1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg fingroup zmodp poly ssrnum.
From mathcomp Require Import matrix mxalgebra vector falgebra ssrnum fieldext.
From mathcomp Require Import vector mathcomp_extra.
(**md**************************************************************************)
(* # Bilinear forms *)
(* (undocumented) *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
Import GRing.Theory Num.Theory.
Reserved Notation "'[ u , v ]"
(at level 2, format "'[hv' ''[' u , '/ ' v ] ']'").
Reserved Notation "'[ u , v ]_ M"
(at level 2, format "'[hv' ''[' u , '/ ' v ]_ M ']'").
Reserved Notation "'[ u ]_ M" (at level 2, format "''[' u ]_ M").
Reserved Notation "'[ u ]" (at level 2, format "''[' u ]").
Reserved Notation "u '``_' i"
(at level 3, i at level 2, format "u '``_' i").
Reserved Notation "A ^_|_" (at level 8, format "A ^_|_").
Reserved Notation "A _|_ B" (at level 69, format "A _|_ B").
Reserved Notation "eps_theta .-sesqui" (at level 2, format "eps_theta .-sesqui").
Notation "u '``_' i" := (u (0 : 'I_1) i) : ring_scope.
Notation "''e_' i" := (delta_mx 0 i)
(at level 8, i at level 2, format "''e_' i") : ring_scope.
Local Notation "M ^ phi" := (map_mx phi M).
Local Notation "M ^t phi" := (map_mx phi (M ^T)) (phi at level 30, at level 30).
Lemma eq_map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) (f : R -> R) :
f =1 id -> M ^ f = M.
Proof. by move=> /eq_map_mx->; rewrite map_mx_id. Qed.
HB.mixin Record isBilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
(s : R -> V -> V) (s' : R -> V -> V) (f : U -> U' -> V) := {
additivel_subproof : forall u', additive (f^~ u');
additiver_subproof : forall u, additive (f u);
linearl_subproof : forall u', scalable_for s (f^~ u');
linearr_subproof : forall u, scalable_for s' (f u);
}.
HB.structure Definition Bilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
(s : R -> V -> V) (s' : R -> V -> V) :=
{f of isBilinear R U U' V s s' f}.
Definition bilinear_for (R : ringType) (U U' : lmodType R) (V : zmodType)
(s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) :=
((forall u', GRing.linear_for (s : R -> V -> V) (f^~ u'))
* (forall u, GRing.linear_for s' (f u)))%type.
HB.factory Record bilinear_isBilinear (R : ringType) (U U' : lmodType R) (V : zmodType)
(s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) := {
bilinear_subproof : bilinear_for s s' f;
}.
HB.builders Context R U U' V s s' f of bilinear_isBilinear R U U' V s s' f.
HB.instance Definition _ := isBilinear.Build R U U' V s s' f
(fun u' => additive_linear (bilinear_subproof.1 u'))
(fun u => additive_linear (bilinear_subproof.2 u))
(fun u' => scalable_linear (bilinear_subproof.1 u'))
(fun u => scalable_linear (bilinear_subproof.2 u)).
HB.end.
Module BilinearExports.
Notation bilinear f := (bilinear_for *:%R *:%R f).
Notation biscalar f := (bilinear_for *%R *%R f).
Module Bilinear.
Definition map (R : ringType) (U U' : lmodType R) (V : zmodType)
(s : R -> V -> V) (s' : R -> V -> V)
(phUU'V : phant (U -> U' -> V)) := Bilinear.type U U' s s'.
End Bilinear.
Notation "{ 'bilinear' fUV | s & s' }" := (Bilinear.map s s' (Phant fUV))
(at level 0, format "{ 'bilinear' fUV | s & s' }") : ring_scope.
Notation "{ 'bilinear' fUV | s }" := (Bilinear.map s.1 s.2 (Phant fUV))
(at level 0, format "{ 'bilinear' fUV | s }") : ring_scope.
Notation "{ 'bilinear' fUV }" := {bilinear fUV | *:%R & *:%R}
(at level 0, format "{ 'bilinear' fUV }") : ring_scope.
Notation "{ 'biscalar' U }" := {bilinear U -> U -> _ | *%R & *%R}
(at level 0, format "{ 'biscalar' U }") : ring_scope.
Notation "[ 'bilinear' 'of' f 'as' g ]" := (Bilinear.clone _ _ _ _ _ _ f g)
(at level 0, format "[ 'bilinear' 'of' f 'as' g ]") : form_scope.
Notation "[ 'bilinear' 'of' f ]" := (Bilinear.clone _ _ _ _ _ _ f _)
(at level 0, format "[ 'bilinear' 'of' f ]") : form_scope.
End BilinearExports.
Export BilinearExports.
Section applyr.
Variables (R : ringType) (U U' : lmodType R) (V : zmodType) (s s' : R -> V -> V).
(* Fact applyr_key : unit. Proof. exact. Qed. *)
Definition applyr_head t (f : U -> U' -> V) u v := let: tt := t in f v u.
End applyr.
Notation applyr := (applyr_head tt).
Section BilinearTheory.
Variable R : ringType.
Section GenericProperties.
Variables (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V).
Variable f : {bilinear U -> U' -> V | s & s'}.
Section GenericPropertiesr.
Variable z : U.
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
GRing.isAdditive.Build _ _ (f z) (@additiver_subproof _ _ _ _ _ _ f z).
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
GRing.isScalable.Build _ _ _ _ (f z) (@linearr_subproof _ _ _ _ _ _ f z).
Lemma linear0r : f z 0 = 0. Proof. by rewrite raddf0. Qed.
Lemma linearNr : {morph f z : x / - x}. Proof. exact: raddfN. Qed.
Lemma linearDr : {morph f z : x y / x + y}. Proof. exact: raddfD. Qed.
Lemma linearBr : {morph f z : x y / x - y}. Proof. exact: raddfB. Qed.
Lemma linearMnr n : {morph f z : x / x *+ n}. Proof. exact: raddfMn. Qed.
Lemma linearMNnr n : {morph f z : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma linear_sumr I r (P : pred I) E :
f z (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f z (E i).
Proof. exact: raddf_sum. Qed.
Lemma linearZr_LR : scalable_for s' (f z). Proof. exact: linearZ_LR. Qed.
Lemma linearPr a : {morph f z : u v / a *: u + v >-> s' a u + v}.
Proof. exact: linearP. Qed.
End GenericPropertiesr.
Lemma applyrE x : applyr f x =1 f^~ x. Proof. by []. Qed.
Section GenericPropertiesl.
Variable z : U'.
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
GRing.isAdditive.Build _ _ (applyr f z) (@additivel_subproof _ _ _ _ _ _ f z).
#[local, non_forgetful_inheritance]
HB.instance Definition _ :=
GRing.isScalable.Build _ _ _ _ (applyr f z) (@linearl_subproof _ _ _ _ _ _ f z).
Lemma linear0l : f 0 z = 0. Proof. by rewrite -applyrE raddf0. Qed.
Lemma linearNl : {morph f^~ z : x / - x}.
Proof. by move=> ?; rewrite -applyrE raddfN. Qed.
Lemma linearDl : {morph f^~ z : x y / x + y}.
Proof. by move=> ??; rewrite -applyrE raddfD. Qed.
Lemma linearBl : {morph f^~ z : x y / x - y}.
Proof. by move=> ??; rewrite -applyrE raddfB. Qed.
Lemma linearMnl n : {morph f^~ z : x / x *+ n}.
Proof. by move=> ?; rewrite -applyrE raddfMn. Qed.
Lemma linearMNnl n : {morph f^~ z : x / x *- n}.
Proof. by move=> ?; rewrite -applyrE raddfMNn. Qed.
Lemma linear_suml I r (P : pred I) E :
f (\sum_(i <- r | P i) E i) z = \sum_(i <- r | P i) f (E i) z.
Proof. by rewrite -applyrE raddf_sum. Qed.
Lemma linearZl_LR : scalable_for s (f^~ z).
Proof. by move=> ??; rewrite -applyrE linearZ_LR. Qed.
Lemma linearPl a : {morph f^~ z : u v / a *: u + v >-> s a u + v}.
Proof. by move=> ??; rewrite -applyrE linearP. Qed.
End GenericPropertiesl.
End GenericProperties.
Section BidirectionalLinearZ.
Variables (U : lmodType R) (V : zmodType) (s : R -> V -> V).
Variables (S : ringType) (h : GRing.Scale.law S V).
(* Lemma linearZr z c a (h_c := GRing.Scale.op h_law c) (f : GRing.Linear.map_for U s a h_c) u : *)
(* f z (a *: u) = h_c (GRing.Linear.wrap (f z) u). *)
(* Proof. by rewrite linearZ_LR; case: f => f /= ->. Qed. *)
End BidirectionalLinearZ.
End BilinearTheory.
Lemma mulmx_is_bilinear (R : comRingType) m n p :
bilinear_for
(GRing.Scale.Law.clone _ _ *:%R _) (GRing.Scale.Law.clone _ _ *:%R _)
(@mulmx R m n p).
Proof.
split=> [u'|u] a x y /=.
- by rewrite mulmxDl scalemxAl.
- by rewrite mulmxDr scalemxAr.
Qed.
HB.instance Definition _ (R : comRingType) m n p :=
bilinear_isBilinear.Build R
'M[R]_(m, n) 'M[R]_(n, p) 'M[R]_(m, p) _ _ (@mulmx R m n p)
(mulmx_is_bilinear R m n p).
(* Section classfun. *)
(* Import mathcomp.character.classfun. *)
(* Canonical rev_cfdot (gT : finGroupType) (B : {set gT}) := *)
(* @RevOp _ _ _ (@cfdotr_head gT B tt) *)
(* (@cfdot gT B) (fun _ _ => erefl). *)
(* Section Cfdot. *)
(* Variables (gT : finGroupType) (G : {group gT}). *)
(* Lemma cfdot_is_linear xi : linear_for (@conjC _ \; *%R) (cfdot xi : 'CF(G) -> algC^o). *)
(* Proof. *)
(* move=> /= a phi psi; rewrite cfdotC -cfdotrE linearD linearZ /=. *)
(* by rewrite !['[_, xi]]cfdotC rmorphD rmorphM !conjCK. *)
(* Qed. *)
(* Canonical cfdot_additive xi := Additive (cfdot_is_linear xi). *)
(* Canonical cfdot_linear xi := Linear (cfdot_is_linear xi). *)
(* End Cfdot. *)
(* Canonical cfdot_bilinear (gT : finGroupType) (B : {group gT}) := *)
(* [bilinear of @cfdot gT B]. *)
(* End classfun. *)
Section BilinearForms.
Variables (R : fieldType) (theta : {rmorphism R -> R}).
Variables (n : nat) (M : 'M[R]_n).
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n).
Definition form u v := (u *m M *m (v ^t theta)) 0 0.
Local Notation "''[' u , v ]" := (form u%R v%R) : ring_scope.
Local Notation "''[' u ]" := '[u, u] : ring_scope.
Lemma form0l u : '[0, u] = 0.
Proof. by rewrite /form !mul0mx mxE. Qed.
Lemma form0r u : '[u, 0] = 0.
Proof. by rewrite /form trmx0 map_mx0 mulmx0 mxE. Qed.
Lemma formDl u v w : '[u + v, w] = '[u, w] + '[v, w].
Proof. by rewrite /form !mulmxDl mxE. Qed.
Lemma formDr u v w : '[u, v + w] = '[u, v] + '[u, w].
Proof. by rewrite /form linearD !map_mxD !mulmxDr mxE. Qed.
Lemma formZr a u v : '[u, a *: v] = theta a * '[u, v].
Proof. by rewrite /form !(linearZ, map_mxZ) /= mxE. Qed.
Lemma formZl a u v : '[a *: u, v] = a * '[u, v].
Proof.
by do !rewrite /form -[_ *: _ *m _]/(mulmxr _ _) linearZ /=; rewrite mxE.
Qed.
Lemma formNl u v : '[- u, v] = - '[u, v].
Proof. by rewrite -scaleN1r formZl mulN1r. Qed.
Lemma formNr u v : '[u, - v] = - '[u, v].
Proof. by rewrite -scaleN1r formZr rmorphN1 mulN1r. Qed.
Lemma formee i j : '['e_i, 'e_j] = M i j.
Proof.
rewrite /form -rowE -map_trmx map_delta_mx -[M in LHS]trmxK.
by rewrite -tr_col -trmx_mul -rowE !mxE.
Qed.
Lemma form0_eq0 : M = 0 -> forall u v, '[u, v] = 0.
Proof. by rewrite/form=> -> u v; rewrite mulmx0 mul0mx mxE. Qed.
End BilinearForms.
Section Sesquilinear.
Variable R : fieldType.
Variable n : nat.
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n).
Section Def.
Variable eps_theta : (bool * {rmorphism R -> R}).
Definition sesqui :=
[qualify M : 'M_n | M == ((-1) ^+ eps_theta.1) *: M ^t eps_theta.2].
Fact sesqui_key : pred_key sesqui. Proof. by []. Qed.
Canonical sesqui_keyed := KeyedQualifier sesqui_key.
End Def.
Local Notation "eps_theta .-sesqui" := (sesqui eps_theta).
Variables (eps : bool) (theta : {rmorphism R -> R}).
Variables (M : 'M[R]_n).
Local Notation "''[' u , v ]" := (form theta M u%R v%R) : ring_scope.
Local Notation "''[' u ]" := '[u, u] : ring_scope.
Lemma sesquiE : (M \is (eps,theta).-sesqui) = (M == (-1) ^+ eps *: M ^t theta).
Proof. by rewrite qualifE. Qed.
Lemma sesquiP : reflect (M = (-1) ^+ eps *: M ^t theta)
(M \is (eps,theta).-sesqui).
Proof. by rewrite sesquiE; apply/eqP. Qed.
Hypothesis (thetaK : involutive theta).
Hypothesis (M_sesqui : M \is (eps, theta).-sesqui).
Lemma trmx_sesqui : M^T = (-1) ^+ eps *: M ^ theta.
Proof.
rewrite [in LHS](sesquiP _) // -mul_scalar_mx trmx_mul.
by rewrite tr_scalar_mx mul_mx_scalar map_trmx trmxK.
Qed.
Lemma maptrmx_sesqui : M^t theta = (-1) ^+ eps *: M.
Proof.
by rewrite trmx_sesqui map_mxZ rmorph_sign -map_mx_comp eq_map_mx_id.
Qed.
Lemma formC u v : '[u, v] = (-1) ^+ eps * theta '[v, u].
Proof.
rewrite /form [M in LHS](sesquiP _) // -mulmxA !mxE rmorph_sum mulr_sumr.
apply: eq_bigr => /= i _; rewrite !(mxE, mulr_sumr, mulr_suml, rmorph_sum).
apply: eq_bigr => /= j _; rewrite !mxE !rmorphM mulrCA -!mulrA.
by congr (_ * _); rewrite mulrA mulrC /= thetaK.
Qed.
Lemma form_eq0C u v : ('[u, v] == 0) = ('[v, u] == 0).
Proof. by rewrite formC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed.
Definition ortho m (B : 'M_(m,n)) := (kermx (M *m (B ^t theta))).
Local Notation "B ^_|_" := (ortho B) : ring_scope.
Local Notation "A _|_ B" := (A%MS <= B^_|_)%MS : ring_scope.
Lemma normalE u v : (u _|_ v) = ('[u, v] == 0).
Proof.
by rewrite (sameP sub_kermxP eqP) mulmxA [_ *m _^t _]mx11_scalar fmorph_eq0.
Qed.
Lemma form_eq0P {u v} : reflect ('[u, v] = 0) (u _|_ v).
Proof. by rewrite normalE; apply/eqP. Qed.
Lemma normalP p q (A : 'M_(p, n)) (B :'M_(q, n)) :
reflect (forall (u v : 'rV_n), (u <= A)%MS -> (v <= B)%MS -> u _|_ v)
(A _|_ B).
Proof.
apply: (iffP idP) => AnB.
move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //.
apply/sub_kermxP; have /submxP [w ->] := vB.
rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA.
by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx.
apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP.
suff: forall m (v : 'rV[R]_m),
(forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0.
apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //.
by apply/submxP; exists 'e_i.
move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)).
rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE.
apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK.
by rewrite -(map_delta_mx theta) map_trmx Hv.
Qed.
Lemma normalC p q (A : 'M_(p, n)) (B :'M_(q, n)) : (A _|_ B) = (B _|_ A).
Proof.
gen have nC : p q A B / A _|_ B -> B _|_ A; last by apply/idP/idP; apply/nC.
move=> AnB; apply/normalP => u v ? ?; rewrite normalE.
rewrite formC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=.
by rewrite -normalE (normalP _ _ AnB).
Qed.
Lemma normal_ortho_mx p (A : 'M_(p, n)) : ((A^_|_) _|_ A).
Proof. by []. Qed.
Lemma normal_mx_ortho p (A : 'M_(p, n)) : (A _|_ (A^_|_)).
Proof. by rewrite normalC. Qed.
Lemma rank_normal u : (\rank (u ^_|_) >= n.-1)%N.
Proof.
rewrite mxrank_ker -subn1 leq_sub2l //.
by rewrite (leq_trans (mxrankM_maxr _ _)) // rank_leq_col.
Qed.
Definition rad := 1%:M^_|_.
Lemma rad_ker : rad = kermx M.
Proof. by rewrite /rad /ortho trmx1 map_mx1 mulmx1. Qed.
(* Pythagore *)
Theorem formDd u v : u _|_ v -> '[u + v] = '[u] + '[v].
Proof.
move=> uNv; rewrite formDl !formDr ['[v, u]]formC.
by rewrite ['[u, v]](form_eq0P _) // rmorph0 mulr0 addr0 add0r.
Qed.
Lemma formZ a u : '[a *: u]= (a * theta a) * '[u].
Proof. by rewrite formZl formZr mulrA. Qed.
Lemma formN u : '[- u] = '[u].
Proof. by rewrite formNr formNl opprK. Qed.
Lemma form_sign m u : '[(-1) ^+ m *: u] = '[u].
Proof. by rewrite -signr_odd scaler_sign; case: odd; rewrite ?formN. Qed.
Lemma formD u v : let d := '[u, v] in
'[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d).
Proof. by rewrite formDl !formDr ['[v, _]]formC [_ + '[v]]addrC addrACA. Qed.
Lemma formB u v : let d := '[u, v] in
'[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d).
Proof. by rewrite formD formN !formNr rmorphN mulrN -opprD. Qed.
Lemma formBd u v : u _|_ v -> '[u - v] = '[u] + '[v].
Proof.
by move=> uTv; rewrite formDd ?formN // normalE formNr oppr_eq0 -normalE.
Qed.
(* Lemma formJ u v : '[u ^ theta, v ^ theta] = (-1) ^+ eps * theta '[u, v]. *)
(* Proof. *)
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *)
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *)
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *)
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *)
(* Lemma formJ u : '[u ^ theta] = (-1) ^+ eps * '[u]. *)
(* Proof. *)
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *)
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *)
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *)
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *)
(* rewrite !map_mxM. *)
(* rewrite -map_mx_comp eq_map_mx_id //. *)
(* !linearZr_LR /=. linearZ. *)
(* linearZl. *)
(* rewrite trmx_sesqui. *)
(* rewrite mapmx. *)
(* rewrite map *)
(* apply/matrixP. *)
(* rewrite formC. *)
(* Proof. by rewrite cfdot_conjC geC0_conj // cfnorm_ge0. Qed. *)
(* Lemma cfCauchySchwarz u v : *)
(* `|'[u, v]| ^+ 2 <= '[u] * '[v] ?= iff ~~ free (u :: v). *)
(* Proof. *)
(* rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. *)
(* have [-> | nz_v] /= := altP (v =P 0). *)
(* by apply/lerifP; rewrite !cfdot0r normCK mul0r mulr0. *)
(* without loss ou: u / '[u, v] = 0. *)
(* move=> IHo; pose a := '[u, v] / '[v]; pose u1 := u - a *: v. *)
(* have ou: '[u1, v] = 0. *)
(* by rewrite cfdotBl cfdotZl divfK ?cfnorm_eq0 ?subrr. *)
(* rewrite (canRL (subrK _) (erefl u1)) rpredDr ?rpredZ ?memv_line //. *)
(* rewrite cfdotDl ou add0r cfdotZl normrM (ger0_norm (cfnorm_ge0 _)). *)
(* rewrite exprMn mulrA -cfnormZ cfnormDd; last by rewrite cfdotZr ou mulr0. *)
(* by have:= IHo _ ou; rewrite mulrDl -lerif_subLR subrr ou normCK mul0r. *)
(* rewrite ou normCK mul0r; split; first by rewrite mulr_ge0 ?cfnorm_ge0. *)
(* rewrite eq_sym mulf_eq0 orbC cfnorm_eq0 (negPf nz_v) /=. *)
(* apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite cfdotZr ou mulr0. *)
(* by rewrite cfnorm_eq0 => /eqP->; apply: rpred0. *)
(* Qed. *)
End Sesquilinear.
Notation "eps_theta .-sesqui" := (sesqui _ eps_theta) : ring_scope.
Notation symmetric_form := (false, idfun).-sesqui.
Notation skew := (true, idfun).-sesqui.
Notation hermitian := (false, @Num.conj_op _).-sesqui.
(* Section ClassificationForm. *)
(* Variables (F : fieldType) (L : fieldExtType) (theat : 'Aut()) *)
(* Notation "''[' u , v ]_ M" := (form M%R u%R v%R) : ring_scope. *)
(* Notation "''[' u ]_ M" := (form M%R u%R u%R) : ring_scope. *)
(* Hypothesis (thetaK : involutive theta). *)
(* Lemma sesqui_test M : (forall u v, '[v, u]_M = 0 -> '[u, v]_M = 0) -> *)
(* {eps | eps^+2 = 1 & M \is (eps,theta).-sesqui}. *)
(* Proof. *)
(* pose *)
(* [/\ forall u, '[u] = 0, theta =1 id & eps = -1] *)
(* \/ ((exists u, '[u] != 0) /\ (eps = 1)). *)
(* Proof. *)
(* move=> M_neq0 form_eq0. *)
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]; last first. *)
(* rewrite negb_forall => /existsP [i ei_neq0]. *)
(* right; split; first by exists ('e_i). *)
(* apply/eqP; *)
(* contraT *)
(* suff [f_eq0|] : (forall u, '[u] = 0) \/ (exists u, '[u] != 0). *)
(* left; split=> //. *)
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *)
(* suff /eqP : eps ^+ 2 = 1. *)
(* rewrite -subr_eq0 subr_sqr_1 mulf_eq0. *)
(* move => /orP[]; rewrite addr_eq0 ?opprK=> /eqP eps_eq. *)
(* right; split=> //. *)
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *)
(* have := sesquiC u u. *)
(* rewrite !linearZ /= -[eps *: _ *m _]/(mulmxr _ _) linearZ /= mxE; congr (_ * _). *)
(* have : u = map_mx theta (map_mx theta u). *)
(* apply/rowP=> i; rewrite !mxE. *)
(* rewrite -[in LHS]mulmxA -map_mxM. *)
(* rewrite *)
(* !mxE rmorph_sum; apply: eq_bigr => /= i _; rewrite !mxE. *)
(* rewrite !rmorphM thetaK rmorph_sum. *)
(* Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). *)
(* rewrite -[a *: u *m _]/(mulmxr _ _). *)
(* rewrite linearZ. *)
(* Variables (R : fieldType) (n : nat). *)
(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *)
(* Lemma normal_sym k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : *)
(* A _|_ B = B _|_ A. *)
(* Proof. *)
(* rewrite !(sameP sub_kermxP eqP) -{1}[A]trmxK -trmx_mul. *)
(* by rewrite -{1}trmx0 (inj_eq (@trmx_inj _ _ _)). *)
(* Qed. *)
(* Lemma normalNm k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : (- A) _|_ B = A _|_ B. *)
(* Proof. by rewrite eqmx_opp. Qed. *)
(* Lemma normalmN k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : A _|_ (- B) = A _|_ B. *)
(* Proof. by rewrite ![A _|_ _]normal_sym normalNm. Qed. *)
(* Lemma normalDm k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *)
(* (A + B _|_ C) = (A _|_ C) && (B _|_ C). *)
(* Proof. by rewrite addsmxE !(sameP sub_kermxP eqP) mul_col_mx col_mx_eq0. Qed. *)
(* Lemma normalmD k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *)
(* (A _|_ B + C) = (A _|_ B) && (A _|_ C). *)
(* Proof. by rewrite ![A _|_ _]normal_sym normalDm. Qed. *)
(* Definition dot (u v : 'rV[R]_n) : R := (u *m v^T) 0 0. *)
(* Notation "''[' u , v ]" := (dot u v) : ring_scope. *)
(* Notation "''[' u ]" := '[u, u]%MS : ring_scope. *)
(* Lemma dotmulE (u v : 'rV[R]_n) : '[u, v] = \sum_k u``_k * v``_k. *)
(* Proof. by rewrite [LHS]mxE; apply: eq_bigr=> i; rewrite mxE. Qed. *)
(* Lemma normalvv (u v : 'rV[R]_n) : (u _|_ v) = ('[u, v] == 0). *)
(* Proof. by rewrite (sameP sub_kermxP eqP) [_ *m _^T]mx11_scalar fmorph_eq0. Qed. *)
(* End Normal. *)
(* Local Notation "''[' u , v ]" := (form u v) : ring_scope. *)
(* Local Notation "''[' u ]" := '[u%R, u%R] : ring_scope. *)
(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *)
|