).
Proof. by rewrite addeC; exact: gte_subl. Qed.
Lemma gteDl x y : x \is a fin_num -> (x + y < x) = (y < 0).
Proof.
by move: x y => [r| |] [s| |]// _; [rewrite !lte_fin gtrDl|rewrite !ltNyr].
Qed.
Lemma gteDr x y : x \is a fin_num -> (y + x < x) = (y < 0).
Proof. by rewrite addeC; exact: gteDl. Qed.
Lemma lteD2lE x a b : x \is a fin_num -> (x + a < x + b) = (a < b).
Proof.
move: a b x => [a| |] [b| |] [x| |] _ //; rewrite ?(ltry, ltNyr)//.
by rewrite !lte_fin ltrD2l.
Qed.
Lemma lteD2rE x a b : x \is a fin_num -> (a + x < b + x) = (a < b).
Proof. by rewrite -!(addeC x); exact: lteD2lE. Qed.
Lemma leeD2l x a b : a <= b -> x + a <= x + b.
Proof.
move: a b x => -[a [b [x /=|//|//] | []// |//] | []// | ].
- by rewrite !lee_fin lerD2l.
- by move=> r _; exact: leey.
- by move=> -[b [| |]// | []// | //] r oob; exact: leNye.
Qed.
Lemma leeD2lE x a b : x \is a fin_num -> (x + a <= x + b) = (a <= b).
Proof.
move: a b x => [a| |] [b| |] [x| |] _ //; rewrite ?(leey, leNye)//.
by rewrite !lee_fin lerD2l.
Qed.
Lemma leeD2rE x a b : x \is a fin_num -> (a + x <= b + x) = (a <= b).
Proof. by rewrite -!(addeC x); exact: leeD2lE. Qed.
Lemma leeD2r x a b : a <= b -> a + x <= b + x.
Proof. rewrite addeC (addeC b); exact: leeD2l. Qed.
Lemma leeD a b x y : a <= b -> x <= y -> a + x <= b + y.
Proof.
move: a b x y => [a| |] [b| |] [x| |] [y| |]; rewrite ?(leey, leNye)//.
by rewrite !lee_fin; exact: lerD.
Qed.
Lemma lte_leD a b x y : b \is a fin_num -> a < x -> b <= y -> a + b < x + y.
Proof.
move: x y a b => [x| |] [y| |] [a| |] [b| |] _ //=; rewrite ?(ltry, ltNyr)//.
by rewrite !lte_fin; exact: ltr_leD.
Qed.
Lemma lee_ltD a b x y : a \is a fin_num -> a <= x -> b < y -> a + b < x + y.
Proof. by move=> afin xa yb; rewrite (addeC a) (addeC x) lte_leD. Qed.
Lemma leeB x y z u : x <= y -> u <= z -> x - z <= y - u.
Proof.
move: x y z u => -[x| |] -[y| |] -[z| |] -[u| |] //=; rewrite ?(leey,leNye)//.
by rewrite !lee_fin; exact: lerB.
Qed.
Lemma lte_leB z u x y : u \is a fin_num ->
x < z -> u <= y -> x - y < z - u.
Proof.
move: z u x y => [z| |] [u| |] [x| |] [y| |] _ //=; rewrite ?(ltry, ltNyr)//.
by rewrite !lte_fin => xltr tley; apply: ltr_leD; rewrite // lerNl opprK.
Qed.
Lemma lte_pmul2r z : z \is a fin_num -> 0 < z -> {mono *%E^~ z : x y / x < y}.
Proof.
move: z => [z| |] _ // z0 [x| |] [y| |] //.
- by rewrite !lte_fin ltr_pM2r.
- by rewrite mulr_infty gtr0_sg// mul1e 2!ltry.
- by rewrite mulr_infty gtr0_sg// mul1e ltNge leNye ltNge leNye.
- by rewrite mulr_infty gtr0_sg// mul1e ltNge leey ltNge leey.
- by rewrite mulr_infty gtr0_sg// mul1e mulr_infty gtr0_sg// mul1e.
- by rewrite mulr_infty gtr0_sg// mul1e 2!ltNyr.
- by rewrite mulr_infty gtr0_sg// mul1e mulr_infty gtr0_sg// mul1e.
Qed.
Lemma lte_pmul2l z : z \is a fin_num -> 0 < z -> {mono *%E z : x y / x < y}.
Proof. by move=> zfin z0 x y; rewrite 2!(muleC z) lte_pmul2r. Qed.
Lemma lte_nmul2l z : z \is a fin_num -> z < 0 -> {mono *%E z : x y /~ x < y}.
Proof.
rewrite -oppe0 lteNr => zfin z0 x y.
by rewrite -(oppeK z) !mulNe lteNl oppeK -2!mulNe lte_pmul2l ?fin_numN.
Qed.
Lemma lte_nmul2r z : z \is a fin_num -> z < 0 -> {mono *%E^~ z : x y /~ x < y}.
Proof. by move=> zfin z0 x y; rewrite -!(muleC z) lte_nmul2l. Qed.
Lemma lte_pmulr x y : y \is a fin_num -> 0 < y -> (y < y * x) = (1 < x).
Proof. by move=> yfin y0; rewrite -[X in X < _ = _]mule1 lte_pmul2l. Qed.
Lemma lte_pmull x y : y \is a fin_num -> 0 < y -> (y < x * y) = (1 < x).
Proof. by move=> yfin y0; rewrite muleC lte_pmulr. Qed.
Lemma lte_nmulr x y : y \is a fin_num -> y < 0 -> (y < y * x) = (x < 1).
Proof. by move=> yfin y0; rewrite -[X in X < _ = _]mule1 lte_nmul2l. Qed.
Lemma lte_nmull x y : y \is a fin_num -> y < 0 -> (y < x * y) = (x < 1).
Proof. by move=> yfin y0; rewrite muleC lte_nmulr. Qed.
Lemma lee_sum I (f g : I -> \bar R) s (P : pred I) :
(forall i, P i -> f i <= g i) ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | P i) g i.
Proof. by move=> Pfg; elim/big_ind2 : _ => // *; exact: leeD. Qed.
Lemma lee_sum_nneg_subset I (s : seq I) (P Q : {pred I}) (f : I -> \bar R) :
{subset Q <= P} -> {in [predD P & Q], forall i, 0 <= f i} ->
\sum_(i <- s | Q i) f i <= \sum_(i <- s | P i) f i.
Proof.
move=> QP PQf; rewrite big_mkcond [leRHS]big_mkcond lee_sum// => i.
by move/implyP: (QP i); move: (PQf i); rewrite !inE -!topredE/=; do !case: ifP.
Qed.
Lemma lee_sum_npos_subset I (s : seq I) (P Q : {pred I}) (f : I -> \bar R) :
{subset Q <= P} -> {in [predD P & Q], forall i, f i <= 0} ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | Q i) f i.
Proof.
move=> QP PQf; rewrite big_mkcond [leRHS]big_mkcond lee_sum// => i.
by move/implyP: (QP i); move: (PQf i); rewrite !inE -!topredE/=; do !case: ifP.
Qed.
Lemma lee_sum_nneg (I : eqType) (s : seq I) (P Q : pred I)
(f : I -> \bar R) : (forall i, P i -> ~~ Q i -> 0 <= f i) ->
\sum_(i <- s | P i && Q i) f i <= \sum_(i <- s | P i) f i.
Proof.
move=> PQf; rewrite [leRHS](bigID Q) /= -[leLHS]adde0 leeD //.
by rewrite sume_ge0// => i /andP[]; exact: PQf.
Qed.
Lemma lee_sum_npos (I : eqType) (s : seq I) (P Q : pred I)
(f : I -> \bar R) : (forall i, P i -> ~~ Q i -> f i <= 0) ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | P i && Q i) f i.
Proof.
move=> PQf; rewrite [leLHS](bigID Q) /= -[leRHS]adde0 leeD //.
by rewrite sume_le0// => i /andP[]; exact: PQf.
Qed.
Lemma lee_sum_nneg_ord (f : nat -> \bar R) (P : pred nat) :
(forall n, P n -> 0 <= f n) ->
{homo (fun n => \sum_(i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 i j le_ij; rewrite (big_ord_widen_cond j) // big_mkcondr /=.
by rewrite lee_sum // => k ?; case: ifP => // _; exact: f0.
Qed.
Lemma lee_sum_npos_ord (f : nat -> \bar R) (P : pred nat) :
(forall n, P n -> f n <= 0) ->
{homo (fun n => \sum_(i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 m n ?; rewrite [leRHS](big_ord_widen_cond n) // big_mkcondr /=.
by rewrite lee_sum // => i ?; case: ifP => // _; exact: f0.
Qed.
Lemma lee_sum_nneg_natr (f : nat -> \bar R) (P : pred nat) m :
(forall n, (m <= n)%N -> P n -> 0 <= f n) ->
{homo (fun n => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 i j le_ij; rewrite -[m]add0n !big_addn !big_mkord.
apply: (@lee_sum_nneg_ord (fun k => f (k + m)%N) (fun k => P (k + m)%N));
by [move=> n /f0; apply; rewrite leq_addl | rewrite leq_sub2r].
Qed.
Lemma lee_sum_npos_natr (f : nat -> \bar R) (P : pred nat) m :
(forall n, (m <= n)%N -> P n -> f n <= 0) ->
{homo (fun n => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 i j le_ij; rewrite -[m]add0n !big_addn !big_mkord.
apply: (@lee_sum_npos_ord (fun k => f (k + m)%N) (fun k => P (k + m)%N));
by [move=> n /f0; apply; rewrite leq_addl | rewrite leq_sub2r].
Qed.
Lemma lee_sum_nneg_natl (f : nat -> \bar R) (P : pred nat) n :
(forall m, (m < n)%N -> P m -> 0 <= f m) ->
{homo (fun m => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 i j le_ij; rewrite !big_geq_mkord/=.
rewrite lee_sum_nneg_subset// => [k | k /and3P[_ /f0->//]].
by rewrite ?inE -!topredE/= => /andP[-> /(leq_trans le_ij)->].
Qed.
Lemma lee_sum_npos_natl (f : nat -> \bar R) (P : pred nat) n :
(forall m, (m < n)%N -> P m -> f m <= 0) ->
{homo (fun m => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 i j le_ij; rewrite !big_geq_mkord/=.
rewrite lee_sum_npos_subset// => [k | k /and3P[_ /f0->//]].
by rewrite ?inE -!topredE/= => /andP[-> /(leq_trans le_ij)->].
Qed.
Lemma lee_sum_nneg_subfset (T : choiceType) (A B : {fset T}%fset) (P : pred T)
(f : T -> \bar R) : {subset A <= B} ->
{in [predD B & A], forall t, P t -> 0 <= f t} ->
\sum_(t <- A | P t) f t <= \sum_(t <- B | P t) f t.
Proof.
move=> AB f0; rewrite [leRHS]big_mkcond (big_fsetID _ (mem A) B) /=.
rewrite -[leLHS]adde0 leeD //.
rewrite -big_mkcond /= {1}(_ : A = [fset x in B | x \in A]%fset) //.
by apply/fsetP=> t; rewrite !inE /= andbC; case: (boolP (_ \in _)) => // /AB.
rewrite big_fset /= big_seq_cond sume_ge0 // => t /andP[tB tA].
by case: ifPn => // Pt; rewrite f0 // !inE tA.
Qed.
Lemma lee_sum_npos_subfset (T : choiceType) (A B : {fset T}%fset) (P : pred T)
(f : T -> \bar R) : {subset A <= B} ->
{in [predD B & A], forall t, P t -> f t <= 0} ->
\sum_(t <- B | P t) f t <= \sum_(t <- A | P t) f t.
Proof.
move=> AB f0; rewrite big_mkcond (big_fsetID _ (mem A) B) /=.
rewrite -[leRHS]adde0 leeD //.
rewrite -big_mkcond /= {3}(_ : A = [fset x in B | x \in A]%fset) //.
by apply/fsetP=> t; rewrite !inE /= andbC; case: (boolP (_ \in _)) => // /AB.
rewrite big_fset /= big_seq_cond sume_le0 // => t /andP[tB tA].
by case: ifPn => // Pt; rewrite f0 // !inE tA.
Qed.
Lemma lteBlDr x y z : y \is a fin_num -> (x - y < z) = (x < z + y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?ltry ?ltNyr //.
by rewrite !lte_fin ltrBlDr.
Qed.
Lemma lteBlDl x y z : y \is a fin_num -> (x - y < z) = (x < y + z).
Proof. by move=> ?; rewrite lteBlDr// addeC. Qed.
Lemma lteBrDr x y z : z \is a fin_num -> (x < y - z) = (x + z < y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?ltNyr ?ltry //.
by rewrite !lte_fin ltrBrDr.
Qed.
Lemma lteBrDl x y z : z \is a fin_num -> (x < y - z) = (z + x < y).
Proof. by move=> ?; rewrite lteBrDr// addeC. Qed.
Lemma lte_subel_addr x y z : x \is a fin_num -> (x - y < z) = (x < z + y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?ltNyr ?ltry //.
by rewrite !lte_fin ltrBlDr.
Qed.
Lemma lte_subel_addl x y z : x \is a fin_num -> (x - y < z) = (x < y + z).
Proof. by move=> ?; rewrite lte_subel_addr// addeC. Qed.
Lemma lte_suber_addr x y z : x \is a fin_num -> (x < y - z) = (x + z < y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?ltNyr ?ltry //.
by rewrite !lte_fin ltrBrDr.
Qed.
Lemma lte_suber_addl x y z : x \is a fin_num -> (x < y - z) = (z + x < y).
Proof. by move=> ?; rewrite lte_suber_addr// addeC. Qed.
Lemma leeBlDr x y z : y \is a fin_num -> (x - y <= z) = (x <= z + y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?leey ?leNye //.
by rewrite !lee_fin lerBlDr.
Qed.
Lemma leeBlDl x y z : y \is a fin_num -> (x - y <= z) = (x <= y + z).
Proof. by move=> ?; rewrite leeBlDr// addeC. Qed.
Lemma leeBrDr x y z : z \is a fin_num -> (x <= y - z) = (x + z <= y).
Proof.
move: y x z => [y| |] [x| |] [z| |] _ //=; rewrite ?leNye ?leey //.
by rewrite !lee_fin lerBrDr.
Qed.
Lemma leeBrDl x y z : z \is a fin_num -> (x <= y - z) = (z + x <= y).
Proof. by move=> ?; rewrite leeBrDr// addeC. Qed.
Lemma lee_subel_addr x y z : z \is a fin_num -> (x - y <= z) = (x <= z + y).
Proof.
move: x y z => [x| |] [y| |] [z| |] _ //=; rewrite ?leey ?leNye //.
by rewrite !lee_fin lerBlDr.
Qed.
Lemma lee_subel_addl x y z : z \is a fin_num -> (x - y <= z) = (x <= y + z).
Proof. by move=> ?; rewrite lee_subel_addr// addeC. Qed.
Lemma lee_suber_addr x y z : y \is a fin_num -> (x <= y - z) = (x + z <= y).
Proof.
move: y x z => [y| |] [x| |] [z| |] _ //=; rewrite ?leNye ?leey //.
by rewrite !lee_fin lerBrDr.
Qed.
Lemma lee_suber_addl x y z : y \is a fin_num -> (x <= y - z) = (z + x <= y).
Proof. by move=> ?; rewrite lee_suber_addr// addeC. Qed.
Lemma subre_lt0 x y : x \is a fin_num -> (x - y < 0) = (x < y).
Proof. by move=> ?; rewrite lte_subel_addr// add0e. Qed.
Lemma suber_lt0 x y : y \is a fin_num -> (x - y < 0) = (x < y).
Proof. by move=> ?; rewrite lteBlDl// adde0. Qed.
Lemma sube_lt0 x y : (x \is a fin_num) || (y \is a fin_num) ->
(x - y < 0) = (x < y).
Proof. by move=> /orP[?|?]; [rewrite subre_lt0|rewrite suber_lt0]. Qed.
Lemma pmule_rge0 x y : 0 < x -> (x * y >= 0) = (y >= 0).
Proof.
move=> x_gt0; apply/idP/idP; last exact/mule_ge0/ltW.
by apply: contra_le; apply: mule_gt0_lt0.
Qed.
Lemma pmule_lge0 x y : 0 < x -> (y * x >= 0) = (y >= 0).
Proof. by rewrite muleC; apply: pmule_rge0. Qed.
Lemma pmule_rlt0 x y : 0 < x -> (x * y < 0) = (y < 0).
Proof. by move=> /pmule_rge0; rewrite !ltNge => ->. Qed.
Lemma pmule_llt0 x y : 0 < x -> (y * x < 0) = (y < 0).
Proof. by rewrite muleC; apply: pmule_rlt0. Qed.
Lemma pmule_rle0 x y : 0 < x -> (x * y <= 0) = (y <= 0).
Proof. by move=> xgt0; rewrite -oppe_ge0 -muleN pmule_rge0 ?oppe_ge0. Qed.
Lemma pmule_lle0 x y : 0 < x -> (y * x <= 0) = (y <= 0).
Proof. by rewrite muleC; apply: pmule_rle0. Qed.
Lemma pmule_rgt0 x y : 0 < x -> (x * y > 0) = (y > 0).
Proof. by move=> xgt0; rewrite -oppe_lt0 -muleN pmule_rlt0 ?oppe_lt0. Qed.
Lemma pmule_lgt0 x y : 0 < x -> (y * x > 0) = (y > 0).
Proof. by rewrite muleC; apply: pmule_rgt0. Qed.
Lemma nmule_rge0 x y : x < 0 -> (x * y >= 0) = (y <= 0).
Proof. by rewrite -oppe_gt0 => /pmule_rle0<-; rewrite mulNe oppe_le0. Qed.
Lemma nmule_lge0 x y : x < 0 -> (y * x >= 0) = (y <= 0).
Proof. by rewrite muleC; apply: nmule_rge0. Qed.
Lemma nmule_rle0 x y : x < 0 -> (x * y <= 0) = (y >= 0).
Proof. by rewrite -oppe_gt0 => /pmule_rge0<-; rewrite mulNe oppe_ge0. Qed.
Lemma nmule_lle0 x y : x < 0 -> (y * x <= 0) = (y >= 0).
Proof. by rewrite muleC; apply: nmule_rle0. Qed.
Lemma nmule_rgt0 x y : x < 0 -> (x * y > 0) = (y < 0).
Proof. by rewrite -oppe_gt0 => /pmule_rlt0<-; rewrite mulNe oppe_lt0. Qed.
Lemma nmule_lgt0 x y : x < 0 -> (y * x > 0) = (y < 0).
Proof. by rewrite muleC; apply: nmule_rgt0. Qed.
Lemma nmule_rlt0 x y : x < 0 -> (x * y < 0) = (y > 0).
Proof. by rewrite -oppe_gt0 => /pmule_rgt0<-; rewrite mulNe oppe_gt0. Qed.
Lemma nmule_llt0 x y : x < 0 -> (y * x < 0) = (y > 0).
Proof. by rewrite muleC; apply: nmule_rlt0. Qed.
Lemma mule_lt0 x y : (x * y < 0) = [&& x != 0, y != 0 & (x < 0) (+) (y < 0)].
Proof.
have [xlt0|xgt0|->] := ltgtP x 0; last by rewrite mul0e.
by rewrite nmule_rlt0//= -leNgt lt_def.
by rewrite pmule_rlt0//= !lt_neqAle andbA andbb.
Qed.
Lemma muleA : associative ( *%E : \bar R -> \bar R -> \bar R ).
Proof.
move=> x y z.
wlog x0 : x y z / 0 < x => [hwlog|].
have [x0| |->] := ltgtP x 0; [ |exact: hwlog|by rewrite !mul0e].
by apply: oppe_inj; rewrite -!mulNe hwlog ?oppe_gt0.
wlog y0 : x y z x0 / 0 < y => [hwlog|].
have [y0| |->] := ltgtP y 0; [ |exact: hwlog|by rewrite !(mul0e, mule0)].
by apply: oppe_inj; rewrite -muleN -2!mulNe -muleN hwlog ?oppe_gt0.
wlog z0 : x y z x0 y0 / 0 < z => [hwlog|].
have [z0| |->] := ltgtP z 0; [ |exact: hwlog|by rewrite !mule0].
by apply: oppe_inj; rewrite -!muleN hwlog ?oppe_gt0.
case: x x0 => [x x0| |//]; last by rewrite !gt0_mulye ?mule_gt0.
case: y y0 => [y y0| |//]; last by rewrite gt0_mulye // muleC !gt0_mulye.
case: z z0 => [z z0| |//]; last by rewrite !gt0_muley ?mule_gt0.
by rewrite /mule/= mulrA.
Qed.
Local Open Scope ereal_scope.
HB.instance Definition _ := Monoid.isComLaw.Build (\bar R) 1%E mule
muleA muleC mul1e.
Lemma muleCA : left_commutative ( *%E : \bar R -> \bar R -> \bar R ).
Proof. exact: Monoid.mulmCA. Qed.
Lemma muleAC : right_commutative ( *%E : \bar R -> \bar R -> \bar R ).
Proof. exact: Monoid.mulmAC. Qed.
Lemma muleACA : interchange (@mule R) (@mule R).
Proof. exact: Monoid.mulmACA. Qed.
Lemma muleDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Proof.
rewrite /mule/=; move: x y z => [x| |] [y| |] [z| |] //= _; try
(by case: ltgtP => // -[] <-; rewrite ?(mul0r,add0r,adde0))
|| (by case: ltgtP => //; rewrite adde0).
by rewrite mulrDr.
Qed.
Lemma muleDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> ? ?; rewrite -!(muleC x) muleDr. Qed.
Lemma muleBr x y z : x \is a fin_num -> y +? - z -> x * (y - z) = x * y - x * z.
Proof. by move=> ? yz; rewrite muleDr ?muleN. Qed.
Lemma muleBl x y z : x \is a fin_num -> y +? - z -> (y - z) * x = y * x - z * x.
Proof. by move=> ? yz; rewrite muleDl// mulNe. Qed.
Lemma ge0_muleDl x y z : 0 <= y -> 0 <= z -> (y + z) * x = y * x + z * x.
Proof.
rewrite /mule/=; move: x y z => [r| |] [s| |] [t| |] //= s0 t0.
- by rewrite mulrDl.
- by case: ltgtP => // -[] <-; rewrite mulr0 adde0.
- by case: ltgtP => // -[] <-; rewrite mulr0 adde0.
- by case: ltgtP => //; rewrite adde0.
- rewrite !eqe paddr_eq0 //; move: s0; rewrite lee_fin.
case: (ltgtP s) => //= [s0|->{s}] _; rewrite ?add0e.
+ rewrite lte_fin -[in LHS](addr0 0%R) ltr_leD // lte_fin s0.
by case: ltgtP t0 => // [t0|[<-{t}]] _; [rewrite gt_eqF|rewrite eqxx].
+ by move: t0; rewrite lee_fin; case: (ltgtP t).
- by rewrite ltry; case: ltgtP s0.
- by rewrite ltry; case: ltgtP t0.
- by rewrite ltry.
- rewrite !eqe paddr_eq0 //; move: s0; rewrite lee_fin.
case: (ltgtP s) => //= [s0|->{s}] _; rewrite ?add0e.
+ rewrite lte_fin -[in LHS](addr0 0%R) ltr_leD // lte_fin s0.
by case: ltgtP t0 => // [t0|[<-{t}]].
+ by move: t0; rewrite lee_fin; case: (ltgtP t).
- by rewrite ltry; case: ltgtP s0.
- by rewrite ltry; case: ltgtP s0.
- by rewrite ltry; case: ltgtP s0.
Qed.
Lemma ge0_muleDr x y z : 0 <= y -> 0 <= z -> x * (y + z) = x * y + x * z.
Proof. by move=> y0 z0; rewrite !(muleC x) ge0_muleDl. Qed.
Lemma le0_muleDl x y z : y <= 0 -> z <= 0 -> (y + z) * x = y * x + z * x.
Proof.
rewrite /mule/=; move: x y z => [r| |] [s| |] [t| |] //= s0 t0.
- by rewrite mulrDl.
- by case: ltgtP => // -[] <-; rewrite mulr0 adde0.
- by case: ltgtP => // -[] <-; rewrite mulr0 adde0.
- by case: ltgtP => //; rewrite adde0.
- rewrite !eqe naddr_eq0 //; move: s0; rewrite lee_fin.
case: (ltgtP s) => //= [s0|->{s}] _; rewrite ?add0e.
+ rewrite !lte_fin -[in LHS](addr0 0%R) ltNge lerD // ?ltW //=.
by rewrite !ltNge ltW //.
+ by case: (ltgtP t).
- by rewrite ltry; case: ltgtP s0.
- by rewrite ltry; case: ltgtP t0.
- by rewrite ltry.
- rewrite !eqe naddr_eq0 //; move: s0; rewrite lee_fin.
case: (ltgtP s) => //= [s0|->{s}] _; rewrite ?add0e.
+ rewrite !lte_fin -[in LHS](addr0 0%R) ltNge lerD // ?ltW //=.
by rewrite !ltNge ltW // -lee_fin t0; case: eqP.
+ by case: (ltgtP t).
- by rewrite ltNge s0 /=; case: eqP.
- by rewrite ltNge t0 /=; case: eqP.
Qed.
Lemma le0_muleDr x y z : y <= 0 -> z <= 0 -> x * (y + z) = x * y + x * z.
Proof. by move=> y0 z0; rewrite !(muleC x) le0_muleDl. Qed.
Lemma gee_pMl y x : y \is a fin_num -> 0 <= x -> y <= 1 -> y * x <= x.
Proof.
move=> yfin; rewrite le_eqVlt => /predU1P[<-|]; first by rewrite mule0.
move: x y yfin => [x| |] [y| |] //= _.
- by rewrite lte_fin => x0 y1; rewrite lee_fin ger_pMl.
- by move=> _; rewrite /mule/= eqe => r1; rewrite leey.
Qed.
Lemma lee_wpmul2r x : 0 <= x -> {homo *%E^~ x : y z / y <= z}.
Proof.
move: x => [x|_|//].
rewrite lee_fin le_eqVlt => /predU1P[<- y z|x0]; first by rewrite 2!mule0.
move=> [y| |] [z| |]//; first by rewrite !lee_fin// ler_pM2r.
- by move=> _; rewrite mulr_infty gtr0_sg// mul1e leey.
- by move=> _; rewrite mulr_infty gtr0_sg// mul1e leNye.
- by move=> _; rewrite 2!mulr_infty gtr0_sg// 2!mul1e.
move=> [y| |] [z| |]//.
- rewrite lee_fin => yz.
have [z0|z0|] := ltgtP 0%R z.
+ by rewrite [leRHS]mulr_infty gtr0_sg// mul1e leey.
+ by rewrite mulr_infty ltr0_sg// ?(le_lt_trans yz)// [leRHS]mulr_infty ltr0_sg.
+ move=> z0; move: yz; rewrite -z0 mul0e le_eqVlt => /predU1P[->|y0].
by rewrite mul0e.
by rewrite mulr_infty ltr0_sg// mulN1e leNye.
+ by move=> _; rewrite mulyy leey.
+ by move=> _; rewrite mulNyy leNye.
+ by move=> _; rewrite mulNyy leNye.
Qed.
Lemma lee_wpmul2l x : 0 <= x -> {homo *%E x : y z / y <= z}.
Proof. by move=> x0 y z yz; rewrite !(muleC x) lee_wpmul2r. Qed.
Lemma ge0_sume_distrl (I : Type) (s : seq I) x (P : pred I) (F : I -> \bar R) :
(forall i, P i -> 0 <= F i) ->
(\sum_(i <- s | P i) F i) * x = \sum_(i <- s | P i) (F i * x).
Proof.
elim: s x P F => [x P F F0|h t ih x P F F0]; first by rewrite 2!big_nil mul0e.
rewrite big_cons; case: ifPn => Ph; last by rewrite big_cons (negbTE Ph) ih.
by rewrite ge0_muleDl ?sume_ge0// ?F0// ih// big_cons Ph.
Qed.
Lemma ge0_sume_distrr (I : Type) (s : seq I) x (P : pred I) (F : I -> \bar R) :
(forall i, P i -> 0 <= F i) ->
x * (\sum_(i <- s | P i) F i) = \sum_(i <- s | P i) (x * F i).
Proof.
by move=> F0; rewrite muleC ge0_sume_distrl//; under eq_bigr do rewrite muleC.
Qed.
Lemma le0_sume_distrl (I : Type) (s : seq I) x (P : pred I) (F : I -> \bar R) :
(forall i, P i -> F i <= 0) ->
(\sum_(i <- s | P i) F i) * x = \sum_(i <- s | P i) (F i * x).
Proof.
elim: s x P F => [x P F F0|h t ih x P F F0]; first by rewrite 2!big_nil mul0e.
rewrite big_cons; case: ifPn => Ph; last by rewrite big_cons (negbTE Ph) ih.
by rewrite le0_muleDl ?sume_le0// ?F0// ih// big_cons Ph.
Qed.
Lemma le0_sume_distrr (I : Type) (s : seq I) x (P : pred I) (F : I -> \bar R) :
(forall i, P i -> F i <= 0) ->
x * (\sum_(i <- s | P i) F i) = \sum_(i <- s | P i) (x * F i).
Proof.
by move=> F0; rewrite muleC le0_sume_distrl//; under eq_bigr do rewrite muleC.
Qed.
Lemma fin_num_sume_distrr (I : Type) (s : seq I) x (P : pred I)
(F : I -> \bar R) :
x \is a fin_num -> {in P &, forall i j, F i +? F j} ->
x * (\sum_(i <- s | P i) F i) = \sum_(i <- s | P i) x * F i.
Proof.
move=> xfin PF; elim: s => [|h t ih]; first by rewrite !big_nil mule0.
rewrite !big_cons; case: ifPn => Ph //.
by rewrite muleDr// ?ih// adde_def_sum// => i Pi; rewrite PF.
Qed.
Lemma eq_infty x : (forall r, r%:E <= x) -> x = +oo.
Proof.
case: x => [x /(_ (x + 1)%R)|//|/(_ 0%R)//].
by rewrite EFinD addeC -leeBrDr// subee// lee_fin ler10.
Qed.
Lemma eq_ninfty x : (forall r, x <= r%:E) -> x = -oo.
Proof.
move=> *; apply: (can_inj oppeK); apply: eq_infty => r.
by rewrite leeNr -EFinN.
Qed.
Lemma lee_abs x : x <= `|x|.
Proof. by move: x => [x| |]//=; rewrite lee_fin ler_norm. Qed.
Lemma abse_id x : `| `|x| | = `|x|.
Proof. by move: x => [x| |] //=; rewrite normr_id. Qed.
Lemma lte_absl (x y : \bar R) : (`|x| < y)%E = (- y < x < y)%E.
Proof.
by move: x y => [x| |] [y| |] //=; rewrite ?lte_fin ?ltry ?ltNyr// ltr_norml.
Qed.
Lemma eqe_absl x y : (`|x| == y) = ((x == y) || (x == - y)) && (0 <= y).
Proof.
by move: x y => [x| |] [y| |] //=; rewrite? leey// !eqe eqr_norml lee_fin.
Qed.
Lemma lee_abs_add x y : `|x + y| <= `|x| + `|y|.
Proof.
by move: x y => [x| |] [y| |] //; rewrite /abse -EFinD lee_fin ler_normD.
Qed.
Lemma lee_abs_sum (I : Type) (s : seq I) (F : I -> \bar R) (P : pred I) :
`|\sum_(i <- s | P i) F i| <= \sum_(i <- s | P i) `|F i|.
Proof.
elim/big_ind2 : _ => //; first by rewrite abse0.
by move=> *; exact/(le_trans (lee_abs_add _ _) (leeD _ _)).
Qed.
Lemma lee_abs_sub x y : `|x - y| <= `|x| + `|y|.
Proof.
by move: x y => [x| |] [y| |] //; rewrite /abse -EFinD lee_fin ler_normB.
Qed.
Lemma abseM : {morph @abse R : x y / x * y}.
Proof.
have xoo r : `|r%:E * +oo| = `|r|%:E * +oo.
have [r0|r0] := leP 0%R r.
by rewrite (ger0_norm r0)// gee0_abs// mule_ge0// leey.
rewrite (ltr0_norm r0)// lte0_abs// ?EFinN ?mulNe//.
by rewrite mule_lt0 /= eqe lt_eqF//= lte_fin r0.
move=> [x| |] [y| |] //=; first by rewrite normrM.
- by rewrite -abseN -muleNN abseN -EFinN xoo normrN.
- by rewrite muleC xoo muleC.
- by rewrite mulyy.
- by rewrite mulyy mulyNy.
- by rewrite -abseN -muleNN abseN -EFinN xoo normrN.
- by rewrite mulyy mulNyy.
- by rewrite mulyy.
Qed.
Lemma fine_max :
{in fin_num &, {mono @fine R : x y / maxe x y >-> (Num.max x y)%:E}}.
Proof.
by move=> [x| |] [y| |]//= _ _; apply/esym; have [ab|ba] := leP x y;
[apply/max_idPr; rewrite lee_fin|apply/max_idPl; rewrite lee_fin ltW].
Qed.
Lemma fine_min :
{in fin_num &, {mono @fine R : x y / mine x y >-> (Num.min x y)%:E}}.
Proof.
by move=> [x| |] [y| |]//= _ _; apply/esym; have [ab|ba] := leP x y;
[apply/min_idPl; rewrite lee_fin|apply/min_idPr; rewrite lee_fin ltW].
Qed.
Lemma adde_maxl : left_distributive (@GRing.add (\bar R)) maxe.
Proof.
move=> x y z; have [xy|yx] := leP x y.
by apply/esym/max_idPr; rewrite leeD2r.
by apply/esym/max_idPl; rewrite leeD2r// ltW.
Qed.
Lemma adde_maxr : right_distributive (@GRing.add (\bar R)) maxe.
Proof.
move=> x y z; have [yz|zy] := leP y z.
by apply/esym/max_idPr; rewrite leeD2l.
by apply/esym/max_idPl; rewrite leeD2l// ltW.
Qed.
Lemma maxey : right_zero (+oo : \bar R) maxe.
Proof. by move=> x; rewrite maxC maxye. Qed.
Lemma maxNye : left_id (-oo : \bar R) maxe.
Proof. by move=> x; have [//|] := leP -oo x; rewrite ltNge leNye. Qed.
HB.instance Definition _ :=
Monoid.isLaw.Build (\bar R) -oo maxe maxA maxNye maxeNy.
Lemma minNye : left_zero (-oo : \bar R) mine.
Proof. by move=> x; have [|//] := leP x -oo; rewrite leeNy_eq => /eqP. Qed.
Lemma miney : right_id (+oo : \bar R) mine.
Proof. by move=> x; rewrite minC minye. Qed.
Lemma oppe_max : {morph -%E : x y / maxe x y >-> mine x y : \bar R}.
Proof.
move=> [x| |] [y| |] //=.
- by rewrite -fine_max//= -fine_min//= oppr_max.
- by rewrite maxey mineNy.
- by rewrite miney.
- by rewrite minNye.
- by rewrite maxNye minye.
Qed.
Lemma oppe_min : {morph -%E : x y / mine x y >-> maxe x y : \bar R}.
Proof. by move=> x y; rewrite -[RHS]oppeK oppe_max !oppeK. Qed.
Lemma maxe_pMr z x y : z \is a fin_num -> 0 <= z ->
z * maxe x y = maxe (z * x) (z * y).
Proof.
move=> /[swap]; rewrite le_eqVlt => /predU1P[<- _|z0].
by rewrite !mul0e maxxx.
have [xy|yx|->] := ltgtP x y; last by rewrite maxxx.
- by move=> zfin; rewrite /maxe lte_pmul2l // xy.
- by move=> zfin; rewrite maxC /maxe lte_pmul2l// yx.
Qed.
Lemma maxe_pMl z x y : z \is a fin_num -> 0 <= z ->
maxe x y * z = maxe (x * z) (y * z).
Proof. by move=> zfin z0; rewrite muleC maxe_pMr// !(muleC z). Qed.
Lemma mine_pMr z x y : z \is a fin_num -> 0 <= z ->
z * mine x y = mine (z * x) (z * y).
Proof.
move=> fz zge0.
by rewrite -eqe_oppP -muleN [in LHS]oppe_min maxe_pMr// !muleN -oppe_min.
Qed.
Lemma mine_pMl z x y : z \is a fin_num -> 0 <= z ->
mine x y * z = mine (x * z) (y * z).
Proof. by move=> zfin z0; rewrite muleC mine_pMr// !(muleC z). Qed.
Lemma bigmaxe_fin_num (s : seq R) r : r \in s ->
\big[maxe/-oo%E]_(i <- s) i%:E \is a fin_num.
Proof.
move=> rs; have {rs} : s != [::].
by rewrite -size_eq0 -lt0n -has_predT; apply/hasP; exists r.
elim: s => [//|a l]; have [-> _ _|_ /(_ isT) ih _] := eqVneq l [::].
by rewrite big_seq1.
by rewrite big_cons {1}/maxe; case: (_ < _)%E.
Qed.
Lemma lee_pemull x y : 0 <= y -> 1 <= x -> y <= x * y.
Proof.
move: x y => [x| |] [y| |] //; last by rewrite mulyy.
- by rewrite -EFinM 3!lee_fin; exact: ler_peMl.
- move=> _; rewrite lee_fin => x1.
by rewrite mulr_infty gtr0_sg ?mul1e// (lt_le_trans _ x1).
- rewrite lee_fin le_eqVlt => /predU1P[<- _|y0 _]; first by rewrite mule0.
by rewrite mulr_infty gtr0_sg// mul1e leey.
Qed.
Lemma lee_nemull x y : y <= 0 -> 1 <= x -> x * y <= y.
Proof.
move: x y => [x| |] [y| |] //; last by rewrite mulyNy.
- by rewrite -EFinM 3!lee_fin; exact: ler_neMl.
- move=> _; rewrite lee_fin => x1.
by rewrite mulr_infty gtr0_sg ?mul1e// (lt_le_trans _ x1).
- rewrite lee_fin le_eqVlt => /predU1P[-> _|y0 _]; first by rewrite mule0.
by rewrite mulr_infty ltr0_sg// mulN1e leNye.
Qed.
Lemma lee_pemulr x y : 0 <= y -> 1 <= x -> y <= y * x.
Proof. by move=> y0 x1; rewrite muleC lee_pemull. Qed.
Lemma lee_nemulr x y : y <= 0 -> 1 <= x -> y * x <= y.
Proof. by move=> y0 x1; rewrite muleC lee_nemull. Qed.
Lemma mule_natl x n : n%:R%:E * x = x *+ n.
Proof.
elim: n => [|n]; first by rewrite mul0e.
move: x => [x| |] ih.
- by rewrite -EFinM mulr_natl EFin_natmul.
- by rewrite mulry gtr0_sg// mul1e enatmul_pinfty.
- by rewrite mulrNy gtr0_sg// mul1e enatmul_ninfty.
Qed.
Lemma lte_pmul x1 y1 x2 y2 :
0 <= x1 -> 0 <= x2 -> x1 < y1 -> x2 < y2 -> x1 * x2 < y1 * y2.
Proof.
move: x1 y1 x2 y2 => [x1| |] [y1| |] [x2| |] [y2| |] //;
rewrite !(lte_fin,lee_fin).
- by move=> *; rewrite ltr_pM.
- move=> x10 x20 xy1 xy2.
by rewrite mulry gtr0_sg ?mul1e -?EFinM ?ltry// (le_lt_trans _ xy1).
- move=> x10 x20 xy1 xy2.
by rewrite mulyr gtr0_sg ?mul1e -?EFinM ?ltry// (le_lt_trans _ xy2).
- by move=> *; rewrite mulyy -EFinM ltry.
Qed.
Lemma lee_pmul x1 y1 x2 y2 : 0 <= x1 -> 0 <= x2 -> x1 <= y1 -> x2 <= y2 ->
x1 * x2 <= y1 * y2.
Proof.
move: x1 y1 x2 y2 => [x1| |] [y1| |] [x2| |] [y2| |] //; rewrite !lee_fin.
- exact: ler_pM.
- rewrite le_eqVlt => /predU1P[<- x20 y10 _|x10 x20 xy1 _].
by rewrite mul0e mule_ge0// leey.
by rewrite mulr_infty gtr0_sg// ?mul1e ?leey// (lt_le_trans x10).
- rewrite le_eqVlt => /predU1P[<- _ y10 _|x10 _ xy1 _].
by rewrite mul0e mule_ge0// leey.
rewrite mulr_infty gtr0_sg// mul1e mulr_infty gtr0_sg// ?mul1e//.
exact: (lt_le_trans x10).
- move=> x10; rewrite le_eqVlt => /predU1P[<- _ y20|x20 _ xy2].
by rewrite mule0 mulr_infty mule_ge0// ?leey// lee_fin sgr_ge0.
by rewrite mulr_infty gtr0_sg ?mul1e ?leey// (lt_le_trans x20).
- by move=> x10 x20 _ _; rewrite mulyy leey.
- rewrite le_eqVlt => /predU1P[<- _ _ _|x10 _ _ _].
by rewrite mulyy mul0e leey.
by rewrite mulyy mulr_infty gtr0_sg// mul1e.
- move=> _; rewrite le_eqVlt => /predU1P[<- _ y20|x20 _ xy2].
by rewrite mule0 mulr_infty mule_ge0// ?leey// lee_fin sgr_ge0.
rewrite mulr_infty gtr0_sg// mul1e mulr_infty gtr0_sg ?mul1e//.
exact: (lt_le_trans x20).
- move=> _; rewrite le_eqVlt => /predU1P[<- _ _|x20 _ _].
by rewrite mule0 mulyy leey.
by rewrite mulr_infty gtr0_sg// mul1e// mulyy.
Qed.
Lemma lee_pmul2l x : x \is a fin_num -> 0 < x -> {mono *%E x : x y / x <= y}.
Proof.
move: x => [x _|//|//] /[!(@lte_fin R)] x0 [y| |] [z| |].
- by rewrite -2!EFinM 2!lee_fin ler_pM2l.
- by rewrite mulry gtr0_sg// mul1e 2!leey.
- by rewrite mulrNy gtr0_sg// mul1e 2!leeNy_eq.
- by rewrite mulry gtr0_sg// mul1e 2!leye_eq.
- by rewrite mulry gtr0_sg// mul1e.
- by rewrite mulry mulrNy gtr0_sg// mul1e mul1e.
- by rewrite mulrNy gtr0_sg// mul1e 2!leNye.
- by rewrite mulrNy mulry gtr0_sg// 2!mul1e.
- by rewrite mulrNy gtr0_sg// mul1e.
Qed.
Lemma lee_pmul2r x : x \is a fin_num -> 0 < x -> {mono *%E^~ x : x y / x <= y}.
Proof. by move=> xfin x0 y z; rewrite -2!(muleC x) lee_pmul2l. Qed.
Lemma lee_sqr x y : 0 <= x -> 0 <= y -> (x ^+ 2 <= y ^+ 2) = (x <= y).
Proof.
move=> xge0 yge0; apply/idP/idP; rewrite !expe2.
by apply: contra_le => yltx; apply: lte_pmul.
by move=> xley; apply: lee_pmul.
Qed.
Lemma lte_sqr x y : 0 <= x -> 0 <= y -> (x ^+ 2 < y ^+ 2) = (x < y).
Proof.
move=> xge0 yge0; apply/idP/idP; rewrite !expe2.
by apply: contra_lt => yltx; apply: lee_pmul.
by move=> xley; apply: lte_pmul.
Qed.
Lemma lee_sqrE x y : 0 <= y -> x ^+ 2 <= y ^+ 2 -> x <= y.
Proof.
move=> yge0; have [xge0|xlt0 x2ley2] := leP 0 x; first by rewrite lee_sqr.
exact: le_trans (ltW xlt0) _.
Qed.
Lemma lte_sqrE x y : 0 <= y -> x ^+ 2 < y ^+ 2 -> x < y.
Proof.
move=> yge0; have [xge0|xlt0 x2ley2] := leP 0 x; first by rewrite lte_sqr.
exact: lt_le_trans xlt0 _.
Qed.
Lemma sqre_ge0 x : 0 <= x ^+ 2.
Proof.
by case: x => [x||]; rewrite /= ?mulyy ?mulNyNy ?le0y//; apply: sqr_ge0.
Qed.
Lemma lee_paddl y x z : 0 <= x -> y <= z -> y <= x + z.
Proof. by move=> *; rewrite -[y]add0e leeD. Qed.
Lemma lte_paddl y x z : 0 <= x -> y < z -> y < x + z.
Proof. by move=> x0 /lt_le_trans; apply; rewrite lee_paddl. Qed.
Lemma lee_paddr y x z : 0 <= x -> y <= z -> y <= z + x.
Proof. by move=> *; rewrite addeC lee_paddl. Qed.
Lemma lte_paddr y x z : 0 <= x -> y < z -> y < z + x.
Proof. by move=> *; rewrite addeC lte_paddl. Qed.
Lemma lte_spaddre z x y : z \is a fin_num -> 0 < y -> z <= x -> z < x + y.
Proof.
move: z y x => [z| |] [y| |] [x| |] _ //=; rewrite ?(lte_fin,ltry)//.
exact: ltr_pwDr.
Qed.
Lemma lte_spadder z x y : x \is a fin_num -> 0 < y -> z <= x -> z < x + y.
Proof.
move: z y x => [z| |] [y| |] [x| |] _ //=; rewrite ?(lte_fin,ltry,ltNyr)//.
exact: ltr_pwDr.
Qed.
End ERealArithTh_realDomainType.
Arguments lee_sum_nneg_ord {R}.
Arguments lee_sum_npos_ord {R}.
Arguments lee_sum_nneg_natr {R}.
Arguments lee_sum_npos_natr {R}.
Arguments lee_sum_nneg_natl {R}.
Arguments lee_sum_npos_natl {R}.
#[global] Hint Extern 0 (is_true (0 <= `| _ |)%E) => solve [apply: abse_ge0] : core.
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeDl instead.")]
Notation lee_addl := leeDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeDr instead.")]
Notation lee_addr := leeDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeD2l instead.")]
Notation lee_add2l := leeD2l (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeD2r instead.")]
Notation lee_add2r := leeD2r (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeD instead.")]
Notation lee_add := leeD (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeB instead.")]
Notation lee_sub := leeB (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeD2lE instead.")]
Notation lee_add2lE := leeD2lE (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeNl instead.")]
Notation lee_oppl := leeNl (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use leeNr instead.")]
Notation lee_oppr := leeNr (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteNl instead.")]
Notation lte_oppl := lteNl (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteNr instead.")]
Notation lte_oppr := lteNr (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteD instead.")]
Notation lte_add := lteD (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteD2lE instead.")]
Notation lte_add2lE := lteD2lE (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteDl instead.")]
Notation lte_addl := lteDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.1.0", note="Use lteDr instead.")]
Notation lte_addr := lteDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use gee_pMl instead.")]
Notation gee_pmull := gee_pMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use geeDl instead.")]
Notation gee_addl := geeDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use geeDr instead.")]
Notation gee_addr := geeDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use gteDr instead.")]
Notation gte_addr := gteDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use gteDl instead.")]
Notation gte_addl := gteDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use lteBlDr instead.")]
Notation lte_subl_addr := lteBlDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use lteBlDl instead.")]
Notation lte_subl_addl := lteBlDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use lteBrDr instead.")]
Notation lte_subr_addr := lteBrDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use lteBrDl instead.")]
Notation lte_subr_addl := lteBrDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use leeBlDr instead.")]
Notation lee_subl_addr := leeBlDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use leeBlDl instead.")]
Notation lee_subl_addl := leeBlDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use leeBrDr instead.")]
Notation lee_subr_addr := leeBrDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use leeBrDl instead.")]
Notation lee_subr_addl := leeBrDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="Use `lte_leD` instead.")]
Notation lte_le_add := lte_leD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="Use `lee_ltD` instead.")]
Notation lee_lt_add := lee_ltD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="Use `lte_leB` instead.")]
Notation lte_le_sub := lte_leB (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="Use leeN2 instead.")]
Notation lee_opp2 := leeN2 (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="Use lteN2 instead.")]
Notation lte_opp2 := lteN2 (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to maxe_pMr")]
Notation maxeMr := maxe_pMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to maxe_pMl")]
Notation maxeMl := maxe_pMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to mine_pMr")]
Notation mineMr := mine_pMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to mine_pMl")]
Notation mineMl := mine_pMl (only parsing).
Module DualAddTheoryRealDomain.
Section DualERealArithTh_realDomainType.
Import DualAddTheoryNumDomain.
Local Open Scope ereal_dual_scope.
Context {R : realDomainType}.
Implicit Types x y z a b : \bar^d R.
Lemma dsube_lt0 x y : (x - y < 0) = (x < y).
Proof. by rewrite dual_addeE oppe_lt0 sube_gt0 lteN2. Qed.
Lemma dsube_ge0 x y : (0 <= y - x) = (x <= y).
Proof. by rewrite dual_addeE oppe_ge0 sube_le0 leeN2. Qed.
Lemma dsuber_le0 x y : y \is a fin_num -> (x - y <= 0) = (x <= y).
Proof.
by move=> ?; rewrite dual_addeE oppe_le0 suber_ge0 ?fin_numN// leeN2.
Qed.
Lemma dsubre_le0 y x : y \is a fin_num -> (y - x <= 0) = (y <= x).
Proof.
by move=> ?; rewrite dual_addeE oppe_le0 subre_ge0 ?fin_numN// leeN2.
Qed.
Lemma dsube_le0 x y : (x \is a fin_num) || (y \is a fin_num) ->
(y - x <= 0) = (y <= x).
Proof. by move=> /orP[?|?]; [rewrite dsuber_le0|rewrite dsubre_le0]. Qed.
Lemma lte_dD a b x y : a < b -> x < y -> a + x < b + y.
Proof. rewrite !dual_addeE lteN2 -lteN2 -(lteN2 y); exact: lteD. Qed.
Lemma lee_dDl x y : 0 <= y -> x <= x + y.
Proof. rewrite dual_addeE leeNr -oppe_le0; exact: geeDl. Qed.
Lemma lee_dDr x y : 0 <= y -> x <= y + x.
Proof. rewrite dual_addeE leeNr -oppe_le0; exact: geeDr. Qed.
Lemma gee_dDl x y : y <= 0 -> x + y <= x.
Proof. rewrite dual_addeE leeNl -oppe_ge0; exact: leeDl. Qed.
Lemma gee_dDr x y : y <= 0 -> y + x <= x.
Proof. rewrite dual_addeE leeNl -oppe_ge0; exact: leeDr. Qed.
Lemma lte_dDl y x : y \is a fin_num -> (y < y + x) = (0 < x).
Proof. by rewrite -fin_numN dual_addeE lteNr; exact: gte_subl. Qed.
Lemma lte_dDr y x : y \is a fin_num -> (y < x + y) = (0 < x).
Proof. by rewrite -fin_numN dual_addeE lteNr addeC; exact: gte_subl. Qed.
Lemma gte_dBl y x : y \is a fin_num -> (y - x < y) = (0 < x).
Proof. by rewrite -fin_numN dual_addeE lteNl oppeK; exact: lteDl. Qed.
Lemma gte_dBr y x : y \is a fin_num -> (- x + y < y) = (0 < x).
Proof. by rewrite -fin_numN dual_addeE lteNl oppeK; exact: lteDr. Qed.
Lemma gte_dDl x y : x \is a fin_num -> (x + y < x) = (y < 0).
Proof.
by rewrite -fin_numN dual_addeE lteNl -[0]oppe0 lteNr; exact: lteDl.
Qed.
Lemma gte_dDr x y : x \is a fin_num -> (y + x < x) = (y < 0).
Proof. by rewrite daddeC; exact: gte_dDl. Qed.
Lemma lte_dD2lE x a b : x \is a fin_num -> (x + a < x + b) = (a < b).
Proof. by move=> ?; rewrite !dual_addeE lteN2 lteD2lE ?fin_numN// lteN2. Qed.
Lemma lte_dD2rE x a b : x \is a fin_num -> (a + x < b + x) = (a < b).
Proof.
move=> ?; rewrite !dual_addeE lteN2 -[RHS]lteN2.
by rewrite -[RHS](@lteD2rE _ (- x))// fin_numN.
Qed.
Lemma lee_dD2rE x a b : x \is a fin_num -> (a + x <= b + x) = (a <= b).
Proof.
move=> ?; rewrite !dual_addeE leeN2 -[RHS]leeN2.
by rewrite -[RHS](@leeD2rE _ (- x))// fin_numN.
Qed.
Lemma lee_dD2l x a b : a <= b -> x + a <= x + b.
Proof. rewrite !dual_addeE leeN2 -leeN2; exact: leeD2l. Qed.
Lemma lee_dD2lE x a b : x \is a fin_num -> (x + a <= x + b) = (a <= b).
Proof. by move=> ?; rewrite !dual_addeE leeN2 leeD2lE ?fin_numN// leeN2. Qed.
Lemma lee_dD2r x a b : a <= b -> a + x <= b + x.
Proof. rewrite !dual_addeE leeN2 -leeN2; exact: leeD2r. Qed.
Lemma lee_dD a b x y : a <= b -> x <= y -> a + x <= b + y.
Proof. rewrite !dual_addeE leeN2 -leeN2 -(leeN2 y); exact: leeD. Qed.
Lemma lte_le_dD a b x y : b \is a fin_num -> a < x -> b <= y -> a + b < x + y.
Proof. by rewrite !dual_addeE lteN2 -lteN2; exact: lte_leB. Qed.
Lemma lee_lt_dD a b x y : a \is a fin_num -> a <= x -> b < y -> a + b < x + y.
Proof. by move=> afin xa yb; rewrite (daddeC a) (daddeC x) lte_le_dD. Qed.
Lemma lee_dB x y z t : x <= y -> t <= z -> x - z <= y - t.
Proof. rewrite !dual_addeE leeNl oppeK -leeN2 !oppeK; exact: leeD. Qed.
Lemma lte_le_dB z u x y : u \is a fin_num -> x < z -> u <= y -> x - y < z - u.
Proof. by rewrite !dual_addeE lteN2 !oppeK -lteN2; exact: lte_leD. Qed.
Lemma lee_dsum I (f g : I -> \bar^d R) s (P : pred I) :
(forall i, P i -> f i <= g i) ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | P i) g i.
Proof.
move=> Pfg; rewrite !dual_sumeE leeN2.
apply: lee_sum => i Pi; rewrite leeN2; exact: Pfg.
Qed.
Lemma lee_dsum_nneg_subset I (s : seq I) (P Q : {pred I}) (f : I -> \bar^d R) :
{subset Q <= P} -> {in [predD P & Q], forall i, 0 <= f i} ->
\sum_(i <- s | Q i) f i <= \sum_(i <- s | P i) f i.
Proof.
move=> QP PQf; rewrite !dual_sumeE leeN2.
apply: lee_sum_npos_subset => [//|i iPQ]; rewrite oppe_le0; exact: PQf.
Qed.
Lemma lee_dsum_npos_subset I (s : seq I) (P Q : {pred I}) (f : I -> \bar^d R) :
{subset Q <= P} -> {in [predD P & Q], forall i, f i <= 0} ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | Q i) f i.
Proof.
move=> QP PQf; rewrite !dual_sumeE leeN2.
apply: lee_sum_nneg_subset => [//|i iPQ]; rewrite oppe_ge0; exact: PQf.
Qed.
Lemma lee_dsum_nneg (I : eqType) (s : seq I) (P Q : pred I)
(f : I -> \bar^d R) : (forall i, P i -> ~~ Q i -> 0 <= f i) ->
\sum_(i <- s | P i && Q i) f i <= \sum_(i <- s | P i) f i.
Proof.
move=> PQf; rewrite !dual_sumeE leeN2.
apply: lee_sum_npos => i Pi nQi; rewrite oppe_le0; exact: PQf.
Qed.
Lemma lee_dsum_npos (I : eqType) (s : seq I) (P Q : pred I)
(f : I -> \bar^d R) : (forall i, P i -> ~~ Q i -> f i <= 0) ->
\sum_(i <- s | P i) f i <= \sum_(i <- s | P i && Q i) f i.
Proof.
move=> PQf; rewrite !dual_sumeE leeN2.
apply: lee_sum_nneg => i Pi nQi; rewrite oppe_ge0; exact: PQf.
Qed.
Lemma lee_dsum_nneg_ord (f : nat -> \bar^d R) (P : pred nat) :
(forall n, P n -> 0 <= f n)%E ->
{homo (fun n => \sum_(i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 m n mlen; rewrite !dual_sumeE leeN2.
apply: (lee_sum_npos_ord (fun i => - f i)%E) => [i Pi|//].
rewrite oppe_le0; exact: f0.
Qed.
Lemma lee_dsum_npos_ord (f : nat -> \bar^d R) (P : pred nat) :
(forall n, P n -> f n <= 0)%E ->
{homo (fun n => \sum_(i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 m n mlen; rewrite !dual_sumeE leeN2.
apply: (lee_sum_nneg_ord (fun i => - f i)%E) => [i Pi|//].
rewrite oppe_ge0; exact: f0.
Qed.
Lemma lee_dsum_nneg_natr (f : nat -> \bar^d R) (P : pred nat) m :
(forall n, (m <= n)%N -> P n -> 0 <= f n) ->
{homo (fun n => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 i j le_ij; rewrite !dual_sumeE leeN2.
apply: lee_sum_npos_natr => [n ? ?|//]; rewrite oppe_le0; exact: f0.
Qed.
Lemma lee_dsum_npos_natr (f : nat -> \bar^d R) (P : pred nat) m :
(forall n, (m <= n)%N -> P n -> f n <= 0) ->
{homo (fun n => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 i j le_ij; rewrite !dual_sumeE leeN2.
apply: lee_sum_nneg_natr => [n ? ?|//]; rewrite oppe_ge0; exact: f0.
Qed.
Lemma lee_dsum_nneg_natl (f : nat -> \bar^d R) (P : pred nat) n :
(forall m, (m < n)%N -> P m -> 0 <= f m) ->
{homo (fun m => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> j <= i}.
Proof.
move=> f0 i j le_ij; rewrite !dual_sumeE leeN2.
apply: lee_sum_npos_natl => [m ? ?|//]; rewrite oppe_le0; exact: f0.
Qed.
Lemma lee_dsum_npos_natl (f : nat -> \bar^d R) (P : pred nat) n :
(forall m, (m < n)%N -> P m -> f m <= 0) ->
{homo (fun m => \sum_(m <= i < n | P i) (f i)) : i j / (i <= j)%N >-> i <= j}.
Proof.
move=> f0 i j le_ij; rewrite !dual_sumeE leeN2.
apply: lee_sum_nneg_natl => [m ? ?|//]; rewrite oppe_ge0; exact: f0.
Qed.
Lemma lee_dsum_nneg_subfset (T : choiceType) (A B : {fset T}%fset) (P : pred T)
(f : T -> \bar^d R) : {subset A <= B} ->
{in [predD B & A], forall t, P t -> 0 <= f t} ->
\sum_(t <- A | P t) f t <= \sum_(t <- B | P t) f t.
Proof.
move=> AB f0; rewrite !dual_sumeE leeN2.
apply: lee_sum_npos_subfset => [//|? ? ?]; rewrite oppe_le0; exact: f0.
Qed.
Lemma lee_dsum_npos_subfset (T : choiceType) (A B : {fset T}%fset) (P : pred T)
(f : T -> \bar^d R) : {subset A <= B} ->
{in [predD B & A], forall t, P t -> f t <= 0} ->
\sum_(t <- B | P t) f t <= \sum_(t <- A | P t) f t.
Proof.
move=> AB f0; rewrite !dual_sumeE leeN2.
apply: lee_sum_nneg_subfset => [//|? ? ?]; rewrite oppe_ge0; exact: f0.
Qed.
Lemma lte_dBlDr x y z : y \is a fin_num -> (x - y < z) = (x < z + y).
Proof. by move=> ?; rewrite !dual_addeE lteNl lteNr oppeK lteBlDr. Qed.
Lemma lte_dBlDl x y z : y \is a fin_num -> (x - y < z) = (x < y + z).
Proof. by move=> ?; rewrite !dual_addeE lteNl lteNr lteBrDl ?fin_numN. Qed.
Lemma lte_dBrDr x y z : z \is a fin_num -> (x < y - z) = (x + z < y).
Proof. by move=> ?; rewrite !dual_addeE lteNl lteNr lteBlDr ?fin_numN. Qed.
Lemma lte_dBrDl x y z : z \is a fin_num -> (x < y - z) = (z + x < y).
Proof. by move=> ?; rewrite !dual_addeE lteNl lteNr lteBlDl ?fin_numN. Qed.
Lemma lte_dsuber_addr x y z : y \is a fin_num -> (x < y - z) = (x + z < y).
Proof.
by move=> ?; rewrite !dual_addeE lteNl lteNr lte_subel_addr ?fin_numN.
Qed.
Lemma lte_dsuber_addl x y z : y \is a fin_num -> (x < y - z) = (z + x < y).
Proof.
by move=> ?; rewrite !dual_addeE lteNl lteNr lte_subel_addl ?fin_numN.
Qed.
Lemma lte_dsubel_addr x y z : z \is a fin_num -> (x - y < z) = (x < z + y).
Proof.
by move=> ?; rewrite !dual_addeE lteNl lteNr lte_suber_addr ?fin_numN.
Qed.
Lemma lte_dsubel_addl x y z : z \is a fin_num -> (x - y < z) = (x < y + z).
Proof.
by move=> ?; rewrite !dual_addeE lteNl lteNr lte_suber_addl ?fin_numN.
Qed.
Lemma lee_dsubl_addr x y z : y \is a fin_num -> (x - y <= z) = (x <= z + y).
Proof. by move=> ?; rewrite !dual_addeE leeNl leeNr leeBrDr ?fin_numN. Qed.
Lemma lee_dsubl_addl x y z : y \is a fin_num -> (x - y <= z) = (x <= y + z).
Proof. by move=> ?; rewrite !dual_addeE leeNl leeNr leeBrDl ?fin_numN. Qed.
Lemma lee_dsubr_addr x y z : z \is a fin_num -> (x <= y - z) = (x + z <= y).
Proof. by move=> ?; rewrite !dual_addeE leeNl leeNr leeBlDr ?fin_numN. Qed.
Lemma lee_dsubr_addl x y z : z \is a fin_num -> (x <= y - z) = (z + x <= y).
Proof. by move=> ?; rewrite !dual_addeE leeNl leeNr leeBlDl ?fin_numN. Qed.
Lemma lee_dsubel_addr x y z : x \is a fin_num -> (x - y <= z) = (x <= z + y).
Proof.
by move=> ?; rewrite !dual_addeE leeNl leeNr lee_suber_addr ?fin_numN.
Qed.
Lemma lee_dsubel_addl x y z : x \is a fin_num -> (x - y <= z) = (x <= y + z).
Proof.
by move=> ?; rewrite !dual_addeE leeNl leeNr lee_suber_addl ?fin_numN.
Qed.
Lemma lee_dsuber_addr x y z : x \is a fin_num -> (x <= y - z) = (x + z <= y).
Proof.
by move=> ?; rewrite !dual_addeE leeNl leeNr lee_subel_addr ?fin_numN.
Qed.
Lemma lee_dsuber_addl x y z : x \is a fin_num -> (x <= y - z) = (z + x <= y).
Proof.
by move=> ?; rewrite !dual_addeE leeNl leeNr lee_subel_addl ?fin_numN.
Qed.
Lemma dsuber_gt0 x y : x \is a fin_num -> (0 < y - x) = (x < y).
Proof. by move=> ?; rewrite lte_dBrDl// dadde0. Qed.
Lemma dsubre_gt0 x y : y \is a fin_num -> (0 < y - x) = (x < y).
Proof. by move=> ?; rewrite lte_dsuber_addl// dadde0. Qed.
Lemma dsube_gt0 x y : (x \is a fin_num) || (y \is a fin_num) ->
(0 < y - x) = (x < y).
Proof. by move=> /orP[?|?]; [rewrite dsuber_gt0|rewrite dsubre_gt0]. Qed.
Lemma dmuleDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Proof.
by move=> *; rewrite !dual_addeE/= muleN muleDr ?adde_defNN// !muleN.
Qed.
Lemma dmuleDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite -!(muleC x) dmuleDr. Qed.
Lemma dge0_muleDl x y z : 0 <= y -> 0 <= z -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite !dual_addeE mulNe le0_muleDl ?oppe_le0 ?mulNe. Qed.
Lemma dge0_muleDr x y z : 0 <= y -> 0 <= z -> x * (y + z) = x * y + x * z.
Proof. by move=> *; rewrite !dual_addeE muleN le0_muleDr ?oppe_le0 ?muleN. Qed.
Lemma dle0_muleDl x y z : y <= 0 -> z <= 0 -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite !dual_addeE mulNe ge0_muleDl ?oppe_ge0 ?mulNe. Qed.
Lemma dle0_muleDr x y z : y <= 0 -> z <= 0 -> x * (y + z) = x * y + x * z.
Proof. by move=> *; rewrite !dual_addeE muleN ge0_muleDr ?oppe_ge0 ?muleN. Qed.
Lemma ge0_dsume_distrl (I : Type) (s : seq I) x (P : pred I)
(F : I -> \bar^d R) :
(forall i, P i -> 0 <= F i) ->
(\sum_(i <- s | P i) F i) * x = \sum_(i <- s | P i) (F i * x).
Proof.
move=> F0; rewrite !dual_sumeE !mulNe le0_sume_distrl => [|i Pi].
- by under eq_bigr => i _ do rewrite mulNe.
- by rewrite oppe_le0 F0.
Qed.
Lemma ge0_dsume_distrr (I : Type) (s : seq I) x (P : pred I)
(F : I -> \bar^d R) :
(forall i, P i -> 0 <= F i) ->
x * (\sum_(i <- s | P i) F i) = \sum_(i <- s | P i) (x * F i).
Proof.
by move=> F0; rewrite muleC ge0_dsume_distrl//; under eq_bigr do rewrite muleC.
Qed.
Lemma le0_dsume_distrl (I : Type) (s : seq I) x (P : pred I)
(F : I -> \bar^d R) :
(forall i, P i -> F i <= 0) ->
(\sum_(i <- s | P i) F i) * x = \sum_(i <- s | P i) (F i * x).
Proof.
move=> F0; rewrite !dual_sumeE mulNe ge0_sume_distrl => [|i Pi].
- by under eq_bigr => i _ do rewrite mulNe.
- by rewrite oppe_ge0 F0.
Qed.
Lemma le0_dsume_distrr (I : Type) (s : seq I) x (P : pred I)
(F : I -> \bar^d R) :
(forall i, P i -> F i <= 0) ->
x * (\sum_(i <- s | P i) F i) = \sum_(i <- s | P i) (x * F i).
Proof.
by move=> F0; rewrite muleC le0_dsume_distrl//; under eq_bigr do rewrite muleC.
Qed.
Lemma lee_abs_dadd x y : `|x + y| <= `|x| + `|y|.
Proof.
by move: x y => [x| |] [y| |] //; rewrite /abse -dEFinD lee_fin ler_normD.
Qed.
Lemma lee_abs_dsum (I : Type) (s : seq I) (F : I -> \bar^d R) (P : pred I) :
`|\sum_(i <- s | P i) F i| <= \sum_(i <- s | P i) `|F i|.
Proof.
elim/big_ind2 : _ => //; first by rewrite abse0.
by move=> *; exact/(le_trans (lee_abs_dadd _ _) (lee_dD _ _)).
Qed.
Lemma lee_abs_dsub x y : `|x - y| <= `|x| + `|y|.
Proof.
by move: x y => [x| |] [y| |] //; rewrite /abse -dEFinD lee_fin ler_normB.
Qed.
Lemma dadde_minl : left_distributive (@GRing.add (\bar^d R)) mine.
Proof. by move=> x y z; rewrite !dual_addeE oppe_min adde_maxl oppe_max. Qed.
Lemma dadde_minr : right_distributive (@GRing.add (\bar^d R)) mine.
Proof. by move=> x y z; rewrite !dual_addeE oppe_min adde_maxr oppe_max. Qed.
Lemma dmule_natl x n : n%:R%:E * x = x *+ n.
Proof. by rewrite mule_natl ednatmulE. Qed.
Lemma lee_pdaddl y x z : 0 <= x -> y <= z -> y <= x + z.
Proof. by move=> *; rewrite -[y]dadd0e lee_dD. Qed.
Lemma lte_pdaddl y x z : 0 <= x -> y < z -> y < x + z.
Proof. by move=> x0 /lt_le_trans; apply; rewrite lee_pdaddl. Qed.
Lemma lee_pdaddr y x z : 0 <= x -> y <= z -> y <= z + x.
Proof. by move=> *; rewrite daddeC lee_pdaddl. Qed.
Lemma lte_pdaddr y x z : 0 <= x -> y < z -> y < z + x.
Proof. by move=> *; rewrite daddeC lte_pdaddl. Qed.
Lemma lte_spdaddre z x y : z \is a fin_num -> 0 < y -> z <= x -> z < x + y.
Proof.
move: z y x => [z| |] [y| |] [x| |] _ //=; rewrite ?(lte_fin,ltry,ltNyr)//.
exact: ltr_pwDr.
Qed.
Lemma lte_spdadder z x y : x \is a fin_num -> 0 < y -> z <= x -> z < x + y.
Proof.
move: z y x => [z| |] [y| |] [x| |] _ //=; rewrite ?(lte_fin,ltry,ltNyr)//.
exact: ltr_pwDr.
Qed.
End DualERealArithTh_realDomainType.
Arguments lee_dsum_nneg_ord {R}.
Arguments lee_dsum_npos_ord {R}.
Arguments lee_dsum_nneg_natr {R}.
Arguments lee_dsum_npos_natr {R}.
Arguments lee_dsum_nneg_natl {R}.
Arguments lee_dsum_npos_natl {R}.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dD`")]
Notation lte_dadd := lte_dD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dDl`")]
Notation lee_daddl := lee_dDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dDr`")]
Notation lee_daddr := lee_dDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gee_dDl`")]
Notation gee_daddl := gee_dDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gee_dDr`")]
Notation gee_daddr := gee_dDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dDl`")]
Notation lte_daddl := lte_dDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dDr`")]
Notation lte_daddr := lte_dDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gte_dBl`")]
Notation gte_dsubl := gte_dBl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gte_dBr`")]
Notation gte_dsubr := gte_dBr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gte_dDl`")]
Notation gte_daddl := gte_dDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `gte_dDr`")]
Notation gte_daddr := gte_dDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dD2lE`")]
Notation lte_dadd2lE := lte_dD2lE (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dD2rE`")]
Notation lee_dadd2rE := lee_dD2rE (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dD2l`")]
Notation lee_dadd2l := lee_dD2l (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dD2r`")]
Notation lee_dadd2r := lee_dD2r (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dD`")]
Notation lee_dadd := lee_dD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_dB`")]
Notation lee_dsub := lee_dB (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dBlDr`")]
Notation lte_dsubl_addr := lte_dBlDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dBlDl`")]
Notation lte_dsubl_addl := lte_dBlDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dBrDr`")]
Notation lte_dsubr_addr := lte_dBrDr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_dBrDl`")]
Notation lte_dsubr_addl := lte_dBrDl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_le_dD`")]
Notation lte_le_dadd := lte_le_dD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_lt_dD`")]
Notation lee_lt_dadd := lee_lt_dD (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_le_dB`")]
Notation lte_le_dsub := lte_le_dD (only parsing).
End DualAddTheoryRealDomain.
Section realFieldType_lemmas.
Variable R : realFieldType.
Implicit Types x y : \bar R.
Implicit Types r : R.
Lemma lee_addgt0Pr x y :
reflect (forall e, (0 < e)%R -> x <= y + e%:E) (x <= y).
Proof.
apply/(iffP idP) => [|].
- move: x y => [x| |] [y| |]//.
+ by rewrite lee_fin => xy e e0; rewrite -EFinD lee_fin ler_wpDr// ltW.
+ by move=> _ e e0; rewrite leNye.
- move: x y => [x| |] [y| |]// xy; rewrite ?leey ?leNye//;
[|by move: xy => /(_ _ lte01)..].
by rewrite lee_fin; apply/ler_addgt0Pr => e e0; rewrite -lee_fin EFinD xy.
Qed.
Lemma lee_subgt0Pr x y :
reflect (forall e, (0 < e)%R -> x - e%:E <= y) (x <= y).
Proof.
apply/(iffP idP) => [xy e|xy].
by rewrite leeBlDr//; move: e; exact/lee_addgt0Pr.
by apply/lee_addgt0Pr => e e0; rewrite -leeBlDr// xy.
Qed.
Lemma lee_mul01Pr x y : 0 <= x ->
reflect (forall r, (0 < r < 1)%R -> r%:E * x <= y) (x <= y).
Proof.
move=> x0; apply/(iffP idP) => [xy r /andP[r0 r1]|h].
move: x0 xy; rewrite le_eqVlt => /predU1P[<-|x0 xy]; first by rewrite mule0.
by rewrite (le_trans _ xy)// gee_pMl// ltW.
have h01 : (0 < (2^-1 : R) < 1)%R by rewrite invr_gt0 ?invf_lt1 ?ltr0n ?ltr1n.
move: x y => [x||] [y||] // in x0 h *.
- move: (x0); rewrite lee_fin le_eqVlt => /predU1P[<-|{}x0].
by rewrite (le_trans _ (h _ h01))// mule_ge0// lee_fin.
have y0 : (0 < y)%R.
by rewrite -lte_fin (lt_le_trans _ (h _ h01))// mule_gt0// lte_fin.
rewrite lee_fin leNgt; apply/negP => yx.
have /h : (0 < (y + x) / (2 * x) < 1)%R.
apply/andP; split; first by rewrite divr_gt0 // ?addr_gt0// ?mulr_gt0.
by rewrite ltr_pdivrMr ?mulr_gt0// mul1r mulr_natl mulr2n ltrD2r.
rewrite -(EFinM _ x) lee_fin invrM ?unitfE// ?gt_eqF// -mulrA mulrAC.
by rewrite mulVr ?unitfE ?gt_eqF// mul1r; apply/negP; rewrite -ltNge midf_lt.
- by rewrite leey.
- by have := h _ h01.
- by have := h _ h01; rewrite mulr_infty sgrV gtr0_sg // mul1e.
- by have := h _ h01; rewrite mulr_infty sgrV gtr0_sg // mul1e.
Qed.
Lemma lte_pdivrMl r x y : (0 < r)%R -> (r^-1%:E * y < x) = (y < r%:E * x).
Proof.
move=> r0; move: x y => [x| |] [y| |] //=.
- by rewrite 2!lte_fin ltr_pdivrMl.
- by rewrite mulr_infty sgrV gtr0_sg// mul1e 2!ltNge 2!leey.
- by rewrite mulr_infty sgrV gtr0_sg// mul1e -EFinM 2!ltNyr.
- by rewrite mulr_infty gtr0_sg// mul1e 2!ltry.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// mul1e ltxx.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// 2!mul1e.
- by rewrite mulr_infty gtr0_sg// mul1e.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// 2!mul1e.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// mul1e.
Qed.
Lemma lte_pdivrMr r x y : (0 < r)%R -> (y * r^-1%:E < x) = (y < x * r%:E).
Proof. by move=> r0; rewrite muleC lte_pdivrMl// muleC. Qed.
Lemma lte_pdivlMl r y x : (0 < r)%R -> (x < r^-1%:E * y) = (r%:E * x < y).
Proof.
move=> r0; move: x y => [x| |] [y| |] //=.
- by rewrite 2!lte_fin ltr_pdivlMl.
- by rewrite mulr_infty sgrV gtr0_sg// mul1e 2!ltry.
- by rewrite mulr_infty sgrV gtr0_sg// mul1e.
- by rewrite mulr_infty gtr0_sg// mul1e.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// mul1e.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// 2!mul1e.
- by rewrite mulr_infty gtr0_sg// mul1e 2!ltNyr.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// 2!mul1e.
- by rewrite mulr_infty [in RHS]mulr_infty sgrV gtr0_sg// mul1e.
Qed.
Lemma lte_pdivlMr r x y : (0 < r)%R -> (x < y * r^-1%:E) = (x * r%:E < y).
Proof. by move=> r0; rewrite muleC lte_pdivlMl// muleC. Qed.
Lemma lte_ndivlMr r x y : (r < 0)%R -> (x < y * r^-1%:E) = (y < x * r%:E).
Proof.
rewrite -oppr0 ltrNr => r0; rewrite -{1}(opprK r) invrN.
by rewrite EFinN muleN lteNr lte_pdivrMr// EFinN muleNN.
Qed.
Lemma lte_ndivlMl r x y : (r < 0)%R -> (x < r^-1%:E * y) = (y < r%:E * x).
Proof. by move=> r0; rewrite muleC lte_ndivlMr// muleC. Qed.
Lemma lte_ndivrMl r x y : (r < 0)%R -> (r^-1%:E * y < x) = (r%:E * x < y).
Proof.
rewrite -oppr0 ltrNr => r0; rewrite -{1}(opprK r) invrN.
by rewrite EFinN mulNe lteNl lte_pdivlMl// EFinN muleNN.
Qed.
Lemma lte_ndivrMr r x y : (r < 0)%R -> (y * r^-1%:E < x) = (x * r%:E < y).
Proof. by move=> r0; rewrite muleC lte_ndivrMl// muleC. Qed.
Lemma lee_pdivrMl r x y : (0 < r)%R -> (r^-1%:E * y <= x) = (y <= r%:E * x).
Proof.
move=> r0; apply/idP/idP.
- rewrite le_eqVlt => /predU1P[<-|]; last by rewrite lte_pdivrMl// => /ltW.
by rewrite muleA -EFinM divrr ?mul1e// unitfE gt_eqF.
- rewrite le_eqVlt => /predU1P[->|]; last by rewrite -lte_pdivrMl// => /ltW.
by rewrite muleA -EFinM mulVr ?mul1e// unitfE gt_eqF.
Qed.
Lemma lee_pdivrMr r x y : (0 < r)%R -> (y * r^-1%:E <= x) = (y <= x * r%:E).
Proof. by move=> r0; rewrite muleC lee_pdivrMl// muleC. Qed.
Lemma lee_pdivlMl r y x : (0 < r)%R -> (x <= r^-1%:E * y) = (r%:E * x <= y).
Proof.
move=> r0; apply/idP/idP.
- rewrite le_eqVlt => /predU1P[->|]; last by rewrite lte_pdivlMl// => /ltW.
by rewrite muleA -EFinM divrr ?mul1e// unitfE gt_eqF.
- rewrite le_eqVlt => /predU1P[<-|]; last by rewrite -lte_pdivlMl// => /ltW.
by rewrite muleA -EFinM mulVr ?mul1e// unitfE gt_eqF.
Qed.
Lemma lee_pdivlMr r x y : (0 < r)%R -> (x <= y * r^-1%:E) = (x * r%:E <= y).
Proof. by move=> r0; rewrite muleC lee_pdivlMl// muleC. Qed.
Lemma lee_ndivlMr r x y : (r < 0)%R -> (x <= y * r^-1%:E) = (y <= x * r%:E).
Proof.
rewrite -oppr0 ltrNr => r0; rewrite -{1}(opprK r) invrN.
by rewrite EFinN muleN leeNr lee_pdivrMr// EFinN muleNN.
Qed.
Lemma lee_ndivlMl r x y : (r < 0)%R -> (x <= r^-1%:E * y) = (y <= r%:E * x).
Proof. by move=> r0; rewrite muleC lee_ndivlMr// muleC. Qed.
Lemma lee_ndivrMl r x y : (r < 0)%R -> (r^-1%:E * y <= x) = (r%:E * x <= y).
Proof.
rewrite -oppr0 ltrNr => r0; rewrite -{1}(opprK r) invrN.
by rewrite EFinN mulNe leeNl lee_pdivlMl// EFinN muleNN.
Qed.
Lemma lee_ndivrMr r x y : (r < 0)%R -> (y * r^-1%:E <= x) = (x * r%:E <= y).
Proof. by move=> r0; rewrite muleC lee_ndivrMl// muleC. Qed.
Lemma eqe_pdivrMl r x y : (r != 0)%R ->
((r^-1)%:E * y == x) = (y == r%:E * x).
Proof.
rewrite neq_lt => /orP[|] r0.
- by rewrite eq_le lee_ndivrMl// lee_ndivlMl// -eq_le.
- by rewrite eq_le lee_pdivrMl// lee_pdivlMl// -eq_le.
Qed.
End realFieldType_lemmas.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_pdivrMl`")]
Notation lte_pdivr_mull := lte_pdivrMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_pdivrMr`")]
Notation lte_pdivr_mulr := lte_pdivrMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_pdivlMl`")]
Notation lte_pdivl_mull := lte_pdivlMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_pdivlMr`")]
Notation lte_pdivl_mulr := lte_pdivlMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_pdivrMl`")]
Notation lee_pdivr_mull := lee_pdivrMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_pdivrMr`")]
Notation lee_pdivr_mulr := lee_pdivrMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_pdivlMl`")]
Notation lee_pdivl_mull := lee_pdivlMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_pdivlMr`")]
Notation lee_pdivl_mulr := lee_pdivlMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_ndivrMl`")]
Notation lte_ndivr_mull := lte_ndivrMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_ndivrMr`")]
Notation lte_ndivr_mulr := lte_ndivrMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_ndivlMl`")]
Notation lte_ndivl_mull := lte_ndivlMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lte_ndivlMr`")]
Notation lte_ndivl_mulr := lte_ndivlMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_ndivrMl`")]
Notation lee_ndivr_mull := lee_ndivrMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_ndivrMr`")]
Notation lee_ndivr_mulr := lee_ndivrMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_ndivlMl`")]
Notation lee_ndivl_mull := lee_ndivlMl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `lee_ndivlMr`")]
Notation lee_ndivl_mulr := lee_ndivlMr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `eqe_pdivrMl`")]
Notation eqe_pdivr_mull := eqe_pdivrMl (only parsing).
Module DualAddTheoryRealField.
Import DualAddTheoryNumDomain DualAddTheoryRealDomain.
Section DualRealFieldType_lemmas.
Local Open Scope ereal_dual_scope.
Variable R : realFieldType.
Implicit Types x y : \bar^d R.
Lemma lee_daddgt0Pr x y :
reflect (forall e, (0 < e)%R -> x <= y + e%:E) (x <= y).
Proof. exact: lee_addgt0Pr. Qed.
End DualRealFieldType_lemmas.
End DualAddTheoryRealField.
Section sqrte.
Variable R : rcfType.
Implicit Types x y : \bar R.
Definition sqrte x :=
if x is +oo then +oo else if x is r%:E then (Num.sqrt r)%:E else 0.
Lemma sqrte0 : sqrte 0 = 0 :> \bar R.
Proof. by rewrite /= sqrtr0. Qed.
Lemma sqrte_ge0 x : 0 <= sqrte x.
Proof. by case: x => [x|//|]; rewrite /= ?leey// lee_fin sqrtr_ge0. Qed.
Lemma lee_sqrt x y : 0 <= y -> (sqrte x <= sqrte y) = (x <= y).
Proof.
case: x y => [x||] [y||] yge0 //=.
- exact: mathcomp_extra.ler_sqrt.
- by rewrite !leey.
- by rewrite leNye lee_fin sqrtr_ge0.
Qed.
Lemma sqrteM x y : 0 <= x -> sqrte (x * y) = sqrte x * sqrte y.
Proof.
case: x y => [x||] [y||] //= age0.
- by rewrite sqrtrM ?EFinM.
- move: age0; rewrite le_eqVlt eqe => /predU1P[<-|x0].
by rewrite mul0e sqrte0 sqrtr0 mul0e.
by rewrite mulry gtr0_sg ?mul1e// mulry gtr0_sg ?mul1e// sqrtr_gt0.
- move: age0; rewrite mule0 mulrNy lee_fin -sgr_ge0.
by case: sgrP; rewrite ?mul0e ?sqrte0// ?mul1e// ler0N1.
- rewrite !mulyr; case: (sgrP y) => [->||].
+ by rewrite sqrtr0 sgr0 mul0e sqrte0.
+ by rewrite mul1e/= -sqrtr_gt0 -sgr_gt0 -lte_fin => /gt0_muley->.
+ by move=> y0; rewrite EFinN mulN1e/= ltr0_sqrtr// sgr0 mul0e.
- by rewrite mulyy.
- by rewrite mulyNy mule0.
Qed.
Lemma sqr_sqrte x : 0 <= x -> sqrte x ^+ 2 = x.
Proof.
case: x => [x||] xge0; rewrite expe2 ?mulyy//.
by rewrite -sqrteM// -EFinM/= sqrtr_sqr ger0_norm.
Qed.
Lemma sqrte_sqr x : sqrte (x ^+ 2) = `|x|%E.
Proof. by case: x => [x||//]; rewrite /expe/= ?sqrtr_sqr// mulyy. Qed.
Lemma sqrte_fin_num x : 0 <= x -> (sqrte x \is a fin_num) = (x \is a fin_num).
Proof. by case: x => [x|//|//]; rewrite !qualifE/=. Qed.
End sqrte.
Module DualAddTheory.
Export DualAddTheoryNumDomain.
Export DualAddTheoryRealDomain.
Export DualAddTheoryRealField.
End DualAddTheory.
Module ConstructiveDualAddTheory.
Export DualAddTheory.
End ConstructiveDualAddTheory.
Section Itv.
Context {R : numDomainType}.
Definition ext_num_sem (i : interval int) (x : \bar R) :=
(0 >=< x)%O && (x \in map_itv (EFin \o intr) i).
Local Notation num_spec := (Itv.spec (@Itv.num_sem _)).
Local Notation num_def R := (Itv.def (@Itv.num_sem R)).
Local Notation num_itv_bound R := (@map_itv_bound _ R intr).
Local Notation ext_num_spec := (Itv.spec ext_num_sem).
Local Notation ext_num_def := (Itv.def ext_num_sem).
Local Notation ext_num_itv_bound :=
(@map_itv_bound _ (\bar R) (EFin \o intr)).
Lemma ext_num_num_sem i (x : R) : Itv.ext_num_sem i x%:E = Itv.num_sem i x.
Proof. by case: i => [l u]; do 2![congr (_ && _)]; [case: l | case: u]. Qed.
Lemma ext_num_num_spec i (x : R) : ext_num_spec i x%:E = num_spec i x.
Proof. by case: i => [//| i]; apply: ext_num_num_sem. Qed.
Lemma le_map_itv_bound_EFin (x y : itv_bound R) :
(map_itv_bound EFin x <= map_itv_bound EFin y)%O = (x <= y)%O.
Proof. by case: x y => [xb x | x] [yb y | y]. Qed.
Lemma map_itv_bound_EFin_le_BLeft (x : itv_bound R) (y : R) :
(map_itv_bound EFin x <= BLeft y%:E)%O = (x <= BLeft y)%O.
Proof.
rewrite -[BLeft y%:E]/(map_itv_bound EFin (BLeft y)).
by rewrite le_map_itv_bound_EFin.
Qed.
Lemma BRight_le_map_itv_bound_EFin (x : R) (y : itv_bound R) :
(BRight x%:E <= map_itv_bound EFin y)%O = (BRight x <= y)%O.
Proof.
rewrite -[BRight x%:E]/(map_itv_bound EFin (BRight x)).
by rewrite le_map_itv_bound_EFin.
Qed.
Lemma le_ext_num_itv_bound (x y : itv_bound int) :
(ext_num_itv_bound x <= ext_num_itv_bound y)%O = (x <= y)%O.
Proof.
rewrite !(map_itv_bound_comp EFin intr)/=.
by rewrite le_map_itv_bound_EFin le_num_itv_bound.
Qed.
Lemma ext_num_spec_sub (x y : Itv.t) : Itv.sub x y ->
forall z : \bar R, ext_num_spec x z -> ext_num_spec y z.
Proof.
case: x y => [| x] [| y] //= x_sub_y z /andP[rz]; rewrite /Itv.ext_num_sem rz/=.
move: x y x_sub_y => [lx ux] [ly uy] /andP[lel leu] /=.
move=> /andP[lxz zux]; apply/andP; split.
- by apply: le_trans lxz; rewrite le_ext_num_itv_bound.
- by apply: le_trans zux _; rewrite le_ext_num_itv_bound.
Qed.
Section ItvTheory.
Context {i : Itv.t}.
Implicit Type x : ext_num_def i.
Lemma ext_widen_itv_subproof x i' : Itv.sub i i' ->
ext_num_spec i' x%:inum.
Proof. by case: x => x /= /[swap] /ext_num_spec_sub; apply. Qed.
Definition ext_widen_itv x i' (uni : unify_itv i i') :=
Itv.mk (ext_widen_itv_subproof x uni).
Lemma gt0e x : unify_itv i (Itv.Real `]0%Z, +oo[) -> 0%E < x%:inum :> \bar R.
Proof.
case: x => x /= /[swap] /ext_num_spec_sub /[apply] /andP[_].
by rewrite /= in_itv/= andbT.
Qed.
Lemma lte0 x : unify_itv i (Itv.Real `]-oo, 0%Z[) -> x%:inum < 0%E :> \bar R.
Proof.
by case: x => x /=/[swap] /ext_num_spec_sub /[apply] /andP[_]/=; rewrite in_itv.
Qed.
Lemma ge0e x : unify_itv i (Itv.Real `[0%Z, +oo[) -> 0%E <= x%:inum :> \bar R.
Proof.
case: x => x /= /[swap] /ext_num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT.
Qed.
Lemma lee0 x : unify_itv i (Itv.Real `]-oo, 0%Z]) -> x%:inum <= 0%E :> \bar R.
Proof.
by case: x => x /=/[swap] /ext_num_spec_sub /[apply] /andP[_]/=; rewrite in_itv.
Qed.
Lemma cmp0e x : unify_itv i (Itv.Real `]-oo, +oo[) -> (0%E >=< x%:inum)%O.
Proof. by case: i x => [//| [l u] [[x||//] /=/andP[/= xr _]]]. Qed.
Lemma neqe0 x :
unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i ->
x%:inum != 0 :> \bar R.
Proof.
case: i x => [//| [l u] [x /= Px]]; apply: contra => /eqP x0 /=.
move: Px; rewrite x0 => /and3P[_ /= l0 u0]; apply/andP; split.
- by case: l l0 => [[] l |]; rewrite ?bnd_simp ?lee_fin ?lte_fin ?lerz0 ?ltrz0.
- by case: u u0 => [[] u |]; rewrite ?bnd_simp ?lee_fin ?lte_fin ?ler0z ?ltr0z.
Qed.
End ItvTheory.
End Itv.
Arguments gt0e {R i} _ {_}.
Arguments lte0 {R i} _ {_}.
Arguments ge0e {R i} _ {_}.
Arguments lee0 {R i} _ {_}.
Arguments cmp0e {R i} _ {_}.
Arguments neqe0 {R i} _ {_}.
Arguments ext_widen_itv {R i} _ {_ _}.
Definition posnume (R : numDomainType) of phant R :=
Itv.def (@ext_num_sem R) (Itv.Real `]0%Z, +oo[).
Notation "{ 'posnum' '\bar' R }" := (@posnume _ (Phant R)) : type_scope.
Definition nonnege (R : numDomainType) of phant R :=
Itv.def (@ext_num_sem R) (Itv.Real `[0%Z, +oo[).
Notation "{ 'nonneg' '\bar' R }" := (@nonnege _ (Phant R)) : type_scope.
Notation "x %:pos" := (ext_widen_itv x%:itv : {posnum \bar _}) (only parsing)
: ereal_dual_scope.
Notation "x %:pos" := (ext_widen_itv x%:itv : {posnum \bar _}) (only parsing)
: ereal_scope.
Notation "x %:pos" := (@ext_widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `]Posz 0, +oo[) _)
(only printing) : ereal_dual_scope.
Notation "x %:pos" := (@ext_widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `]Posz 0, +oo[) _)
(only printing) : ereal_scope.
Notation "x %:nng" := (ext_widen_itv x%:itv : {nonneg \bar _}) (only parsing)
: ereal_dual_scope.
Notation "x %:nng" := (ext_widen_itv x%:itv : {nonneg \bar _}) (only parsing)
: ereal_scope.
Notation "x %:nng" := (@ext_widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[Posz 0, +oo[) _)
(only printing) : ereal_dual_scope.
Notation "x %:nng" := (@ext_widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[Posz 0, +oo[) _)
(only printing) : ereal_scope.
#[export] Hint Extern 0 (is_true (0%R < _)%E) => solve [apply: gt0e] : core.
#[export] Hint Extern 0 (is_true (_ < 0%R)%E) => solve [apply: lte0] : core.
#[export] Hint Extern 0 (is_true (0%R <= _)%E) => solve [apply: ge0e] : core.
#[export] Hint Extern 0 (is_true (_ <= 0%R)%E) => solve [apply: lee0] : core.
#[export] Hint Extern 0 (is_true (0%R >=< _)%O) => solve [apply: cmp0e] : core.
#[export] Hint Extern 0 (is_true (_ != 0%R)%O) => solve [apply: neqe0] : core.
Module ItvInstances.
Import IntItv.
Import Instances.
Section Itv.
Context {R : numDomainType}.
Local Notation num_spec := (Itv.spec (@Itv.num_sem _)).
Local Notation num_def R := (Itv.def (@Itv.num_sem R)).
Local Notation num_itv_bound R := (@map_itv_bound _ R intr).
Local Notation ext_num_spec := (Itv.spec ext_num_sem).
Local Notation ext_num_def := (Itv.def ext_num_sem).
Local Notation ext_num_itv_bound := (@map_itv_bound _ (\bar R) (EFin \o intr)).
Lemma ext_num_spec_pinfty : ext_num_spec (Itv.Real `]1%Z, +oo[) (+oo : \bar R).
Proof. by apply/and3P; rewrite /= cmp0y !bnd_simp real_ltry. Qed.
Canonical pinfty_inum := Itv.mk (ext_num_spec_pinfty).
Lemma ext_num_spec_ninfty :
ext_num_spec (Itv.Real `]-oo, (-1)%Z[) (-oo : \bar R).
Proof. by apply/and3P; rewrite /= cmp0Ny !bnd_simp real_ltNyr. Qed.
Canonical ninfty_snum := Itv.mk (ext_num_spec_ninfty).
Lemma ext_num_spec_EFin i (x : num_def R i) : ext_num_spec i x%:num%:E.
Proof.
case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]].
by apply/and3P; split=> [//||]; [case: l lx | case: u xu].
Qed.
Canonical EFin_inum i (x : num_def R i) := Itv.mk (ext_num_spec_EFin x).
Lemma num_spec_fine i (x : ext_num_def i) (r := Itv.real1 keep_sign i) :
num_spec r (fine x%:num : R).
Proof.
rewrite {}/r; case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]].
apply/and3P; split; rewrite -?real_fine//.
- case: x lx {xu xr} => [x||]/=; [|by case: l => [? []|]..].
by case: l => [[] [l |//] |//] /[!bnd_simp] => [|/ltW]/=; rewrite lee_fin;
apply: le_trans.
- case: x xu {lx xr} => [x||]/=; [|by case: u => [? [[]|] |]..].
by case: u => [bu [[|//] | u] |//]; case: bu => /[!bnd_simp] [/ltW|]/=;
rewrite lee_fin// => /le_trans; apply; rewrite lerz0.
Qed.
Canonical fine_inum i (x : ext_num_def i) := Itv.mk (num_spec_fine x).
Lemma ext_num_sem_y l u :
ext_num_sem (Interval l u) (+oo : \bar R) = ((l != +oo%O) && (u == +oo%O)).
Proof.
apply/and3P/andP => [[_ ly uy] | [ly uy]]; split.
- by case: l ly => -[].
- by case: u uy => -[].
- exact: cmp0y.
- case: l ly => [|[]//].
by case=> l _ /=; rewrite bnd_simp ?real_leey ?real_ltry /= realz.
- by case: u uy => -[].
Qed.
Lemma ext_num_sem_Ny l u :
ext_num_sem (Interval l u) (-oo : \bar R) = ((l == -oo%O) && (u != -oo%O)).
Proof.
apply/and3P/andP => [[_ ly uy] | [ly uy]]; split.
- by case: l ly => -[].
- by case: u uy => -[].
- exact: real0.
- by case: l ly => -[].
- case: u uy => [|[]//].
by case=> u _ /=; rewrite bnd_simp ?real_leNye ?real_ltNyr /= realz.
Qed.
Lemma oppe_boundr (x : \bar R) b :
(BRight (- x) <= ext_num_itv_bound (opp_bound b))%O
= (ext_num_itv_bound b <= BLeft x)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz EFinN ?leeN2 // lteN2.
Qed.
Lemma oppe_boundl (x : \bar R) b :
(ext_num_itv_bound (opp_bound b) <= BLeft (- x))%O
= (BRight x <= ext_num_itv_bound b)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz EFinN ?leeN2 // lteN2.
Qed.
Lemma ext_num_spec_opp i (x : ext_num_def i) (r := Itv.real1 opp i) :
ext_num_spec r (- x%:inum : \bar R).
Proof.
rewrite {}/r; case: x => -[x||]/=;
[|by case: i => [//| [l u]]; rewrite /= ext_num_sem_y ext_num_sem_Ny;
case: l u => [[] ?|[]] [[] ?|[]]..].
rewrite !ext_num_num_spec => Px.
by rewrite -[x]/(Itv.mk Px)%:inum num_spec_opp.
Qed.
Canonical oppe_inum i (x : ext_num_def i) := Itv.mk (ext_num_spec_opp x).
Lemma ext_num_spec_add xi yi (x : ext_num_def xi) (y : ext_num_def yi)
(r := Itv.real2 add xi yi) :
ext_num_spec r (adde x%:inum y%:inum : \bar R).
Proof.
rewrite {}/r; case: x y => -[x||] + [[y||]]/=;
[|by case: xi yi => [//| [xl xu]] [//| [yl yu]];
rewrite /adde/= ?ext_num_sem_y ?ext_num_sem_Ny;
case: xl xu yl yu => [[] ?|[]] [[] ?|[]] [[] ?|[]] [[] ?|[]]..].
rewrite !ext_num_num_spec => Px Py.
by rewrite -[x]/(Itv.mk Px)%:inum -[y]/(Itv.mk Py)%:inum num_spec_add.
Qed.
Canonical adde_inum xi yi (x : ext_num_def xi) (y : ext_num_def yi) :=
Itv.mk (ext_num_spec_add x y).
Import DualAddTheory.
Lemma ext_num_spec_dEFin i (x : num_def R i) : ext_num_spec i (dEFin x%:num).
Proof.
case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]].
by apply/and3P; split=> [//||]; [case: l lx | case: u xu].
Qed.
Canonical dEFin_inum i (x : num_def R i) := Itv.mk (ext_num_spec_dEFin x).
Lemma ext_num_spec_dadd xi yi (x : ext_num_def xi) (y : ext_num_def yi)
(r := Itv.real2 add xi yi) :
ext_num_spec r (dual_adde x%:inum y%:inum : \bar^d R).
Proof.
rewrite {}/r; case: x y => -[x||] + [[y||]]/=;
[|by case: xi yi => [//| [xl xu]] [//| [yl yu]];
rewrite /dual_adde/= ?ext_num_sem_y ?ext_num_sem_Ny;
case: xl xu yl yu => [[] ?|[]] [[] ?|[]] [[] ?|[]] [[] ?|[]]..].
rewrite !ext_num_num_spec => Px Py.
by rewrite -[x]/(Itv.mk Px)%:inum -[y]/(Itv.mk Py)%:inum num_spec_add.
Qed.
Canonical dadde_inum xi yi (x : ext_num_def xi) (y : ext_num_def yi) :=
Itv.mk (ext_num_spec_dadd x y).
Variant ext_sign_spec (l u : itv_bound int) (x : \bar R) : signi -> Set :=
| ISignEqZero : l = BLeft 0%Z -> u = BRight 0%Z -> x = 0 ->
ext_sign_spec l u x (Known EqZero)
| ISignNonNeg : (BLeft 0%:Z <= l)%O -> (BRight 0%:Z < u)%O -> 0 <= x ->
ext_sign_spec l u x (Known NonNeg)
| ISignNonPos : (l < BLeft 0%:Z)%O -> (u <= BRight 0%:Z)%O -> x <= 0 ->
ext_sign_spec l u x (Known NonPos)
| ISignBoth : (l < BLeft 0%:Z)%O -> (BRight 0%:Z < u)%O ->
(0 >=< x)%O -> ext_sign_spec l u x Unknown.
Lemma ext_signP (l u : itv_bound int) (x : \bar R) :
(ext_num_itv_bound l <= BLeft x)%O -> (BRight x <= ext_num_itv_bound u)%O ->
(0 >=< x)%O ->
ext_sign_spec l u x (sign (Interval l u)).
Proof.
case: x => [x||] xl xu xs.
- case: (@signP R l u x _ _ xs).
+ by case: l xl => -[].
+ by case: u xu => -[].
+ by move=> l0 u0 x0; apply: ISignEqZero => //; rewrite x0.
+ by move=> l0 u0 x0; apply: ISignNonNeg.
+ by move=> l0 u0 x0; apply: ISignNonPos.
+ by move=> l0 u0 x0; apply: ISignBoth.
- have uy : u = +oo%O by case: u xu => -[].
have u0 : (BRight 0%:Z < u)%O by rewrite uy.
case: (leP (BLeft 0%Z) l) => l0.
+ suff -> : sign (Interval l u) = Known NonNeg.
by apply: ISignNonNeg => //; apply: le0y.
rewrite /=/sign_boundl /sign_boundr uy/=.
by case: eqP => [//| /eqP lneq0]; case: ltgtP l0 lneq0.
+ suff -> : sign (Interval l u) = Unknown by exact: ISignBoth.
rewrite /=/sign_boundl /sign_boundr uy/=.
by case: eqP l0 => [->//| /eqP leq0] /ltW->.
- have ly : l = -oo%O by case: l xl => -[].
have l0 : (l < BLeft 0%:Z)%O by rewrite ly.
case: (leP u (BRight 0%Z)) => u0.
+ suff -> : sign (Interval l u) = Known NonPos by exact: ISignNonPos.
rewrite /=/sign_boundl /sign_boundr ly/=.
by case: eqP => [//| /eqP uneq0]; case: ltgtP u0 uneq0.
+ suff -> : sign (Interval l u) = Unknown by exact: ISignBoth.
rewrite /=/sign_boundl /sign_boundr ly/=.
by case: eqP u0 => [->//| /eqP ueq0]; rewrite ltNge => /negbTE->.
Qed.
Lemma ext_num_itv_mul_boundl b1 b2 (x1 x2 : \bar R) :
(BLeft 0%:Z <= b1 -> BLeft 0%:Z <= b2 ->
ext_num_itv_bound b1 <= BLeft x1 ->
ext_num_itv_bound b2 <= BLeft x2 ->
ext_num_itv_bound (mul_boundl b1 b2) <= BLeft (x1 * x2))%O.
Proof.
move=> b10 b20 b1x1 b2x2.
have x10 : 0 <= x1.
by case: x1 b1x1 (le_trans (eqbRL (le_ext_num_itv_bound _ _) b10) b1x1).
have x20 : 0 <= x2.
by case: x2 b2x2 (le_trans (eqbRL (le_ext_num_itv_bound _ _) b20) b2x2).
have x1r : (0 >=< x1)%O by rewrite real_fine; exact/ger0_real/fine_ge0.
have x2r : (0 >=< x2)%O by rewrite real_fine; exact/ger0_real/fine_ge0.
have ley b1' b2' :
(map_itv_bound EFin (num_itv_bound R (mul_boundl b1' b2'))
<= BLeft +oo%E)%O.
by case: b1' b2' => [[] [[| ?] | ?] | []] [[] [[| ?] | ?] | []]//=;
rewrite bnd_simp ?real_leey ?real_ltry/= ?realz.
case: x1 x2 x10 x20 x1r x2r b1x1 b2x2 => [x1||] [x2||] //= x10 x20 x1r x2r.
- rewrite !(map_itv_bound_comp, map_itv_bound_EFin_le_BLeft)/=.
exact: num_itv_mul_boundl.
- rewrite !(map_itv_bound_comp EFin intr) real_mulry//= => b1x1 _.
case: (comparable_ltgtP x1r) x10 => [x10 |//| [x10]] _.
by rewrite gtr0_sg ?mul1e ?bnd_simp.
rewrite -x10 sgr0 mul0e/= map_itv_bound_EFin_le_BLeft.
suff -> : b1 = BLeft 0%Z by case: b2 {b20}.
apply/le_anti; rewrite b10 andbT.
move: b1x1; rewrite map_itv_bound_EFin_le_BLeft.
by rewrite -x10 -(mulr0z 1) num_itv_bound_le_BLeft.
- rewrite !(map_itv_bound_comp EFin intr) real_mulyr//= => _ b2x2.
case: (comparable_ltgtP x2r) x20 => [x20 |//| [x20]] _.
by rewrite gtr0_sg ?mul1e ?bnd_simp.
rewrite -x20 sgr0 mul0e/= map_itv_bound_EFin_le_BLeft.
suff -> : b2 = BLeft 0%Z by case: b1 {b10} => [[] [] []|].
apply/le_anti; rewrite b20 andbT.
move: b2x2; rewrite map_itv_bound_EFin_le_BLeft.
by rewrite -x20 -(mulr0z 1) num_itv_bound_le_BLeft.
- by rewrite mulyy/= 3!map_itv_bound_comp.
Qed.
Lemma ext_num_itv_mul_boundr_pos b1 b2 (x1 x2 : \bar R) :
(0 <= x1 -> 0 <= x2 ->
BRight x1 <= ext_num_itv_bound b1 ->
BRight x2 <= ext_num_itv_bound b2 ->
BRight (x1 * x2) <= ext_num_itv_bound (mul_boundr b1 b2))%O.
Proof.
move=> x10 x20 b1x1 b2x2.
have x1r : (0 >=< x1)%O by rewrite real_fine; exact/ger0_real/fine_ge0.
have x2r : (0 >=< x2)%O by rewrite real_fine; exact/ger0_real/fine_ge0.
case: x1 x2 x10 x20 x1r x2r b1x1 b2x2 => [x1||] [x2||] //= x10 x20 x1r x2r.
- rewrite !(map_itv_bound_comp, BRight_le_map_itv_bound_EFin)/=.
exact: num_itv_mul_boundr.
- rewrite real_mulry// => b1x1 b2x2.
have -> : b2 = +oo%O by case: b2 b2x2 => -[].
rewrite mul_boundrC/= map_itv_bound_comp.
case: (comparable_ltgtP x1r) x10 => [x10 |//| [x10]] _.
+ rewrite gtr0_sg ?mul1e ?bnd_simp//.
suff: (BRight 0%Z < b1)%O by case: b1 b1x1 => [[] [] [] |].
move: b1x1; rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin.
case: b1 => [[] b1 |//]; rewrite !bnd_simp -(@ltr0z R).
* exact/le_lt_trans/ltW.
* exact/lt_le_trans.
+ rewrite -x10 sgr0 mul0e/= BRight_le_map_itv_bound_EFin.
suff: (BRight 0%Z <= b1)%O by case: b1 b1x1 => [[] [] [] |].
move: b1x1; rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin.
by rewrite -x10 -(@mulr0z R 1) BRight_le_num_itv_bound.
- rewrite real_mulyr// => b1x1 b2x2.
have -> : b1 = +oo%O by case: b1 b1x1 => -[].
rewrite /= map_itv_bound_comp.
case: (comparable_ltgtP x2r) x20 => [x20 |//| [x20]] _.
+ rewrite gtr0_sg ?mul1e ?bnd_simp//.
suff: (BRight 0%Z < b2)%O by case: b2 b2x2 => [[] [] [] |].
move: b2x2; rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin.
case: b2 => [[] b2 |//]; rewrite !bnd_simp -(@ltr0z R).
* exact/le_lt_trans/ltW.
* exact/lt_le_trans.
+ rewrite -x20 sgr0 mul0e/= BRight_le_map_itv_bound_EFin.
suff: (BRight 0%Z <= b2)%O by case: b2 b2x2 => [[] [] [] |].
move: b2x2; rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin.
by rewrite -x20 -(@mulr0z R 1) BRight_le_num_itv_bound.
- rewrite mulyy/= => b1x1 b2x2.
have -> : b1 = +oo%O by case: b1 b1x1 => -[].
by have -> : b2 = +oo%O by case: b2 b2x2 => -[].
Qed.
Lemma ext_num_itv_mul_boundr b1 b2 (x1 x2 : \bar R) :
(0 <= x1 -> (0 >=< x2)%O -> BRight 0%Z <= b2 ->
BRight x1 <= ext_num_itv_bound b1 ->
BRight x2 <= ext_num_itv_bound b2 ->
BRight (x1 * x2) <= ext_num_itv_bound (mul_boundr b1 b2))%O.
Proof.
move=> x1ge0 x2r b2ge0 lex1b1 lex2b2.
have /orP[x2ge0 | x2le0] : (0 <= x2) || (x2 <= 0).
- by case: x2 x2r {lex2b2} => [x2 /=|_|_]; rewrite ?lee_fin ?le0y ?leNy0.
- exact: ext_num_itv_mul_boundr_pos.
have : (BRight (x1 * x2) <= BRight 0%R)%O.
by have:= mule_ge0_le0 x1ge0 x2le0; case: mule.
move/le_trans; apply.
rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin/=.
rewrite -(@mulr0z R 1) BRight_le_num_itv_bound.
apply: mul_boundr_gt0 => //.
move: x1 x1ge0 lex1b1 => [x1||//]/= x1ge0; last by case: b1 => -[].
rewrite map_itv_bound_comp BRight_le_map_itv_bound_EFin.
rewrite -(@BRight_le_num_itv_bound R)/=.
by apply: le_trans; rewrite bnd_simp -lee_fin.
Qed.
Lemma comparable_ext_num_itv_bound (x y : itv_bound int) :
(ext_num_itv_bound x >=< ext_num_itv_bound y)%O.
Proof.
apply/orP; rewrite !(map_itv_bound_comp EFin intr)/= !le_map_itv_bound_EFin.
exact/orP/comparable_num_itv_bound.
Qed.
Lemma ext_num_itv_bound_min (x y : itv_bound int) :
ext_num_itv_bound (Order.min x y)
= Order.min (ext_num_itv_bound x) (ext_num_itv_bound y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !minEle le_ext_num_itv_bound lexy|].
rewrite minElt -if_neg -comparable_leNgt ?le_ext_num_itv_bound ?ltW//.
exact: comparable_ext_num_itv_bound.
Qed.
Lemma ext_num_itv_bound_max (x y : itv_bound int) :
ext_num_itv_bound (Order.max x y)
= Order.max (ext_num_itv_bound x) (ext_num_itv_bound y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !maxEle le_ext_num_itv_bound lexy|].
rewrite maxElt -if_neg -comparable_leNgt ?le_ext_num_itv_bound ?ltW//.
exact: comparable_ext_num_itv_bound.
Qed.
Lemma ext_num_spec_mul xi yi (x : ext_num_def xi) (y : ext_num_def yi)
(r := Itv.real2 mul xi yi) :
ext_num_spec r (x%:inum * y%:inum : \bar R).
Proof.
rewrite {}/r; case: xi yi x y => [//| [xl xu]] [//| [yl yu]].
case=> [x /=/and3P[xr /= xlx xxu]] [y /=/and3P[yr /= yly yyu]].
rewrite -/(sign (Interval xl xu)) -/(sign (Interval yl yu)).
have ns000 : ext_num_sem `[0%Z, 0%Z] (0 : \bar R).
by apply/and3P; rewrite ?comparablexx.
have xyr : (0 >=< (x * y)%E)%O by exact: realMe.
case: (ext_signP xlx xxu xr) => xlb xub xs.
- by rewrite xs mul0e; case: (ext_signP yly yyu yr).
- case: (ext_signP yly yyu yr) => ylb yub ys.
+ by rewrite ys mule0.
+ apply/and3P; split=> //=.
* exact: ext_num_itv_mul_boundl.
* exact: ext_num_itv_mul_boundr_pos.
+ apply/and3P; split=> //=; rewrite -[x * y]oppeK -real_muleN//.
* by rewrite oppe_boundl ext_num_itv_mul_boundr_pos ?oppe_ge0 ?oppe_boundr.
* rewrite oppe_boundr ext_num_itv_mul_boundl ?oppe_boundl//.
by rewrite opp_bound_ge0.
+ apply/and3P; split=> //=.
* rewrite -[x * y]oppeK -real_muleN// oppe_boundl.
rewrite ext_num_itv_mul_boundr -?real_fine ?oppe_cmp0 ?oppe_boundr//.
by rewrite opp_bound_gt0 ltW.
* by rewrite ext_num_itv_mul_boundr// ltW.
- case: (ext_signP yly yyu yr) => ylb yub ys.
+ by rewrite ys mule0.
+ apply/and3P; split=> //=; rewrite -[x * y]oppeK -real_mulNe//.
* by rewrite oppe_boundl ext_num_itv_mul_boundr_pos ?oppe_ge0 ?oppe_boundr.
* rewrite oppe_boundr ext_num_itv_mul_boundl ?oppe_boundl//.
by rewrite opp_bound_ge0.
+ apply/and3P; split=> //=; rewrite -real_muleNN//.
* by rewrite ext_num_itv_mul_boundl ?opp_bound_ge0 ?oppe_boundl.
* by rewrite ext_num_itv_mul_boundr_pos ?oppe_ge0 ?oppe_boundr.
+ apply/and3P; split=> //=; rewrite -[x * y]oppeK.
* rewrite -real_mulNe// oppe_boundl.
by rewrite ext_num_itv_mul_boundr ?oppe_ge0 ?oppe_boundr// ltW.
* rewrite oppeK -real_muleNN//.
by rewrite ext_num_itv_mul_boundr ?oppe_boundr
?oppe_ge0 ?oppe_cmp0 ?opp_bound_gt0// ltW.
case: (ext_signP yly yyu yr) => ylb yub ys.
- by rewrite ys mule0.
- apply/and3P; split=> //=; rewrite muleC mul_boundrC.
+ rewrite -[y * x]oppeK -real_muleN// oppe_boundl.
rewrite ext_num_itv_mul_boundr ?oppe_ge0 ?oppe_cmp0 ?oppe_boundr//.
by rewrite opp_bound_gt0 ltW.
+ by rewrite ext_num_itv_mul_boundr// ltW.
- apply/and3P; split=> //=; rewrite muleC mul_boundrC.
+ rewrite -[y * x]oppeK -real_mulNe// oppe_boundl.
by rewrite ext_num_itv_mul_boundr ?oppe_ge0 ?oppe_boundr// ltW.
+ rewrite -real_muleNN// ext_num_itv_mul_boundr ?oppe_ge0
?oppe_cmp0 ?oppe_boundr//.
by rewrite opp_bound_gt0 ltW.
apply/and3P; rewrite xyr/= ext_num_itv_bound_min ext_num_itv_bound_max.
rewrite (comparable_ge_min _ (comparable_ext_num_itv_bound _ _)).
rewrite (comparable_le_max _ (comparable_ext_num_itv_bound _ _)).
have [x0 | /ltW x0] : 0 <= x \/ x < 0; [|split=> //..].
case: x xr {xlx xxu xyr xs} => [x||] /= xr.
- by case: (comparable_leP xr) => x0; [left | right].
- by left; rewrite le0y.
- by right; rewrite ltNy0.
- apply/orP; right; rewrite -[x * y]oppeK -real_muleN// oppe_boundl.
by rewrite ext_num_itv_mul_boundr ?oppe_cmp0 ?oppe_boundr// opp_bound_gt0 ltW.
- by apply/orP; right; rewrite ext_num_itv_mul_boundr// ltW.
- apply/orP; left; rewrite -[x * y]oppeK -real_mulNe// oppe_boundl.
by rewrite ext_num_itv_mul_boundr ?oppe_ge0 ?oppe_boundr// ltW.
- apply/orP; left; rewrite -real_muleNN//.
rewrite ext_num_itv_mul_boundr ?oppe_ge0 ?oppe_cmp0 ?oppe_boundr//.
by rewrite opp_bound_gt0 ltW.
Qed.
Canonical mule_inum xi yi (x : ext_num_def xi) (y : ext_num_def yi) :=
Itv.mk (ext_num_spec_mul x y).
Definition abse_itv (i : Itv.t) : Itv.t :=
match i with
| Itv.Top => Itv.Real `[0%Z, +oo[
| Itv.Real (Interval l u) =>
match l with
| BRight (Posz _) | BLeft (Posz (S _)) => Itv.Real `]0%Z, +oo[
| _ => Itv.Real `[0%Z, +oo[
end
end.
Arguments abse_itv /.
Lemma ext_num_spec_abse i (x : ext_num_def i) (r := abse_itv i) :
ext_num_spec r (`|x%:inum| : \bar R).
Proof.
have: ext_num_sem `[0%Z, +oo[ `|x%:inum|.
apply/and3P; split; rewrite ?bnd_simp ?abse_ge0//.
by case: x%:inum => [x'||]; rewrite ?cmp0y// le_comparable ?abse_ge0.
have: 0 < x%:inum -> ext_num_sem `]0%Z, +oo[ `|x%:inum|.
move=> xgt0; apply/and3P; split; rewrite ?bnd_simp//.
- by case: x%:num => [x'||]; rewrite ?cmp0y// le_comparable ?abse_ge0.
- case: x%:inum xgt0 => [x'|//|//]/=.
by rewrite !lte_fin normr_gt0; apply: lt0r_neq0.
rewrite {}/r; case: i x => [//| [[[] [[//| l] | //] | //] u]] [x /=] + + _;
move/and3P => [xr /= /[!bnd_simp]lx _]; apply.
- by apply: lt_le_trans lx; rewrite lte_fin ltr0z.
- by apply: le_lt_trans lx; rewrite lee_fin ler0z.
- by apply: lt_trans lx; rewrite lte_fin ltr0z.
Qed.
Canonical abse_inum i (x : ext_num_def i) := Itv.mk (ext_num_spec_abse x).
Lemma ext_min_itv_boundl_spec x1 x2 b1 b2 :
(ext_num_itv_bound b1 <= BLeft x1)%O ->
(ext_num_itv_bound b2 <= BLeft x2)%O ->
(ext_num_itv_bound (Order.min b1 b2) <= BLeft (Order.min x1 x2))%O.
Proof.
case: (leP b1 b2) => [b1_le_b2 | /ltW b2_le_b1].
- have sb1_le_sb2 := eqbRL (le_ext_num_itv_bound _ _) b1_le_b2.
by rewrite minElt; case: (x1 < x2)%O => [//|_]; apply: le_trans.
- have sb2_le_sb1 := eqbRL (le_ext_num_itv_bound _ _) b2_le_b1.
by rewrite minElt; case: (x1 < x2)%O => [+ _|//]; apply: le_trans.
Qed.
Lemma ext_min_itv_boundr_spec x1 x2 b1 b2 : (x1 >=< x2)%O ->
(BRight x1 <= ext_num_itv_bound b1)%O ->
(BRight x2 <= ext_num_itv_bound b2)%O ->
(BRight (Order.min x1 x2) <= ext_num_itv_bound (Order.min b1 b2))%O.
Proof.
move=> x1_cmp_x2; case: (leP b1 b2) => [b1_le_b2 | /ltW b2_le_b1].
- have sb1_le_sb2 := eqbRL (le_ext_num_itv_bound _ _) b1_le_b2.
by case: (comparable_leP x1_cmp_x2) => [//| /ltW ? + _]; apply: le_trans.
- have sb2_le_sb1 := eqbRL (le_ext_num_itv_bound _ _) b2_le_b1.
by case: (comparable_leP x1_cmp_x2) => [? _ |//]; apply: le_trans.
Qed.
Lemma ext_num_spec_min (xi yi : Itv.t) (x : ext_num_def xi) (y : ext_num_def yi)
(r := Itv.real2 min xi yi) :
ext_num_spec r (Order.min x%:inum y%:inum : \bar R).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split.
- case: x y xr yr {lxx xux lyy yuy} => [x||] [y||]//=.
+ by move=> ? ?; apply: comparable_minr.
+ by move=> ? ?; rewrite real_miney.
+ by move=> ? ?; rewrite real_minNye.
- exact: ext_min_itv_boundl_spec.
- by apply: ext_min_itv_boundr_spec => //; apply: ereal_comparable.
Qed.
Lemma ext_max_itv_boundl_spec x1 x2 b1 b2 : (x1 >=< x2)%O ->
(ext_num_itv_bound b1 <= BLeft x1)%O ->
(ext_num_itv_bound b2 <= BLeft x2)%O ->
(ext_num_itv_bound (Order.max b1 b2) <= BLeft (Order.max x1 x2))%O.
Proof.
move=> x1_cmp_x2.
case: (leP b1 b2) => [b1_le_b2 | /ltW b2_le_b1].
- case: (comparable_leP x1_cmp_x2) => [//| /ltW ? _ sb2_x2].
exact: le_trans sb2_x2 _.
- case: (comparable_leP x1_cmp_x2) => [? sb1_x1 _ |//].
exact: le_trans sb1_x1 _.
Qed.
Lemma ext_max_itv_boundr_spec x1 x2 b1 b2 :
(BRight x1 <= ext_num_itv_bound b1)%O ->
(BRight x2 <= ext_num_itv_bound b2)%O ->
(BRight (Order.max x1 x2) <= ext_num_itv_bound (Order.max b1 b2))%O.
Proof.
case: (leP b1 b2) => [b1_le_b2 | /ltW b2_le_b1].
- have sb1_le_sb2 := eqbRL (@le_ext_num_itv_bound R _ _) b1_le_b2.
by rewrite maxElt; case: ifP => [//|_ ? _]; apply: le_trans sb1_le_sb2.
- have sb2_le_sb1 := eqbRL (@le_ext_num_itv_bound R _ _) b2_le_b1.
by rewrite maxElt; case: ifP => [_ _ ?|//]; apply: le_trans sb2_le_sb1.
Qed.
Lemma ext_num_spec_max (xi yi : Itv.t) (x : ext_num_def xi) (y : ext_num_def yi)
(r := Itv.real2 max xi yi) :
ext_num_spec r (Order.max x%:inum y%:inum : \bar R).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split.
- case: x y xr yr {lxx xux lyy yuy} => [x||] [y||]//=.
+ by move=> ? ?; apply: comparable_maxr.
+ by move=> ? ?; rewrite real_maxey.
+ by move=> ? ?; rewrite real_maxNye.
- by apply: ext_max_itv_boundl_spec => //; apply: ereal_comparable.
- exact: ext_max_itv_boundr_spec.
Qed.
Canonical ext_min_max_typ := MinMaxTyp ext_num_spec_min ext_num_spec_max.
End Itv.
End ItvInstances.
Export (canonicals) ItvInstances.
Section MorphNum.
Context {R : numDomainType} {i : Itv.t}.
Local Notation nR := (Itv.def (@ext_num_sem R) i).
Implicit Types (a : \bar R).
Lemma num_abse_eq0 a : (`|a|%:nng == 0%:E%:nng) = (a == 0).
Proof. by rewrite -abse_eq0. Qed.
End MorphNum.
Section MorphReal.
Context {R : numDomainType} {xi yi : interval int}.
Implicit Type x : (Itv.def (@ext_num_sem R) (Itv.Real xi)).
Implicit Type y : (Itv.def (@ext_num_sem R) (Itv.Real yi)).
Lemma num_lee_max a x y :
a <= maxe x%:num y%:num = (a <= x%:num) || (a <= y%:num).
Proof. by rewrite -comparable_le_max// ereal_comparable. Qed.
Lemma num_gee_max a x y :
maxe x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a).
Proof. by rewrite -comparable_ge_max// ereal_comparable. Qed.
Lemma num_lee_min a x y :
a <= mine x%:num y%:num = (a <= x%:num) && (a <= y%:num).
Proof. by rewrite -comparable_le_min// ereal_comparable. Qed.
Lemma num_gee_min a x y :
mine x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a).
Proof. by rewrite -comparable_ge_min// ereal_comparable. Qed.
Lemma num_lte_max a x y :
a < maxe x%:num y%:num = (a < x%:num) || (a < y%:num).
Proof. by rewrite -comparable_lt_max// ereal_comparable. Qed.
Lemma num_gte_max a x y :
maxe x%:num y%:num < a = (x%:num < a) && (y%:num < a).
Proof. by rewrite -comparable_gt_max// ereal_comparable. Qed.
Lemma num_lte_min a x y :
a < mine x%:num y%:num = (a < x%:num) && (a < y%:num).
Proof. by rewrite -comparable_lt_min// ereal_comparable. Qed.
Lemma num_gte_min a x y :
mine x%:num y%:num < a = (x%:num < a) || (y%:num < a).
Proof. by rewrite -comparable_gt_min// ereal_comparable. Qed.
End MorphReal.
Variant posnume_spec (R : numDomainType) (x : \bar R) :
\bar R -> bool -> bool -> bool -> Type :=
| IsPinftyPosnume :
posnume_spec x +oo false true true
| IsRealPosnume (p : {posnum R}) :
posnume_spec x (p%:num%:E) false true true.
Lemma posnumeP (R : numDomainType) (x : \bar R) : 0 < x ->
posnume_spec x x (x == 0) (0 <= x) (0 < x).
Proof.
case: x => [x|_|//]; last by rewrite le0y lt0y; exact: IsPinftyPosnume.
rewrite lte_fin lee_fin eqe => x_gt0.
rewrite x_gt0 (ltW x_gt0) (negbTE (lt0r_neq0 x_gt0)).
exact: IsRealPosnume (PosNum x_gt0).
Qed.
Variant nonnege_spec (R : numDomainType) (x : \bar R) :
\bar R -> bool -> Type :=
| IsPinftyNonnege : nonnege_spec x +oo true
| IsRealNonnege (p : {nonneg R}) : nonnege_spec x (p%:num%:E) true.
Lemma nonnegeP (R : numDomainType) (x : \bar R) : 0 <= x ->
nonnege_spec x x (0 <= x).
Proof.
case: x => [x|_|//]; last by rewrite le0y; exact: IsPinftyNonnege.
by rewrite lee_fin => /[dup] x_ge0 ->; exact: IsRealNonnege (NngNum x_ge0).
Qed.
Section contract_expand.
Variable R : realFieldType.
Implicit Types (x : \bar R) (r : R).
Local Open Scope ereal_scope.
Definition contract x : R :=
match x with
| r%:E => r / (1 + `|r|) | +oo => 1 | -oo => -1
end.
Lemma contract_lt1 r : (`|contract r%:E| < 1)%R.
Proof.
rewrite normrM normrV ?unitfE //.
rewrite ltr_pdivrMr // ?mul1r//; last by rewrite gtr0_norm.
by rewrite [ltRHS]gtr0_norm ?ltrDr// ltr_pwDl.
Qed.
Lemma contract_le1 x : (`|contract x| <= 1)%R.
Proof.
by case: x => [r| |] /=; rewrite ?normrN1 ?normr1 // (ltW (contract_lt1 _)).
Qed.
Lemma contract0 : contract 0 = 0%R.
Proof. by rewrite /contract/= mul0r. Qed.
Lemma contractN x : contract (- x) = (- contract x)%R.
Proof. by case: x => //= [r|]; [ rewrite normrN mulNr | rewrite opprK]. Qed.
(* TODO: not exploited yet: expand is nondecreasing everywhere so it should be
possible to use some of the homoRL/homoLR lemma where monoRL/monoLR do not
apply *)
Definition expand r : \bar R :=
if (r >= 1)%R then +oo else if (r <= -1)%R then -oo else (r / (1 - `|r|))%:E.
Lemma expand1 r : (1 <= r)%R -> expand r = +oo.
Proof. by move=> r1; rewrite /expand r1. Qed.
Lemma expandN r : expand (- r)%R = - expand r.
Proof.
rewrite /expand; case: ifPn => [r1|].
rewrite ifF; [by rewrite ifT // -lerNr|apply/negbTE].
by rewrite -ltNge -(opprK r) -ltrNl (lt_le_trans _ r1) // -subr_gt0 opprK.
rewrite -ltNge => r1; case: ifPn; rewrite lerNl opprK; [by move=> ->|].
by rewrite -ltNge leNgt => ->; rewrite leNgt -ltrNl r1 /= mulNr normrN.
Qed.
Lemma expandN1 r : (r <= -1)%R -> expand r = -oo.
Proof.
by rewrite lerNr => /expand1/eqP; rewrite expandN eqe_oppLR => /eqP.
Qed.
Lemma expand0 : expand 0%R = 0.
Proof. by rewrite /expand leNgt ltr01 /= oppr_ge0 leNgt ltr01 /= mul0r. Qed.
Lemma expandK : {in [pred r | `|r| <= 1]%R, cancel expand contract}.
Proof.
move=> r; rewrite inE le_eqVlt => /orP[|r1].
rewrite eqr_norml => /andP[/orP[]/eqP->{r}] _;
by [rewrite expand1|rewrite expandN1].
rewrite /expand 2!leNgt ltrNl; case/ltr_normlP : (r1) => -> -> /=.
have r_pneq0 : (1 + r / (1 - r) != 0)%R.
rewrite -[X in (X + _)%R](@divrr _ (1 - r)%R) -?mulrDl; last first.
by rewrite unitfE subr_eq0 eq_sym lt_eqF // ltr_normlW.
by rewrite subrK mulf_neq0 // invr_eq0 subr_eq0 eq_sym lt_eqF // ltr_normlW.
have r_nneq0 : (1 - r / (1 + r) != 0)%R.
rewrite -[X in (X + _)%R](@divrr _ (1 + r)%R) -?mulrBl; last first.
by rewrite unitfE addrC addr_eq0 gt_eqF // ltrNnormlW.
rewrite addrK mulf_neq0 // invr_eq0 addr_eq0 -eqr_oppLR eq_sym gt_eqF //.
exact: ltrNnormlW.
wlog : r r1 r_pneq0 r_nneq0 / (0 <= r)%R => wlog_r0.
have [r0|r0] := lerP 0 r; first by rewrite wlog_r0.
move: (wlog_r0 (- r)%R).
rewrite !(normrN, opprK, mulNr) oppr_ge0 => /(_ r1 r_nneq0 r_pneq0 (ltW r0)).
by move/eqP; rewrite eqr_opp => /eqP.
rewrite /contract !ger0_norm //; last first.
by rewrite divr_ge0 // subr_ge0 (le_trans _ (ltW r1)) // ler_norm.
apply: (@mulIr _ (1 + r / (1 - r))%R); first by rewrite unitfE.
rewrite -(mulrA (r / _)) mulVr ?unitfE // mulr1.
rewrite -[X in (X + _ / _)%R](@divrr _ (1 - r)%R) -?mulrDl ?subrK ?div1r //.
by rewrite unitfE subr_eq0 eq_sym lt_eqF // ltr_normlW.
Qed.
Lemma le_contract : {mono contract : x y / (x <= y)%O}.
Proof.
apply: le_mono; move=> -[r0 | | ] [r1 | _ | _] //=.
- rewrite lte_fin => r0r1; rewrite ltr_pdivrMr ?ltr_wpDr//.
rewrite mulrAC ltr_pdivlMr ?ltr_wpDr// 2?mulrDr 2?mulr1.
have [r10|?] := ler0P r1; last first.
rewrite ltr_leD // mulrC; have [r00|//] := ler0P r0.
by rewrite (@le_trans _ _ 0%R) // ?pmulr_rle0// mulr_ge0// ?oppr_ge0// ltW.
have [?|r00] := ler0P r0; first by rewrite ltr_leD // 2!mulrN mulrC.
by move: (le_lt_trans r10 (lt_trans r00 r0r1)); rewrite ltxx.
- by rewrite ltr_pdivrMr ?ltr_wpDr// mul1r ltr_pwDl // ler_norm.
- rewrite ltr_pdivlMr ?mulN1r ?ltr_wpDr// => _.
by rewrite ltrNl ltr_pwDl // ler_normr lexx orbT.
Qed.
Definition lt_contract := leW_mono le_contract.
Definition contract_inj := mono_inj lexx le_anti le_contract.
Lemma le_expand_in : {in [pred r | `|r| <= 1]%R &,
{mono expand : x y / (x <= y)%O}}.
Proof. exact: can_mono_in (onW_can_in predT expandK) _ (in2W le_contract). Qed.
Definition lt_expand := leW_mono_in le_expand_in.
Definition expand_inj := mono_inj_in lexx le_anti le_expand_in.
Lemma fine_expand r : (`|r| < 1)%R ->
(fine (expand r))%:E = expand r.
Proof.
by move=> r1; rewrite /expand 2!leNgt ltrNl; case/ltr_normlP : r1 => -> ->.
Qed.
Lemma le_expand : {homo expand : x y / (x <= y)%O}.
Proof.
move=> x y xy; have [x1|] := lerP `|x| 1.
have [y_le1|/ltW /expand1->] := leP y 1%R; last by rewrite leey.
rewrite le_expand_in ?inE// ler_norml y_le1 (le_trans _ xy)//.
by rewrite lerNl (ler_normlP _ _ _).
rewrite ltr_normr => /orP[|] x1; last first.
by rewrite expandN1 // ?leNye // lerNr ltW.
by rewrite expand1; [rewrite expand1 // (le_trans _ xy) // ltW | exact: ltW].
Qed.
Lemma expand_eqoo r : (expand r == +oo) = (1 <= r)%R.
Proof. by rewrite /expand; case: ifP => //; case: ifP. Qed.
Lemma expand_eqNoo r : (expand r == -oo) = (r <= -1)%R.
Proof.
rewrite /expand; case: ifP => /= r1; last by case: ifP.
by apply/esym/negbTE; rewrite -ltNge (lt_le_trans _ r1) // -subr_gt0 opprK.
Qed.
End contract_expand.
Section ereal_PseudoMetric.
Context {R : realFieldType}.
Implicit Types (x y : \bar R) (r : R).
Definition ereal_ball x r y := (`|contract x - contract y| < r)%R.
Lemma ereal_ball_center x r : (0 < r)%R -> ereal_ball x r x.
Proof. by move=> e0; rewrite /ereal_ball subrr normr0. Qed.
Lemma ereal_ball_sym x y r : ereal_ball x r y -> ereal_ball y r x.
Proof. by rewrite /ereal_ball distrC. Qed.
Lemma ereal_ball_triangle x y z r1 r2 :
ereal_ball x r1 y -> ereal_ball y r2 z -> ereal_ball x (r1 + r2) z.
Proof.
rewrite /ereal_ball => h1 h2; rewrite -[X in (X - _)%R](subrK (contract y)).
by rewrite -addrA (le_lt_trans (ler_normD _ _)) // ltrD.
Qed.
Lemma ereal_ballN x y (e : {posnum R}) :
ereal_ball (- x) e%:num (- y) -> ereal_ball x e%:num y.
Proof. by rewrite /ereal_ball 2!contractN opprK -opprB normrN addrC. Qed.
Lemma ereal_ball_ninfty_oversize (e : {posnum R}) x :
(2 < e%:num)%R -> ereal_ball -oo e%:num x.
Proof.
move=> e2; rewrite /ereal_ball /= (le_lt_trans _ e2) // -opprB normrN opprK.
rewrite (le_trans (ler_normD _ _)) // normr1 -lerBrDr.
by rewrite (le_trans (contract_le1 _)) // (_ : 2 = 1 + 1)%R // addrK.
Qed.
Lemma contract_ereal_ball_pinfty r (e : {posnum R}) :
(1 < contract r%:E + e%:num)%R -> ereal_ball r%:E e%:num +oo.
Proof.
move=> re1; rewrite /ereal_ball; rewrite [contract +oo]/= ler0_norm; last first.
by rewrite subr_le0; case/ler_normlP: (contract_le1 r%:E).
by rewrite opprB ltrBlDl.
Qed.
End ereal_PseudoMetric.
(* TODO: generalize to numFieldType? *)
Lemma lt_ereal_nbhs (R : realFieldType) (a b : \bar R) (r : R) :
a < r%:E -> r%:E < b ->
exists delta : {posnum R},
forall y, (`|y - r| < delta%:num)%R -> (a < y%:E) && (y%:E < b).
Proof.
move=> [:wlog]; case: a b => [a||] [b||] //= ltax ltxb.
- move: a b ltax ltxb; abstract: wlog. (*BUG*)
move=> {}a {}b ltxa ltxb.
have m_gt0 : (Num.min ((r - a) / 2) ((b - r) / 2) > 0)%R.
by rewrite lt_min !divr_gt0 // ?subr_gt0.
exists (PosNum m_gt0) => y //=; rewrite lt_min !ltr_distl.
move=> /andP[/andP[ay _] /andP[_ yb]].
rewrite 2!lte_fin (lt_trans _ ay) ?(lt_trans yb) //=.
rewrite -subr_gt0 opprD addrA {1}[(b - r)%R]splitr addrK.
by rewrite divr_gt0 ?subr_gt0.
by rewrite -subr_gt0 addrAC {1}[(r - a)%R]splitr addrK divr_gt0 ?subr_gt0.
- have [//||d dP] := wlog a (r + 1)%R; rewrite ?lte_fin ?ltrDl //.
by exists d => y /dP /andP[->] /= /lt_le_trans; apply; rewrite leey.
- have [//||d dP] := wlog (r - 1)%R b; rewrite ?lte_fin ?gtrDl ?ltrN10 //.
by exists d => y /dP /andP[_ ->] /=; rewrite ltNyr.
- by exists 1%:pos%R => ? ?; rewrite ltNyr ltry.
Qed.
|