File: function_spaces.v

package info (click to toggle)
mathcomp-analysis 1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,308 kB
  • sloc: sh: 420; python: 76; sed: 25; makefile: 7
file content (1600 lines) | stat: -rw-r--r-- 68,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import cardinality mathcomp_extra fsbigop reals.
From mathcomp Require Import interval_inference topology separation_axioms.

(**md**************************************************************************)
(* # The topology of functions spaces                                         *)
(*                                                                            *)
(* Function spaces have no canonical topology. We develop the theory of       *)
(* several general-purpose function space topologies here.                    *)
(*                                                                            *)
(* ## Topologies on `U -> V`                                                  *)
(* There is no canonical topology on `U->V` in this library. Mathematically,  *)
(* the right topology usually depends on context. We provide three general    *)
(* options in this file which work for various amounts of structures on the   *)
(* domain and codomain.                                                       *)
(*                                                                            *)
(* Topologies we consider are:                                                *)
(* - Topology of pointwise convergence                                        *)
(*   + requires only a topology on V                                          *)
(* - Topology of uniform convergence                                          *)
(*   + requires only a uniformity on V                                        *)
(* - Topology of uniform convergence on subspaces                             *)
(*   + requires only a uniformity on V                                        *)
(* - The compact-open topology                                                *)
(*   + requires a topology on U and V                                         *)
(*                                                                            *)
(* if you're looking for the topology of compact convergence, note that       *)
(* it is exactly the compact-open topology via `compact_open_fam_compactP`.   *)
(*                                                                            *)
(* To locally assign a topology to `->`, import one of the following modules  *)
(* - ArrowAsProduct assigns the product topology                              *)
(* - ArrowAsUniformType assigns the uniform topology                          *)
(* - ArrowAsCompactOpen assign the compact-open topology                      *)
(*                                                                            *)
(* The major results are:                                                     *)
(* - Compactness in the product topology via Tychonoff's                      *)
(* - Compactness in the compact convergence topology via Ascoli's             *)
(* - Conditions when the supremum and weak topology commute in products       *)
(* - The compact-open topology is the topopology of compact convergence       *)
(* - Cartesian closedness for the category of locally compact topologies      *)
(*                                                                            *)
(* ## Function space notations                                                *)
(* ```                                                                        *)
(*       {uniform` A -> V} == the space U -> V, equipped with the topology    *)
(*                            of uniform convergence from a set A to V, where *)
(*                            V is a uniformType                              *)
(*        {uniform U -> V} := {uniform` [set: U] -> V}                        *)
(*    {uniform A, F --> f} == F converges to f in {uniform A -> V}            *)
(*      {uniform, F --> f} := {uniform setT, F --> f}                         *)
(*       prod_topology I T == the topology of pointwise convergence on the    *)
(*                            dependent space `forall (i:I), T i`             *)
(*  arrow_uniform_type U V == the topology of uniform convergence on the      *)
(*                            type `U -> V`                                   *)
(*           {ptws U -> V} == prod_topology for the non-dependent product     *)
(* separate_points_from_closed f == for a closed set U and point x outside    *)
(*                            some member of the family f, it sends f_i(x)    *)
(*                            outside (closure (f_i @` U))                    *)
(*                            Used together with join_product.                *)
(*          join_product f == the function (x => f ^~ x)                      *)
(*                            When the family f separates points from closed  *)
(*                            sets, join_product is an embedding.             *)
(*         {ptws, F --> f} == F converges to f in {ptws U -> V}               *)
(*    {family fam, U -> V} == the supremum of {uniform A -> f} for each A in  *)
(*                            `fam`                                           *)
(*                            In particular, {family compact, U -> V} is the  *)
(*                            topology of compact convergence.                *)
(*   {family fam, F --> f} == F converges to f in {family fam, U -> V}        *)
(*  {compact_open, U -> V} == compact-open topology                           *)
(* {compact_open, F --> f} == F converges to f in {compact_open, U -> V}      *)
(*                    eval == the evaluation map for continuous functions     *)
(* ```                                                                        *)
(*                                                                            *)
(* ## Ascoli's theorem notations                                              *)
(* ```                                                                        *)
(*      equicontinuous W x == the set (W : X -> Y) is equicontinuous at x     *)
(*            singletons T := [set [set x] | x in [set: T]]                   *)
(*  pointwise_precompact W == for each (x : X), the set of images             *)
(*                            [f x | f in W] is precompact                    *)
(* ```                                                                        *)
(******************************************************************************)

Reserved Notation "{ 'uniform`' A -> V }"
  (at level 0, A at level 69, format "{ 'uniform`'  A  ->  V }").
Reserved Notation "{ 'uniform' U -> V }"
  (at level 0, U at level 69, format "{ 'uniform'  U  ->  V }").
Reserved Notation "{ 'uniform' A , F --> f }"
  (at level 0, A at level 69, F at level 69,
   format "{ 'uniform'  A ,  F  -->  f }").
Reserved Notation "{ 'uniform' , F --> f }"
  (at level 0, F at level 69,
   format "{ 'uniform' ,  F  -->  f }").
Reserved Notation "{ 'ptws' U -> V }"
  (at level 0, U at level 69, format "{ 'ptws'  U  ->  V }").
Reserved Notation "{ 'ptws' , F --> f }"
  (at level 0, F at level 69, format "{ 'ptws' ,  F  -->  f }").
Reserved Notation "{ 'family' fam , U -> V }"
  (at level 0, U at level 69, format "{ 'family'  fam ,  U  ->  V }").
Reserved Notation "{ 'family' fam , F --> f }"
  (at level 0, F at level 69, format "{ 'family'  fam ,  F  -->  f }").
Reserved Notation "{ 'compact-open' , U -> V }"
  (at level 0, U at level 69, format "{ 'compact-open' ,  U  ->  V }").
Reserved Notation "{ 'compact-open' , F --> f }"
  (at level 0, F at level 69, format "{ 'compact-open' ,  F  -->  f }").

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Obligation Tactic := idtac.

Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

(** Product topology, also known as the topology of pointwise convergence *)
Section Product_Topology.

Definition prod_topology {I : Type} (T : I -> Type) := forall i, T i.

Variable I : Type.

Definition product_topology_def (T : I -> topologicalType) :=
  sup_topology (fun i => Topological.class
    (weak_topology (fun f : (forall i, T i) => f i))).

HB.instance Definition _ (T : I -> topologicalType) :=
  Topological.copy (prod_topology T) (product_topology_def T).

HB.instance Definition _ (T : I -> uniformType) :=
  Uniform.copy (prod_topology T)
    (sup_topology (fun i => Uniform.class (weak_topology (@proj _ T i)))).

HB.instance Definition _ (R : realType) (Ii : countType)
    (Tc : Ii -> pseudoMetricType R) := PseudoMetric.copy (prod_topology Tc)
  (sup_pseudometric (fun i => PseudoMetric.class (weak_topology (@proj _ Tc i)))
    (countableP _)).

End Product_Topology.

Notation "{ 'ptws' U -> V }" := (prod_topology (fun _ : U => V)) : type_scope.
Notation "{ 'ptws' , F --> f }" :=
  (cvg_to F (nbhs (f : {ptws _ -> _}))) : classical_set_scope.

Module ArrowAsProduct.
HB.instance Definition _ (U : Type) (T : U -> topologicalType) :=
  Topological.copy (forall x : U, T x) (prod_topology T).

HB.instance Definition _ (U : Type) (T : U -> uniformType) :=
  Uniform.copy (forall x : U, T x) (prod_topology T).

HB.instance Definition _ (U T : topologicalType) :=
  Topological.copy 
    (continuousType U T) 
    (weak_topology (id : continuousType U T -> (U -> T))).

HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
  Uniform.copy 
    (continuousType U T) 
    (weak_topology (id : continuousType U T -> (U -> T))).

End ArrowAsProduct.

Section product_spaces.
Local Import ArrowAsProduct.

Section projection_maps.
Context {I : eqType} {K : I -> topologicalType}.

Lemma proj_continuous i : continuous (@proj I K i).
Proof.
move=> f; have /cvg_sup/(_ i)/cvg_image : f --> f by apply: cvg_id.
move=> h; apply: cvg_trans (h _) => {h}.
  by move=> Q /= [W nbdW <-]; apply: filterS nbdW; exact: preimage_image.
rewrite eqEsubset; split => y //; exists (dfwith f i y) => //.
by rewrite dfwithin.
Qed.

Lemma dfwith_continuous g (i : I) : continuous (@dfwith I K g i).
Proof.
move=> z U [] P [] [] Q QfinP <- [] V JV Vpz.
move/(@preimage_subset _ _ (dfwith g i))/filterS; apply.
apply: (@filterS _ _ _ ((dfwith g i) @^-1` V)); first by exists V.
have [L Lsub /[dup] VL <-] := QfinP _ JV; rewrite preimage_bigcap.
apply: filter_bigI => /= M /[dup] LM /Lsub /set_mem [] w _ [+] + /[dup] + <-.
have [->|wnx] := eqVneq w i => N oN NM.
  apply: (@filterS _ _ _ N); first by move=> ? ?; rewrite /= dfwithin.
  apply: open_nbhs_nbhs; split => //; move: Vpz.
  by rewrite -VL => /(_ _ LM); rewrite -NM /= dfwithin.
apply: nearW => y /=; move: Vpz.
by rewrite -VL => /(_ _ LM); rewrite -NM /= ?dfwithout // eq_sym.
Qed.

Lemma proj_open i (A : set (prod_topology K)) : open A -> open (proj i @` A).
Proof.
move=> oA; rewrite openE => z [f Af <-]; rewrite openE in oA.
have {oA} := oA _ Af; rewrite /interior => nAf.
apply: (@filterS _ _ _ ((dfwith f i) @^-1` A)).
  by move=> w Apw; exists (dfwith f i w) => //; rewrite projK.
apply: dfwith_continuous => /=; move: nAf; congr (nbhs _ A).
by apply: functional_extensionality_dep => ?; case: dfwithP.
Qed.

Lemma hausdorff_product :
  (forall x, hausdorff_space (K x)) -> hausdorff_space (forall x, K x).
Proof.
move=> hsdfK p q /= clstr; apply: functional_extensionality_dep => x.
apply: hsdfK; move: clstr; rewrite ?cluster_cvgE /= => -[G PG [GtoQ psubG]].
exists (proj x @ G); [exact: fmap_proper_filter|split].
  apply: cvg_trans; last exact: (@proj_continuous x q).
  by apply: cvg_app; exact: GtoQ.
move/(cvg_app (proj x)): psubG => /cvg_trans; apply.
exact: proj_continuous.
Qed.

End projection_maps.

Lemma tychonoff (I : eqType) (T : I -> topologicalType)
  (A : forall i, set (T i)) :
  (forall i, compact (A i)) ->
  compact [set f : forall i, T i | forall i, A i (f i)].
Proof.
case: (pselect ([set f : forall i, T i | forall i, A i (f i)] == set0)). 
  move/eqP => -> _; exact: compact0.
case/negP/set0P=> a0 Aa0 Aco; rewrite compact_ultra => F FU FA.
set subst_coord := fun (i : I) (pi : T i) (f : forall x : I, T x) (j : I) =>
  if eqP is ReflectT e then ecast i (T i) (esym e) pi else f j.
have subst_coordT i pi f : subst_coord i pi f i = pi.
  rewrite /subst_coord; case: eqP => // e.
  by rewrite (eq_irrelevance e (erefl _)).
have subst_coordN i pi f j : i != j -> subst_coord i pi f j = f j.
  move=> inej; rewrite /subst_coord; case: eqP => // e.
  by move: inej; rewrite {1}e => /negP.
have pr_surj i : @^~ i @` [set: forall i, T i] = setT.
  rewrite predeqE => pi; split=> // _.
  by exists (subst_coord i pi a0) => //; rewrite subst_coordT.
pose pF i : set_system _ := [set @^~ i @` B | B in F].
have pFultra i : UltraFilter (pF i) by exact: ultra_image (pr_surj i).
have pFA i : pF i (A i).
  exists [set g | forall i, A i (g i)] => //.
  rewrite predeqE => pi; split; first by move=> [g Ag <-]; apply: Ag.
  move=> Aipi; have [f Af] := filter_ex FA.
  exists (subst_coord i pi f); last exact: subst_coordT.
  move=> j; have [<-{j}|] := eqVneq i j; first by rewrite subst_coordT.
  by move=> /subst_coordN ->; apply: Af.
have cvpFA i : A i `&` [set p | pF i --> p] !=set0.
  by rewrite -ultra_cvg_clusterE; apply: Aco.
exists (fun i => xget (a0 i) (A i `&` [set p | pF i --> p])).
split=> [i|]; first by have /(xgetPex (a0 i)) [] := cvpFA i.
apply/cvg_sup => i; apply/cvg_image=> //. 
by have /(xgetPex (a0 i)) [] := cvpFA i.
Qed.

Lemma perfect_prod {I : Type} (i : I) (K : I -> topologicalType) :
  perfect_set [set: K i] -> perfect_set [set: forall i, K i].
Proof.
move=> /perfectTP KPo; apply/perfectTP => f oF; apply: (KPo (f i)).
rewrite (_ : [set f i] = proj i @` [set f]).
  by apply: (@proj_open {classic I} _ i); exact: oF.
by rewrite eqEsubset; split => ? //; [move=> -> /=; exists f | case=> g ->].
Qed.

Lemma perfect_diagonal (K : nat -> topologicalType) :
  (forall i, exists xy : K i * K i, xy.1 != xy.2) ->
  perfect_set [set: forall i, K i].
Proof.
move=> npts; split; first exact: closedT.
rewrite eqEsubset; split => f // _.
pose distincts (i : nat) := projT1 (sigW (npts i)).
pose derange i (z : K i) :=
  if z == (distincts i).1 then (distincts i).2 else (distincts i).1.
pose g (N i : nat) := if (i < N)%N then f i else derange _ (f i).
have gcvg : g @ \oo --> f.
  apply/cvg_sup => N U [V] [[W] oW <-] WfN WU.
  by apply: (filterS WU); rewrite nbhs_simpl /g; exists N.+1 => // i /= ->.
move=> A /gcvg; rewrite nbhs_simpl => -[N _ An].
exists (g N); split => //; last by apply: An; rewrite /= leqnn.
apply/eqP => M; suff: g N N != f N by rewrite M; move/eqP.
rewrite /g ltnn /derange eq_sym; have [->|//] := eqVneq (f N) (distincts N).1.
exact: projT2 (sigW (npts N)).
Qed.

Lemma zero_dimension_prod (I : choiceType) (T : I -> topologicalType) :
  (forall i, zero_dimensional (T i)) ->
  zero_dimensional (forall i, T i).
Proof.
move=> dctTI x y /eqP xneqy.
have [i/eqP/dctTI [U [clU Ux nUy]]] : exists i, x i <> y i.
  by apply/existsNP=> W; exact/xneqy/functional_extensionality_dep.
exists (proj i @^-1` U); split => //; apply: clopen_comp => //.
exact/proj_continuous.
Qed.

Lemma totally_disconnected_prod (I : choiceType)
  (T : I -> topologicalType) (A : forall i, set (T i)) :
  (forall i, totally_disconnected (A i)) ->
  @totally_disconnected (forall i, T i) (fun f => forall i, A i (f i)).
Proof.
move=> dsctAi x /= Aix; rewrite eqEsubset; split; last first.
  by move=> ? ->; exact: connected_component_refl.
move=> f /= [C /= [Cx CA ctC Cf]]; apply/functional_extensionality_dep => i.
suff : proj i @` C `<=` [set x i] by apply; exists f.
rewrite -(dsctAi i) // => Ti ?; exists (proj i @` C) => //.
split; [by exists x | by move=> ? [r Cr <-]; exact: CA |].
apply/(connected_continuous_connected ctC)/continuous_subspaceT.
exact: proj_continuous.
Qed.

(**md A handy technique for embedding a space `T` into a product. The key
  interface is `separate_points_from_closed`, which guarantees that the
  topologies
   - `T`'s native topology
   - `sup (weak f_i)`: the sup of all the weak topologies of `f_i`
   - `weak (x => (f_1 x, f_2 x, ...))`: the weak topology from the product space

  are equivalent (the last equivalence seems to require `accessible_space`). *)
Section product_embeddings.
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
Variable (f_ : forall i, T -> U_ i).

Definition separate_points_from_closed := forall (U : set T) x,
  closed U -> ~ U x -> exists i, ~ (closure (f_ i @` U)) (f_ i x).

Hypothesis sepf : separate_points_from_closed.
Hypothesis ctsf : forall i, continuous (f_ i).

Let weakT : topologicalType :=
  sup_topology (fun i => Topological.on (weak_topology (f_ i))).

Let PU : topologicalType := prod_topology U_.

Local Notation sup_open := (@open weakT).
Local Notation "'weak_open' i" := (@open weakT) (at level 0).
Local Notation natural_open := (@open T).

Lemma weak_sep_cvg (F : set_system T) (x : T) :
  Filter F -> (F --> (x : T)) <-> (F --> (x : weakT)).
Proof.
move=> FF; split.
  move=> FTx; apply/cvg_sup => i U.
  have /= -> := @nbhsE (weak_topology (f_ i)) x.
  case=> B [[C oC <- ?]] /filterS; apply; apply: FTx; rewrite /= nbhsE.
  by exists (f_ i @^-1` C) => //; split => //; exact: open_comp.
move/cvg_sup => wiFx U; rewrite /= nbhs_simpl nbhsE => [[B [oB ?]]].
move/filterS; apply; have [//|i nclfix] := @sepf _ x (open_closedC oB).
apply: (wiFx i); have /= -> := @nbhsE (weak_topology (f_ i)) x.
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); [split=>//|].
  apply: open_comp; last by rewrite ?openC//; exact: closed_closure.
  by move=> + _; exact: (@weak_continuous _ _ (f_ i)).
rewrite -interiorC interiorEbigcup preimage_bigcup => z [V [oV]] VnB => /VnB.
by move/forall2NP => /(_ z) [] // /contrapT.
Qed.

Lemma weak_sep_nbhsE x : @nbhs T T x = @nbhs T weakT x.
Proof.
rewrite predeqE => U; split; move: U.
  by have P := weak_sep_cvg x (nbhs_filter (x : weakT)); exact/P.
by have P := weak_sep_cvg x (nbhs_filter (x : T)); exact/P.
Qed.

Lemma weak_sep_openE : @open T = @open weakT.
Proof.
rewrite predeqE => A; rewrite ?openE /interior.
by split => + z => /(_ z); rewrite weak_sep_nbhsE.
Qed.

Definition join_product (x : T) : PU := f_ ^~ x.

Lemma join_product_continuous : continuous join_product.
Proof.
suff : continuous (join_product : weakT -> PU).
  by move=> cts x U => /cts; rewrite nbhs_simpl /= -weak_sep_nbhsE.
move=> x; apply/cvg_sup; first exact/fmap_filter/(nbhs_filter (x : weakT)).
move=> i; move: x; apply/(@continuousP _ (weak_topology (@^~ i))) => A [B ? E].
rewrite -E (_ : @^~ i =  proj i) //.
have -> : join_product @^-1` (proj i @^-1` B) = f_ i @^-1` B by [].
apply: open_comp => // + _; rewrite /cvg_to => x U.
by rewrite nbhs_simpl /= -weak_sep_nbhsE; move: x U; exact: ctsf.
Qed.

Local Notation prod_open := (@open (subspace (range join_product))).

Lemma join_product_open (A : set T) : open A ->
  open ((join_product @` A) : set (subspace (range join_product))).
Proof.
move=> oA; rewrite openE => y /= [x Ax] jxy.
have [// | i nAfiy] := @sepf (~` A) x (open_closedC oA).
pose B : set PU := proj i @^-1` (~` closure (f_ i @` ~` A)).
apply: (@filterS _ _ _ (range join_product `&` B)).
  move=> z [[w ?]] wzE Bz; exists w => //.
  move: Bz; rewrite /B -wzE -interiorC interiorEbigcup.
  case=> K [oK KsubA] /KsubA.
  have -> : proj i (join_product w) = f_ i w by [].
  by move=> /exists2P/forallNP/(_ w)/not_andP [] // /contrapT.
apply: open_nbhs_nbhs; split; last by rewrite -jxy.
apply: openI; first exact: open_subspaceT.
apply: open_subspaceW; apply: open_comp; last exact/closed_openC/closed_closure.
by move=> + _; exact: proj_continuous.
Qed.

Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.
Proof.
move=> /accessible_closed_set1 cl1 x y; case: (eqVneq x y) => // xny _ _ jxjy.
have [] := @sepf [set y] x (cl1 y); first exact/eqP.
move=> i P; suff : join_product x i != join_product y i by rewrite jxjy => /eqP.
apply/negP; move: P; apply: contra_not => /eqP; rewrite /join_product => ->.
by apply: subset_closure; exists y.
Qed.

Lemma join_product_weak : set_inj [set: T] join_product ->
  @open T = @open (weak_topology join_product).
Proof.
move=> inj; rewrite predeqE => U; split; first last.
  by move=> [V ? <-]; apply: open_comp => // + _; exact: join_product_continuous.
move=> /join_product_open/open_subspaceP [V [oU VU]].
exists V => //; have := @f_equal _ _ (preimage join_product) _ _ VU.
rewrite !preimage_setI // !preimage_range !setIT => ->.
rewrite eqEsubset; split; last exact: preimage_image.
by move=> z [w Uw] /inj <- //; rewrite inE.
Qed.

End product_embeddings.

Global Instance prod_topology_filter (U : Type) (T : U -> ptopologicalType) (f : prod_topology T) :
  ProperFilter (nbhs f).
Proof.
exact: nbhs_pfilter.
Qed.

End product_spaces.

HB.instance Definition _ (U : Type) (T : U -> ptopologicalType) :=
  Pointed.copy (forall x : U, T x) (prod_topology T).

(**md the uniform topologies type *)
Section fct_Uniform.
Local Open Scope relation_scope.
Variables (T : choiceType) (U : uniformType).

Definition fct_ent := filter_from (@entourage U)
  (fun P => [set fg | forall t : T, P (fg.1 t, fg.2 t)]).

Lemma fct_ent_filter : Filter fct_ent.
Proof.
apply: filter_from_filter; first by exists setT; apply: filterT.
move=> A B entA entB.
exists (A `&` B); first exact: filterI.
by move=> fg ABfg; split=> t; have [] := ABfg t.
Qed.

Lemma fct_ent_refl A : fct_ent A -> diagonal `<=` A.
Proof.
move=> [B entB sBA] fg feg; apply/sBA => t; rewrite feg.
exact: entourage_refl.
Qed.

Lemma fct_ent_inv A : fct_ent A -> fct_ent A^-1.
Proof.
move=> [B entB sBA]; exists B^-1; first exact: entourage_inv.
by move=> fg Bgf; exact/sBA.
Qed.

Lemma fct_ent_split A : fct_ent A -> exists2 B, fct_ent B & B \; B `<=` A.
Proof.
move=> [B entB sBA].
exists [set fg | forall t, split_ent B (fg.1 t, fg.2 t)].
  by exists (split_ent B).
move=> fg [h spBfh spBhg].
by apply: sBA => t; apply: entourage_split (spBfh t) (spBhg t).
Qed.

Definition arrow_uniform_type : Type := T -> U.

#[export] HB.instance Definition _ := Choice.on arrow_uniform_type.
#[export] HB.instance Definition _ := isUniform.Build arrow_uniform_type
  fct_ent_filter fct_ent_refl fct_ent_inv fct_ent_split.

End fct_Uniform.

#[export] HB.instance Definition _ {T : choiceType} {U : puniformType} :=
  Pointed.on (arrow_uniform_type T U).

Lemma cvg_fct_entourageP (T : choiceType) (U : uniformType)
    (F : set_system (arrow_uniform_type T U)) (FF : Filter F)
    (f : arrow_uniform_type T U) :
  F --> f <-> forall A, entourage A ->
              \forall g \near F, forall t, A (f t, g t).
Proof.
split => [/cvg_entourageP Ff A entA|Ff].
  by apply: (Ff [set fg | forall t : T, A (fg.1 t, fg.2 t)]); exists A.
apply/cvg_entourageP => A [P entP sPA].
by near=> g do apply: sPA; apply: Ff.
Unshelve. all: by end_near. Qed.

Section fun_Complete.
Context {T : choiceType} {U : completeType}.

Lemma fun_complete (F : set_system (arrow_uniform_type T U))
  {FF :  ProperFilter F} : cauchy F -> cvg F.
Proof.
move=> Fc.
have /(_ _) /cauchy_cvg /cvg_app_entourageP cvF : cauchy (@^~_ @ F).
  move=> t A /= entA; rewrite near_simpl -near2E near_map2.
  by apply: Fc; exists A.
apply/cvg_ex; exists (fun t => lim (@^~t @ F)).
apply/cvg_fct_entourageP => A entA; near=> f => t; near F => g.
apply: (entourage_split (g t)) => //; first by near: g; apply: cvF.
move: (t); near: g; near: f; apply: nearP_dep; apply: Fc.
by exists (split_ent A)^-1%relation => /=.
Unshelve. all: by end_near. Qed.

HB.instance Definition _ := Uniform_isComplete.Build
  (arrow_uniform_type T U) fun_complete.

HB.instance Definition _ (R : numFieldType) :=
  Uniform_isComplete.Build (arrow_uniform_type T U) cauchy_cvg.

End fun_Complete.

(** Functional metric spaces *)
Section fct_PseudoMetric.
Variable (T : choiceType) (R : numFieldType) (U : pseudoMetricType R).
Definition fct_ball (x : arrow_uniform_type T U) (eps : R)
  (y : arrow_uniform_type T U) := forall t : T, ball (x t) eps (y t).
Lemma fct_ball_center (x : T -> U) (e : R) : 0 < e -> fct_ball x e x.
Proof. by move=> /posnumP[{}e] ?. Qed.

Lemma fct_ball_sym (x y : T -> U) (e : R) : fct_ball x e y -> fct_ball y e x.
Proof. by move=> P t; apply: ball_sym. Qed.
Lemma fct_ball_triangle (x y z : T -> U) (e1 e2 : R) :
  fct_ball x e1 y -> fct_ball y e2 z -> fct_ball x (e1 + e2) z.
Proof. by move=> xy yz t; apply: (@ball_triangle _ _ (y t)). Qed.
Lemma fct_entourage : entourage = entourage_ fct_ball.
Proof.
rewrite predeqE => A; split; last first.
  by move=> [_/posnumP[e] sbeA]; exists [set xy | ball xy.1 e%:num xy.2].
move=> [P]; rewrite -entourage_ballE => -[_/posnumP[e] sbeP] sPA.
by exists e%:num => //= fg fg_e; apply: sPA => t; apply: sbeP; apply: fg_e.
Qed.

HB.instance Definition _ := Uniform_isPseudoMetric.Build R
  (arrow_uniform_type T U) fct_ball_center fct_ball_sym
  fct_ball_triangle fct_entourage.
End fct_PseudoMetric.

Module ArrowAsUniformType.
HB.instance Definition _ (U : choiceType) (V : uniformType) :=
  Uniform.copy (U -> V) (arrow_uniform_type U V).

HB.instance Definition _ (U : choiceType) (R : numFieldType)
    (V : pseudoMetricType R) :=
  PseudoMetric.copy (U -> V) (arrow_uniform_type U V).

HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
  Uniform.copy 
    (continuousType U T) 
    (weak_topology (id : continuousType U T -> (U -> T))).

HB.instance Definition _ (U : topologicalType) (R : realType) 
     (T : pseudoMetricType R) :=
  PseudoMetric.on 
    (weak_topology (id : continuousType U T -> (U -> T))).

End ArrowAsUniformType.

(** Limit switching *)
Section Cvg_switch.
Context {T1 T2 : choiceType}.
Local Import ArrowAsUniformType.

Lemma cvg_switch_1 {U : uniformType}
  F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) (l : U) :
  f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) -> h @ F1 --> l ->
  g @ F2 --> l.
Proof.
move=> fg fh hl; apply/cvg_app_entourageP => A entA.
near F1 => x1; near=> x2; apply: (entourage_split (h x1)) => //.
  by apply/xsectionP; near: x1; exact: hl.
apply: (entourage_split (f x1 x2)) => //.
  by apply/xsectionP; near: x2; exact: fh.
move: (x2); near: x1; have /cvg_fct_entourageP /(_ _^-1%relation):= fg; apply.
exact: entourage_inv.
Unshelve. all: by end_near. Qed.

Lemma cvg_switch_2 {U : completeType}
  F1 {FF1 : ProperFilter F1} F2 {FF2 : ProperFilter F2}
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
  f @ F1 --> g -> (forall x, f x @ F2 --> h x) ->
  [cvg h @ F1 in U].
Proof.
move=> fg fh; apply: cauchy_cvg => A entA.
rewrite !near_simpl -near2_pair near_map2; near=> x1 y1 => /=; near F2 => x2.
apply: (entourage_split (f x1 x2)) => //.
  by apply/xsectionP; near: x2; exact: fh.
apply: (entourage_split (f y1 x2)) => //; last first.
  apply/xsectionP; near: x2; apply/(fh _ (xsection _^-1%relation _)).
  exact: nbhs_entourage (entourage_inv _).
apply: (entourage_split (g x2)) => //; move: (x2); [near: x1|near: y1].
  have /cvg_fct_entourageP /(_ _^-1%relation) := fg; apply.
  exact: entourage_inv.
by have /cvg_fct_entourageP := fg; apply.
Unshelve. all: by end_near. Qed.

Lemma cvg_switch {U : completeType}
  F1 (FF1 : ProperFilter F1) F2 (FF2 : ProperFilter F2)
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
  f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) ->
  exists l : U, h @ F1 --> l /\ g @ F2 --> l.
Proof.
move=> Hfg Hfh; have hcv := [elaborate cvg_switch_2 Hfg Hfh].
by exists (lim (h @ F1)); split=> //; apply: cvg_switch_1 Hfg Hfh hcv.
Qed.

End Cvg_switch.

Definition uniform_fun {U : Type} (A : set U) (V : Type) : Type := U -> V.

Notation "{ 'uniform`' A -> V }" := (@uniform_fun _ A V) : type_scope.
Notation "{ 'uniform' U -> V }" := ({uniform` [set: U] -> V}) : type_scope.
Notation "{ 'uniform' A , F --> f }" :=
  (cvg_to F (nbhs (f : {uniform` A -> _}))) : classical_set_scope.
Notation "{ 'uniform' , F --> f }" :=
  (cvg_to F (nbhs (f : {uniform _ -> _}))) : classical_set_scope.

Definition sigL_arrow {U : choiceType} (A : set U) (V : uniformType) :
  (U -> V) -> arrow_uniform_type A V := @sigL _ V A.

HB.instance Definition _ (U : choiceType) (A : set U) (V : uniformType) :=
  Uniform.copy {uniform` A -> V} (weak_topology (@sigL_arrow _ A V)).

Section RestrictedUniformTopology.
Context {U : choiceType} (A : set U) {V : uniformType} .

Lemma uniform_nbhs (f : {uniform` A -> V}) P:
  nbhs f P <-> (exists E, entourage E /\
    [set h | forall y, A y -> E(f y, h y)] `<=` P).
Proof.
split=> [[Q [[/= W oW <- /=] Wf subP]]|[E [entE subP]]].
  rewrite openE /= /interior in oW.
  case: (oW _ Wf) => ? [ /= E entE] Esub subW.
  exists E; split=> // h Eh; apply/subP/subW/xsectionP/Esub => /= [[u Au]].
  by apply: Eh => /=; rewrite -inE.
case : (pselect (exists (u : U), True)); first last.
  move=> nU; apply: (filterS subP); apply: (@filterS _ _ _ setT).
  by move=> t _ /= y; move: nU; apply: absurd; exists y.
  exact: filterT.
case=> u0 _; near=> g; apply: subP => y /mem_set Ay; rewrite -!(sigLE A).
move: (SigSub _); near: g.
have := (@cvg_image _ _ (@sigL_arrow _ A V) _ f (nbhs_filter f)
  (image_sigL (f u0))).1 cvg_id [set h | forall y, E (sigL A f y, h y)].
case.
  exists [set fg | forall y, E (fg.1 y, fg.2 y)] => //; first by exists E.
  by move=> g /xsectionP.
move=> B nbhsB rBrE; apply: (filterS _ nbhsB) => g Bg [y yA].
by move: rBrE; rewrite eqEsubset; case => [+ _]; apply; exists g.
Unshelve. all: by end_near. Qed.

Lemma uniform_entourage :
  @entourage {uniform` A -> V} =
  filter_from
    (@entourage V)
    (fun P => [set fg | forall t : U, A t -> P (fg.1 t, fg.2 t)]).
Proof.
rewrite eqEsubset; split => P /=.
  case=> /= E [F entF FsubE EsubP]; exists F => //; case=> f g Ffg.
  by apply/EsubP/FsubE=> [[x p]] /=; apply: Ffg; move/set_mem: (p).
case=> E entE EsubP; exists [set fg | forall t, E (fg.1 t, fg.2 t)].
  by exists E.
case=> f g Efg; apply: EsubP => t /mem_set At.
by move: Efg => /= /(_ (@exist _ (fun x => in_mem x (mem A)) _ At)).
Qed.

End RestrictedUniformTopology.

Lemma restricted_cvgE {U : choiceType} {V : uniformType}
    (F : set_system (U -> V)) A (f : U -> V) :
  {uniform A, F --> f} = (F --> (f : {uniform` A -> V})).
Proof. by []. Qed.

Lemma pointwise_cvgE {U : Type} {V : topologicalType}
    (F : set_system (U -> V)) (A : set U) (f : U -> V) :
  {ptws, F --> f} = (F --> (f : {ptws U -> V})).
Proof. by []. Qed.


(**md We use this function to help Coq identify the correct notation to use
  when printing. Otherwise you get goals like `F --> f -> F --> f`. *)
Definition uniform_fun_family {U} V (fam : set U -> Prop) := U -> V.

Notation "{ 'family' fam , U -> V }" :=  (@uniform_fun_family U V fam).
Notation "{ 'family' fam , F --> f }" :=
  (cvg_to F (@nbhs _ {family fam, _ -> _} f)) : type_scope.

HB.instance Definition _ {U : choiceType} {V : uniformType}
    (fam : set U -> Prop) :=
  Uniform.copy {family fam, U -> V} (sup_topology (fun k : sigT fam =>
       Uniform.class {uniform` projT1 k -> V})).

Section UniformCvgLemmas.
Context {U : choiceType} {V : uniformType}.

Lemma uniform_set1 F (f : U -> V) (x : U) :
  Filter F -> {uniform [set x], F --> f} = (g x @[g --> F] --> f x).
Proof.
move=> FF; rewrite propeqE; split.
  move=> + W => /(_ [set t | W (t x)]) +; rewrite -nbhs_entourageE.
  rewrite uniform_nbhs => + [Q entQ subW].
  by apply; exists Q; split => // h Qf; exact/subW/xsectionP/Qf.
move=> Ff W; rewrite uniform_nbhs => [[E] [entE subW]].
apply: (filterS subW); move/(nbhs_entourage (f x))/Ff: entE => //=; near_simpl.
by apply: filter_app; apply: nearW=> ? /xsectionP ? ? ->.
Qed.

Lemma uniform_subset_nbhs (f : U -> V) (A B : set U) :
  B `<=` A -> nbhs (f : {uniform` A -> V}) `=>` nbhs (f : {uniform` B -> V}).
Proof.
move => BsubA P /uniform_nbhs [E [entE EsubP]].
apply: (filterS EsubP); apply/uniform_nbhs; exists E; split => //.
by move=> h Eh y /BsubA Ay; exact: Eh.
Qed.

Lemma uniform_subset_cvg (f : U -> V) (A B : set U) F :
  Filter F -> B `<=` A -> {uniform A, F --> f} -> {uniform B, F --> f}.
Proof.
move => FF /uniform_subset_nbhs => /(_ f).
by move=> nbhsF Acvg; apply: cvg_trans; [exact: Acvg|exact: nbhsF].
Qed.

Lemma pointwise_uniform_cvg  (f : U -> V) (F : set_system (U -> V)) :
  Filter F -> {uniform, F --> f} -> {ptws, F --> f}.
Proof.
move=> FF; rewrite cvg_sup => + i; have isubT : [set i] `<=` setT by move=> ?.
move=> /(uniform_subset_cvg _ isubT); rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
apply: cvg_trans => W /=; rewrite nbhs_simpl; exists (@^~ i @^-1` W) => //.
by rewrite image_preimage // eqEsubset; split=> // j _; exists (fun _ => j).
Qed.

Lemma cvg_sigL (A : set U) (f : U -> V) (F : set_system (U -> V)) :
    Filter F ->
  {uniform A, F --> f} <->
  {uniform, sigL A @ F --> sigL A f}.
Proof.
move=> FF; split.
- move=> cvgF P' /uniform_nbhs [E [entE EsubP]].
  apply: (filterS EsubP); apply: cvgF => /=.
  apply: (filterS (P := [set h | forall y, A y -> E (f y, h y)])).
    + by move=> h/= Eh [y ?] _; apply Eh; rewrite -inE.
    + by (apply/uniform_nbhs; eexists; split; eauto).
- move=> cvgF P' /= /uniform_nbhs [ E [/= entE EsubP]].
  apply: (filterS EsubP).
  move: (cvgF  [set h | (forall y , E (sigL A f y, h y))]) => /=.
  set Q := (x in (_ -> x) -> _); move=> W.
  have: Q by apply W, uniform_nbhs; exists E; split => // h + ?; apply.
  rewrite {}/W {}/Q; near_simpl => /= R; apply: (filterS _ R) => h /=.
  by rewrite forall_sig /sigL /=.
Qed.

Lemma eq_in_close (A : set U) (f g : {uniform` A -> V}) :
  {in A, f =1 g} -> close f g.
Proof.
rewrite entourage_close => /eq_sigLP eqfg ? [E entE]; apply=> /=.
by rewrite /map_pair/sigL_arrow eqfg; exact: entourage_refl.
Qed.

Lemma hausdorrf_close_eq_in (A : set U) (f g : {uniform` A -> V}) :
  hausdorff_space V -> close f g = {in A, f =1 g}.
Proof.
move=> hV.
rewrite propeqE; split; last exact: eq_in_close.
rewrite entourage_close => C u; rewrite inE => uA; apply: hV.
rewrite /cluster -nbhs_entourageE /= => X Y [X' eX X'X] [Y' eY Y'Y].
exists (g u); split; [apply: X'X| apply: Y'Y]; apply/xsectionP; last first.
  exact: entourage_refl.
apply: (C [set fg | forall y, A y -> X' (fg.1 y, fg.2 y)]) => //=.
by rewrite uniform_entourage; exists X'.
Qed.

Lemma uniform_nbhsT (f : U -> V) :
  (nbhs (f : {uniform U -> V})) = nbhs (f : arrow_uniform_type U V).
Proof.
rewrite eqEsubset; split=> A.
  case/uniform_nbhs => E [entE] /filterS; apply.
  exists [set fh | forall y, E (fh.1 y, fh.2 y)]; first by exists E.
  by move=> ? /xsectionP /=.
case => J [E entE EJ] /filterS; apply; apply/uniform_nbhs; exists E.
by split => // z /= Efz; apply/xsectionP/EJ => t /=; exact: Efz.
Qed.

Lemma cvg_uniformU (f : U -> V) (F : set_system (U -> V)) A B : Filter F ->
  {uniform A, F --> f} -> {uniform B, F --> f} ->
  {uniform (A `|` B), F --> f}.
Proof.
move=> FF AFf BFf Q /=/uniform_nbhs [E [entE EsubQ]].
apply: (filterS EsubQ).
rewrite (_:  [set h | (forall y : U, (A `|` B) y -> E (f y, h y))] =
    [set h | forall y, A y -> E (f y, h y)] `&`
    [set h | forall y, B y -> E (f y, h y)]).
- apply: filterI; [apply: AFf| apply: BFf].
  + by apply/uniform_nbhs; exists E; split.
  + by apply/uniform_nbhs; exists E; split.
- rewrite eqEsubset; split=> h.
  + by move=> R; split=> t ?; apply: R;[left| right].
  + by move=> [R1 R2] y [? | ?]; [apply: R1| apply: R2].
Qed.

Lemma cvg_uniform_set0 (F : set_system (U -> V)) (f : U -> V) : Filter F ->
  {uniform set0, F --> f}.
Proof.
move=> FF P /= /uniform_nbhs [E [? R]].
suff -> : P = setT by exact: filterT.
rewrite eqEsubset; split => //=.
by apply: subset_trans R => g _ ?.
Qed.

Lemma fam_cvgP (fam : set U -> Prop) (F : set_system (U -> V)) (f : U -> V) :
  Filter F -> {family fam, F --> f} <->
  (forall A : set U, fam A -> {uniform A, F --> f }).
Proof.
split; first by move=> /cvg_sup + A FA; move/(_ (existT _ _ FA)).
by move=> famFf /=; apply/cvg_sup => [[? ?] FA]; apply: famFf.
Qed.

Lemma family_cvg_subset (famA famB : set U -> Prop) (F : set_system (U -> V))
    (f : U -> V) : Filter F ->
  famA `<=` famB -> {family famB, F --> f} -> {family famA, F --> f}.
Proof.
by move=> FF S /fam_cvgP famBFf; apply/fam_cvgP => A ?; apply/famBFf/S.
Qed.

Lemma family_cvg_finite_covers (famA famB : set U -> Prop)
  (F : set_system (U -> V)) (f : U -> V) : Filter F ->
  (forall P, famA P ->
    exists (I : choiceType) f,
      (forall i, famB (f i)) /\ finite_subset_cover [set: I] f P) ->
  {family famB, F --> f} -> {family famA, F --> f}.
Proof.
move=> FF ex_finCover /fam_cvgP rFf; apply/fam_cvgP => A famAA.
move: ex_finCover => /(_ _ famAA) [R [g [g_famB [D _]]]].
move/uniform_subset_cvg; apply.
elim/finSet_rect: D => X IHX.
have [->|/set0P[x xX]] := eqVneq [set` X] set0.
  by rewrite coverE bigcup_set0; apply: cvg_uniform_set0.
rewrite coverE (bigcup_fsetD1 x)//; apply: cvg_uniformU.
  exact/rFf/g_famB.
exact/IHX/fproperD1.
Qed.

End UniformCvgLemmas.

Lemma uniform_restrict_cvg {U : choiceType} {V : puniformType}
    (F : set_system (U -> V)) (f : U -> V) A : Filter F ->
  {uniform A, F --> f} <-> {uniform, restrict A @ F --> restrict A f}.
Proof.
move=> FF; rewrite cvg_sigL; split.
- rewrite -sigLK; move/(cvg_app valL) => D.
  apply: cvg_trans; first exact: D.
  move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
  apply/uniform_nbhs; exists E; split=> //= h /=.
  rewrite /sigL => R u _; rewrite oinv_set_val.
  by case: insubP=> /= *; [apply: R|apply: entourage_refl].
- move/(@cvg_app _ _ _ _ (sigL A)).
  rewrite -fmap_comp sigL_restrict => D.
  apply: cvg_trans; first exact: D.
  move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
  apply/uniform_nbhs; exists E; split=> //= h /=.
  rewrite /sigL => R [u Au] _ /=.
  by have := R u I; rewrite /patch Au.
Qed.


Section FamilyConvergence.

Lemma fam_cvgE {U : choiceType} {V : uniformType} (F : set_system (U -> V))
    (f : U -> V) fam :
  {family fam, F --> f} = (F --> (f : {family fam, U -> V})).
Proof. by []. Qed.

Lemma fam_nbhs {U : choiceType} {V : uniformType} (fam : set U -> Prop)
    (A : set U) (E : set (V * V)) (f : {family fam, U -> V}) :
  entourage E -> fam A -> nbhs f [set g | forall y, A y -> E (f y, g y)].
Proof.
move=> entE famA; have /fam_cvgP /(_ A) : (nbhs f --> f) by []; apply => //.
by apply uniform_nbhs; exists E; split.
Qed.

Lemma fam_compact_nbhs {U : topologicalType} {V : uniformType}
    (A : set U) (O : set V) (f : {family compact, U -> V}) :
  open O -> f @` A `<=` O -> compact A -> continuous f ->
  nbhs (f : {family compact, U -> V}) [set g | forall y, A y -> O (g y)].
Proof.
move=> oO fAO /[dup] cA /compact_near_coveringP/near_covering_withinP cfA ctsf.
near=> z => /=; (suff: A `<=` [set y | O (z y)] by exact); near: z.
apply: cfA => x Ax; have : O (f x) by exact: fAO.
move: (oO); rewrite openE /= => /[apply] /[dup] /ctsf Ofx /=.
rewrite /interior -nbhs_entourageE => -[E entE EfO].
exists (f @^-1` xsection (split_ent E) (f x),
    [set g | forall w, A w -> split_ent E (f w, g w)]).
  split => //=; last exact: fam_nbhs.
  by apply: ctsf; rewrite /= -nbhs_entourageE; exists (split_ent E).
case=> y g [/= /xsectionP Efxy] AEg Ay; apply/EfO/xsectionP.
by apply: subset_split_ent => //; exists (f y) => //=; exact: AEg.
Unshelve. all: by end_near. Qed.

End FamilyConvergence.

(**md It turns out `{family compact, U -> V}` can be generalized to only assume
  `topologicalType` on `V`. This topology is called the compact-open topology.
   This topology is special because it is the _only_ topology that will allow
   `curry`/`uncurry` to be continuous. *)
Section compact_open.
Context {T U : topologicalType}.

Definition compact_open : Type := T -> U.

Section compact_open_setwise.
Context {K : set T}.

Definition compact_openK := let _ := K in compact_open.

Definition compact_openK_nbhs (f : compact_openK) :=
  filter_from
    [set O | f @` K `<=` O /\ open O]
    (fun O => [set g | g @` K `<=` O]).

Global Instance compact_openK_nbhs_filter (f : compact_openK) :
  ProperFilter (compact_openK_nbhs f).
Proof.
split; first by case=> g [gKO oO] /(_ f); apply.
apply: filter_from_filter; first by exists setT; split => //; exact: openT.
move=> P Q [fKP oP] [fKQ oQ]; exists (P `&` Q); first split.
- by move=> ? [z Kz M-]; split; [apply: fKP | apply: fKQ]; exists z.
- exact: openI.
by move=> g /= gPQ; split; exact: (subset_trans gPQ).
Qed.

HB.instance Definition _ := Choice.on compact_openK.

HB.instance Definition _ := hasNbhs.Build compact_openK compact_openK_nbhs.

Definition compact_open_of_nbhs := [set A : set compact_openK | A `<=` nbhs^~ A].

Lemma compact_openK_nbhsE_subproof (p : compact_openK) :
  compact_openK_nbhs p =
    [set A | exists B : set compact_openK,
      [/\ compact_open_of_nbhs B, B p & B `<=` A]].
Proof.
rewrite eqEsubset; split => A /=.
  case=> B /= [fKB oB gKBA]; exists [set g | g @` K `<=` B]; split => //.
  by move=> h /= hKB; exists B.
by case=> B [oB Bf /filterS]; apply; exact: oB.
Qed.

Lemma compact_openK_openE_subproof :
  compact_open_of_nbhs = [set A | A `<=` compact_openK_nbhs^~ A].
Proof. by []. Qed.

HB.instance Definition _ :=
  Nbhs_isTopological.Build compact_openK compact_openK_nbhs_filter
  compact_openK_nbhsE_subproof compact_openK_openE_subproof.

End compact_open_setwise.

Definition compact_open_def :=
  sup_topology (fun i : sigT (@compact T) =>
    Topological.class (@compact_openK (projT1 i))).

HB.instance Definition _ := Nbhs.copy compact_open compact_open_def.

HB.instance Definition _ : Nbhs_isTopological compact_open :=
  Topological.copy compact_open compact_open_def.

Lemma compact_open_cvgP (F : set_system compact_open)
    (f : compact_open) :
  Filter F ->
  F --> f <-> forall K O, @compact T K -> @open U O -> f @` K `<=` O ->
    F [set g | g @` K `<=` O].
Proof.
move=> FF; split.
  by move/cvg_sup => + K O cptK ? ? => /(_ (existT _ _ cptK)); apply; exists O.
move=> fko; apply/cvg_sup => -[A cptK] O /= [C /= [fAC oC]].
by move/filterS; apply; exact: fko.
Qed.

Lemma compact_open_open (K : set T) (O : set U) :
  compact K -> open O -> open ([set g | g @` K `<=` O] : set compact_open).
Proof.
pose C := [set g | g @` K `<=` O]; move=> cptK oO.
exists [set C]; last by rewrite bigcup_set1.
move=> _ ->; exists (fset1 C) => //; last by rewrite set_fset1 bigcap_set1.
by move=> _ /[!inE] ->; exists (existT _ _ cptK) => // z Cz; exists O.
Qed.

End compact_open.

HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} K := 
    Pointed.on (@compact_openK U V K).

HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} := 
  Pointed.on (@compact_open U V).


Notation "{ 'compact-open' , U -> V }" := (@compact_open U V).
Notation "{ 'compact-open' , F --> f }" :=
  (F --> (f : @compact_open _ _)).

Section compact_open_uniform.
Context {U : topologicalType} {V : puniformType}.

Let small_ent_sub := @small_set_sub _ (@entourage V).

Lemma compact_open_fam_compactP (f : U -> V) (F : set_system (U -> V)) :
  continuous f -> Filter F ->
  {compact-open, F --> f} <-> {family compact, F --> f}.
Proof.
move=> ctsf FF; split; first last.
  move=> cptF; apply/compact_open_cvgP => K O cptK oO fKO.
  apply: cptF; have := fam_compact_nbhs oO fKO cptK ctsf; apply: filter_app.
  by near=> g => /=  gKO ? [z Kx <-]; exact: gKO.
move/compact_open_cvgP=> cptOF; apply/cvg_sup => -[K cptK R].
case=> D [[E oE <-] Ekf] /filterS; apply.
move: oE; rewrite openE => /(_ _ Ekf); case => A [J entJ] EKR KfE.
near=> z; apply/KfE/xsectionP/EKR => -[u Kp]; rewrite /sigL_arrow /= /set_val /= /eqincl.
(have Ku : K u by rewrite inE in Kp); move: u Ku {D Kp}; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply.
move=> u Ku; near (powerset_filter_from (@entourage V)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose C := f @^-1` xsection E' (f u).
pose B := \bigcup_(z in K `&` closure C) interior (xsection E' (f z)).
have oB : open B by apply: bigcup_open => ? ?; exact: open_interior.
have fKB : f @` (K `&` closure C) `<=` B.
  move=> _ [z KCz <-]; exists z => //; rewrite /interior.
  by rewrite -nbhs_entourageE; exists E'.
have cptKC : compact (K `&` closure C).
  by apply: compact_closedI => //; exact: closed_closure.
have := cptOF (K `&` closure C) B cptKC oB fKB.
exists (C, [set g | [set g x | x in K `&` closure C] `<=` B]).
  split; last exact: cptOF.
  by apply: (ctsf) => //; rewrite /filter_of -nbhs_entourageE; exists E'.
case=> z h /= [Cz KB Kz].
case: (KB (h z)); first by exists z; split => //; exact: subset_closure.
move=> w [Kw Cw /interior_subset Jfwhz]; apply: subset_split_ent => //.
exists (f w); last first.
  apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
apply: subset_split_ent => //; exists (f u).
  apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
have [] := Cw (f @^-1` xsection E' (f w)).
  by apply: ctsf; rewrite /= -nbhs_entourageE; exists E'.
move=> r [Cr /= Ewr]; apply: subset_split_ent => //; exists (f r).
  apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
Unshelve. all: by end_near. Qed.

End compact_open_uniform.

Module ArrowAsCompactOpen.
HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
  Topological.copy (U -> V) {compact-open, U -> V}.

HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
  Topological.copy (continuousType U V) 
    (weak_topology (id : (continuousType U V) -> (U -> V)) ).
End ArrowAsCompactOpen.

Definition compactly_in {U : topologicalType} (A : set U) :=
  [set B | B `<=` A /\ compact B].

Lemma compact_cvg_within_compact {U : topologicalType} {V : uniformType}
    (C : set U) (F : set_system (U -> V)) (f : U -> V) :
  Filter F -> compact C ->
  {uniform C, F --> f} <-> {family compactly_in C, F --> f}.
Proof.
move=> FF CC.
apply: (iff_trans _ (iff_sym (fam_cvgP _ _ FF))); split.
- by move=> CFf D [/uniform_subset_cvg + _]; apply.
- by apply; split.
Qed.

Section UniformContinuousLimits.

Lemma uniform_limit_continuous {U : topologicalType} {V : uniformType}
    (F : set_system (U -> V)) (f : U -> V) :
  ProperFilter F -> (\forall g \near F, continuous (g : U -> V)) ->
  {uniform, F --> f} -> continuous f.
Proof.
move=> PF ctsF Ff x; apply/cvg_app_entourageP => A entA; near F => g; near=> y.
apply: (entourage_split (g x)) => //.
  by near: g; apply/Ff/uniform_nbhs; exists (split_ent A); split => // ?; exact.
apply: (entourage_split (g y)) => //; near: y; near: g.
  by apply: (filterS _ ctsF) => g /(_ x) /cvg_app_entourageP; exact.
apply/Ff/uniform_nbhs; exists (split_ent (split_ent A))^-1%relation.
by split; [exact: entourage_inv | move=> g fg; near_simpl; near=> z; exact: fg].
Unshelve. all: end_near. Qed.

Lemma uniform_limit_continuous_subspace {U : topologicalType} {V : puniformType}
    (K : set U) (F : set_system (U -> V)) (f : subspace K -> V) :
  ProperFilter F -> (\forall g \near F, continuous (g : subspace K -> V)) ->
  {uniform K, F --> f} -> {within K, continuous f}.
Proof.
move=> PF ctsF Ff; apply: (@subspace_eq_continuous _ _ _ (restrict K f)).
  by rewrite /restrict => ? ->.
apply: (@uniform_limit_continuous (subspace K) _ (restrict K @ F) _).
  apply: (filterS _ ctsF) => g; apply: subspace_eq_continuous.
  by rewrite /restrict => ? ->.
by apply (@uniform_restrict_cvg _ _ F ) => //; exact: PF.
Qed.

End UniformContinuousLimits.

Section UniformPointwise.
Context {U : topologicalType} {V : uniformType}.

Definition singletons {T : Type} := [set [set x] | x in [set: T]].

Lemma pointwise_cvg_family_singleton F (f: U -> V):
  Filter F -> {ptws, F --> f} = {family @singletons U, F --> f}.
Proof.
move=> FF; apply/propext.
rewrite (@fam_cvgP _ _ singletons). (* BUG: slowdown if no arguments *)
rewrite cvg_sup; split.
  move=> + A [x _ <-] => /(_ x); rewrite uniform_set1.
  rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
  apply: cvg_trans => W /=; rewrite ?nbhs_simpl /fmap /= => [[W' + <-]].
  by apply: filterS => g W'g /=; exists g.
move=> + i; have /[swap] /[apply] : singletons [set i] by exists i.
rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
move=> + W //=; rewrite ?nbhs_simpl => Q => /Q Q'; exists (@^~ i @^-1` W) => //.
by rewrite eqEsubset; split => [j [? + <-//]|j Wj]; exists (fun _ => j).
Qed.

Lemma pointwise_cvg_compact_family F (f : U -> V) :
  Filter F -> {family compact, F --> f} -> {ptws, F --> f}.
Proof.
move=> PF; rewrite pointwise_cvg_family_singleton; apply: family_cvg_subset.
by move=> A [x _ <-]; exact: compact_set1.
Qed.

Lemma pointwise_cvgP F (f: U -> V):
  Filter F -> {ptws, F --> f} <-> forall (t : U), (fun g => g t) @ F --> f t.
Proof.
move=> Ff; rewrite pointwise_cvg_family_singleton; split.
  move/fam_cvgP => + t A At => /(_ [set t]); rewrite uniform_set1; apply => //.
  by exists t.
by move=> pf; apply/fam_cvgP => ? [t _ <-]; rewrite uniform_set1; exact: pf.
Qed.

End UniformPointwise.

Section ArzelaAscoli.
Context {X : topologicalType} {Y : puniformType} {hsdf : hausdorff_space Y}.
Implicit Types (I : Type).

(** The key condition in Arzela-Ascoli that, like uniform continuity, moves a
    quantifier around so all functions have the same "deltas": *)
Definition equicontinuous {I} (W : set I) (d : I -> (X -> Y)) :=
  forall x (E : set (Y * Y)), entourage E ->
    \forall y \near x, forall i, W i -> E (d i x, d i y).

Lemma equicontinuous_subset {I J} (W : set I) (V : set J)
    {fW : I -> X -> Y} {fV : J -> X -> Y} :
  fW @`W `<=` fV @` V -> equicontinuous V fV -> equicontinuous W fW.
Proof.
move=> WsubV + x E entE => /(_ x E entE); apply: filterS => y VE i Wi.
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exact: VE].
Qed.

Lemma equicontinuous_subset_id (W V : set (X -> Y)) :
  W `<=` V -> equicontinuous V id -> equicontinuous W id.
Proof.
move=> WsubV; apply: equicontinuous_subset => ? [y ? <- /=]; exists y => //.
exact: WsubV.
Qed.

Lemma equicontinuous_continuous_for {I} (W : set I) (fW : I -> X -> Y) i x :
  {for x, equicontinuous W fW} -> W i -> {for x, continuous (fW i)}.
Proof.
move=> ectsW Wf; apply/cvg_entourageP => E entE; near_simpl.
by near=> y; apply: (near (ectsW _ entE) y).
Unshelve. end_near. Qed.

Lemma equicontinuous_continuous {I} (W : set I) (fW : I -> (X -> Y)) (i : I) :
  equicontinuous W fW -> W i -> continuous (fW i).
Proof.
move=> ectsW Wf x; apply: equicontinuous_continuous_for; last exact: Wf.
by move=> ?; exact: ectsW.
Qed.

(**md A convenient notion that is in between compactness in
   `{family compact, X -> y}` and compactness in `{ptws X -> y}`: *)
Definition pointwise_precompact {I} (W : set I) (d : I -> X -> Y) :=
  forall x, precompact [set d i x | i in W].

Lemma pointwise_precompact_subset {I J} (W : set I) (V : set J)
    {fW : I -> X -> Y} {fV : J -> X -> Y} :
  fW @` W `<=` fV @` V -> pointwise_precompact V fV ->
  pointwise_precompact W fW.
Proof.
move=> WsubV + x => /(_ x) pcptV; apply: precompact_subset pcptV => y [i Wi <-].
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exists j].
Qed.

Lemma pointwise_precompact_precompact {I} (W : set I) (fW : I -> (X -> Y)) :
  pointwise_precompact W fW -> precompact ((fW @` W) : set {ptws X -> Y}).
Proof.
rewrite precompactE => ptwsPreW.
pose K := fun x => closure [set fW i x | i in W].
set R := [set f : {ptws X -> Y} | forall x : X, K x (f x)].
have C : compact R.
  by apply: tychonoff => x; rewrite -precompactE; move: ptwsPreW; exact.
apply: (subclosed_compact _ C); first exact: closed_closure.
have WsubR : (fW @` W) `<=` R.
  move=> f Wf x; rewrite /R /K closure_limit_point; left.
  by case: Wf => i ? <-; exists i.
rewrite closureE; apply: smallest_sub (compact_closed _ C) WsubR.
exact: hausdorff_product.
Qed.

Lemma uniform_pointwise_compact (W : set (X -> Y)) :
  compact (W : set (@uniform_fun_family X Y compact)) ->
  compact (W : set {ptws X -> Y}).
Proof.
rewrite [x in x _ -> _]compact_ultra [x in _ -> x _]compact_ultra.
move=> + F UF FW => /(_ F UF FW) [h [Wh Fh]]; exists h; split => //.
by move=> Q Fq; apply: (pointwise_cvg_compact_family _ Fh).
Qed.

Lemma precompact_pointwise_precompact (W : set {family compact, X -> Y}) :
  precompact W -> pointwise_precompact W id.
Proof.
move=> + x; rewrite ?precompactE => pcptW.
have : compact (proj x @` (closure W)).
  apply: continuous_compact => //; apply: continuous_subspaceT=> g.
  move=> E nbhsE; have := (@proj_continuous _ _ x g E nbhsE).
  exact: (@pointwise_cvg_compact_family _ _ (nbhs g)).
move=> /[dup]/(compact_closed hsdf)/closure_id -> /subclosed_compact.
apply; first exact: closed_closure.
by apply/closure_subset/image_subset; exact: (@subset_closure _ W).
Qed.

Lemma pointwise_cvg_entourage (x : X) (f : {ptws X -> Y}) E :
  entourage E -> \forall g \near f, E (f x, g x).
Proof.
move=> entE; have : ({ptws, nbhs f --> f}) by [].
have ? : Filter (nbhs f) by exact: nbhs_pfilter. (* NB: This Filter (nbhs f) used to infer correctly. *)
rewrite pointwise_cvg_family_singleton => /fam_cvgP /(_ [set x]).
rewrite uniform_set1 => /(_ _ [set y | E (f x, y)]); apply; first by exists x.
by move: E entE; exact/cvg_entourageP.
Qed.

Lemma equicontinuous_closure (W : set {ptws X -> Y}) :
  equicontinuous W id -> equicontinuous (closure W) id.
Proof.
move=> ectsW x E entE; near=> y => f clWf.
have ? : ProperFilter (within W (nbhs (f : {ptws X -> Y}))).
  exact: within_nbhs_proper. (* TODO: This ProperFilter _ also used to infer correctly. *)
near (within W (nbhs (f : {ptws X -> Y}))) => g.
near: g; rewrite near_withinE; near_simpl; near=> g => Wg.
apply: (@entourage_split _ (g x)) => //.
  exact: (near (pointwise_cvg_entourage _ _ _)).
apply: (@entourage_split _ (g y)) => //; first exact: (near (@ectsW x _ _)).
by apply/entourage_sym; exact: (near (pointwise_cvg_entourage _ _ _)).
Unshelve. all: by end_near. Qed.

Definition small_ent_sub := @small_set_sub _ (@entourage Y).

Lemma pointwise_compact_cvg (F : set_system {ptws X -> Y}) (f : {ptws X -> Y}) :
  ProperFilter F ->
  (\forall W \near powerset_filter_from F, equicontinuous W id) ->
  {ptws, F --> f} <-> {family compact, F --> f}.
Proof.
move=> PF /near_powerset_filter_fromP; case.
  exact: equicontinuous_subset_id.
move=> W; wlog Wf : f W / W f.
  move=> + FW /equicontinuous_closure => /(_ f (closure (W : set {ptws X -> Y}))) Q.
  split => Ff; last by apply: pointwise_cvg_compact_family.
  apply/Q => //.
    by rewrite closureEcvg; exists F; [|split] => // ? /= /filterS; apply.
  by apply: (filterS _ FW) => z Wz; apply: subset_closure.
move=> FW ectsW; split=> [ptwsF|]; last exact: pointwise_cvg_compact_family.
apply/fam_cvgP => K ? U /=; rewrite uniform_nbhs => [[E [eE EsubU]]].
suff : \forall g \near within W (nbhs (f : {ptws X -> Y})),
    forall y, K y -> E (f y, g y).
  rewrite near_withinE; near_simpl => N; apply: (filter_app _ _ FW).
  by apply: ptwsF; near=> g => ?; apply: EsubU; apply: (near N g).
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (h : X -> Y) x => E' (f x, h x).
apply: (iffLR (compact_near_coveringP K)) => // x Kx.
near=> y g => /=.
apply: (entourage_split (f x) eE).
  apply entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact: (near (ectsW x E' entE') y).
apply: (@entourage_split _ (g x)) => //.
  apply: (near (small_ent_sub _) E') => //.
  near: g; near_simpl; apply: (@cvg_within _ (nbhs (f : {ptws X -> Y}))).
  exact: pointwise_cvg_entourage.
apply: (near (small_ent_sub _) E') => //.
apply: (near (ectsW x E' entE')) => //.
exact: (near (withinT _ (nbhs_filter (f : {ptws X -> Y})))).
Unshelve. all: end_near. Qed.

Lemma pointwise_compact_closure (W : set (X -> Y)) :
  equicontinuous W id ->
  closure (W : set {family compact, X -> Y}) =
  closure (W : set {ptws X -> Y}).
Proof.
rewrite ?closureEcvg // predeqE => ? ?.
split; move=> [F PF [Fx WF]]; (exists F; last split) => //.
  apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
    exact: equicontinuous_subset_id.
  by exists W => //; exact: WF.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
  exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
Qed.

Lemma pointwise_precompact_equicontinuous (W : set (X -> Y)) :
  pointwise_precompact W id ->
  equicontinuous W id ->
  precompact (W : set {family compact, X -> Y }).
Proof.
move=> /pointwise_precompact_precompact + ectsW.
rewrite ?precompactE compact_ultra compact_ultra pointwise_compact_closure //.
move=> /= + F UF FcW => /(_ F UF); rewrite image_id => /(_ FcW)[p [cWp Fp]].
exists p; split => //; apply/pointwise_compact_cvg => //.
apply/near_powerset_filter_fromP; first exact: equicontinuous_subset_id.
exists (closure (W : set {ptws X -> Y })) => //.
exact: equicontinuous_closure.
Qed.

Section precompact_equicontinuous.
Hypothesis lcptX : locally_compact [set: X].

Lemma compact_equicontinuous (W : set {family compact, X -> Y}) :
  (forall f, W f -> continuous f) ->
  compact (W : set {family compact, X -> Y}) ->
  equicontinuous W id.
Proof.
move=> ctsW cptW x E entE.
have [//|U UWx [cptU clU]] := @lcptX x; rewrite withinET in UWx.
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (y : X) (f : {family compact, X -> Y}) => E' (f x, f y).
apply: (iffLR (compact_near_coveringP W)) => // f Wf; near=> g y => /=.
apply: (entourage_split (f x) entE).
  apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact: (near (fam_nbhs _ entE' (@compact_set1 _ x)) g).
apply: (entourage_split (f y) (entourage_split_ent entE)).
  apply: (near (small_ent_sub _) E') => //.
  by apply/xsectionP; near: y; apply: (@ctsW f Wf x); exact: nbhs_entourage.
apply: (near (small_ent_sub _) E') => //.
by apply: (near (fam_nbhs _ entE' cptU) g) => //; exact: (near UWx y).
Unshelve. all: end_near. Qed.

Lemma precompact_equicontinuous (W : set {family compact, X -> Y}) :
  (forall f, W f -> continuous f) ->
  precompact (W : set {family compact, X -> Y}) ->
  equicontinuous W id.
Proof.
move=> pcptW ctsW; apply: (equicontinuous_subset_id (@subset_closure _ W)).
apply: compact_equicontinuous; last by rewrite -precompactE.
move=> f; rewrite closureEcvg => [[G PG [Gf GW]]] x B /=.
rewrite -nbhs_entourageE => -[E entE] /filterS; apply; near_simpl.
suff ctsf : continuous f.
  near=> x0; apply/xsectionP; near: x0.
  by move: E entE; apply/cvg_app_entourageP; exact: ctsf.
apply/continuous_localP => x'; apply/near_powerset_filter_fromP.
  by move=> ? ?; exact: continuous_subspaceW.
case: (@lcptX x') => // U; rewrite withinET => nbhsU [cptU _].
exists U => //; apply: (uniform_limit_continuous_subspace PG _ _).
  by near=> g; apply: continuous_subspaceT; near: g; exact: GW.
by move/fam_cvgP/(_ _ cptU) : Gf.
Unshelve. all: end_near. Qed.

End precompact_equicontinuous.

Theorem Ascoli (W : set {family compact, X -> Y}) :
    locally_compact [set: X] ->
  pointwise_precompact W id /\ equicontinuous W id <->
    (forall f, W f -> continuous f) /\
    precompact (W : set {family compact, X -> Y}).
Proof.
move=> lcpt; split => [[Wid ectsW]|[fWf]pcptW].
  split=> [?|]; first exact: equicontinuous_continuous.
  exact: pointwise_precompact_equicontinuous.
split; last exact: precompact_equicontinuous.
exact: precompact_pointwise_precompact.
Qed.

End ArzelaAscoli.

Section currying.
Local Import ArrowAsCompactOpen.

Section cartesian_closed.
Context {U V W : topologicalType}.

(**md In this section, we consider under what conditions \
       `[f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)]` \
   and \
       `[f in U * V ~> W | continuous f]` \
   are homeomorphic.
   - Always: \
         `curry` sends continuous functions to continuous functions.
   - `V` locally_compact + regular or Hausdorff: \
         `uncurry` sends continuous functions to continuous functions.
   - `U` regular or Hausdorff: \
         `curry` itself is a continuous map.
   - `U` regular or Hausdorff AND `V` locally_compact + regular or Hausdorff \
         `uncurry` itself is a continuous map. \
         Therefore `curry`/`uncurry` are homeomorphisms.

   So the category of locally compact regular spaces is cartesian closed.
*)

Lemma continuous_curry (f : U * V -> W) :
  continuous f ->
    continuous (curry f) /\ forall u, continuous (curry f u).
Proof.
move=> ctsf; split; first last.
  move=> u z; apply: continuous_comp; last exact: ctsf.
  by apply: cvg_pair => //=; exact: cvg_cst.
move=> x; apply/compact_open_cvgP => K O /= cptK oO fKO.
near=> z => w /= [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : cptK; apply.
move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (x, v) (f @^-1` O).
  by apply: ctsf; move: oO; rewrite openE; apply; apply: fKO; exists v.
by exists (Q, P) => // -[b a] /= [Qb Pa] Kb; exact: PQfO.
Unshelve. all: by end_near. Qed.

Lemma continuous_curry_fun (f : U * V -> W) :
  continuous f -> continuous (curry f).
Proof. by case/continuous_curry. Qed.

Lemma continuous_curry_cvg (f : U * V -> W) (u : U) (v : V) :
  continuous f -> curry f z.1 z.2 @[z --> (u, v)] --> curry f u v.
Proof.
move=> cf D /cf; rewrite !nbhs_simpl /curry /=; apply: filterS => z ? /=.
by rewrite -surjective_pairing.
Qed.

Lemma continuous_uncurry_regular (f : U -> V -> W) :
  locally_compact [set: V] -> @regular_space V -> continuous f ->
  (forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV reg cf cfp /= [u v] D; rewrite /= nbhsE => -[O [oO Ofuv]] /filterS.
apply; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
have [R Rv RO] : exists2 R, nbhs v R & forall z, closure R z -> O (f u z).
  have [] := reg v (f u @^-1` O); first by apply: cfp; exact: open_nbhs_nbhs.
  by move=> R ? ?; exists R.
exists (f @^-1` [set g | g @` (B `&` closure R) `<=` O], B `&` closure R).
  split; [apply/cf/open_nbhs_nbhs; split | apply: filterI] => //.
  - apply: compact_open_open => //; apply: compact_closedI => //.
    exact: closed_closure.
  - by move=> ? [x [? + <-]]; apply: RO.
  - by apply: filterS; first exact: subset_closure.
by case=> a r /= [fBMO [Br] cmR]; apply: fBMO; exists r.
Qed.

Lemma continuous_uncurry (f : U -> V -> W) :
  locally_compact [set: V] -> hausdorff_space V -> continuous f ->
  (forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV hsdf ctsf cf; apply: continuous_uncurry_regular => //.
move=> v; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
by move=> z; exact: (compact_regular _ cptB).
Qed.

Lemma curry_continuous (f : (U * V)%type -> W) : continuous f -> @regular_space U ->
  {for f, continuous curry}.
Proof.
move=> ctsf regU; apply/compact_open_cvgP.
  by apply: fmap_filter; exact: nbhs_filter.
move=> K ? cptK [D OfinIo <-] fKD /=; near=> z => w [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply => u Ku.
have [] := fKD (curry f u); first by exists u.
move=> E /[dup] /[swap] /OfinIo [N Asub <- DIN INf].
suff : \forall x' \near u & i \near nbhs f, K x' ->
    (\bigcap_(i in [set` N]) i) (curry i x').
  apply: filter_app; near=> a b => /[apply] ?.
  by exists (\bigcap_(i in [set` N]) i).
apply: filter_bigI_within => R RN; have /set_mem [[M cptM _]] := Asub _ RN.
have Rfu : R (curry f u) by exact: INf.
move/(_ _ Rfu) => [O [fMO oO] MOR]; near=> p => /= Ki; apply: MOR => + [+ + <-].
move=> _ v Mv; move: v Mv Ki; near: p.
have umb : \forall y \near u, (forall b, M b -> nbhs (y, b) (f @^-1` O)).
  move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
  have [[P Q] [Pu Qv] PQO] : nbhs (u, v) (f @^-1` O).
    by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: fMO; exists v.
  exists (Q, P); [by []| move=> [b a [/= Qb Pa Mb]]].
  by apply: ctsf; apply: open_nbhs_nbhs; split => //; exact: PQO.
move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
have [P' P'u cPO] := regU u _ umb.
pose L := [set h | h @` ((K `&` closure P') `*` M) `<=` O].
exists (setT, P' `*` L).
  split => //; [exact: filterT|]; exists (P', L) => //; split => //.
  apply: open_nbhs_nbhs; split; first apply: compact_open_open => //.
    apply: compact_setX => //; apply: compact_closedI => //.
    exact: closed_closure.
  by move=> ? [[a b] [[Ka /cPO +] Mb <-]] => /(_ _ Mb)/nbhs_singleton.
move=> [b [a h]] [/= _ [Pa] +] Ma Ka; apply.
by exists (a, b); split => //; split => //; exact/subset_closure.
Unshelve. all: by end_near. Qed.

Lemma uncurry_continuous (f : U -> V -> W) :
  locally_compact [set: V] -> @regular_space V -> @regular_space U ->
  continuous f -> (forall u, continuous (f u)) ->
  {for f, continuous uncurry}.
Proof.
move=> lcV regV regU ctsf ctsfp; apply/compact_open_cvgP.
  by apply: fmap_filter; exact:nbhs_filter.
move=> /= K O cptK oO fKO; near=> h => ? [+ + <-]; near: h.
move/compact_near_coveringP/near_covering_withinP: (cptK); apply.
case=> u v Kuv.
have : exists P Q, [/\ closed P, compact Q, nbhs u P,
    nbhs v Q & P `*` Q `<=` uncurry f @^-1` O].
  have : continuous (uncurry f) by exact: continuous_uncurry_regular.
  move/continuousP/(_ _ oO); rewrite openE => /(_ (u, v))[].
    by apply: fKO; exists (u, v).
  case=> /= P' Q' [P'u Q'v] PQO.
  have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB].
  have [P Pu cPP'] := regU u P' P'u; have [Q Qv cQQ'] := regV v Q' Q'v.
  exists (closure P), (B `&` closure Q); split.
  - exact: closed_closure.
  - by apply: compact_closedI => //; exact: closed_closure.
  - by apply: filterS; first exact: subset_closure.
  - by apply: filterI=> //; apply: filterS; first exact: subset_closure.
  - by case => a b [/cPP' ?] [_ /cQQ' ?]; exact: PQO.
case=> P [Q [clP cptQ Pu Qv PQfO]]; pose R := [set g : V -> W | g @` Q `<=` O].
(have oR : open R by exact: compact_open_open); pose P' := f @^-1` R.
pose L := [set h : U -> V -> W | h @` (fst @` K `&` P) `<=` R].
exists ((P `&` P') `*` Q, L); first split => /=.
- exists (P `&` P', Q) => //; split => //=; apply: filterI => //.
  apply: ctsf; apply: open_nbhs_nbhs; split => // _ [b Qb <-].
  by apply: (PQfO (u, b)); split => //; exact: nbhs_singleton.
- rewrite nbhs_simpl /=; apply: open_nbhs_nbhs; split.
    apply: compact_open_open => //; apply: compact_closedI => //.
    apply: continuous_compact => //; apply: continuous_subspaceT => x.
    exact: cvg_fst.
  move=> /= _ [a [Kxa Pa] <-] _ [b Qb <-].
  by apply: (PQfO (a, b)); split => //; exact: nbhs_singleton.
move=> [[a b h]] [/= [[Pa P'a] Qb Lh] Kab].
apply: (Lh (h a)); first by exists a => //; split => //; exists (a, b).
by exists b.
Unshelve. all: by end_near. Qed.

End cartesian_closed.

End currying.

Definition eval {X Y : topologicalType} : continuousType X Y * X -> Y :=
  uncurry (id : continuousType X Y -> (X -> Y)).

Section composition.

Local Import ArrowAsCompactOpen.

Lemma eval_continuous {X Y : topologicalType} :
  locally_compact [set: X] -> regular_space X -> continuous (@eval X Y).
Proof.
move=> lcX rsX; apply: continuous_uncurry_regular => //.
  exact: weak_continuous.
by move=> ?; exact: cts_fun.
Qed.

Lemma compose_continuous {X Y Z : topologicalType} :
  locally_compact [set: X] -> @regular_space X ->
  locally_compact [set: Y] -> @regular_space Y ->
  continuous (uncurry
    (comp : continuousType Y Z -> continuousType X Y -> continuousType X Z)).
Proof.
move=> lX rX lY rY; apply: continuous_comp_weak.
set F := _ \o _.
rewrite -[F]uncurryK; apply: continuous_curry_fun.
pose g := uncurry F \o prodAr \o swap; rewrite /= in g *.
have -> : uncurry F = uncurry F \o prodAr \o prodA by rewrite funeqE => -[[]].
move=> z; apply: continuous_comp; first exact: prodA_continuous.
have -> : uncurry F \o prodAr = uncurry F \o prodAr \o swap \o swap.
  by rewrite funeqE => -[[]].
apply: continuous_comp; first exact: swap_continuous.
pose h (fxg : continuousType X Y * X * continuousType Y Z) : Z :=
  eval (fxg.2, (eval fxg.1)).
have <- : h = uncurry F \o prodAr \o swap.
  by rewrite /h/g/uncurry/swap/F funeqE => -[[]].
rewrite /h.
apply: (@continuous2_cvg _ _ _ _ _ _ snd (eval \o fst) (curry eval)).
- by apply: continuous_curry_cvg; exact: eval_continuous.
- exact: cvg_snd.
- by apply: cvg_comp; [exact: cvg_fst | exact: eval_continuous].
Qed.

End composition.