1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
(* This file is a modification of an eponymous file from the CoqApprox *)
(* library. The header of the original file is reproduced below. Changes are *)
(* part of the analysis library and enjoy the same licence as this library. *)
(**
This file is part of the CoqApprox formalization of rigorous
polynomial approximation in Coq:
http://tamadi.gforge.inria.fr/CoqApprox/
Copyright (c) 2010-2013, ENS de Lyon and Inria.
This library is governed by the CeCILL-C license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/or redistribute the library under the terms of the CeCILL-C
license as circulated by CEA, CNRS and Inria at the following URL:
http://www.cecill.info/
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided
only with a limited warranty and the library's author, the holder of
the economic rights, and the successive licensors have only limited
liability. See the COPYING file for more details.
*)
(**md**************************************************************************)
(* # Compatibility with the real numbers of Coq *)
(******************************************************************************)
From Coq Require Import ZArith Rdefinitions Raxioms RIneq Rbasic_fun Zwf.
From Coq Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.
From Coq Require Import Rtrigo1 Reals.
From mathcomp Require Import all_ssreflect ssralg poly mxpoly ssrnum.
From mathcomp Require Import archimedean.
From HB Require Import structures.
From mathcomp Require Import mathcomp_extra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope R_scope.
Lemma Req_EM_T (r1 r2 : R) : {r1 = r2} + {r1 <> r2}.
Proof.
case: (total_order_T r1 r2) => [[r1Lr2 | <-] | r1Gr2].
- by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {2}r1Er2.
- by left.
by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {1}r1Er2.
Qed.
Definition eqr (r1 r2 : R) : bool :=
if Req_EM_T r1 r2 is left _ then true else false.
Lemma eqrP : Equality.axiom eqr.
Proof.
by move=> r1 r2; rewrite /eqr; case: Req_EM_T=> H; apply: (iffP idP).
Qed.
#[hnf] HB.instance Definition _ := hasDecEq.Build R eqrP.
Fact inhR : inhabited R.
Proof. exact: (inhabits 0). Qed.
Definition pickR (P : pred R) (n : nat) :=
let x := epsilon inhR P in if P x then Some x else None.
Fact pickR_some P n x : pickR P n = Some x -> P x.
Proof. by rewrite /pickR; case: (boolP (P _)) => // Px [<-]. Qed.
Fact pickR_ex (P : pred R) :
(exists x : R, P x) -> exists n, pickR P n.
Proof. by rewrite /pickR; move=> /(epsilon_spec inhR)->; exists 0%N. Qed.
Fact pickR_ext (P Q : pred R) : P =1 Q -> pickR P =1 pickR Q.
Proof.
move=> PEQ n; rewrite /pickR; set u := epsilon _ _; set v := epsilon _ _.
suff->: u = v by rewrite PEQ.
by congr epsilon; apply: functional_extensionality=> x; rewrite PEQ.
Qed.
#[hnf]
HB.instance Definition _ := hasChoice.Build R pickR_some pickR_ex pickR_ext.
Fact RplusA : associative (Rplus).
Proof. by move=> *; rewrite Rplus_assoc. Qed.
#[hnf]
HB.instance Definition _ := GRing.isZmodule.Build R
RplusA Rplus_comm Rplus_0_l Rplus_opp_l.
Fact RmultA : associative Rmult.
Proof. by move=> *; rewrite Rmult_assoc. Qed.
Fact R1_neq_0 : R1 != R0.
Proof. by apply/eqP/R1_neq_R0. Qed.
#[hnf]
HB.instance Definition _ := GRing.Zmodule_isRing.Build R
RmultA Rmult_1_l Rmult_1_r Rmult_plus_distr_r Rmult_plus_distr_l R1_neq_0.
#[hnf]
HB.instance Definition _ := GRing.Ring_hasCommutativeMul.Build R Rmult_comm.
Import Monoid.
HB.instance Definition _ := isComLaw.Build R 0 Rplus
RplusA Rplus_comm Rplus_0_l.
HB.instance Definition _ := isComLaw.Build R 1 Rmult
RmultA Rmult_comm Rmult_1_l.
HB.instance Definition _ := isMulLaw.Build R 0 Rmult Rmult_0_l Rmult_0_r.
HB.instance Definition _ := isAddLaw.Build R Rmult Rplus
Rmult_plus_distr_r Rmult_plus_distr_l.
Definition unit_R r := r != 0.
Lemma intro_unit_R x y : y * x = 1 /\ x * y = 1 -> unit_R x.
Proof.
move=> [yx_eq1 _]; apply: contra_eqN yx_eq1 => /eqP->.
by rewrite Rmult_0_r eq_sym R1_neq_0.
Qed.
Section Rinvx.
Let Rinvx r := if (r != 0) then / r else r.
Let neq0_RinvxE x : x != 0 -> Rinv x = Rinvx x.
Proof. by move=> x_neq0; rewrite -[RHS]/(if _ then _ else _) x_neq0. Qed.
Let RinvxE x : Rinv x = Rinvx x.
Proof.
have [->| ] := eqVneq x R0; last exact: neq0_RinvxE.
rewrite /GRing.inv /GRing.mul /= /Rinvx eqxx /=.
rewrite RinvImpl.Rinv_def; case: Req_appart_dec => //.
by move=> /[dup] -[] /Rlt_irrefl.
Qed.
Lemma RmultRinv : {in unit_R, left_inverse 1 Rinv Rmult}.
Proof.
move=> r; rewrite RinvxE -topredE /unit_R /Rinvx => /= rNZ /=.
by rewrite rNZ Rinv_l //; apply/eqP.
Qed.
Lemma RinvRmult : {in unit_R, right_inverse 1 Rinv Rmult}.
Proof.
move=> r; rewrite RinvxE -topredE /unit_R /Rinvx => /= rNZ /=.
by rewrite rNZ Rinv_r //; apply/eqP.
Qed.
Lemma Rinv_out : {in predC unit_R, Rinv =1 id}.
Proof. by move=> x; rewrite inE/= RinvxE /Rinvx -if_neg => ->. Qed.
End Rinvx.
#[deprecated(note="To be removed. Use GRing.inv instead.")]
Definition Rinvx := Rinv.
#[hnf]
HB.instance Definition _ := GRing.Ring_hasMulInverse.Build R
RmultRinv RinvRmult intro_unit_R Rinv_out.
Lemma R_idomainMixin x y : x * y = 0 -> (x == 0) || (y == 0).
Proof. by move=> /Rmult_integral []->; rewrite eqxx ?orbT. Qed.
#[hnf]
HB.instance Definition _ := GRing.ComUnitRing_isIntegral.Build R
R_idomainMixin.
Lemma R_fieldMixin : GRing.field_axiom R. Proof. by []. Qed.
HB.instance Definition _ := GRing.UnitRing_isField.Build R R_fieldMixin.
(** Reflect the order on the reals to bool *)
Definition Rleb r1 r2 := if Rle_dec r1 r2 is left _ then true else false.
Definition Rltb r1 r2 := Rleb r1 r2 && (r1 != r2).
Definition Rgeb r1 r2 := Rleb r2 r1.
Definition Rgtb r1 r2 := Rltb r2 r1.
Lemma RlebP r1 r2 : reflect (r1 <= r2) (Rleb r1 r2).
Proof. by rewrite /Rleb; apply: (iffP idP); case: Rle_dec. Qed.
Lemma RltbP r1 r2 : reflect (r1 < r2) (Rltb r1 r2).
Proof.
rewrite /Rltb /Rleb; apply: (iffP idP); case: Rle_dec=> //=.
- by case=> // r1Er2 /eqP[].
- by move=> _ r1Lr2; apply/eqP/Rlt_not_eq.
by move=> Nr1Lr2 r1Lr2; case: Nr1Lr2; left.
Qed.
(*
Ltac toR := rewrite /GRing.add /GRing.opp /GRing.zero /GRing.mul /GRing.inv
/GRing.one //=.
*)
Section ssreal_struct.
Import GRing.Theory.
Import Num.Theory.
Import Num.Def.
Local Open Scope R_scope.
Lemma Rleb_norm_add x y : Rleb (Rabs (x + y)) (Rabs x + Rabs y).
Proof. by apply/RlebP/Rabs_triang. Qed.
Lemma addr_Rgtb0 x y : Rltb 0 x -> Rltb 0 y -> Rltb 0 (x + y).
Proof. by move/RltbP=> Hx /RltbP Hy; apply/RltbP/Rplus_lt_0_compat. Qed.
Lemma Rnorm0_eq0 x : Rabs x = 0 -> x = 0.
Proof. by move=> H; case: (x == 0) /eqP=> // /Rabs_no_R0. Qed.
Lemma Rleb_leVge x y : Rleb 0 x -> Rleb 0 y -> (Rleb x y) || (Rleb y x).
Proof.
move/RlebP=> Hx /RlebP Hy; case: (Rlt_le_dec x y).
by move/Rlt_le/RlebP=> ->.
by move/RlebP=> ->; rewrite orbT.
Qed.
Lemma RnormM : {morph Rabs : x y / x * y}.
Proof. exact: Rabs_mult. Qed.
Lemma Rleb_def x y : (Rleb x y) = (Rabs (y - x) == y - x).
Proof.
apply/(sameP (RlebP x y))/(iffP idP)=> [/eqP H| /Rle_minus H].
apply: Rminus_le; rewrite -Ropp_minus_distr.
apply/Rge_le/Ropp_0_le_ge_contravar.
by rewrite -H; apply: Rabs_pos.
apply/eqP/Rabs_pos_eq.
rewrite -Ropp_minus_distr.
by apply/Ropp_0_ge_le_contravar/Rle_ge.
Qed.
Lemma Rltb_def x y : (Rltb x y) = (y != x) && (Rleb x y).
Proof.
apply/(sameP (RltbP x y))/(iffP idP).
case/andP=> /eqP H /RlebP/Rle_not_gt H2.
by case: (Rtotal_order x y)=> // [][] // /esym.
move=> H; apply/andP; split; [apply/eqP|apply/RlebP].
exact: Rgt_not_eq.
exact: Rlt_le.
Qed.
HB.instance Definition _ := Num.IntegralDomain_isNumRing.Build R
Rleb_norm_add addr_Rgtb0 Rnorm0_eq0 Rleb_leVge RnormM Rleb_def Rltb_def.
Lemma RleP : forall x y, reflect (Rle x y) (x <= y)%R.
Proof. exact: RlebP. Qed.
Lemma RltP : forall x y, reflect (Rlt x y) (x < y)%R.
Proof. exact: RltbP. Qed.
(* :TODO: *)
(* Lemma RgeP : forall x y, reflect (Rge x y) (x >= y)%R. *)
(* Proof. exact: RlebP. Qed. *)
(* Lemma RgtP : forall x y, reflect (Rgt x y) (x > y)%R. *)
(* Proof. exact: RltbP. Qed. *)
Lemma Rreal_axiom (x : R) : (0 <= x)%R || (x <= 0)%R.
Proof.
case: (Rle_dec 0 x)=> [/RleP ->|] //.
by move/Rnot_le_lt/Rlt_le/RleP=> ->; rewrite orbT.
Qed.
Lemma R_total : total (<=%O : rel R).
Proof.
move=> x y; case: (Rle_lt_dec x y) => [/RleP -> //|/Rlt_le/RleP ->];
by rewrite orbT.
Qed.
HB.instance Definition _ := Order.POrder_isTotal.Build _ R R_total.
Lemma Rarchimedean_axiom : Num.archimedean_axiom R.
Proof.
move=> x; exists (Z.abs_nat (up x) + 2)%N.
have [Hx1 Hx2]:= (archimed x).
have Hz (z : Z): z = (z - 1 + 1)%Z by rewrite Zplus_comm Zplus_minus.
have Zabs_nat_Zopp z : Z.abs_nat (- z)%Z = Z.abs_nat z by case: z.
apply/RltbP/Rabs_def1.
apply: (Rlt_trans _ ((Z.abs_nat (up x))%:R)%R); last first.
rewrite -[((Z.abs_nat _)%:R)%R]Rplus_0_r mulrnDr.
by apply/Rplus_lt_compat_l/Rlt_0_2.
apply: (Rlt_le_trans _ (IZR (up x)))=> //.
elim/(well_founded_ind (Zwf_well_founded 0)): (up x) => z IHz.
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz plus_IZR Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE mulrnDr.
apply/Rplus_le_compat_r/IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_trans _ (IZR 0)); first exact: IZR_le.
by apply/RlebP/(ler0n R (Z.abs_nat z)).
apply: (Rlt_le_trans _ (IZR (up x) - 1)).
apply: Ropp_lt_cancel; rewrite Ropp_involutive.
rewrite Ropp_minus_distr /Rminus -opp_IZR -{2}(Z.opp_involutive (up x)).
elim/(well_founded_ind (Zwf_well_founded 0)): (- up x)%Z => z IHz .
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz Zabs_nat_Zopp plus_IZR.
rewrite Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE -Rplus_assoc -addnA [(_ + 2)%N]addnC addnA mulrnDr.
apply: Rplus_lt_compat_r; rewrite -Zabs_nat_Zopp.
apply: IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_lt_trans _ 1).
rewrite -{2}[1]Rplus_0_r; apply: Rplus_le_compat_l.
by rewrite -/(IZR 0); apply: IZR_le.
rewrite mulrnDr; apply: (Rlt_le_trans _ 2).
by rewrite -{1}[1]Rplus_0_r; apply/Rplus_lt_compat_l/Rlt_0_1.
rewrite -[2]Rplus_0_l; apply: Rplus_le_compat_r.
by apply/RlebP/(ler0n R (Z.abs_nat _)).
apply: Rminus_le.
rewrite /Rminus Rplus_assoc [- _ + _]Rplus_comm -Rplus_assoc -!/(Rminus _ _).
exact: Rle_minus.
Qed.
HB.instance Definition _ := Num.NumDomain_bounded_isArchimedean.Build R
Rarchimedean_axiom.
(** Here are the lemmas that we will use to prove that R has
the rcfType structure. *)
Lemma continuity_eq f g : f =1 g -> continuity f -> continuity g.
Proof.
move=> Hfg Hf x eps Heps.
have [y [Hy1 Hy2]]:= Hf x eps Heps.
by exists y; split=> // z; rewrite -!Hfg; exact: Hy2.
Qed.
Lemma continuity_sum (I : finType) F (P : pred I):
(forall i, P i -> continuity (F i)) ->
continuity (fun x => (\sum_(i | P i) ((F i) x)))%R.
Proof.
move=> H; elim: (index_enum I)=> [|a l IHl].
set f:= fun _ => _.
have Hf: (fun x=> 0) =1 f by move=> x; rewrite /f big_nil.
by apply: (continuity_eq Hf); exact: continuity_const.
set f := fun _ => _.
case Hpa: (P a).
have Hf: (fun x => F a x + \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
apply: (continuity_eq Hf); apply: continuity_plus=> //.
exact: H.
have Hf: (fun x => \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
exact: (continuity_eq Hf).
Qed.
Lemma continuity_exp f n: continuity f -> continuity (fun x => (f x)^+ n)%R.
Proof.
move=> Hf; elim: n=> [|n IHn]; first exact: continuity_const.
set g:= fun _ => _.
have Hg: (fun x=> f x * f x ^+ n)%R =1 g.
by move=> x; rewrite /g exprS.
by apply: (continuity_eq Hg); exact: continuity_mult.
Qed.
Lemma Rreal_closed_axiom : Num.real_closed_axiom R.
Proof.
move=> p a b; rewrite !le_eqVlt.
case Hpa: ((p.[a])%R == 0%R).
by move=> ? _ ; exists a=> //; rewrite lexx le_eqVlt.
case Hpb: ((p.[b])%R == 0%R).
by move=> ? _; exists b=> //; rewrite lexx le_eqVlt andbT.
case Hab: (a == b).
by move=> _; rewrite (eqP Hab) eq_sym Hpb (ltNge 0) /=; case/andP=> /ltW ->.
rewrite eq_sym Hpb /=; clear=> /RltbP Hab /andP [] /RltbP Hpa /RltbP Hpb.
suff Hcp: continuity (fun x => (p.[x])%R).
have [z [[Hza Hzb] /eqP Hz2]]:= IVT _ a b Hcp Hab Hpa Hpb.
by exists z=> //; apply/andP; split; apply/RlebP.
rewrite -[p]coefK poly_def.
set f := fun _ => _.
have Hf: (fun (x : R) => \sum_(i < size p) (p`_i * x^+i))%R =1 f.
move=> x; rewrite /f horner_sum.
by apply: eq_bigr=> i _; rewrite hornerZ hornerXn.
apply: (continuity_eq Hf); apply: continuity_sum=> i _.
apply:continuity_scal; apply: continuity_exp=> x esp Hesp.
by exists esp; split=> // y [].
Qed.
HB.instance Definition _ := Num.RealField_isClosed.Build R Rreal_closed_axiom.
End ssreal_struct.
Local Open Scope ring_scope.
From mathcomp Require Import boolp classical_sets.
From mathcomp Require Import reals.
Section ssreal_struct_contd.
Implicit Type E : set R.
Lemma is_upper_boundE E x : is_upper_bound E x = (ubound E) x.
Proof.
rewrite propeqE; split; [move=> h|move=> /ubP h y Ey; exact/RleP/h].
by apply/ubP => y Ey; apply/RleP/h.
Qed.
Lemma boundE E : bound E = has_ubound E.
Proof. by apply/eq_exists=> x; rewrite is_upper_boundE. Qed.
Lemma Rcondcomplete E : has_sup E -> {m | isLub E m}.
Proof.
move=> [E0 uE]; have := completeness E; rewrite boundE => /(_ uE E0)[x [E1 E2]].
exists x; split; first by rewrite -is_upper_boundE; apply: E1.
by move=> y; rewrite -is_upper_boundE => /E2/RleP.
Qed.
Lemma Rsupremums_neq0 E : has_sup E -> (supremums E !=set0)%classic.
Proof. by move=> /Rcondcomplete[x [? ?]]; exists x. Qed.
Lemma Rsup_isLub x0 E : has_sup E -> isLub E (supremum x0 E).
Proof.
have [-> [/set0P]|E0 hsE] := eqVneq E set0; first by rewrite eqxx.
have [s [Es sE]] := Rcondcomplete hsE.
split => x Ex; first by apply/ge_supremum_Nmem=> //; exact: Rsupremums_neq0.
rewrite /supremum (negbTE E0); case: xgetP => /=.
by move=> _ -> [_ EsE]; apply/EsE.
by have [y Ey /(_ y)] := Rsupremums_neq0 hsE.
Qed.
(* :TODO: rewrite like this using (a fork of?) Coquelicot *)
(* Lemma real_sup_adherent (E : pred R) : real_sup E \in closure E. *)
Lemma real_sup_adherent x0 E (eps : R) : (0 < eps) ->
has_sup E -> exists2 e, E e & (supremum x0 E - eps) < e.
Proof.
move=> eps_gt0 supE; set m := _ - eps; apply: contrapT=> mNsmall.
have : (ubound E) m.
apply/ubP => y Ey.
by have /negP := mNsmall (ex_intro2 _ _ y Ey _); rewrite -leNgt.
have [_ /(_ m)] := Rsup_isLub x0 supE.
move => m_big /m_big.
by rewrite -subr_ge0 addrC addKr oppr_ge0 leNgt eps_gt0.
Qed.
Lemma Rsup_ub x0 E : has_sup E -> (ubound E) (supremum x0 E).
Proof.
by move=> supE x Ex; apply/ge_supremum_Nmem => //; exact: Rsupremums_neq0.
Qed.
HB.instance Definition _ := ArchimedeanField_isReal.Build R
(@Rsup_ub (0 : R)) (real_sup_adherent 0).
Implicit Types (x y : R) (m n : nat).
(* equational lemmas about exp, sin and cos for mathcomp compat *)
(* From mathcomp Require Import realsum. *)
(* :TODO: One day, do this *)
(* Notation "\Sum_ i E" := (psum (fun i => E)) *)
(* (at level 100, i ident, format "\Sum_ i E") : ring_scope. *)
(* Definition exp x := \Sum_n (n`!)%:R^-1 * x ^ n. *)
Lemma expR0 : exp (0 : R) = 1.
Proof. by rewrite exp_0. Qed.
Lemma expRD x y : exp x * exp y = exp (x + y).
Proof. by rewrite exp_plus. Qed.
Lemma expRX x n : exp x ^+ n = exp (x *+ n).
Proof.
elim: n => [|n Ihn]; first by rewrite expr0 mulr0n exp_0.
by rewrite exprS Ihn mulrS expRD.
Qed.
Lemma sinD x y : sin (x + y) = sin x * cos y + cos x * sin y.
Proof. by rewrite sin_plus. Qed.
Lemma cosD x y : cos (x + y) = (cos x * cos y - sin x * sin y).
Proof. by rewrite cos_plus. Qed.
Lemma RplusE x y : Rplus x y = x + y. Proof. by []. Qed.
Lemma RminusE x y : Rminus x y = x - y. Proof. by []. Qed.
Lemma RmultE x y : Rmult x y = x * y. Proof. by []. Qed.
Lemma RoppE x : Ropp x = - x. Proof. by []. Qed.
Lemma RinvE x : Rinv x = x^-1. Proof. by []. Qed.
Lemma RdivE x y : Rdiv x y = x / y. Proof. by rewrite /Rdiv. Qed.
Lemma INRE n : INR n = n%:R.
Proof. elim: n => // n IH; by rewrite S_INR IH RplusE -addn1 natrD. Qed.
(**md Note that rewrites using the following lemma `IZRposE` are
systematically followed by a rewrite using the lemma `INRE`. *)
Lemma IZRposE (p : positive) : IZR (Z.pos p) = INR (nat_of_pos p).
Proof. by rewrite -Pos_to_natE INR_IPR. Qed.
Let ge0_RsqrtE x : 0 <= x -> sqrt x = Num.sqrt x.
Proof.
move => x0; apply/eqP; have [t1 t2] := conj (sqrtr_ge0 x) (sqrt_pos x).
rewrite eq_sym -(eqrXn2 (_: 0 < 2)%N t1) //; last exact/RleP.
by rewrite sqr_sqrtr // !exprS expr0 mulr1 -RmultE ?sqrt_sqrt //; exact/RleP.
Qed.
Lemma RsqrtE x : sqrt x = Num.sqrt x.
Proof.
set Rx := Rbasic_fun.Rcase_abs x.
have RxE : Rx = Rbasic_fun.Rcase_abs x by [].
rewrite /R_sqrt.sqrt -RxE.
move: RxE; case: Rbasic_fun.Rcase_abs => x0 RxE.
by rewrite RxE ler0_sqrtr//; exact/ltW/RltP.
by rewrite /Rx -/(R_sqrt.sqrt _) ge0_RsqrtE //; exact/RleP/Rge_le.
Qed.
Lemma RpowE x n : pow x n = x ^+ n.
Proof. by elim: n => [ | n In] //=; rewrite exprS In RmultE. Qed.
Lemma RmaxE x y : Rmax x y = Num.max x y.
Proof.
case: (lerP x y) => H; first by rewrite Rmax_right //; apply: RlebP.
by rewrite ?ltW // Rmax_left //; apply/RlebP; move/ltW : H.
Qed.
(* useful? *)
Lemma RminE x y : Rmin x y = Num.min x y.
Proof.
case: (lerP x y) => H; first by rewrite Rmin_left //; apply: RlebP.
by rewrite ?ltW // Rmin_right //; apply/RlebP; move/ltW : H.
Qed.
Section bigmaxr.
Context {R : realDomainType}.
(* bigop pour le max pour des listes non vides ? *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition bigmaxr (r : R) s := \big[Num.max/head r s]_(i <- s) i.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_nil (x0 : R) : bigmaxr x0 [::] = x0.
Proof. by rewrite /bigmaxr /= big_nil. Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_un (x0 x : R) : bigmaxr x0 [:: x] = x.
Proof. by rewrite /bigmaxr /= big_cons big_nil maxxx. Qed.
(* previous definition *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxrE (r : R) s : bigmaxr r s = foldr Num.max (head r s) (behead s).
Proof.
rewrite (_ : bigmaxr _ _ = if s isn't h :: t then r else \big[Num.max/h]_(i <- s) i).
case: s => // ? t; rewrite big_cons /bigmaxr.
by elim: t => //= [|? ? <-]; [rewrite big_nil maxxx | rewrite big_cons maxCA].
by case: s => //=; rewrite /bigmaxr big_nil.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigrmax_dflt (x y : R) s : Num.max x (\big[Num.max/x]_(j <- y :: s) j) =
Num.max x (\big[Num.max/y]_(i <- y :: s) i).
Proof.
elim: s => /= [|h t IH] in x y *.
by rewrite !big_cons !big_nil maxxx maxCA maxxx maxC.
by rewrite big_cons maxCA IH maxCA [in RHS]big_cons IH.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_cons (x0 x y : R) lr :
bigmaxr x0 (x :: y :: lr) = Num.max x (bigmaxr x0 (y :: lr)).
Proof. by rewrite [y :: lr]lock /bigmaxr /= -lock big_cons bigrmax_dflt. Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_ler (x0 : R) s i :
(i < size s)%N -> (nth x0 s i) <= (bigmaxr x0 s).
Proof.
rewrite /bigmaxr; elim: s i => // h t IH [_|i] /=.
by rewrite big_cons /= le_max lexx.
rewrite ltnS => ti; case: t => [|h' t] // in IH ti *.
by rewrite big_cons bigrmax_dflt le_max orbC IH.
Qed.
(* Compatibilité avec l'addition *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_addr (x0 : R) lr (x : R) :
bigmaxr (x0 + x) (map (fun y : R => y + x) lr) = (bigmaxr x0 lr) + x.
Proof.
rewrite /bigmaxr; case: lr => [|h t]; first by rewrite !big_nil.
elim: t h => /= [|h' t IH] h; first by rewrite ?(big_cons,big_nil) -addr_maxl.
by rewrite [in RHS]big_cons bigrmax_dflt addr_maxl -IH big_cons bigrmax_dflt.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_mem (x0 : R) lr : (0 < size lr)%N -> bigmaxr x0 lr \in lr.
Proof.
rewrite /bigmaxr; case: lr => // h t _.
elim: t => //= [|h' t IH] in h *; first by rewrite big_cons big_nil inE maxxx.
rewrite big_cons bigrmax_dflt inE eq_le; case: lerP => /=.
- by rewrite le_max lexx.
- by rewrite lt_max ltxx => ?; rewrite max_r ?IH // ltW.
Qed.
(* TODO: bigmaxr_morph? *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_mulr (A : finType) (s : seq A) (k : R) (x : A -> R) :
0 <= k -> bigmaxr 0 (map (fun i => k * x i) s) = k * bigmaxr 0 (map x s).
Proof.
move=> k0; elim: s => /= [|h [/=|h' t ih]].
by rewrite bigmaxr_nil mulr0.
by rewrite !bigmaxr_un.
by rewrite bigmaxr_cons {}ih bigmaxr_cons maxr_pMr.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_index (x0 : R) lr :
(0 < size lr)%N -> (index (bigmaxr x0 lr) lr < size lr)%N.
Proof.
rewrite /bigmaxr; case: lr => //= h t _; case: ifPn => // /negbTE H.
move: (@bigmaxr_mem x0 (h :: t) isT).
by rewrite ltnS index_mem inE /= eq_sym H.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_lerP (x0 : R) lr (x : R) :
(0 < size lr)%N ->
reflect (forall i, (i < size lr)%N -> (nth x0 lr i) <= x) ((bigmaxr x0 lr) <= x).
Proof.
move=> lr_size; apply: (iffP idP) => [le_x i i_size | H].
by apply: (le_trans _ le_x); apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_ltrP (x0 : R) lr (x : R) :
(0 < size lr)%N ->
reflect (forall i, (i < size lr)%N -> (nth x0 lr i) < x) ((bigmaxr x0 lr) < x).
Proof.
move=> lr_size; apply: (iffP idP) => [lt_x i i_size | H].
by apply: le_lt_trans lt_x; apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxrP (x0 : R) lr (x : R) :
(x \in lr /\ forall i, (i < size lr) %N -> (nth x0 lr i) <= x) -> (bigmaxr x0 lr = x).
Proof.
move=> [] /(nthP x0) [] j j_size j_nth x_ler; apply: le_anti; apply/andP; split.
by apply/bigmaxr_lerP => //; apply: (leq_trans _ j_size).
by rewrite -j_nth (bigmaxr_ler _ j_size).
Qed.
(* surement à supprimer à la fin
Lemma bigmaxc_lttc x0 lc :
uniq lc -> forall i, (i < size lc)%N -> (i != index (bigmaxc x0 lc) lc)
-> lttc (nth x0 lc i) (bigmaxc x0 lc).
Proof.
move=> lc_uniq Hi size_i /negP neq_i.
rewrite lttc_neqAle (bigmaxc_letc _ size_i) andbT.
apply/negP => /eqP H; apply: neq_i; rewrite -H eq_sym; apply/eqP.
by apply: index_uniq.
Qed. *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_lerif (x0 : R) lr :
uniq lr -> forall i, (i < size lr)%N ->
(nth x0 lr i) <= (bigmaxr x0 lr) ?= iff (i == index (bigmaxr x0 lr) lr).
Proof.
move=> lr_uniq i i_size; rewrite /Num.leif (bigmaxr_ler _ i_size).
rewrite -(nth_uniq x0 i_size (bigmaxr_index _ (leq_trans _ i_size)) lr_uniq) //.
rewrite nth_index //.
by apply: bigmaxr_mem; apply: (leq_trans _ i_size).
Qed.
(* bigop pour le max pour des listes non vides ? *)
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition bmaxrf n (f : {ffun 'I_n.+1 -> R}) :=
bigmaxr (f ord0) (codom f).
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_ler n (f : {ffun 'I_n.+1 -> R}) i :
(f i) <= (bmaxrf f).
Proof.
move: (@bigmaxr_ler (f ord0) (codom f) (nat_of_ord i)).
rewrite /bmaxrf size_codom card_ord => H; move: (ltn_ord i); move/H.
suff -> : nth (f ord0) (codom f) i = f i; first by [].
by rewrite /codom (nth_map ord0) ?size_enum_ord // nth_ord_enum.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_index n (f : {ffun 'I_n.+1 -> R}) :
(index (bmaxrf f) (codom f) < n.+1)%N.
Proof.
rewrite /bmaxrf.
rewrite [in X in (_ < X)%N](_ : n.+1 = size (codom f)); last first.
by rewrite size_codom card_ord.
by apply: bigmaxr_index; rewrite size_codom card_ord.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition index_bmaxrf n f := Ordinal (@bmaxrf_index n f).
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma ordnat i n (ord_i : (i < n)%N) : i = Ordinal ord_i :> nat.
Proof. by []. Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma eq_index_bmaxrf n (f : {ffun 'I_n.+1 -> R}) :
f (index_bmaxrf f) = bmaxrf f.
Proof.
move: (bmaxrf_index f).
rewrite -[X in _ (_ < X)%N]card_ord -(size_codom f) index_mem.
move/(nth_index (f ord0)) => <-; rewrite (nth_map ord0).
by rewrite (ordnat (bmaxrf_index _)) /index_bmaxrf nth_ord_enum.
by rewrite size_enum_ord; apply: bmaxrf_index.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_lerif n (f : {ffun 'I_n.+1 -> R}) :
injective f -> forall i,
(f i) <= (bmaxrf f) ?= iff (i == index_bmaxrf f).
Proof.
by move=> inj_f i; rewrite /Num.leif bmaxrf_ler -(inj_eq inj_f) eq_index_bmaxrf.
Qed.
End bigmaxr.
End ssreal_struct_contd.
|