1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
|
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import ssrnat eqtype choice order ssralg ssrnum ssrint.
From mathcomp Require Import interval.
From mathcomp Require Import mathcomp_extra.
(**md**************************************************************************)
(* # Numbers within an interval *)
(* *)
(* This file develops tools to make the manipulation of numbers within *)
(* a known interval easier, thanks to canonical structures. This adds types *)
(* like {itv R & `[a, b]}, a notation e%:itv that infers an enclosing *)
(* interval for expression e according to existing canonical instances and *)
(* %:num to cast back from type {itv R & i} to R. *)
(* For instance, for x : {i01 R}, we have (1 - x%:num)%:itv : {i01 R} *)
(* automatically inferred. *)
(* *)
(* ## types for values within known interval *)
(* *)
(* ``` *)
(* {itv R & i} == generic type of values in interval i : interval int *)
(* See interval.v for notations that can be used for i. *)
(* R must have a numDomainType structure. This type is shown *)
(* to be a porderType. *)
(* {i01 R} := {itv R & `[0, 1]} *)
(* Allows to solve automatically goals of the form x >= 0 *)
(* and x <= 1 when x is canonically a {i01 R}. *)
(* {i01 R} is canonically stable by common operations. *)
(* {posnum R} := {itv R & `]0, +oo[) *)
(* {nonneg R} := {itv R & `[0, +oo[) *)
(* ``` *)
(* *)
(* ## casts from/to values within known interval *)
(* *)
(* Explicit casts of x to some {itv R & i} according to existing canonical *)
(* instances: *)
(* ``` *)
(* x%:itv == cast to the most precisely known {itv R & i} *)
(* x%:i01 == cast to {i01 R}, or fail *)
(* x%:pos == cast to {posnum R}, or fail *)
(* x%:nng == cast to {nonneg R}, or fail *)
(* ``` *)
(* *)
(* Explicit casts of x from some {itv R & i} to R: *)
(* ``` *)
(* x%:num == cast from {itv R & i} *)
(* x%:posnum == cast from {posnum R} *)
(* x%:nngnum == cast from {nonneg R} *)
(* ``` *)
(* *)
(* ## sign proofs *)
(* *)
(* ``` *)
(* [itv of x] == proof that x is in the interval inferred by x%:itv *)
(* [gt0 of x] == proof that x > 0 *)
(* [lt0 of x] == proof that x < 0 *)
(* [ge0 of x] == proof that x >= 0 *)
(* [le0 of x] == proof that x <= 0 *)
(* [cmp0 of x] == proof that 0 >=< x *)
(* [neq0 of x] == proof that x != 0 *)
(* ``` *)
(* *)
(* ## constructors *)
(* *)
(* ``` *)
(* ItvNum xr lx xu == builds a {itv R & i} from proofs xr : x \in Num.real, *)
(* lx : map_itv_bound (Itv.num_sem R) l <= BLeft x *)
(* xu : BRight x <= map_itv_bound (Itv.num_sem R) u *)
(* where x : R with R : numDomainType *)
(* and l u : itv_bound int *)
(* ItvReal lx xu == builds a {itv R & i} from proofs *)
(* lx : map_itv_bound (Itv.num_sem R) l <= BLeft x *)
(* xu : BRight x <= map_itv_bound (Itv.num_sem R) u *)
(* where x : R with R : realDomainType *)
(* and l u : itv_bound int *)
(* Itv01 x0 x1 == builds a {i01 R} from proofs x0 : 0 <= x and x1 : x <= 1*)
(* where x : R with R : numDomainType *)
(* PosNum x0 == builds a {posnum R} from a proof x0 : x > 0 where x : R *)
(* NngNum x0 == builds a {posnum R} from a proof x0 : x >= 0 where x : R*)
(* ``` *)
(* *)
(* A number of canonical instances are provided for common operations, if *)
(* your favorite operator is missing, look below for examples on how to add *)
(* the appropriate Canonical. *)
(* Also note that all provided instances aren't necessarily optimal, *)
(* improvements welcome! *)
(* Canonical instances are also provided according to types, as a *)
(* fallback when no known operator appears in the expression. Look to top_typ *)
(* below for an example on how to add your favorite type. *)
(* *)
(******************************************************************************)
Reserved Notation "{ 'itv' R & i }"
(at level 0, R at level 200, i at level 200, format "{ 'itv' R & i }").
Reserved Notation "{ 'i01' R }"
(at level 0, R at level 200, format "{ 'i01' R }").
Reserved Notation "{ 'posnum' R }" (at level 0, format "{ 'posnum' R }").
Reserved Notation "{ 'nonneg' R }" (at level 0, format "{ 'nonneg' R }").
Reserved Notation "x %:itv" (at level 2, format "x %:itv").
Reserved Notation "x %:i01" (at level 2, format "x %:i01").
Reserved Notation "x %:pos" (at level 2, format "x %:pos").
Reserved Notation "x %:nng" (at level 2, format "x %:nng").
Reserved Notation "x %:inum" (at level 2, format "x %:inum").
Reserved Notation "x %:num" (at level 2, format "x %:num").
Reserved Notation "x %:posnum" (at level 2, format "x %:posnum").
Reserved Notation "x %:nngnum" (at level 2, format "x %:nngnum").
Reserved Notation "[ 'itv' 'of' x ]" (format "[ 'itv' 'of' x ]").
Reserved Notation "[ 'gt0' 'of' x ]" (format "[ 'gt0' 'of' x ]").
Reserved Notation "[ 'lt0' 'of' x ]" (format "[ 'lt0' 'of' x ]").
Reserved Notation "[ 'ge0' 'of' x ]" (format "[ 'ge0' 'of' x ]").
Reserved Notation "[ 'le0' 'of' x ]" (format "[ 'le0' 'of' x ]").
Reserved Notation "[ 'cmp0' 'of' x ]" (format "[ 'cmp0' 'of' x ]").
Reserved Notation "[ 'neq0' 'of' x ]" (format "[ 'neq0' 'of' x ]").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory Order.Syntax.
Import GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Open Scope order_scope.
Definition map_itv_bound S T (f : S -> T) (b : itv_bound S) : itv_bound T :=
match b with
| BSide b x => BSide b (f x)
| BInfty b => BInfty _ b
end.
Lemma map_itv_bound_comp S T U (f : T -> S) (g : U -> T) (b : itv_bound U) :
map_itv_bound (f \o g) b = map_itv_bound f (map_itv_bound g b).
Proof. by case: b. Qed.
Definition map_itv S T (f : S -> T) (i : interval S) : interval T :=
let 'Interval l u := i in Interval (map_itv_bound f l) (map_itv_bound f u).
Lemma map_itv_comp S T U (f : T -> S) (g : U -> T) (i : interval U) :
map_itv (f \o g) i = map_itv f (map_itv g i).
Proof. by case: i => l u /=; rewrite -!map_itv_bound_comp. Qed.
(* First, the interval arithmetic operations we will later use *)
Module IntItv.
Implicit Types (b : itv_bound int) (i j : interval int).
Definition opp_bound b :=
match b with
| BSide b x => BSide (~~ b) (intZmod.oppz x)
| BInfty b => BInfty _ (~~ b)
end.
Lemma opp_bound_ge0 b : (BLeft 0%R <= opp_bound b)%O = (b <= BRight 0%R)%O.
Proof. by case: b => [[] b | []//]; rewrite /= !bnd_simp oppr_ge0. Qed.
Lemma opp_bound_gt0 b : (BRight 0%R <= opp_bound b)%O = (b <= BLeft 0%R)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp ?oppr_ge0 ?oppr_gt0.
Qed.
Definition opp i :=
let: Interval l u := i in Interval (opp_bound u) (opp_bound l).
Arguments opp /.
Definition add_boundl b1 b2 :=
match b1, b2 with
| BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intZmod.addz x1 x2)
| _, _ => BInfty _ true
end.
Definition add_boundr b1 b2 :=
match b1, b2 with
| BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intZmod.addz x1 x2)
| _, _ => BInfty _ false
end.
Definition add i1 i2 :=
let: Interval l1 u1 := i1 in let: Interval l2 u2 := i2 in
Interval (add_boundl l1 l2) (add_boundr u1 u2).
Arguments add /.
Variant signb := EqZero | NonNeg | NonPos.
Definition sign_boundl b :=
let: b0 := BLeft 0%Z in
if b == b0 then EqZero else if (b <= b0)%O then NonPos else NonNeg.
Definition sign_boundr b :=
let: b0 := BRight 0%Z in
if b == b0 then EqZero else if (b <= b0)%O then NonPos else NonNeg.
Variant signi := Known of signb | Unknown | Empty.
Definition sign i : signi :=
let: Interval l u := i in
match sign_boundl l, sign_boundr u with
| EqZero, NonPos
| NonNeg, EqZero
| NonNeg, NonPos => Empty
| EqZero, EqZero => Known EqZero
| NonPos, EqZero
| NonPos, NonPos => Known NonPos
| EqZero, NonNeg
| NonNeg, NonNeg => Known NonNeg
| NonPos, NonNeg => Unknown
end.
Definition mul_boundl b1 b2 :=
match b1, b2 with
| BInfty _, _
| _, BInfty _
| BLeft 0%Z, _
| _, BLeft 0%Z => BLeft 0%Z
| BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intRing.mulz x1 x2)
end.
Definition mul_boundr b1 b2 :=
match b1, b2 with
| BLeft 0%Z, _
| _, BLeft 0%Z => BLeft 0%Z
| BRight 0%Z, _
| _, BRight 0%Z => BRight 0%Z
| BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intRing.mulz x1 x2)
| _, BInfty _
| BInfty _, _ => +oo%O
end.
Lemma mul_boundrC b1 b2 : mul_boundr b1 b2 = mul_boundr b2 b1.
Proof.
by move: b1 b2 => [[] [[|?]|?] | []] [[] [[|?]|?] | []] //=; rewrite mulnC.
Qed.
Lemma mul_boundr_gt0 b1 b2 :
(BRight 0%Z <= b1 -> BRight 0%Z <= b2 -> BRight 0%Z <= mul_boundr b1 b2)%O.
Proof.
case: b1 b2 => [b1b b1 | []] [b2b b2 | []]//=.
- by case: b1b b2b => -[]; case: b1 b2 => [[|b1] | b1] [[|b2] | b2].
- by case: b1b b1 => -[[] |].
- by case: b2b b2 => -[[] |].
Qed.
Definition mul i1 i2 :=
let: Interval l1 u1 := i1 in let: Interval l2 u2 := i2 in
let: opp := opp_bound in
let: mull := mul_boundl in let: mulr := mul_boundr in
match sign i1, sign i2 with
| Empty, _ | _, Empty => `[1, 0]
| Known EqZero, _ | _, Known EqZero => `[0, 0]
| Known NonNeg, Known NonNeg =>
Interval (mull l1 l2) (mulr u1 u2)
| Known NonPos, Known NonPos =>
Interval (mull (opp u1) (opp u2)) (mulr (opp l1) (opp l2))
| Known NonNeg, Known NonPos =>
Interval (opp (mulr u1 (opp l2))) (opp (mull l1 (opp u2)))
| Known NonPos, Known NonNeg =>
Interval (opp (mulr (opp l1) u2)) (opp (mull (opp u1) l2))
| Known NonNeg, Unknown =>
Interval (opp (mulr u1 (opp l2))) (mulr u1 u2)
| Known NonPos, Unknown =>
Interval (opp (mulr (opp l1) u2)) (mulr (opp l1) (opp l2))
| Unknown, Known NonNeg =>
Interval (opp (mulr (opp l1) u2)) (mulr u1 u2)
| Unknown, Known NonPos =>
Interval (opp (mulr u1 (opp l2))) (mulr (opp l1) (opp l2))
| Unknown, Unknown =>
Interval
(Order.min (opp (mulr (opp l1) u2)) (opp (mulr u1 (opp l2))))
(Order.max (mulr (opp l1) (opp l2)) (mulr u1 u2))
end.
Arguments mul /.
Definition min i j :=
let: Interval li ui := i in let: Interval lj uj := j in
Interval (Order.min li lj) (Order.min ui uj).
Arguments min /.
Definition max i j :=
let: Interval li ui := i in let: Interval lj uj := j in
Interval (Order.max li lj) (Order.max ui uj).
Arguments max /.
Definition keep_nonneg_bound b :=
match b with
| BSide _ (Posz _) => BLeft 0%Z
| BSide _ (Negz _) => -oo%O
| BInfty _ => -oo%O
end.
Arguments keep_nonneg_bound /.
Definition keep_pos_bound b :=
match b with
| BSide b 0%Z => BSide b 0%Z
| BSide _ (Posz (S _)) => BRight 0%Z
| BSide _ (Negz _) => -oo
| BInfty _ => -oo
end.
Arguments keep_pos_bound /.
Definition keep_nonpos_bound b :=
match b with
| BSide _ (Negz _) | BSide _ (Posz 0) => BRight 0%Z
| BSide _ (Posz (S _)) => +oo%O
| BInfty _ => +oo%O
end.
Arguments keep_nonpos_bound /.
Definition keep_neg_bound b :=
match b with
| BSide b 0%Z => BSide b 0%Z
| BSide _ (Negz _) => BLeft 0%Z
| BSide _ (Posz _) => +oo
| BInfty _ => +oo
end.
Arguments keep_neg_bound /.
Definition inv i :=
let: Interval l u := i in
Interval (keep_pos_bound l) (keep_neg_bound u).
Arguments inv /.
Definition exprn_le1_bound b1 b2 :=
if b2 isn't BSide _ 1%Z then +oo
else if (BLeft 0%Z <= b1)%O then BRight 1%Z else +oo.
Arguments exprn_le1_bound /.
Definition exprn i :=
let: Interval l u := i in
Interval (keep_pos_bound l) (exprn_le1_bound l u).
Arguments exprn /.
Definition keep_sign i :=
let: Interval l u := i in
Interval (keep_nonneg_bound l) (keep_nonpos_bound u).
(* used in ereal.v *)
Definition keep_nonpos i :=
let 'Interval l u := i in
Interval -oo%O (keep_nonpos_bound u).
Arguments keep_nonpos /.
(* used in ereal.v *)
Definition keep_nonneg i :=
let 'Interval l u := i in
Interval (keep_nonneg_bound l) +oo%O.
Arguments keep_nonneg /.
End IntItv.
Module Itv.
Variant t := Top | Real of interval int.
Definition sub (x y : t) :=
match x, y with
| _, Top => true
| Top, Real _ => false
| Real xi, Real yi => subitv xi yi
end.
Section Itv.
Context T (sem : interval int -> T -> bool).
Definition spec (i : t) (x : T) := if i is Real i then sem i x else true.
Record def (i : t) := Def {
r : T;
#[canonical=no]
P : spec i r
}.
End Itv.
Record typ i := Typ {
sort : Type;
#[canonical=no]
sort_sem : interval int -> sort -> bool;
#[canonical=no]
allP : forall x : sort, spec sort_sem i x
}.
Definition mk {T f} i x P : @def T f i := @Def T f i x P.
Definition from {T f i} {x : @def T f i} (phx : phantom T (r x)) := x.
Definition fromP {T f i} {x : @def T f i} (phx : phantom T (r x)) := P x.
Definition num_sem (R : numDomainType) (i : interval int) (x : R) : bool :=
(x \in Num.real) && (x \in map_itv intr i).
Definition nat_sem (i : interval int) (x : nat) : bool := Posz x \in i.
Definition posnum (R : numDomainType) of phant R :=
def (@num_sem R) (Real `]0, +oo[).
Definition nonneg (R : numDomainType) of phant R :=
def (@num_sem R) (Real `[0, +oo[).
(* a few lifting helper functions *)
Definition real1 (op1 : interval int -> interval int) (x : Itv.t) : Itv.t :=
match x with Itv.Top => Itv.Top | Itv.Real x => Itv.Real (op1 x) end.
Definition real2 (op2 : interval int -> interval int -> interval int)
(x y : Itv.t) : Itv.t :=
match x, y with
| Itv.Top, _ | _, Itv.Top => Itv.Top
| Itv.Real x, Itv.Real y => Itv.Real (op2 x y)
end.
Lemma spec_real1 T f (op1 : T -> T) (op1i : interval int -> interval int) :
forall (x : T), (forall xi, f xi x = true -> f (op1i xi) (op1 x) = true) ->
forall xi, spec f xi x -> spec f (real1 op1i xi) (op1 x).
Proof. by move=> x + [//| xi]; apply. Qed.
Lemma spec_real2 T f (op2 : T -> T -> T)
(op2i : interval int -> interval int -> interval int) (x y : T) :
(forall xi yi, f xi x = true -> f yi y = true ->
f (op2i xi yi) (op2 x y) = true) ->
forall xi yi, spec f xi x -> spec f yi y ->
spec f (real2 op2i xi yi) (op2 x y).
Proof. by move=> + [//| xi] [//| yi]; apply. Qed.
Module Exports.
Arguments r {T sem i}.
Notation "{ 'itv' R & i }" := (def (@num_sem R) (Itv.Real i%Z)) : type_scope.
Notation "{ 'i01' R }" := {itv R & `[0, 1]} : type_scope.
Notation "{ 'posnum' R }" := (@posnum _ (Phant R)) : ring_scope.
Notation "{ 'nonneg' R }" := (@nonneg _ (Phant R)) : ring_scope.
Notation "x %:itv" := (from (Phantom _ x)) : ring_scope.
Notation "[ 'itv' 'of' x ]" := (fromP (Phantom _ x)) : ring_scope.
Notation num := r.
Notation "x %:inum" := (r x) (only parsing) : ring_scope.
Notation "x %:num" := (r x) : ring_scope.
Notation "x %:posnum" := (@r _ _ (Real `]0%Z, +oo[) x) : ring_scope.
Notation "x %:nngnum" := (@r _ _ (Real `[0%Z, +oo[) x) : ring_scope.
End Exports.
End Itv.
Export Itv.Exports.
Local Notation num_spec := (Itv.spec (@Itv.num_sem _)).
Local Notation num_def R := (Itv.def (@Itv.num_sem R)).
Local Notation num_itv_bound R := (@map_itv_bound _ R intr).
Local Notation nat_spec := (Itv.spec Itv.nat_sem).
Local Notation nat_def := (Itv.def Itv.nat_sem).
Section POrder.
Context d (T : porderType d) (f : interval int -> T -> bool) (i : Itv.t).
Local Notation itv := (Itv.def f i).
HB.instance Definition _ := [isSub for @Itv.r T f i].
HB.instance Definition _ : Order.POrder d itv := [POrder of itv by <:].
End POrder.
Section Order.
Variables (R : numDomainType) (i : interval int).
Local Notation nR := (num_def R (Itv.Real i)).
Lemma itv_le_total_subproof : total (<=%O : rel nR).
Proof.
move=> x y; apply: real_comparable.
- by case: x => [x /=/andP[]].
- by case: y => [y /=/andP[]].
Qed.
HB.instance Definition _ := Order.POrder_isTotal.Build ring_display nR
itv_le_total_subproof.
End Order.
Module TypInstances.
Lemma top_typ_spec T f (x : T) : Itv.spec f Itv.Top x.
Proof. by []. Qed.
Canonical top_typ T f := Itv.Typ (@top_typ_spec T f).
Lemma real_domain_typ_spec (R : realDomainType) (x : R) :
num_spec (Itv.Real `]-oo, +oo[) x.
Proof. by rewrite /Itv.num_sem/= num_real. Qed.
Canonical real_domain_typ (R : realDomainType) :=
Itv.Typ (@real_domain_typ_spec R).
Lemma real_field_typ_spec (R : realFieldType) (x : R) :
num_spec (Itv.Real `]-oo, +oo[) x.
Proof. exact: real_domain_typ_spec. Qed.
Canonical real_field_typ (R : realFieldType) :=
Itv.Typ (@real_field_typ_spec R).
Lemma nat_typ_spec (x : nat) : nat_spec (Itv.Real `[0, +oo[) x.
Proof. by []. Qed.
Canonical nat_typ := Itv.Typ nat_typ_spec.
Lemma typ_inum_spec (i : Itv.t) (xt : Itv.typ i) (x : Itv.sort xt) :
Itv.spec (@Itv.sort_sem _ xt) i x.
Proof. by move: xt x => []. Qed.
(* This adds _ <- Itv.r ( typ_inum )
to canonical projections (c.f., Print Canonical Projections
Itv.r) meaning that if no other canonical instance (with a
registered head symbol) is found, a canonical instance of
Itv.typ, like the ones above, will be looked for. *)
Canonical typ_inum (i : Itv.t) (xt : Itv.typ i) (x : Itv.sort xt) :=
Itv.mk (typ_inum_spec x).
End TypInstances.
Export (canonicals) TypInstances.
Class unify {T} f (x y : T) := Unify : f x y = true.
#[export] Hint Mode unify + + + + : typeclass_instances.
Class unify' {T} f (x y : T) := Unify' : f x y = true.
#[export] Instance unify'P {T} f (x y : T) : unify' f x y -> unify f x y := id.
#[export]
Hint Extern 0 (unify' _ _ _) => vm_compute; reflexivity : typeclass_instances.
Notation unify_itv ix iy := (unify Itv.sub ix iy).
#[export] Instance top_wider_anything i : unify_itv i Itv.Top.
Proof. by case: i. Qed.
#[export] Instance real_wider_anyreal i :
unify_itv (Itv.Real i) (Itv.Real `]-oo, +oo[).
Proof. by case: i => [l u]; apply/andP; rewrite !bnd_simp. Qed.
Section NumDomainTheory.
Context {R : numDomainType} {i : Itv.t}.
Implicit Type x : num_def R i.
Lemma le_num_itv_bound (x y : itv_bound int) :
(num_itv_bound R x <= num_itv_bound R y)%O = (x <= y)%O.
Proof.
by case: x y => [[] x | x] [[] y | y]//=; rewrite !bnd_simp ?ler_int ?ltr_int.
Qed.
Lemma num_itv_bound_le_BLeft (x : itv_bound int) (y : int) :
(num_itv_bound R x <= BLeft (y%:~R : R))%O = (x <= BLeft y)%O.
Proof.
rewrite -[BLeft y%:~R]/(map_itv_bound intr (BLeft y)).
by rewrite le_num_itv_bound.
Qed.
Lemma BRight_le_num_itv_bound (x : int) (y : itv_bound int) :
(BRight (x%:~R : R) <= num_itv_bound R y)%O = (BRight x <= y)%O.
Proof.
rewrite -[BRight x%:~R]/(map_itv_bound intr (BRight x)).
by rewrite le_num_itv_bound.
Qed.
Lemma num_spec_sub (x y : Itv.t) : Itv.sub x y ->
forall z : R, num_spec x z -> num_spec y z.
Proof.
case: x y => [| x] [| y] //= x_sub_y z /andP[rz]; rewrite /Itv.num_sem rz/=.
move: x y x_sub_y => [lx ux] [ly uy] /andP[lel leu] /=.
move=> /andP[lxz zux]; apply/andP; split.
- by apply: le_trans lxz; rewrite le_num_itv_bound.
- by apply: le_trans zux _; rewrite le_num_itv_bound.
Qed.
Definition empty_itv := Itv.Real `[1, 0]%Z.
Lemma bottom x : ~ unify_itv i empty_itv.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /andP[] /le_trans /[apply]; rewrite ler10.
Qed.
Lemma gt0 x : unify_itv i (Itv.Real `]0%Z, +oo[) -> 0 < x%:num :> R.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_].
by rewrite /= in_itv/= andbT.
Qed.
Lemma le0F x : unify_itv i (Itv.Real `]0%Z, +oo[) -> x%:num <= 0 :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT => /lt_geF.
Qed.
Lemma lt0 x : unify_itv i (Itv.Real `]-oo, 0%Z[) -> x%:num < 0 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.
Lemma ge0F x : unify_itv i (Itv.Real `]-oo, 0%Z[) -> 0 <= x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /lt_geF.
Qed.
Lemma ge0 x : unify_itv i (Itv.Real `[0%Z, +oo[) -> 0 <= x%:num :> R.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT.
Qed.
Lemma lt0F x : unify_itv i (Itv.Real `[0%Z, +oo[) -> x%:num < 0 :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT => /le_gtF.
Qed.
Lemma le0 x : unify_itv i (Itv.Real `]-oo, 0%Z]) -> x%:num <= 0 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.
Lemma gt0F x : unify_itv i (Itv.Real `]-oo, 0%Z]) -> 0 < x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /le_gtF.
Qed.
Lemma cmp0 x : unify_itv i (Itv.Real `]-oo, +oo[) -> 0 >=< x%:num.
Proof. by case: i x => [//| i' [x /=/andP[]]]. Qed.
Lemma neq0 x :
unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i ->
x%:num != 0 :> R.
Proof.
case: i x => [//| [l u] [x /= Px]]; apply: contra => /eqP x0 /=.
move: Px; rewrite x0 => /and3P[_ /= l0 u0]; apply/andP; split.
- by case: l l0 => [[] l /= |//]; rewrite !bnd_simp ?lerz0 ?ltrz0.
- by case: u u0 => [[] u /= |//]; rewrite !bnd_simp ?ler0z ?ltr0z.
Qed.
Lemma eq0F x :
unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i ->
x%:num == 0 :> R = false.
Proof. by move=> u; apply/negbTE/neq0. Qed.
Lemma lt1 x : unify_itv i (Itv.Real `]-oo, 1%Z[) -> x%:num < 1 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.
Lemma ge1F x : unify_itv i (Itv.Real `]-oo, 1%Z[) -> 1 <= x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /lt_geF.
Qed.
Lemma le1 x : unify_itv i (Itv.Real `]-oo, 1%Z]) -> x%:num <= 1 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.
Lemma gt1F x : unify_itv i (Itv.Real `]-oo, 1%Z]) -> 1 < x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /le_gtF.
Qed.
Lemma widen_itv_subproof x i' : Itv.sub i i' -> num_spec i' x%:num.
Proof. by case: x => x /= /[swap] /num_spec_sub; apply. Qed.
Definition widen_itv x i' (uni : unify_itv i i') :=
Itv.mk (widen_itv_subproof x uni).
Lemma widen_itvE x (uni : unify_itv i i) : @widen_itv x i uni = x.
Proof. exact/val_inj. Qed.
Lemma posE x (uni : unify_itv i (Itv.Real `]0%Z, +oo[)) :
(widen_itv x%:num%:itv uni)%:num = x%:num.
Proof. by []. Qed.
Lemma nngE x (uni : unify_itv i (Itv.Real `[0%Z, +oo[)) :
(widen_itv x%:num%:itv uni)%:num = x%:num.
Proof. by []. Qed.
End NumDomainTheory.
Arguments bottom {R i} _ {_}.
Arguments gt0 {R i} _ {_}.
Arguments le0F {R i} _ {_}.
Arguments lt0 {R i} _ {_}.
Arguments ge0F {R i} _ {_}.
Arguments ge0 {R i} _ {_}.
Arguments lt0F {R i} _ {_}.
Arguments le0 {R i} _ {_}.
Arguments gt0F {R i} _ {_}.
Arguments cmp0 {R i} _ {_}.
Arguments neq0 {R i} _ {_}.
Arguments eq0F {R i} _ {_}.
Arguments lt1 {R i} _ {_}.
Arguments ge1F {R i} _ {_}.
Arguments le1 {R i} _ {_}.
Arguments gt1F {R i} _ {_}.
Arguments widen_itv {R i} _ {_ _}.
Arguments widen_itvE {R i} _ {_}.
Arguments posE {R i} _ {_}.
Arguments nngE {R i} _ {_}.
Notation "[ 'gt0' 'of' x ]" := (ltac:(refine (gt0 x%:itv))).
Notation "[ 'lt0' 'of' x ]" := (ltac:(refine (lt0 x%:itv))).
Notation "[ 'ge0' 'of' x ]" := (ltac:(refine (ge0 x%:itv))).
Notation "[ 'le0' 'of' x ]" := (ltac:(refine (le0 x%:itv))).
Notation "[ 'cmp0' 'of' x ]" := (ltac:(refine (cmp0 x%:itv))).
Notation "[ 'neq0' 'of' x ]" := (ltac:(refine (neq0 x%:itv))).
#[export] Hint Extern 0 (is_true (0%R < _)%R) => solve [apply: gt0] : core.
#[export] Hint Extern 0 (is_true (_ < 0%R)%R) => solve [apply: lt0] : core.
#[export] Hint Extern 0 (is_true (0%R <= _)%R) => solve [apply: ge0] : core.
#[export] Hint Extern 0 (is_true (_ <= 0%R)%R) => solve [apply: le0] : core.
#[export] Hint Extern 0 (is_true (_ \is Num.real)) => solve [apply: cmp0]
: core.
#[export] Hint Extern 0 (is_true (0%R >=< _)%R) => solve [apply: cmp0] : core.
#[export] Hint Extern 0 (is_true (_ != 0%R)) => solve [apply: neq0] : core.
#[export] Hint Extern 0 (is_true (_ < 1%R)%R) => solve [apply: lt1] : core.
#[export] Hint Extern 0 (is_true (_ <= 1%R)%R) => solve [apply: le1] : core.
Notation "x %:i01" := (widen_itv x%:itv : {i01 _}) (only parsing) : ring_scope.
Notation "x %:i01" := (@widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[0, 1]%Z) _)
(only printing) : ring_scope.
Notation "x %:pos" := (widen_itv x%:itv : {posnum _}) (only parsing)
: ring_scope.
Notation "x %:pos" := (@widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `]0%Z, +oo[) _)
(only printing) : ring_scope.
Notation "x %:nng" := (widen_itv x%:itv : {nonneg _}) (only parsing)
: ring_scope.
Notation "x %:nng" := (@widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[0%Z, +oo[) _)
(only printing) : ring_scope.
Local Open Scope ring_scope.
Module Instances.
Import IntItv.
Section NumDomainInstances.
Context {R : numDomainType}.
Lemma num_spec_zero : num_spec (Itv.Real `[0, 0]) (0 : R).
Proof. by apply/andP; split; [exact: real0 | rewrite /= in_itv/= lexx]. Qed.
Canonical zero_inum := Itv.mk num_spec_zero.
Lemma num_spec_one : num_spec (Itv.Real `[1, 1]) (1 : R).
Proof. by apply/andP; split; [exact: real1 | rewrite /= in_itv/= lexx]. Qed.
Canonical one_inum := Itv.mk num_spec_one.
Lemma opp_boundr (x : R) b :
(BRight (- x)%R <= num_itv_bound R (opp_bound b))%O
= (num_itv_bound R b <= BLeft x)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2.
Qed.
Lemma opp_boundl (x : R) b :
(num_itv_bound R (opp_bound b) <= BLeft (- x)%R)%O
= (BRight x <= num_itv_bound R b)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2.
Qed.
Lemma num_spec_opp (i : Itv.t) (x : num_def R i) (r := Itv.real1 opp i) :
num_spec r (- x%:num).
Proof.
apply: Itv.spec_real1 (Itv.P x).
case: x => x /= _ [l u] /and3P[xr lx xu].
rewrite /Itv.num_sem/= realN xr/=; apply/andP.
by rewrite opp_boundl opp_boundr.
Qed.
Canonical opp_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_opp x).
Lemma num_itv_add_boundl (x1 x2 : R) b1 b2 :
(num_itv_bound R b1 <= BLeft x1)%O -> (num_itv_bound R b2 <= BLeft x2)%O ->
(num_itv_bound R (add_boundl b1 b2) <= BLeft (x1 + x2)%R)%O.
Proof.
case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//].
case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr_tmp.
- exact: lerD.
- exact: ler_ltD.
- exact: ltr_leD.
- exact: ltrD.
Qed.
Lemma num_itv_add_boundr (x1 x2 : R) b1 b2 :
(BRight x1 <= num_itv_bound R b1)%O -> (BRight x2 <= num_itv_bound R b2)%O ->
(BRight (x1 + x2)%R <= num_itv_bound R (add_boundr b1 b2))%O.
Proof.
case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//].
case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr_tmp.
- exact: ltrD.
- exact: ltr_leD.
- exact: ler_ltD.
- exact: lerD.
Qed.
Lemma num_spec_add (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
(r := Itv.real2 add xi yi) :
num_spec r (x%:num + y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
rewrite /Itv.num_sem realD//=; apply/andP.
by rewrite num_itv_add_boundl ?num_itv_add_boundr.
Qed.
Canonical add_inum (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) :=
Itv.mk (num_spec_add x y).
Variant sign_spec (l u : itv_bound int) (x : R) : signi -> Set :=
| ISignEqZero : l = BLeft 0 -> u = BRight 0 -> x = 0 ->
sign_spec l u x (Known EqZero)
| ISignNonNeg : (BLeft 0%:Z <= l)%O -> (BRight 0%:Z < u)%O -> 0 <= x ->
sign_spec l u x (Known NonNeg)
| ISignNonPos : (l < BLeft 0%:Z)%O -> (u <= BRight 0%:Z)%O -> x <= 0 ->
sign_spec l u x (Known NonPos)
| ISignBoth : (l < BLeft 0%:Z)%O -> (BRight 0%:Z < u)%O -> x \in Num.real ->
sign_spec l u x Unknown.
Lemma signP (l u : itv_bound int) (x : R) :
(num_itv_bound R l <= BLeft x)%O -> (BRight x <= num_itv_bound R u)%O ->
x \in Num.real ->
sign_spec l u x (sign (Interval l u)).
Proof.
move=> + + xr; rewrite /sign/sign_boundl/sign_boundr.
have [lneg|lpos|->] := ltgtP l; have [uneg|upos|->] := ltgtP u => lx xu.
- apply: ISignNonPos => //; first exact: ltW.
have:= le_trans xu (eqbRL (le_num_itv_bound _ _) (ltW uneg)).
by rewrite bnd_simp.
- exact: ISignBoth.
- exact: ISignNonPos.
- have:= @ltxx _ _ (num_itv_bound R l).
rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
by rewrite le_num_itv_bound (le_trans (ltW uneg)).
- apply: ISignNonNeg => //; first exact: ltW.
have:= le_trans (eqbRL (le_num_itv_bound _ _) (ltW lpos)) lx.
by rewrite bnd_simp.
- have:= @ltxx _ _ (num_itv_bound R l).
rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
by rewrite le_num_itv_bound ?leBRight_ltBLeft.
- have:= @ltxx _ _ (num_itv_bound R (BLeft 0%Z)).
rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
by rewrite le_num_itv_bound -?ltBRight_leBLeft.
- exact: ISignNonNeg.
- apply: ISignEqZero => //.
by apply/le_anti/andP; move: lx xu; rewrite !bnd_simp.
Qed.
Lemma num_itv_mul_boundl b1 b2 (x1 x2 : R) :
(BLeft 0%:Z <= b1 -> BLeft 0%:Z <= b2 ->
num_itv_bound R b1 <= BLeft x1 ->
num_itv_bound R b2 <= BLeft x2 ->
num_itv_bound R (mul_boundl b1 b2) <= BLeft (x1 * x2))%O.
Proof.
move: b1 b2 => [[] b1 | []//] [[] b2 | []//] /=; rewrite 4!bnd_simp.
- set bl := match b1 with 0%Z => _ | _ => _ end.
have -> : bl = BLeft (b1 * b2).
rewrite {}/bl; move: b1 b2 => [[|p1]|p1] [[|p2]|p2]; congr BLeft.
by rewrite mulr0.
by rewrite bnd_simp intrM -2!(ler0z R); apply: ler_pM.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp// => b1p b2p sx1 sx2.
+ by rewrite mulr_ge0 ?(le_trans _ (ltW sx2)) ?ler0z.
+ rewrite intrM (@lt_le_trans _ _ (b1.+1%:~R * x2)) ?ltr_pM2l//.
by rewrite ler_pM2r// (le_lt_trans _ sx2) ?ler0z.
- case: b2 => [[|b2] | b2]; rewrite !bnd_simp// => b1p b2p sx1 sx2.
+ by rewrite mulr_ge0 ?(le_trans _ (ltW sx1)) ?ler0z.
+ rewrite intrM (@le_lt_trans _ _ (b1%:~R * x2)) ?ler_wpM2l ?ler0z//.
by rewrite ltr_pM2r ?(lt_le_trans _ sx2).
- by rewrite -2!(ler0z R) bnd_simp intrM; apply: ltr_pM.
Qed.
Lemma num_itv_mul_boundr b1 b2 (x1 x2 : R) :
(0 <= x1 -> 0 <= x2 ->
BRight x1 <= num_itv_bound R b1 ->
BRight x2 <= num_itv_bound R b2 ->
BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O.
Proof.
case: b1 b2 => [b1b b1 | []] [b2b b2 | []] //= x1p x2p; last first.
- case: b2b b2 => -[[|//] | //] _ x20.
+ have:= @ltxx _ (itv_bound R) (BLeft 0%:~R).
by rewrite (lt_le_trans _ x20).
+ have -> : x2 = 0 by apply/le_anti/andP.
by rewrite mulr0.
- case: b1b b1 => -[[|//] |//] x10 _.
+ have:= @ltxx _ (itv_bound R) (BLeft 0%Z%:~R).
by rewrite (lt_le_trans _ x10).
+ by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
case: b1b b2b => -[]; rewrite -[intRing.mulz]/GRing.mul.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
+ by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b).
+ case: b2 x2b => [[| b2] | b2] => x2b; rewrite bnd_simp.
* by have:= @ltxx _ R 0; rewrite (le_lt_trans x2p x2b).
* by rewrite intrM ltr_pM.
* have:= @ltxx _ R 0; rewrite (le_lt_trans x2p)//.
by rewrite (lt_le_trans x2b) ?lerz0.
+ have:= @ltxx _ R 0; rewrite (le_lt_trans x1p)//.
by rewrite (lt_le_trans x1b) ?lerz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
+ by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b).
+ case: b2 x2b => [[| b2] | b2] x2b; rewrite bnd_simp.
* exact: mulr_ge0_le0.
* by rewrite intrM (le_lt_trans (ler_wpM2l x1p x2b)) ?ltr_pM2r.
* have:= @ltxx _ _ x2.
by rewrite (le_lt_trans x2b) ?(lt_le_trans _ x2p) ?ltrz0.
+ have:= @ltxx _ _ x1.
by rewrite (lt_le_trans x1b) ?(le_trans _ x1p) ?lerz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
+ case: b2 x2b => [[|b2] | b2] x2b; rewrite bnd_simp.
* by have:= @ltxx _ _ x2; rewrite (lt_le_trans x2b).
* by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
* have:= @ltxx _ _ x2.
by rewrite (lt_le_trans x2b) ?(le_trans _ x2p) ?lerz0.
+ case: b2 x2b => [[|b2] | b2] x2b; rewrite bnd_simp.
* by have:= @ltxx _ _ x2; rewrite (lt_le_trans x2b).
* by rewrite intrM (le_lt_trans (ler_wpM2r x2p x1b)) ?ltr_pM2l.
* have:= @ltxx _ _ x2.
by rewrite (lt_le_trans x2b) ?(le_trans _ x2p) ?lerz0.
+ have:= @ltxx _ _ x1.
by rewrite (le_lt_trans x1b) ?(lt_le_trans _ x1p) ?ltrz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
+ by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
+ case: b2 x2b => [[| b2] | b2] x2b; rewrite bnd_simp.
* by have -> : x2 = 0; [apply/le_anti/andP | rewrite mulr0].
* by rewrite intrM ler_pM.
* have:= @ltxx _ _ x2.
by rewrite (le_lt_trans x2b) ?(lt_le_trans _ x2p) ?ltrz0.
+ have:= @ltxx _ _ x1.
by rewrite (le_lt_trans x1b) ?(lt_le_trans _ x1p) ?ltrz0.
Qed.
Lemma BRight_le_mul_boundr b1 b2 (x1 x2 : R) :
(0 <= x1 -> x2 \in Num.real -> BRight 0%Z <= b2 ->
BRight x1 <= num_itv_bound R b1 ->
BRight x2 <= num_itv_bound R b2 ->
BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O.
Proof.
move=> x1ge0 x2r b2ge0 lex1b1 lex2b2.
have /orP[x2ge0 | x2le0] := x2r; first exact: num_itv_mul_boundr.
have lem0 : (BRight (x1 * x2) <= BRight 0%R)%O.
by rewrite bnd_simp mulr_ge0_le0 // ltW.
apply: le_trans lem0 _.
rewrite -(mulr0z 1) BRight_le_num_itv_bound.
apply: mul_boundr_gt0 => //.
by rewrite -(@BRight_le_num_itv_bound R) (le_trans _ lex1b1).
Qed.
Lemma comparable_num_itv_bound (x y : itv_bound int) :
(num_itv_bound R x >=< num_itv_bound R y)%O.
Proof.
by case: x y => [[] x | []] [[] y | []]//; apply/orP;
rewrite !bnd_simp ?ler_int ?ltr_int;
case: leP => xy; apply/orP => //; rewrite ltW ?orbT.
Qed.
Lemma num_itv_bound_min (x y : itv_bound int) :
num_itv_bound R (Order.min x y)
= Order.min (num_itv_bound R x) (num_itv_bound R y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !minEle le_num_itv_bound lexy|].
rewrite minElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//.
exact: comparable_num_itv_bound.
Qed.
Lemma num_itv_bound_max (x y : itv_bound int) :
num_itv_bound R (Order.max x y)
= Order.max (num_itv_bound R x) (num_itv_bound R y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !maxEle le_num_itv_bound lexy|].
rewrite maxElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//.
exact: comparable_num_itv_bound.
Qed.
Lemma num_spec_mul (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
(r := Itv.real2 mul xi yi) :
num_spec r (x%:num * y%:num).
Proof.
rewrite {}/r; case: xi yi x y => [//| [xl xu]] [//| [yl yu]].
case=> [x /=/and3P[xr /= xlx xxu]] [y /=/and3P[yr /= yly yyu]].
rewrite -/(sign (Interval xl xu)) -/(sign (Interval yl yu)).
have ns000 : @Itv.num_sem R `[0, 0] 0 by apply/and3P.
have xyr : x * y \in Num.real by exact: realM.
case: (signP xlx xxu xr) => xlb xub xs.
- by rewrite xs mul0r; case: (signP yly yyu yr).
- case: (signP yly yyu yr) => ylb yub ys.
+ by rewrite ys mulr0.
+ apply/and3P; split=> //=.
* exact: num_itv_mul_boundl xlx yly.
* exact: num_itv_mul_boundr xxu yyu.
+ apply/and3P; split=> //=; rewrite -[x * y]opprK -mulrN.
* by rewrite opp_boundl num_itv_mul_boundr ?oppr_ge0// opp_boundr.
* by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0.
+ apply/and3P; split=> //=.
* rewrite -[x * y]opprK -mulrN opp_boundl.
by rewrite BRight_le_mul_boundr ?realN ?opp_boundr// opp_bound_gt0 ltW.
* by rewrite BRight_le_mul_boundr// ltW.
- case: (signP yly yyu yr) => ylb yub ys.
+ by rewrite ys mulr0.
+ apply/and3P; split=> //=; rewrite -[x * y]opprK -mulNr.
* rewrite opp_boundl.
by rewrite num_itv_mul_boundr ?oppr_ge0 ?opp_boundr.
* by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0.
+ apply/and3P; split=> //=; rewrite -mulrNN.
* by rewrite num_itv_mul_boundl ?opp_bound_ge0 ?opp_boundl.
* by rewrite num_itv_mul_boundr ?oppr_ge0 ?opp_boundr.
+ apply/and3P; split=> //=; rewrite -[x * y]opprK.
* rewrite -mulNr opp_boundl BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr//.
exact: ltW.
* rewrite opprK -mulrNN.
by rewrite BRight_le_mul_boundr ?opp_boundr
?oppr_ge0 ?realN ?opp_bound_gt0// ltW.
- case: (signP yly yyu yr) => ylb yub ys.
+ by rewrite ys mulr0.
+ apply/and3P; split=> //=; rewrite mulrC mul_boundrC.
* rewrite -[y * x]opprK -mulrN opp_boundl.
rewrite BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
by rewrite opp_bound_gt0 ltW.
* by rewrite BRight_le_mul_boundr// ltW.
+ apply/and3P; split=> //=; rewrite mulrC mul_boundrC.
* rewrite -[y * x]opprK -mulNr opp_boundl.
by rewrite BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr// ltW.
* rewrite -mulrNN BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
by rewrite opp_bound_gt0 ltW.
apply/and3P; rewrite xyr/= num_itv_bound_min num_itv_bound_max.
rewrite (comparable_ge_min _ (comparable_num_itv_bound _ _)).
rewrite (comparable_le_max _ (comparable_num_itv_bound _ _)).
case: (comparable_leP xr) => [x0 | /ltW x0]; split=> //.
- apply/orP; right; rewrite -[x * y]opprK -mulrN opp_boundl.
by rewrite BRight_le_mul_boundr ?realN ?opp_boundr// opp_bound_gt0 ltW.
- by apply/orP; right; rewrite BRight_le_mul_boundr// ltW.
- apply/orP; left; rewrite -[x * y]opprK -mulNr opp_boundl.
by rewrite BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr// ltW.
- apply/orP; left; rewrite -mulrNN.
rewrite BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
by rewrite opp_bound_gt0 ltW.
Qed.
Canonical mul_inum (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) :=
Itv.mk (num_spec_mul x y).
Lemma num_spec_min (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
(r := Itv.real2 min xi yi) :
num_spec r (Order.min x%:num y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split; rewrite ?min_real//= num_itv_bound_min real_BSide_min//.
- apply: (comparable_min_le_min (comparable_num_itv_bound _ _)) => //.
exact: real_comparable.
- apply: (comparable_min_le_min _ (comparable_num_itv_bound _ _)) => //.
exact: real_comparable.
Qed.
Lemma num_spec_max (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
(r := Itv.real2 max xi yi) :
num_spec r (Order.max x%:num y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split; rewrite ?max_real//= num_itv_bound_max real_BSide_max//.
- apply: (comparable_max_le_max (comparable_num_itv_bound _ _)) => //.
exact: real_comparable.
- apply: (comparable_max_le_max _ (comparable_num_itv_bound _ _)) => //.
exact: real_comparable.
Qed.
(* We can't directly put an instance on Order.min for R : numDomainType
since we may want instances for other porderType
(typically \bar R or even nat). So we resort on this additional
canonical structure. *)
Record min_max_typ d := MinMaxTyp {
min_max_sort : porderType d;
#[canonical=no]
min_max_sem : interval int -> min_max_sort -> bool;
#[canonical=no]
min_max_minP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi)
(y : Itv.def min_max_sem yi),
let: r := Itv.real2 min xi yi in
Itv.spec min_max_sem r (Order.min x%:num y%:num);
#[canonical=no]
min_max_maxP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi)
(y : Itv.def min_max_sem yi),
let: r := Itv.real2 max xi yi in
Itv.spec min_max_sem r (Order.max x%:num y%:num);
}.
(* The default instances on porderType, for min... *)
Canonical min_typ_inum d (t : min_max_typ d) (xi yi : Itv.t)
(x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi)
(r := Itv.real2 min xi yi) :=
Itv.mk (min_max_minP x y).
(* ...and for max *)
Canonical max_typ_inum d (t : min_max_typ d) (xi yi : Itv.t)
(x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi)
(r := Itv.real2 min xi yi) :=
Itv.mk (min_max_maxP x y).
(* Instance of the above structure for numDomainType *)
Canonical num_min_max_typ := MinMaxTyp num_spec_min num_spec_max.
Lemma nat_num_spec (i : Itv.t) (n : nat) : nat_spec i n = num_spec i (n%:R : R).
Proof.
case: i => [//| [l u]]; rewrite /= /Itv.num_sem realn/=; congr (_ && _).
- by case: l => [[] l |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int.
- by case: u => [[] u |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int.
Qed.
Lemma num_spec_natmul (xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni)
(r := Itv.real2 mul xi ni) :
num_spec r (x%:num *+ n%:num).
Proof.
have Pn : num_spec ni (n%:num%:R : R) by case: n => /= n; rewrite nat_num_spec.
by rewrite -mulr_natr -[n%:num%:R]/((Itv.Def Pn)%:num) num_spec_mul.
Qed.
Canonical natmul_inum (xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni) :=
Itv.mk (num_spec_natmul x n).
Lemma num_spec_int (i : Itv.t) (n : int) :
num_spec i n = num_spec i (n%:~R : R).
Proof.
case: i => [//| [l u]]; rewrite /= /Itv.num_sem num_real realz/=.
congr (andb _ _).
- by case: l => [[] l |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int.
- by case: u => [[] u |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int.
Qed.
Lemma num_spec_intmul (xi ii : Itv.t) (x : num_def R xi) (i : num_def int ii)
(r := Itv.real2 mul xi ii) :
num_spec r (x%:num *~ i%:num).
Proof.
have Pi : num_spec ii (i%:num%:~R : R) by case: i => /= i; rewrite num_spec_int.
by rewrite -mulrzr -[i%:num%:~R]/((Itv.Def Pi)%:num) num_spec_mul.
Qed.
Canonical intmul_inum (xi ni : Itv.t) (x : num_def R xi) (n : num_def int ni) :=
Itv.mk (num_spec_intmul x n).
Lemma num_itv_bound_keep_pos (op : R -> R) (x : R) b :
{homo op : x / 0 <= x} -> {homo op : x / 0 < x} ->
(num_itv_bound R b <= BLeft x)%O ->
(num_itv_bound R (keep_pos_bound b) <= BLeft (op x))%O.
Proof.
case: b => [[] [] [| b] // | []//] hle hlt; rewrite !bnd_simp.
- exact: hle.
- by move=> blex; apply: le_lt_trans (hlt _ _) => //; apply: lt_le_trans blex.
- exact: hlt.
- by move=> bltx; apply: le_lt_trans (hlt _ _) => //; apply: le_lt_trans bltx.
Qed.
Lemma num_itv_bound_keep_neg (op : R -> R) (x : R) b :
{homo op : x / x <= 0} -> {homo op : x / x < 0} ->
(BRight x <= num_itv_bound R b)%O ->
(BRight (op x) <= num_itv_bound R (keep_neg_bound b))%O.
Proof.
case: b => [[] [[|//] | b] | []//] hge hgt; rewrite !bnd_simp.
- exact: hgt.
- by move=> xltb; apply: hgt; apply: lt_le_trans xltb _; rewrite lerz0.
- exact: hge.
- by move=> xleb; apply: hgt; apply: le_lt_trans xleb _; rewrite ltrz0.
Qed.
Lemma num_spec_inv (i : Itv.t) (x : num_def R i) (r := Itv.real1 inv i) :
num_spec r (x%:num^-1).
Proof.
apply: Itv.spec_real1 (Itv.P x).
case: x => x /= _ [l u] /and3P[xr /= lx xu].
rewrite /Itv.num_sem/= realV xr/=; apply/andP; split.
- apply: num_itv_bound_keep_pos lx.
+ by move=> ?; rewrite invr_ge0.
+ by move=> ?; rewrite invr_gt0.
- apply: num_itv_bound_keep_neg xu.
+ by move=> ?; rewrite invr_le0.
+ by move=> ?; rewrite invr_lt0.
Qed.
Canonical inv_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_inv x).
Lemma num_itv_bound_exprn_le1 (x : R) n l u :
(num_itv_bound R l <= BLeft x)%O ->
(BRight x <= num_itv_bound R u)%O ->
(BRight (x ^+ n) <= num_itv_bound R (exprn_le1_bound l u))%O.
Proof.
case: u => [bu [[//|[|//]] |//] | []//].
rewrite /exprn_le1_bound; case: (leP _ l) => [lge1 /= |//] lx xu.
rewrite bnd_simp; case: n => [| n]; rewrite ?expr0// expr_le1//.
by case: bu xu; rewrite bnd_simp//; apply: ltW.
case: l lge1 lx => [[] l | []//]; rewrite !bnd_simp -(@ler_int R).
- exact: le_trans.
- by move=> + /ltW; apply: le_trans.
Qed.
Lemma num_spec_exprn (i : Itv.t) (x : num_def R i) n (r := Itv.real1 exprn i) :
num_spec r (x%:num ^+ n).
Proof.
apply: (@Itv.spec_real1 _ _ (fun x => x^+n) _ _ _ _ (Itv.P x)).
case: x => x /= _ [l u] /and3P[xr /= lx xu].
rewrite /Itv.num_sem realX//=; apply/andP; split.
- apply: (@num_itv_bound_keep_pos (fun x => x^+n)) lx.
+ exact: exprn_ge0.
+ exact: exprn_gt0.
- exact: num_itv_bound_exprn_le1 lx xu.
Qed.
Canonical exprn_inum (i : Itv.t) (x : num_def R i) n :=
Itv.mk (num_spec_exprn x n).
Lemma num_spec_norm {V : normedZmodType R} (x : V) :
num_spec (Itv.Real `[0, +oo[) `|x|.
Proof. by apply/and3P; split; rewrite //= ?normr_real ?bnd_simp ?normr_ge0. Qed.
Canonical norm_inum {V : normedZmodType R} (x : V) := Itv.mk (num_spec_norm x).
End NumDomainInstances.
Section RcfInstances.
Context {R : rcfType}.
Definition sqrt_itv (i : Itv.t) : Itv.t :=
match i with
| Itv.Top => Itv.Real `[0%Z, +oo[
| Itv.Real (Interval l u) =>
match l with
| BSide b 0%Z => Itv.Real (Interval (BSide b 0%Z) +oo)
| BSide b (Posz (S _)) => Itv.Real `]0%Z, +oo[
| _ => Itv.Real `[0, +oo[
end
end.
Arguments sqrt_itv /.
Lemma num_spec_sqrt (i : Itv.t) (x : num_def R i) (r := sqrt_itv i) :
num_spec r (Num.sqrt x%:num).
Proof.
have: Itv.num_sem `[0%Z, +oo[ (Num.sqrt x%:num).
by apply/and3P; rewrite /= num_real !bnd_simp sqrtr_ge0.
rewrite {}/r; case: i x => [//| [[bl [l |//] |//] u]] [x /= +] _.
case: bl l => -[| l] /and3P[xr /= bx _]; apply/and3P; split=> //=;
move: bx; rewrite !bnd_simp ?sqrtr_ge0// sqrtr_gt0;
[exact: lt_le_trans | exact: le_lt_trans..].
Qed.
Canonical sqrt_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrt x).
End RcfInstances.
Section NumClosedFieldInstances.
Context {R : numClosedFieldType}.
Definition sqrtC_itv (i : Itv.t) : Itv.t :=
match i with
| Itv.Top => Itv.Top
| Itv.Real (Interval l u) =>
match l with
| BSide b (Posz _) => Itv.Real (Interval (BSide b 0%Z) +oo)
| _ => Itv.Top
end
end.
Arguments sqrtC_itv /.
Lemma num_spec_sqrtC (i : Itv.t) (x : num_def R i) (r := sqrtC_itv i) :
num_spec r (sqrtC x%:num).
Proof.
rewrite {}/r; case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]].
case: l lx => [bl [l |//] |[]//] lx; apply/and3P; split=> //=.
by apply: real_sqrtC; case: bl lx => /[!bnd_simp] [|/ltW]; apply: le_trans.
case: bl lx => /[!bnd_simp] lx.
- by rewrite sqrtC_ge0; apply: le_trans lx.
- by rewrite sqrtC_gt0; apply: le_lt_trans lx.
Qed.
Canonical sqrtC_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrtC x).
End NumClosedFieldInstances.
Section NatInstances.
Local Open Scope nat_scope.
Implicit Type (n : nat).
Lemma nat_spec_zero : nat_spec (Itv.Real `[0, 0]%Z) 0. Proof. by []. Qed.
Canonical zeron_inum := Itv.mk nat_spec_zero.
Lemma nat_spec_succ n : nat_spec (Itv.Real `[1, +oo[%Z) n.+1. Proof. by []. Qed.
Canonical succn_inum n := Itv.mk (nat_spec_succ n).
Lemma nat_spec_add (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
(r := Itv.real2 add xi yi) :
nat_spec r (x%:num + y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrD.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_add.
Qed.
Canonical addn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
Itv.mk (nat_spec_add x y).
Lemma nat_spec_double (i : Itv.t) (n : nat_def i) (r := Itv.real2 add i i) :
nat_spec r (n%:num.*2).
Proof. by rewrite -addnn nat_spec_add. Qed.
Canonical double_inum (i : Itv.t) (x : nat_def i) := Itv.mk (nat_spec_double x).
Lemma nat_spec_mul (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
(r := Itv.real2 mul xi yi) :
nat_spec r (x%:num * y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrM.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_mul.
Qed.
Canonical muln_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
Itv.mk (nat_spec_mul x y).
Lemma nat_spec_exp (i : Itv.t) (x : nat_def i) n (r := Itv.real1 exprn i) :
nat_spec r (x%:num ^ n).
Proof.
have Px : num_spec i (x%:num%:R : int).
by case: x => /= x; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrX -[x%:num%:R]/((Itv.Def Px)%:num).
exact: num_spec_exprn.
Qed.
Canonical expn_inum (i : Itv.t) (x : nat_def i) n := Itv.mk (nat_spec_exp x n).
Lemma nat_spec_min (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
(r := Itv.real2 min xi yi) :
nat_spec r (minn x%:num y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) -minEnat natr_min.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_min.
Qed.
Canonical minn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
Itv.mk (nat_spec_min x y).
Lemma nat_spec_max (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
(r := Itv.real2 max xi yi) :
nat_spec r (maxn x%:num y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) -maxEnat natr_max.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_max.
Qed.
Canonical maxn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
Itv.mk (nat_spec_max x y).
Canonical nat_min_max_typ := MinMaxTyp nat_spec_min nat_spec_max.
End NatInstances.
Section IntInstances.
Lemma num_spec_Posz n : num_spec (Itv.Real `[0, +oo[) (Posz n).
Proof. by apply/and3P; rewrite /= num_real !bnd_simp. Qed.
Canonical Posz_inum n := Itv.mk (num_spec_Posz n).
Lemma num_spec_Negz n : num_spec (Itv.Real `]-oo, -1]) (Negz n).
Proof. by apply/and3P; rewrite /= num_real !bnd_simp. Qed.
Canonical Negz_inum n := Itv.mk (num_spec_Negz n).
End IntInstances.
End Instances.
Export (canonicals) Instances.
Section Morph.
Context {R : numDomainType} {i : Itv.t}.
Local Notation nR := (num_def R i).
Implicit Types x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) i).
Lemma num_eq : {mono num : x y / x == y}. Proof. by []. Qed.
Lemma num_le : {mono num : x y / (x <= y)%O}. Proof. by []. Qed.
Lemma num_lt : {mono num : x y / (x < y)%O}. Proof. by []. Qed.
Lemma num_min : {morph num : x y / Order.min x y}.
Proof. by move=> x y; rewrite !minEle num_le -fun_if. Qed.
Lemma num_max : {morph num : x y / Order.max x y}.
Proof. by move=> x y; rewrite !maxEle num_le -fun_if. Qed.
End Morph.
Section MorphNum.
Context {R : numDomainType}.
Lemma num_abs_eq0 (a : R) : (`|a|%:nng == 0%:nng) = (a == 0).
Proof. by rewrite -normr_eq0. Qed.
End MorphNum.
Section MorphReal.
Context {R : numDomainType} {i : interval int}.
Local Notation nR := (num_def R (Itv.Real i)).
Implicit Type x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) i).
Lemma num_le_max a x y :
a <= Num.max x%:num y%:num = (a <= x%:num) || (a <= y%:num).
Proof. by rewrite -comparable_le_max// real_comparable. Qed.
Lemma num_ge_max a x y :
Num.max x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a).
Proof. by rewrite -comparable_ge_max// real_comparable. Qed.
Lemma num_le_min a x y :
a <= Num.min x%:num y%:num = (a <= x%:num) && (a <= y%:num).
Proof. by rewrite -comparable_le_min// real_comparable. Qed.
Lemma num_ge_min a x y :
Num.min x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a).
Proof. by rewrite -comparable_ge_min// real_comparable. Qed.
Lemma num_lt_max a x y :
a < Num.max x%:num y%:num = (a < x%:num) || (a < y%:num).
Proof. by rewrite -comparable_lt_max// real_comparable. Qed.
Lemma num_gt_max a x y :
Num.max x%:num y%:num < a = (x%:num < a) && (y%:num < a).
Proof. by rewrite -comparable_gt_max// real_comparable. Qed.
Lemma num_lt_min a x y :
a < Num.min x%:num y%:num = (a < x%:num) && (a < y%:num).
Proof. by rewrite -comparable_lt_min// real_comparable. Qed.
Lemma num_gt_min a x y :
Num.min x%:num y%:num < a = (x%:num < a) || (y%:num < a).
Proof. by rewrite -comparable_gt_min// real_comparable. Qed.
End MorphReal.
Section MorphGe0.
Context {R : numDomainType}.
Local Notation nR := (num_def R (Itv.Real `[0%Z, +oo[)).
Implicit Type x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) (Itv.Real `[0%Z, +oo[)).
Lemma num_abs_le a x : 0 <= a -> (`|a|%:nng <= x) = (a <= x%:num).
Proof. by move=> a0; rewrite -num_le//= ger0_norm. Qed.
Lemma num_abs_lt a x : 0 <= a -> (`|a|%:nng < x) = (a < x%:num).
Proof. by move=> a0; rewrite -num_lt/= ger0_norm. Qed.
End MorphGe0.
Section ItvNum.
Context (R : numDomainType).
Context (x : R) (l u : itv_bound int).
Context (x_real : x \in Num.real).
Context (l_le_x : (num_itv_bound R l <= BLeft x)%O).
Context (x_le_u : (BRight x <= num_itv_bound R u)%O).
Lemma itvnum_subdef : num_spec (Itv.Real (Interval l u)) x.
Proof. by apply/and3P. Qed.
Definition ItvNum : num_def R (Itv.Real (Interval l u)) := Itv.mk itvnum_subdef.
End ItvNum.
Section ItvReal.
Context (R : realDomainType).
Context (x : R) (l u : itv_bound int).
Context (l_le_x : (num_itv_bound R l <= BLeft x)%O).
Context (x_le_u : (BRight x <= num_itv_bound R u)%O).
Lemma itvreal_subdef : num_spec (Itv.Real (Interval l u)) x.
Proof. by apply/and3P; split; first exact: num_real. Qed.
Definition ItvReal : num_def R (Itv.Real (Interval l u)) :=
Itv.mk itvreal_subdef.
End ItvReal.
Section Itv01.
Context (R : numDomainType).
Context (x : R) (x_ge0 : 0 <= x) (x_le1 : x <= 1).
Lemma itv01_subdef : num_spec (Itv.Real `[0%Z, 1%Z]) x.
Proof. by apply/and3P; split; rewrite ?bnd_simp// ger0_real. Qed.
Definition Itv01 : num_def R (Itv.Real `[0%Z, 1%Z]) := Itv.mk itv01_subdef.
End Itv01.
Section Posnum.
Context (R : numDomainType) (x : R) (x_gt0 : 0 < x).
Lemma posnum_subdef : num_spec (Itv.Real `]0, +oo[) x.
Proof. by apply/and3P; rewrite /= gtr0_real. Qed.
Definition PosNum : {posnum R} := Itv.mk posnum_subdef.
End Posnum.
Section Nngnum.
Context (R : numDomainType) (x : R) (x_ge0 : 0 <= x).
Lemma nngnum_subdef : num_spec (Itv.Real `[0, +oo[) x.
Proof. by apply/and3P; rewrite /= ger0_real. Qed.
Definition NngNum : {nonneg R} := Itv.mk nngnum_subdef.
End Nngnum.
Variant posnum_spec (R : numDomainType) (x : R) :
R -> bool -> bool -> bool -> Type :=
| IsPosnum (p : {posnum R}) : posnum_spec x (p%:num) false true true.
Lemma posnumP (R : numDomainType) (x : R) : 0 < x ->
posnum_spec x x (x == 0) (0 <= x) (0 < x).
Proof.
move=> x_gt0; case: real_ltgt0P (x_gt0) => []; rewrite ?gtr0_real // => _ _.
by rewrite -[x]/(PosNum x_gt0)%:num; constructor.
Qed.
Variant nonneg_spec (R : numDomainType) (x : R) : R -> bool -> Type :=
| IsNonneg (p : {nonneg R}) : nonneg_spec x (p%:num) true.
Lemma nonnegP (R : numDomainType) (x : R) : 0 <= x -> nonneg_spec x x (0 <= x).
Proof. by move=> xge0; rewrite xge0 -[x]/(NngNum xge0)%:num; constructor. Qed.
Section Test1.
Variable R : numDomainType.
Variable x : {i01 R}.
Goal 0%:i01 = 1%:i01 :> {i01 R}.
Proof.
Abort.
Goal (- x%:num)%:itv = (- x%:num)%:itv :> {itv R & `[-1, 0]}.
Proof.
Abort.
Goal (1 - x%:num)%:i01 = x.
Proof.
Abort.
End Test1.
Section Test2.
Variable R : realDomainType.
Variable x y : {i01 R}.
Goal (x%:num * y%:num)%:i01 = x%:num%:i01.
Proof.
Abort.
End Test2.
Module Test3.
Section Test3.
Variable R : realDomainType.
Definition s_of_pq (p q : {i01 R}) : {i01 R} :=
(1 - ((1 - p%:num)%:i01%:num * (1 - q%:num)%:i01%:num))%:i01.
Lemma s_of_p0 (p : {i01 R}) : s_of_pq p 0%:i01 = p.
Proof. by apply/val_inj; rewrite /= subr0 mulr1 subKr. Qed.
Canonical onem_itv01 (p : {i01 R}) : {i01 R} :=
@Itv.mk _ _ _ (onem p%:num) [itv of 1 - p%:num].
Definition s_of_pq' (p q : {i01 R}) : {i01 R} :=
(`1- (`1-(p%:num) * `1-(q%:num)))%:i01.
End Test3.
End Test3.
|