File: forms.v

package info (click to toggle)
mathcomp-analysis 1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,308 kB
  • sloc: sh: 420; python: 76; sed: 25; makefile: 7
file content (566 lines) | stat: -rw-r--r-- 20,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg fingroup zmodp poly ssrnum.
From mathcomp Require Import matrix mxalgebra vector falgebra ssrnum fieldext.
From mathcomp Require Import vector mathcomp_extra.

(**md**************************************************************************)
(* # Bilinear forms                                                           *)
(* (undocumented)                                                             *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Import GRing.Theory Num.Theory.

Reserved Notation "'[ u , v ]"
  (at level 2, format "'[hv' ''[' u , '/ '  v ] ']'").
Reserved Notation "'[ u , v ]_ M"
         (at level 2, format "'[hv' ''[' u , '/ '  v ]_ M ']'").
Reserved Notation "'[ u ]_ M" (at level 2, format "''[' u ]_ M").
Reserved Notation "'[ u ]" (at level 2, format "''[' u ]").
Reserved Notation "u '``_' i"
    (at level 3, i at level 2, format "u '``_' i").
Reserved Notation "A ^_|_"    (at level 8, format "A ^_|_").
Reserved Notation "A _|_ B" (at level 69, format "A  _|_  B").
Reserved Notation "eps_theta .-sesqui" (at level 2, format "eps_theta .-sesqui").

Notation "u '``_' i" := (u (0 : 'I_1) i) : ring_scope.
Notation "''e_' i" := (delta_mx 0 i)
  (at level 8, i at level 2, format "''e_' i") : ring_scope.

Local Notation "M ^ phi" := (map_mx phi M).
Local Notation "M ^t phi" := (map_mx phi (M ^T)) (phi at level 30, at level 30).

Lemma eq_map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) (f : R -> R) :
  f =1 id -> M ^ f = M.
Proof. by move=> /eq_map_mx->; rewrite map_mx_id. Qed.

HB.mixin Record isBilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
    (s : R -> V -> V) (s' : R -> V -> V) (f : U -> U' -> V) := {
  additivel_subproof : forall u', additive (f^~ u');
  additiver_subproof : forall u, additive (f u);
  linearl_subproof : forall u', scalable_for s (f^~ u');
  linearr_subproof : forall u, scalable_for s' (f u);
}.

HB.structure Definition Bilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
    (s : R -> V -> V) (s' : R -> V -> V) :=
  {f of isBilinear R U U' V s s' f}.

Definition bilinear_for (R : ringType) (U U' : lmodType R) (V : zmodType)
    (s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) :=
  ((forall u', GRing.linear_for (s : R -> V -> V) (f^~ u'))
  * (forall u, GRing.linear_for s' (f u)))%type.

HB.factory Record bilinear_isBilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
    (s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) := {
  bilinear_subproof : bilinear_for s s' f;
}.

HB.builders Context R U U' V s s' f of bilinear_isBilinear R U U' V s s' f.
HB.instance Definition _ := isBilinear.Build R U U' V s s' f
    (fun u' => additive_linear (bilinear_subproof.1 u'))
    (fun u => additive_linear (bilinear_subproof.2 u))
    (fun u' => scalable_linear (bilinear_subproof.1 u'))
    (fun u => scalable_linear (bilinear_subproof.2 u)).
HB.end.

Module BilinearExports.
Notation bilinear f := (bilinear_for *:%R *:%R f).
Notation biscalar f := (bilinear_for *%R *%R f).
Module Bilinear.
Definition map (R : ringType) (U U' : lmodType R) (V : zmodType)
    (s : R -> V -> V) (s' : R -> V -> V)
    (phUU'V : phant (U -> U' -> V)) := Bilinear.type U U' s s'.
End Bilinear.
Notation "{ 'bilinear' fUV | s & s' }" := (Bilinear.map s s' (Phant fUV))
  (at level 0, format "{ 'bilinear'  fUV  |  s  &  s' }") : ring_scope.
Notation "{ 'bilinear' fUV | s }" := (Bilinear.map s.1 s.2 (Phant fUV))
  (at level 0, format "{ 'bilinear'  fUV  |  s }") : ring_scope.
Notation "{ 'bilinear' fUV }" := {bilinear fUV | *:%R & *:%R}
  (at level 0, format "{ 'bilinear'  fUV }") : ring_scope.
Notation "{ 'biscalar' U }" := {bilinear U -> U -> _ | *%R & *%R}
  (at level 0, format "{ 'biscalar'  U }") : ring_scope.
Notation "[ 'bilinear' 'of' f 'as' g ]" := (Bilinear.clone _ _ _ _ _ _ f g)
  (at level 0, format "[ 'bilinear'  'of'  f  'as'  g ]") : form_scope.
Notation "[ 'bilinear' 'of' f ]" := (Bilinear.clone _ _ _ _ _ _ f _)
  (at level 0, format "[ 'bilinear'  'of'  f ]") : form_scope.
End BilinearExports.
Export BilinearExports.

Section applyr.

Variables (R : ringType) (U U' : lmodType R) (V : zmodType) (s s' : R -> V -> V).

(* Fact applyr_key : unit. Proof. exact. Qed. *)
Definition applyr_head t (f : U -> U' -> V) u v := let: tt := t in f v u.

End applyr.

Notation applyr := (applyr_head tt).

Section BilinearTheory.

Variable R : ringType.

Section GenericProperties.

Variables (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V).
Variable f : {bilinear U -> U' -> V | s & s'}.

Section GenericPropertiesr.

Variable z : U.

#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
  GRing.isAdditive.Build _ _ (f z) (@additiver_subproof _ _ _ _ _ _ f z).
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
  GRing.isScalable.Build _ _ _ _ (f z) (@linearr_subproof _ _ _ _ _ _ f z).

Lemma linear0r : f z 0 = 0. Proof. by rewrite raddf0. Qed.
Lemma linearNr : {morph f z : x / - x}. Proof. exact: raddfN. Qed.
Lemma linearDr : {morph f z : x y / x + y}. Proof. exact: raddfD. Qed.
Lemma linearBr : {morph f z : x y / x - y}. Proof. exact: raddfB. Qed.
Lemma linearMnr n : {morph f z : x / x *+ n}. Proof. exact: raddfMn. Qed.
Lemma linearMNnr n : {morph f z : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma linear_sumr I r (P : pred I) E :
  f z (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f z (E i).
Proof. exact: raddf_sum. Qed.

Lemma linearZr_LR : scalable_for s' (f z). Proof. exact: linearZ_LR. Qed.
Lemma linearPr a : {morph f z : u v / a *: u + v >-> s' a u + v}.
Proof. exact: linearP. Qed.

End GenericPropertiesr.

Lemma applyrE x : applyr f x =1 f^~ x. Proof. by []. Qed.

Section GenericPropertiesl.

Variable z : U'.

#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
  GRing.isAdditive.Build _ _ (applyr f z) (@additivel_subproof _ _ _ _ _ _ f z).
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
  GRing.isScalable.Build _ _ _ _ (applyr f z) (@linearl_subproof _ _ _ _ _ _ f z).

Lemma linear0l : f 0 z = 0. Proof. by rewrite -applyrE raddf0. Qed.
Lemma linearNl : {morph f^~ z : x / - x}.
Proof. by move=> ?; rewrite -applyrE raddfN. Qed.
Lemma linearDl : {morph f^~ z : x y / x + y}.
Proof. by move=> ??; rewrite -applyrE raddfD. Qed.
Lemma linearBl : {morph f^~ z : x y / x - y}.
Proof. by move=> ??; rewrite -applyrE raddfB. Qed.
Lemma linearMnl n : {morph f^~ z : x / x *+ n}.
Proof. by move=> ?; rewrite -applyrE raddfMn. Qed.
Lemma linearMNnl n : {morph f^~ z : x / x *- n}.
Proof. by move=> ?; rewrite -applyrE raddfMNn. Qed.
Lemma linear_suml I r (P : pred I) E :
  f (\sum_(i <- r | P i) E i) z = \sum_(i <- r | P i) f (E i) z.
Proof. by rewrite -applyrE raddf_sum. Qed.

Lemma linearZl_LR : scalable_for s (f^~ z).
Proof. by move=> ??; rewrite -applyrE linearZ_LR. Qed.
Lemma linearPl a : {morph f^~ z : u v / a *: u + v >-> s a u + v}.
Proof. by move=> ??; rewrite -applyrE linearP. Qed.

End GenericPropertiesl.

End GenericProperties.

Section BidirectionalLinearZ.

Variables (U : lmodType R) (V : zmodType) (s : R -> V -> V).
Variables (S : ringType) (h : GRing.Scale.law S V).

(* Lemma linearZr z c a (h_c := GRing.Scale.op h_law c) (f : GRing.Linear.map_for U s a h_c) u : *)
(*   f z (a *: u) = h_c (GRing.Linear.wrap (f z) u). *)
(* Proof. by rewrite linearZ_LR; case: f => f /= ->. Qed. *)

End BidirectionalLinearZ.

End BilinearTheory.

Lemma mulmx_is_bilinear (R : comRingType) m n p :
  bilinear_for
    (GRing.Scale.Law.clone _ _ *:%R _) (GRing.Scale.Law.clone _ _ *:%R _)
    (@mulmx R m n p).
Proof.
split=> [u'|u] a x y /=.
- by rewrite mulmxDl scalemxAl.
- by rewrite mulmxDr scalemxAr.
Qed.

HB.instance Definition _ (R : comRingType) m n p :=
  bilinear_isBilinear.Build R
    'M[R]_(m, n) 'M[R]_(n, p) 'M[R]_(m, p) _ _ (@mulmx R m n p)
    (mulmx_is_bilinear R m n p).

(* Section classfun. *)
(* Import mathcomp.character.classfun. *)

(* Canonical rev_cfdot (gT : finGroupType) (B : {set gT}) :=  *)
(*   @RevOp _ _ _ (@cfdotr_head gT B tt) *)
(*   (@cfdot gT B) (fun _ _ => erefl). *)

(* Section Cfdot. *)
(* Variables (gT : finGroupType) (G : {group gT}). *)
(* Lemma cfdot_is_linear xi : linear_for (@conjC _ \; *%R) (cfdot xi : 'CF(G) -> algC^o). *)
(* Proof. *)
(* move=> /= a phi psi; rewrite cfdotC -cfdotrE linearD linearZ /=. *)
(* by rewrite !['[_, xi]]cfdotC rmorphD rmorphM !conjCK. *)
(* Qed. *)
(* Canonical cfdot_additive xi := Additive (cfdot_is_linear xi). *)
(* Canonical cfdot_linear xi := Linear (cfdot_is_linear xi). *)
(* End Cfdot. *)

(* Canonical cfdot_bilinear (gT : finGroupType) (B : {group gT}) := *)
(*   [bilinear of @cfdot gT B]. *)
(* End classfun. *)

Section BilinearForms.

Variables (R : fieldType) (theta : {rmorphism R -> R}).
Variables (n : nat) (M : 'M[R]_n).
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n).

Definition form u v := (u *m M *m (v ^t theta)) 0 0.

Local Notation "''[' u , v ]" := (form u%R v%R) : ring_scope.
Local Notation "''[' u ]" := '[u, u] : ring_scope.

Lemma form0l u : '[0, u] = 0.
Proof. by rewrite /form !mul0mx mxE. Qed.

Lemma form0r u : '[u, 0] = 0.
Proof. by rewrite /form trmx0 map_mx0 mulmx0 mxE. Qed.

Lemma formDl u v w : '[u + v, w] = '[u, w] + '[v, w].
Proof. by rewrite /form !mulmxDl mxE. Qed.

Lemma formDr u v w : '[u, v + w] = '[u, v] + '[u, w].
Proof. by rewrite /form linearD !map_mxD !mulmxDr mxE. Qed.

Lemma formZr a u v : '[u, a *: v] = theta a * '[u, v].
Proof. by rewrite /form !(linearZ, map_mxZ) /= mxE. Qed.

Lemma formZl a u v : '[a *: u, v] = a * '[u, v].
Proof.
by do !rewrite /form  -[_ *: _ *m _]/(mulmxr _ _) linearZ /=; rewrite mxE.
Qed.

Lemma formNl u v : '[- u, v] = - '[u, v].
Proof. by rewrite -scaleN1r formZl mulN1r. Qed.

Lemma formNr u v : '[u, - v] = - '[u, v].
Proof. by rewrite -scaleN1r formZr rmorphN1 mulN1r. Qed.

Lemma formee i j : '['e_i, 'e_j] = M i j.
Proof.
rewrite /form -rowE -map_trmx map_delta_mx -[M in LHS]trmxK.
by rewrite -tr_col -trmx_mul -rowE !mxE.
Qed.

Lemma form0_eq0 : M = 0 -> forall u v, '[u, v] = 0.
Proof. by rewrite/form=> -> u v; rewrite mulmx0 mul0mx mxE. Qed.

End BilinearForms.

Section Sesquilinear.

Variable R : fieldType.
Variable n : nat.
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n).

Section Def.
Variable eps_theta : (bool * {rmorphism R -> R}).

Definition sesqui :=
  [qualify M : 'M_n | M == ((-1) ^+ eps_theta.1) *: M ^t eps_theta.2].
Fact sesqui_key : pred_key sesqui. Proof. by []. Qed.
Canonical sesqui_keyed := KeyedQualifier sesqui_key.
End Def.

Local Notation "eps_theta .-sesqui" := (sesqui eps_theta).

Variables (eps : bool) (theta : {rmorphism R -> R}).
Variables (M : 'M[R]_n).
Local Notation "''[' u , v ]" := (form theta M u%R v%R) : ring_scope.
Local Notation "''[' u ]" := '[u, u] : ring_scope.

Lemma sesquiE : (M \is (eps,theta).-sesqui) = (M == (-1) ^+ eps *: M ^t theta).
Proof. by rewrite qualifE. Qed.

Lemma sesquiP : reflect (M = (-1) ^+ eps *: M ^t theta)
                        (M \is (eps,theta).-sesqui).
Proof. by rewrite sesquiE; apply/eqP. Qed.

Hypothesis (thetaK : involutive theta).
Hypothesis (M_sesqui : M \is (eps, theta).-sesqui).

Lemma trmx_sesqui : M^T = (-1) ^+ eps *: M ^ theta.
Proof.
rewrite [in LHS](sesquiP _) // -mul_scalar_mx trmx_mul.
by rewrite tr_scalar_mx mul_mx_scalar map_trmx trmxK.
Qed.

Lemma maptrmx_sesqui : M^t theta = (-1) ^+ eps *: M.
Proof.
by rewrite trmx_sesqui map_mxZ rmorph_sign -map_mx_comp eq_map_mx_id.
Qed.

Lemma formC u v : '[u, v] = (-1) ^+ eps * theta '[v, u].
Proof.
rewrite /form [M in LHS](sesquiP _) // -mulmxA !mxE rmorph_sum mulr_sumr.
apply: eq_bigr => /= i _; rewrite !(mxE, mulr_sumr, mulr_suml, rmorph_sum).
apply: eq_bigr => /= j _; rewrite !mxE !rmorphM  mulrCA -!mulrA.
by congr (_ * _); rewrite mulrA mulrC /= thetaK.
Qed.

Lemma form_eq0C u v : ('[u, v] == 0) = ('[v, u] == 0).
Proof. by rewrite formC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed.

Definition ortho m (B : 'M_(m,n)) := (kermx (M *m (B ^t theta))).
Local Notation "B ^_|_" := (ortho B) : ring_scope.
Local Notation "A _|_ B" := (A%MS <= B^_|_)%MS : ring_scope.

Lemma normalE u v : (u _|_ v) = ('[u, v] == 0).
Proof.
by rewrite (sameP sub_kermxP eqP) mulmxA [_ *m _^t _]mx11_scalar fmorph_eq0.
Qed.

Lemma form_eq0P {u v} : reflect ('[u, v] = 0) (u _|_ v).
Proof. by rewrite normalE; apply/eqP. Qed.

Lemma normalP p q (A : 'M_(p, n)) (B :'M_(q, n)) :
  reflect (forall (u v : 'rV_n), (u <= A)%MS -> (v <= B)%MS -> u _|_ v)
          (A _|_ B).
Proof.
apply: (iffP idP) => AnB.
  move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //.
  apply/sub_kermxP; have /submxP [w ->] := vB.
  rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA.
  by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx.
apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP.
suff: forall m (v : 'rV[R]_m),
  (forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0.
  apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //.
  by apply/submxP; exists 'e_i.
move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)).
rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE.
apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK.
by rewrite -(map_delta_mx theta) map_trmx Hv.
Qed.

Lemma normalC p q (A : 'M_(p, n)) (B :'M_(q, n)) : (A _|_ B) = (B _|_ A).
Proof.
gen have nC : p q A B / A _|_ B -> B _|_ A; last by apply/idP/idP; apply/nC.
move=> AnB; apply/normalP => u v ? ?; rewrite normalE.
rewrite formC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=.
by rewrite -normalE (normalP _ _ AnB).
Qed.

Lemma normal_ortho_mx p (A : 'M_(p, n)) : ((A^_|_) _|_ A).
Proof. by []. Qed.

Lemma normal_mx_ortho p (A : 'M_(p, n)) : (A _|_ (A^_|_)).
Proof. by rewrite normalC. Qed.

Lemma rank_normal u : (\rank (u ^_|_) >= n.-1)%N.
Proof.
rewrite mxrank_ker -subn1 leq_sub2l //.
by rewrite (leq_trans (mxrankM_maxr  _ _)) // rank_leq_col.
Qed.

Definition rad := 1%:M^_|_.

Lemma rad_ker : rad = kermx M.
Proof. by rewrite /rad /ortho trmx1 map_mx1 mulmx1. Qed.

(* Pythagore *)
Theorem formDd u v : u _|_ v -> '[u + v] = '[u] + '[v].
Proof.
move=> uNv; rewrite formDl !formDr ['[v, u]]formC.
by rewrite ['[u, v]](form_eq0P _) // rmorph0 mulr0 addr0 add0r.
Qed.

Lemma formZ a u : '[a *: u]= (a * theta a) * '[u].
Proof. by rewrite formZl formZr mulrA. Qed.

Lemma formN u : '[- u] = '[u].
Proof. by rewrite formNr formNl opprK. Qed.

Lemma form_sign m u : '[(-1) ^+ m *: u] = '[u].
Proof. by rewrite -signr_odd scaler_sign; case: odd; rewrite ?formN. Qed.

Lemma formD u v : let d := '[u, v] in
  '[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d).
Proof. by rewrite formDl !formDr ['[v, _]]formC [_ + '[v]]addrC addrACA. Qed.

Lemma formB u v : let d := '[u, v] in
  '[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d).
Proof. by rewrite formD formN !formNr rmorphN mulrN -opprD. Qed.

Lemma formBd u v : u _|_ v -> '[u - v] = '[u] + '[v].
Proof.
by move=> uTv; rewrite formDd ?formN // normalE formNr oppr_eq0 -normalE.
Qed.

(* Lemma formJ u v : '[u ^ theta, v ^ theta] = (-1) ^+ eps * theta '[u, v]. *)
(* Proof. *)
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *)
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *)
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *)
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *)

(* Lemma formJ u : '[u ^ theta] = (-1) ^+ eps * '[u]. *)
(* Proof.  *)
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *)
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *)
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *)
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *)
(* rewrite !map_mxM. *)
(* rewrite -map_mx_comp eq_map_mx_id //. *)
(*  !linearZr_LR /=. linearZ. *)
(*  linearZl. *)
(* rewrite trmx_sesqui. *)


(* rewrite mapmx. *)
(* rewrite map *)
(* apply/matrixP.  *)

(* rewrite formC. *)
(* Proof. by rewrite cfdot_conjC geC0_conj // cfnorm_ge0. Qed. *)

(* Lemma cfCauchySchwarz u v : *)
(*   `|'[u, v]| ^+ 2 <= '[u] * '[v] ?= iff ~~ free (u :: v). *)
(* Proof. *)
(* rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. *)
(* have [-> | nz_v] /= := altP (v =P 0). *)
(*   by apply/lerifP; rewrite !cfdot0r normCK mul0r mulr0. *)
(* without loss ou: u / '[u, v] = 0. *)
(*   move=> IHo; pose a := '[u, v] / '[v]; pose u1 := u - a *: v. *)
(*   have ou: '[u1, v] = 0. *)
(*     by rewrite cfdotBl cfdotZl divfK ?cfnorm_eq0 ?subrr. *)
(*   rewrite (canRL (subrK _) (erefl u1)) rpredDr ?rpredZ ?memv_line //. *)
(*   rewrite cfdotDl ou add0r cfdotZl normrM (ger0_norm (cfnorm_ge0 _)). *)
(*   rewrite exprMn mulrA -cfnormZ cfnormDd; last by rewrite cfdotZr ou mulr0. *)
(*   by have:= IHo _ ou; rewrite mulrDl -lerif_subLR subrr ou normCK mul0r. *)
(* rewrite ou normCK mul0r; split; first by rewrite mulr_ge0 ?cfnorm_ge0. *)
(* rewrite eq_sym mulf_eq0 orbC cfnorm_eq0 (negPf nz_v) /=. *)
(* apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite cfdotZr ou mulr0. *)
(* by rewrite cfnorm_eq0 => /eqP->; apply: rpred0. *)
(* Qed. *)

End Sesquilinear.

Notation "eps_theta .-sesqui" := (sesqui _ eps_theta) : ring_scope.

Notation symmetric_form := (false, idfun).-sesqui.
Notation skew := (true, idfun).-sesqui.
Notation hermitian := (false, @Num.conj_op _).-sesqui.

(* Section ClassificationForm. *)

(* Variables (F : fieldType) (L : fieldExtType) (theat : 'Aut()) *)

(* Notation "''[' u , v ]_ M" := (form M%R u%R v%R) : ring_scope. *)
(* Notation "''[' u ]_ M" := (form M%R u%R u%R) : ring_scope. *)

(* Hypothesis (thetaK : involutive theta). *)

(* Lemma sesqui_test M : (forall u v, '[v, u]_M = 0 -> '[u, v]_M = 0) -> *)
(*                       {eps | eps^+2 = 1 & M \is (eps,theta).-sesqui}. *)
(* Proof. *)
(* pose  *)


(*                       [/\ forall u, '[u] = 0, theta =1 id & eps = -1] *)
(*                       \/ ((exists u, '[u] != 0) /\ (eps = 1)). *)
(* Proof. *)
(* move=> M_neq0 form_eq0. *)
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]; last first. *)
(*   rewrite negb_forall => /existsP [i ei_neq0]. *)
(*   right; split; first by exists ('e_i). *)
(*   apply/eqP; *)

(*  contraT *)


(* suff [f_eq0|] : (forall u, '[u] = 0) \/ (exists u, '[u] != 0). *)
(*   left; split=> //. *)

(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *)

(* suff /eqP : eps ^+ 2 = 1. *)
(*   rewrite -subr_eq0 subr_sqr_1 mulf_eq0. *)
(*   move => /orP[]; rewrite addr_eq0 ?opprK=> /eqP eps_eq. *)
(*     right; split=> //. *)

(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *)

(* have := sesquiC u u. *)


(* rewrite !linearZ /= -[eps *: _ *m _]/(mulmxr _ _) linearZ /= mxE; congr (_ * _). *)
(* have : u = map_mx theta (map_mx theta u). *)
(*   apply/rowP=> i; rewrite !mxE. *)
(* rewrite -[in LHS]mulmxA -map_mxM. *)
(* rewrite  *)
(*  !mxE rmorph_sum; apply: eq_bigr => /= i _; rewrite !mxE. *)
(* rewrite !rmorphM thetaK rmorph_sum. *)

(* Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). *)

(* rewrite -[a *: u *m _]/(mulmxr _ _). *)
(* rewrite linearZ. *)

(* Variables (R : fieldType) (n : nat). *)

(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *)

(* Lemma normal_sym k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : *)
(*   A _|_ B = B _|_ A. *)
(* Proof. *)
(* rewrite !(sameP sub_kermxP eqP) -{1}[A]trmxK -trmx_mul. *)
(* by rewrite -{1}trmx0 (inj_eq (@trmx_inj _ _ _)). *)
(* Qed. *)

(* Lemma normalNm k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : (- A) _|_ B = A _|_ B. *)
(* Proof. by rewrite eqmx_opp. Qed. *)

(* Lemma normalmN k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : A _|_ (- B) = A _|_ B. *)
(* Proof. by rewrite ![A _|_ _]normal_sym normalNm. Qed. *)

(* Lemma normalDm k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *)
(*   (A + B _|_ C) = (A _|_ C) && (B _|_ C). *)
(* Proof. by rewrite addsmxE !(sameP sub_kermxP eqP) mul_col_mx col_mx_eq0. Qed. *)

(* Lemma normalmD  k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *)
(*   (A _|_ B + C) = (A _|_ B) && (A _|_ C). *)
(* Proof. by rewrite ![A _|_ _]normal_sym normalDm. Qed. *)

(* Definition dot (u v : 'rV[R]_n) : R := (u *m v^T) 0 0. *)

(* Notation "''[' u , v ]" := (dot u v) : ring_scope. *)
(* Notation "''[' u ]" := '[u, u]%MS : ring_scope. *)

(* Lemma dotmulE (u v : 'rV[R]_n) : '[u, v] = \sum_k u``_k * v``_k. *)
(* Proof. by rewrite [LHS]mxE; apply: eq_bigr=> i; rewrite mxE. Qed. *)

(* Lemma normalvv (u v : 'rV[R]_n) : (u _|_ v) = ('[u, v] == 0). *)
(* Proof. by rewrite (sameP sub_kermxP eqP) [_ *m _^T]mx11_scalar fmorph_eq0. Qed. *)

(* End Normal. *)

(* Local Notation "''[' u , v ]" := (form u v) : ring_scope. *)
(* Local Notation "''[' u ]" := '[u%R, u%R] : ring_scope. *)
(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *)