1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
|
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import cardinality mathcomp_extra fsbigop reals.
From mathcomp Require Import interval_inference topology separation_axioms.
(**md**************************************************************************)
(* # The topology of functions spaces *)
(* *)
(* Function spaces have no canonical topology. We develop the theory of *)
(* several general-purpose function space topologies here. *)
(* *)
(* ## Topologies on `U -> V` *)
(* There is no canonical topology on `U->V` in this library. Mathematically, *)
(* the right topology usually depends on context. We provide three general *)
(* options in this file which work for various amounts of structures on the *)
(* domain and codomain. *)
(* *)
(* Topologies we consider are: *)
(* - Topology of pointwise convergence *)
(* + requires only a topology on V *)
(* - Topology of uniform convergence *)
(* + requires only a uniformity on V *)
(* - Topology of uniform convergence on subspaces *)
(* + requires only a uniformity on V *)
(* - The compact-open topology *)
(* + requires a topology on U and V *)
(* *)
(* if you're looking for the topology of compact convergence, note that *)
(* it is exactly the compact-open topology via `compact_open_fam_compactP`. *)
(* *)
(* To locally assign a topology to `->`, import one of the following modules *)
(* - ArrowAsProduct assigns the product topology *)
(* - ArrowAsUniformType assigns the uniform topology *)
(* - ArrowAsCompactOpen assign the compact-open topology *)
(* *)
(* The major results are: *)
(* - Compactness in the product topology via Tychonoff's *)
(* - Compactness in the compact convergence topology via Ascoli's *)
(* - Conditions when the supremum and weak topology commute in products *)
(* - The compact-open topology is the topopology of compact convergence *)
(* - Cartesian closedness for the category of locally compact topologies *)
(* *)
(* ## Function space notations *)
(* ``` *)
(* {uniform` A -> V} == the space U -> V, equipped with the topology *)
(* of uniform convergence from a set A to V, where *)
(* V is a uniformType *)
(* {uniform U -> V} := {uniform` [set: U] -> V} *)
(* {uniform A, F --> f} == F converges to f in {uniform A -> V} *)
(* {uniform, F --> f} := {uniform setT, F --> f} *)
(* prod_topology I T == the topology of pointwise convergence on the *)
(* dependent space `forall (i:I), T i` *)
(* arrow_uniform_type U V == the topology of uniform convergence on the *)
(* type `U -> V` *)
(* {ptws U -> V} == prod_topology for the non-dependent product *)
(* separate_points_from_closed f == for a closed set U and point x outside *)
(* some member of the family f, it sends f_i(x) *)
(* outside (closure (f_i @` U)) *)
(* Used together with join_product. *)
(* join_product f == the function (x => f ^~ x) *)
(* When the family f separates points from closed *)
(* sets, join_product is an embedding. *)
(* {ptws, F --> f} == F converges to f in {ptws U -> V} *)
(* {family fam, U -> V} == the supremum of {uniform A -> f} for each A in *)
(* `fam` *)
(* In particular, {family compact, U -> V} is the *)
(* topology of compact convergence. *)
(* {family fam, F --> f} == F converges to f in {family fam, U -> V} *)
(* {compact_open, U -> V} == compact-open topology *)
(* {compact_open, F --> f} == F converges to f in {compact_open, U -> V} *)
(* eval == the evaluation map for continuous functions *)
(* ``` *)
(* *)
(* ## Ascoli's theorem notations *)
(* ``` *)
(* equicontinuous W x == the set (W : X -> Y) is equicontinuous at x *)
(* singletons T := [set [set x] | x in [set: T]] *)
(* pointwise_precompact W == for each (x : X), the set of images *)
(* [f x | f in W] is precompact *)
(* ``` *)
(******************************************************************************)
Reserved Notation "{ 'uniform`' A -> V }"
(at level 0, A at level 69, format "{ 'uniform`' A -> V }").
Reserved Notation "{ 'uniform' U -> V }"
(at level 0, U at level 69, format "{ 'uniform' U -> V }").
Reserved Notation "{ 'uniform' A , F --> f }"
(at level 0, A at level 69, F at level 69,
format "{ 'uniform' A , F --> f }").
Reserved Notation "{ 'uniform' , F --> f }"
(at level 0, F at level 69,
format "{ 'uniform' , F --> f }").
Reserved Notation "{ 'ptws' U -> V }"
(at level 0, U at level 69, format "{ 'ptws' U -> V }").
Reserved Notation "{ 'ptws' , F --> f }"
(at level 0, F at level 69, format "{ 'ptws' , F --> f }").
Reserved Notation "{ 'family' fam , U -> V }"
(at level 0, U at level 69, format "{ 'family' fam , U -> V }").
Reserved Notation "{ 'family' fam , F --> f }"
(at level 0, F at level 69, format "{ 'family' fam , F --> f }").
Reserved Notation "{ 'compact-open' , U -> V }"
(at level 0, U at level 69, format "{ 'compact-open' , U -> V }").
Reserved Notation "{ 'compact-open' , F --> f }"
(at level 0, F at level 69, format "{ 'compact-open' , F --> f }").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Obligation Tactic := idtac.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
(** Product topology, also known as the topology of pointwise convergence *)
Section Product_Topology.
Definition prod_topology {I : Type} (T : I -> Type) := forall i, T i.
Variable I : Type.
Definition product_topology_def (T : I -> topologicalType) :=
sup_topology (fun i => Topological.class
(weak_topology (fun f : (forall i, T i) => f i))).
HB.instance Definition _ (T : I -> topologicalType) :=
Topological.copy (prod_topology T) (product_topology_def T).
HB.instance Definition _ (T : I -> uniformType) :=
Uniform.copy (prod_topology T)
(sup_topology (fun i => Uniform.class (weak_topology (@proj _ T i)))).
HB.instance Definition _ (R : realType) (Ii : countType)
(Tc : Ii -> pseudoMetricType R) := PseudoMetric.copy (prod_topology Tc)
(sup_pseudometric (fun i => PseudoMetric.class (weak_topology (@proj _ Tc i)))
(countableP _)).
End Product_Topology.
Notation "{ 'ptws' U -> V }" := (prod_topology (fun _ : U => V)) : type_scope.
Notation "{ 'ptws' , F --> f }" :=
(cvg_to F (nbhs (f : {ptws _ -> _}))) : classical_set_scope.
Module ArrowAsProduct.
HB.instance Definition _ (U : Type) (T : U -> topologicalType) :=
Topological.copy (forall x : U, T x) (prod_topology T).
HB.instance Definition _ (U : Type) (T : U -> uniformType) :=
Uniform.copy (forall x : U, T x) (prod_topology T).
HB.instance Definition _ (U T : topologicalType) :=
Topological.copy
(continuousType U T)
(weak_topology (id : continuousType U T -> (U -> T))).
HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
Uniform.copy
(continuousType U T)
(weak_topology (id : continuousType U T -> (U -> T))).
End ArrowAsProduct.
Section product_spaces.
Local Import ArrowAsProduct.
Section projection_maps.
Context {I : eqType} {K : I -> topologicalType}.
Lemma proj_continuous i : continuous (@proj I K i).
Proof.
move=> f; have /cvg_sup/(_ i)/cvg_image : f --> f by apply: cvg_id.
move=> h; apply: cvg_trans (h _) => {h}.
by move=> Q /= [W nbdW <-]; apply: filterS nbdW; exact: preimage_image.
rewrite eqEsubset; split => y //; exists (dfwith f i y) => //.
by rewrite dfwithin.
Qed.
Lemma dfwith_continuous g (i : I) : continuous (@dfwith I K g i).
Proof.
move=> z U [] P [] [] Q QfinP <- [] V JV Vpz.
move/(@preimage_subset _ _ (dfwith g i))/filterS; apply.
apply: (@filterS _ _ _ ((dfwith g i) @^-1` V)); first by exists V.
have [L Lsub /[dup] VL <-] := QfinP _ JV; rewrite preimage_bigcap.
apply: filter_bigI => /= M /[dup] LM /Lsub /set_mem [] w _ [+] + /[dup] + <-.
have [->|wnx] := eqVneq w i => N oN NM.
apply: (@filterS _ _ _ N); first by move=> ? ?; rewrite /= dfwithin.
apply: open_nbhs_nbhs; split => //; move: Vpz.
by rewrite -VL => /(_ _ LM); rewrite -NM /= dfwithin.
apply: nearW => y /=; move: Vpz.
by rewrite -VL => /(_ _ LM); rewrite -NM /= ?dfwithout // eq_sym.
Qed.
Lemma proj_open i (A : set (prod_topology K)) : open A -> open (proj i @` A).
Proof.
move=> oA; rewrite openE => z [f Af <-]; rewrite openE in oA.
have {oA} := oA _ Af; rewrite /interior => nAf.
apply: (@filterS _ _ _ ((dfwith f i) @^-1` A)).
by move=> w Apw; exists (dfwith f i w) => //; rewrite projK.
apply: dfwith_continuous => /=; move: nAf; congr (nbhs _ A).
by apply: functional_extensionality_dep => ?; case: dfwithP.
Qed.
Lemma hausdorff_product :
(forall x, hausdorff_space (K x)) -> hausdorff_space (forall x, K x).
Proof.
move=> hsdfK p q /= clstr; apply: functional_extensionality_dep => x.
apply: hsdfK; move: clstr; rewrite ?cluster_cvgE /= => -[G PG [GtoQ psubG]].
exists (proj x @ G); [exact: fmap_proper_filter|split].
apply: cvg_trans; last exact: (@proj_continuous x q).
by apply: cvg_app; exact: GtoQ.
move/(cvg_app (proj x)): psubG => /cvg_trans; apply.
exact: proj_continuous.
Qed.
End projection_maps.
Lemma tychonoff (I : eqType) (T : I -> topologicalType)
(A : forall i, set (T i)) :
(forall i, compact (A i)) ->
compact [set f : forall i, T i | forall i, A i (f i)].
Proof.
case: (pselect ([set f : forall i, T i | forall i, A i (f i)] == set0)).
move/eqP => -> _; exact: compact0.
case/negP/set0P=> a0 Aa0 Aco; rewrite compact_ultra => F FU FA.
set subst_coord := fun (i : I) (pi : T i) (f : forall x : I, T x) (j : I) =>
if eqP is ReflectT e then ecast i (T i) (esym e) pi else f j.
have subst_coordT i pi f : subst_coord i pi f i = pi.
rewrite /subst_coord; case: eqP => // e.
by rewrite (eq_irrelevance e (erefl _)).
have subst_coordN i pi f j : i != j -> subst_coord i pi f j = f j.
move=> inej; rewrite /subst_coord; case: eqP => // e.
by move: inej; rewrite {1}e => /negP.
have pr_surj i : @^~ i @` [set: forall i, T i] = setT.
rewrite predeqE => pi; split=> // _.
by exists (subst_coord i pi a0) => //; rewrite subst_coordT.
pose pF i : set_system _ := [set @^~ i @` B | B in F].
have pFultra i : UltraFilter (pF i) by exact: ultra_image (pr_surj i).
have pFA i : pF i (A i).
exists [set g | forall i, A i (g i)] => //.
rewrite predeqE => pi; split; first by move=> [g Ag <-]; apply: Ag.
move=> Aipi; have [f Af] := filter_ex FA.
exists (subst_coord i pi f); last exact: subst_coordT.
move=> j; have [<-{j}|] := eqVneq i j; first by rewrite subst_coordT.
by move=> /subst_coordN ->; apply: Af.
have cvpFA i : A i `&` [set p | pF i --> p] !=set0.
by rewrite -ultra_cvg_clusterE; apply: Aco.
exists (fun i => xget (a0 i) (A i `&` [set p | pF i --> p])).
split=> [i|]; first by have /(xgetPex (a0 i)) [] := cvpFA i.
apply/cvg_sup => i; apply/cvg_image=> //.
by have /(xgetPex (a0 i)) [] := cvpFA i.
Qed.
Lemma perfect_prod {I : Type} (i : I) (K : I -> topologicalType) :
perfect_set [set: K i] -> perfect_set [set: forall i, K i].
Proof.
move=> /perfectTP KPo; apply/perfectTP => f oF; apply: (KPo (f i)).
rewrite (_ : [set f i] = proj i @` [set f]).
by apply: (@proj_open {classic I} _ i); exact: oF.
by rewrite eqEsubset; split => ? //; [move=> -> /=; exists f | case=> g ->].
Qed.
Lemma perfect_diagonal (K : nat -> topologicalType) :
(forall i, exists xy : K i * K i, xy.1 != xy.2) ->
perfect_set [set: forall i, K i].
Proof.
move=> npts; split; first exact: closedT.
rewrite eqEsubset; split => f // _.
pose distincts (i : nat) := projT1 (sigW (npts i)).
pose derange i (z : K i) :=
if z == (distincts i).1 then (distincts i).2 else (distincts i).1.
pose g (N i : nat) := if (i < N)%N then f i else derange _ (f i).
have gcvg : g @ \oo --> f.
apply/cvg_sup => N U [V] [[W] oW <-] WfN WU.
by apply: (filterS WU); rewrite nbhs_simpl /g; exists N.+1 => // i /= ->.
move=> A /gcvg; rewrite nbhs_simpl => -[N _ An].
exists (g N); split => //; last by apply: An; rewrite /= leqnn.
apply/eqP => M; suff: g N N != f N by rewrite M; move/eqP.
rewrite /g ltnn /derange eq_sym; have [->|//] := eqVneq (f N) (distincts N).1.
exact: projT2 (sigW (npts N)).
Qed.
Lemma zero_dimension_prod (I : choiceType) (T : I -> topologicalType) :
(forall i, zero_dimensional (T i)) ->
zero_dimensional (forall i, T i).
Proof.
move=> dctTI x y /eqP xneqy.
have [i/eqP/dctTI [U [clU Ux nUy]]] : exists i, x i <> y i.
by apply/existsNP=> W; exact/xneqy/functional_extensionality_dep.
exists (proj i @^-1` U); split => //; apply: clopen_comp => //.
exact/proj_continuous.
Qed.
Lemma totally_disconnected_prod (I : choiceType)
(T : I -> topologicalType) (A : forall i, set (T i)) :
(forall i, totally_disconnected (A i)) ->
@totally_disconnected (forall i, T i) (fun f => forall i, A i (f i)).
Proof.
move=> dsctAi x /= Aix; rewrite eqEsubset; split; last first.
by move=> ? ->; exact: connected_component_refl.
move=> f /= [C /= [Cx CA ctC Cf]]; apply/functional_extensionality_dep => i.
suff : proj i @` C `<=` [set x i] by apply; exists f.
rewrite -(dsctAi i) // => Ti ?; exists (proj i @` C) => //.
split; [by exists x | by move=> ? [r Cr <-]; exact: CA |].
apply/(connected_continuous_connected ctC)/continuous_subspaceT.
exact: proj_continuous.
Qed.
(**md A handy technique for embedding a space `T` into a product. The key
interface is `separate_points_from_closed`, which guarantees that the
topologies
- `T`'s native topology
- `sup (weak f_i)`: the sup of all the weak topologies of `f_i`
- `weak (x => (f_1 x, f_2 x, ...))`: the weak topology from the product space
are equivalent (the last equivalence seems to require `accessible_space`). *)
Section product_embeddings.
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
Variable (f_ : forall i, T -> U_ i).
Definition separate_points_from_closed := forall (U : set T) x,
closed U -> ~ U x -> exists i, ~ (closure (f_ i @` U)) (f_ i x).
Hypothesis sepf : separate_points_from_closed.
Hypothesis ctsf : forall i, continuous (f_ i).
Let weakT : topologicalType :=
sup_topology (fun i => Topological.on (weak_topology (f_ i))).
Let PU : topologicalType := prod_topology U_.
Local Notation sup_open := (@open weakT).
Local Notation "'weak_open' i" := (@open weakT) (at level 0).
Local Notation natural_open := (@open T).
Lemma weak_sep_cvg (F : set_system T) (x : T) :
Filter F -> (F --> (x : T)) <-> (F --> (x : weakT)).
Proof.
move=> FF; split.
move=> FTx; apply/cvg_sup => i U.
have /= -> := @nbhsE (weak_topology (f_ i)) x.
case=> B [[C oC <- ?]] /filterS; apply; apply: FTx; rewrite /= nbhsE.
by exists (f_ i @^-1` C) => //; split => //; exact: open_comp.
move/cvg_sup => wiFx U; rewrite /= nbhs_simpl nbhsE => [[B [oB ?]]].
move/filterS; apply; have [//|i nclfix] := @sepf _ x (open_closedC oB).
apply: (wiFx i); have /= -> := @nbhsE (weak_topology (f_ i)) x.
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); [split=>//|].
apply: open_comp; last by rewrite ?openC//; exact: closed_closure.
by move=> + _; exact: (@weak_continuous _ _ (f_ i)).
rewrite -interiorC interiorEbigcup preimage_bigcup => z [V [oV]] VnB => /VnB.
by move/forall2NP => /(_ z) [] // /contrapT.
Qed.
Lemma weak_sep_nbhsE x : @nbhs T T x = @nbhs T weakT x.
Proof.
rewrite predeqE => U; split; move: U.
by have P := weak_sep_cvg x (nbhs_filter (x : weakT)); exact/P.
by have P := weak_sep_cvg x (nbhs_filter (x : T)); exact/P.
Qed.
Lemma weak_sep_openE : @open T = @open weakT.
Proof.
rewrite predeqE => A; rewrite ?openE /interior.
by split => + z => /(_ z); rewrite weak_sep_nbhsE.
Qed.
Definition join_product (x : T) : PU := f_ ^~ x.
Lemma join_product_continuous : continuous join_product.
Proof.
suff : continuous (join_product : weakT -> PU).
by move=> cts x U => /cts; rewrite nbhs_simpl /= -weak_sep_nbhsE.
move=> x; apply/cvg_sup; first exact/fmap_filter/(nbhs_filter (x : weakT)).
move=> i; move: x; apply/(@continuousP _ (weak_topology (@^~ i))) => A [B ? E].
rewrite -E (_ : @^~ i = proj i) //.
have -> : join_product @^-1` (proj i @^-1` B) = f_ i @^-1` B by [].
apply: open_comp => // + _; rewrite /cvg_to => x U.
by rewrite nbhs_simpl /= -weak_sep_nbhsE; move: x U; exact: ctsf.
Qed.
Local Notation prod_open := (@open (subspace (range join_product))).
Lemma join_product_open (A : set T) : open A ->
open ((join_product @` A) : set (subspace (range join_product))).
Proof.
move=> oA; rewrite openE => y /= [x Ax] jxy.
have [// | i nAfiy] := @sepf (~` A) x (open_closedC oA).
pose B : set PU := proj i @^-1` (~` closure (f_ i @` ~` A)).
apply: (@filterS _ _ _ (range join_product `&` B)).
move=> z [[w ?]] wzE Bz; exists w => //.
move: Bz; rewrite /B -wzE -interiorC interiorEbigcup.
case=> K [oK KsubA] /KsubA.
have -> : proj i (join_product w) = f_ i w by [].
by move=> /exists2P/forallNP/(_ w)/not_andP [] // /contrapT.
apply: open_nbhs_nbhs; split; last by rewrite -jxy.
apply: openI; first exact: open_subspaceT.
apply: open_subspaceW; apply: open_comp; last exact/closed_openC/closed_closure.
by move=> + _; exact: proj_continuous.
Qed.
Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.
Proof.
move=> /accessible_closed_set1 cl1 x y; case: (eqVneq x y) => // xny _ _ jxjy.
have [] := @sepf [set y] x (cl1 y); first exact/eqP.
move=> i P; suff : join_product x i != join_product y i by rewrite jxjy => /eqP.
apply/negP; move: P; apply: contra_not => /eqP; rewrite /join_product => ->.
by apply: subset_closure; exists y.
Qed.
Lemma join_product_weak : set_inj [set: T] join_product ->
@open T = @open (weak_topology join_product).
Proof.
move=> inj; rewrite predeqE => U; split; first last.
by move=> [V ? <-]; apply: open_comp => // + _; exact: join_product_continuous.
move=> /join_product_open/open_subspaceP [V [oU VU]].
exists V => //; have := @f_equal _ _ (preimage join_product) _ _ VU.
rewrite !preimage_setI // !preimage_range !setIT => ->.
rewrite eqEsubset; split; last exact: preimage_image.
by move=> z [w Uw] /inj <- //; rewrite inE.
Qed.
End product_embeddings.
Global Instance prod_topology_filter (U : Type) (T : U -> ptopologicalType) (f : prod_topology T) :
ProperFilter (nbhs f).
Proof.
exact: nbhs_pfilter.
Qed.
End product_spaces.
HB.instance Definition _ (U : Type) (T : U -> ptopologicalType) :=
Pointed.copy (forall x : U, T x) (prod_topology T).
(**md the uniform topologies type *)
Section fct_Uniform.
Local Open Scope relation_scope.
Variables (T : choiceType) (U : uniformType).
Definition fct_ent := filter_from (@entourage U)
(fun P => [set fg | forall t : T, P (fg.1 t, fg.2 t)]).
Lemma fct_ent_filter : Filter fct_ent.
Proof.
apply: filter_from_filter; first by exists setT; apply: filterT.
move=> A B entA entB.
exists (A `&` B); first exact: filterI.
by move=> fg ABfg; split=> t; have [] := ABfg t.
Qed.
Lemma fct_ent_refl A : fct_ent A -> diagonal `<=` A.
Proof.
move=> [B entB sBA] fg feg; apply/sBA => t; rewrite feg.
exact: entourage_refl.
Qed.
Lemma fct_ent_inv A : fct_ent A -> fct_ent A^-1.
Proof.
move=> [B entB sBA]; exists B^-1; first exact: entourage_inv.
by move=> fg Bgf; exact/sBA.
Qed.
Lemma fct_ent_split A : fct_ent A -> exists2 B, fct_ent B & B \; B `<=` A.
Proof.
move=> [B entB sBA].
exists [set fg | forall t, split_ent B (fg.1 t, fg.2 t)].
by exists (split_ent B).
move=> fg [h spBfh spBhg].
by apply: sBA => t; apply: entourage_split (spBfh t) (spBhg t).
Qed.
Definition arrow_uniform_type : Type := T -> U.
#[export] HB.instance Definition _ := Choice.on arrow_uniform_type.
#[export] HB.instance Definition _ := isUniform.Build arrow_uniform_type
fct_ent_filter fct_ent_refl fct_ent_inv fct_ent_split.
End fct_Uniform.
#[export] HB.instance Definition _ {T : choiceType} {U : puniformType} :=
Pointed.on (arrow_uniform_type T U).
Lemma cvg_fct_entourageP (T : choiceType) (U : uniformType)
(F : set_system (arrow_uniform_type T U)) (FF : Filter F)
(f : arrow_uniform_type T U) :
F --> f <-> forall A, entourage A ->
\forall g \near F, forall t, A (f t, g t).
Proof.
split => [/cvg_entourageP Ff A entA|Ff].
by apply: (Ff [set fg | forall t : T, A (fg.1 t, fg.2 t)]); exists A.
apply/cvg_entourageP => A [P entP sPA].
by near=> g do apply: sPA; apply: Ff.
Unshelve. all: by end_near. Qed.
Section fun_Complete.
Context {T : choiceType} {U : completeType}.
Lemma fun_complete (F : set_system (arrow_uniform_type T U))
{FF : ProperFilter F} : cauchy F -> cvg F.
Proof.
move=> Fc.
have /(_ _) /cauchy_cvg /cvg_app_entourageP cvF : cauchy (@^~_ @ F).
move=> t A /= entA; rewrite near_simpl -near2E near_map2.
by apply: Fc; exists A.
apply/cvg_ex; exists (fun t => lim (@^~t @ F)).
apply/cvg_fct_entourageP => A entA; near=> f => t; near F => g.
apply: (entourage_split (g t)) => //; first by near: g; apply: cvF.
move: (t); near: g; near: f; apply: nearP_dep; apply: Fc.
by exists (split_ent A)^-1%relation => /=.
Unshelve. all: by end_near. Qed.
HB.instance Definition _ := Uniform_isComplete.Build
(arrow_uniform_type T U) fun_complete.
HB.instance Definition _ (R : numFieldType) :=
Uniform_isComplete.Build (arrow_uniform_type T U) cauchy_cvg.
End fun_Complete.
(** Functional metric spaces *)
Section fct_PseudoMetric.
Variable (T : choiceType) (R : numFieldType) (U : pseudoMetricType R).
Definition fct_ball (x : arrow_uniform_type T U) (eps : R)
(y : arrow_uniform_type T U) := forall t : T, ball (x t) eps (y t).
Lemma fct_ball_center (x : T -> U) (e : R) : 0 < e -> fct_ball x e x.
Proof. by move=> /posnumP[{}e] ?. Qed.
Lemma fct_ball_sym (x y : T -> U) (e : R) : fct_ball x e y -> fct_ball y e x.
Proof. by move=> P t; apply: ball_sym. Qed.
Lemma fct_ball_triangle (x y z : T -> U) (e1 e2 : R) :
fct_ball x e1 y -> fct_ball y e2 z -> fct_ball x (e1 + e2) z.
Proof. by move=> xy yz t; apply: (@ball_triangle _ _ (y t)). Qed.
Lemma fct_entourage : entourage = entourage_ fct_ball.
Proof.
rewrite predeqE => A; split; last first.
by move=> [_/posnumP[e] sbeA]; exists [set xy | ball xy.1 e%:num xy.2].
move=> [P]; rewrite -entourage_ballE => -[_/posnumP[e] sbeP] sPA.
by exists e%:num => //= fg fg_e; apply: sPA => t; apply: sbeP; apply: fg_e.
Qed.
HB.instance Definition _ := Uniform_isPseudoMetric.Build R
(arrow_uniform_type T U) fct_ball_center fct_ball_sym
fct_ball_triangle fct_entourage.
End fct_PseudoMetric.
Module ArrowAsUniformType.
HB.instance Definition _ (U : choiceType) (V : uniformType) :=
Uniform.copy (U -> V) (arrow_uniform_type U V).
HB.instance Definition _ (U : choiceType) (R : numFieldType)
(V : pseudoMetricType R) :=
PseudoMetric.copy (U -> V) (arrow_uniform_type U V).
HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
Uniform.copy
(continuousType U T)
(weak_topology (id : continuousType U T -> (U -> T))).
HB.instance Definition _ (U : topologicalType) (R : realType)
(T : pseudoMetricType R) :=
PseudoMetric.on
(weak_topology (id : continuousType U T -> (U -> T))).
End ArrowAsUniformType.
(** Limit switching *)
Section Cvg_switch.
Context {T1 T2 : choiceType}.
Local Import ArrowAsUniformType.
Lemma cvg_switch_1 {U : uniformType}
F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
(f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) (l : U) :
f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) -> h @ F1 --> l ->
g @ F2 --> l.
Proof.
move=> fg fh hl; apply/cvg_app_entourageP => A entA.
near F1 => x1; near=> x2; apply: (entourage_split (h x1)) => //.
by apply/xsectionP; near: x1; exact: hl.
apply: (entourage_split (f x1 x2)) => //.
by apply/xsectionP; near: x2; exact: fh.
move: (x2); near: x1; have /cvg_fct_entourageP /(_ _^-1%relation):= fg; apply.
exact: entourage_inv.
Unshelve. all: by end_near. Qed.
Lemma cvg_switch_2 {U : completeType}
F1 {FF1 : ProperFilter F1} F2 {FF2 : ProperFilter F2}
(f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
f @ F1 --> g -> (forall x, f x @ F2 --> h x) ->
[cvg h @ F1 in U].
Proof.
move=> fg fh; apply: cauchy_cvg => A entA.
rewrite !near_simpl -near2_pair near_map2; near=> x1 y1 => /=; near F2 => x2.
apply: (entourage_split (f x1 x2)) => //.
by apply/xsectionP; near: x2; exact: fh.
apply: (entourage_split (f y1 x2)) => //; last first.
apply/xsectionP; near: x2; apply/(fh _ (xsection _^-1%relation _)).
exact: nbhs_entourage (entourage_inv _).
apply: (entourage_split (g x2)) => //; move: (x2); [near: x1|near: y1].
have /cvg_fct_entourageP /(_ _^-1%relation) := fg; apply.
exact: entourage_inv.
by have /cvg_fct_entourageP := fg; apply.
Unshelve. all: by end_near. Qed.
Lemma cvg_switch {U : completeType}
F1 (FF1 : ProperFilter F1) F2 (FF2 : ProperFilter F2)
(f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) ->
exists l : U, h @ F1 --> l /\ g @ F2 --> l.
Proof.
move=> Hfg Hfh; have hcv := [elaborate cvg_switch_2 Hfg Hfh].
by exists (lim (h @ F1)); split=> //; apply: cvg_switch_1 Hfg Hfh hcv.
Qed.
End Cvg_switch.
Definition uniform_fun {U : Type} (A : set U) (V : Type) : Type := U -> V.
Notation "{ 'uniform`' A -> V }" := (@uniform_fun _ A V) : type_scope.
Notation "{ 'uniform' U -> V }" := ({uniform` [set: U] -> V}) : type_scope.
Notation "{ 'uniform' A , F --> f }" :=
(cvg_to F (nbhs (f : {uniform` A -> _}))) : classical_set_scope.
Notation "{ 'uniform' , F --> f }" :=
(cvg_to F (nbhs (f : {uniform _ -> _}))) : classical_set_scope.
Definition sigL_arrow {U : choiceType} (A : set U) (V : uniformType) :
(U -> V) -> arrow_uniform_type A V := @sigL _ V A.
HB.instance Definition _ (U : choiceType) (A : set U) (V : uniformType) :=
Uniform.copy {uniform` A -> V} (weak_topology (@sigL_arrow _ A V)).
Section RestrictedUniformTopology.
Context {U : choiceType} (A : set U) {V : uniformType} .
Lemma uniform_nbhs (f : {uniform` A -> V}) P:
nbhs f P <-> (exists E, entourage E /\
[set h | forall y, A y -> E(f y, h y)] `<=` P).
Proof.
split=> [[Q [[/= W oW <- /=] Wf subP]]|[E [entE subP]]].
rewrite openE /= /interior in oW.
case: (oW _ Wf) => ? [ /= E entE] Esub subW.
exists E; split=> // h Eh; apply/subP/subW/xsectionP/Esub => /= [[u Au]].
by apply: Eh => /=; rewrite -inE.
case : (pselect (exists (u : U), True)); first last.
move=> nU; apply: (filterS subP); apply: (@filterS _ _ _ setT).
by move=> t _ /= y; move: nU; apply: absurd; exists y.
exact: filterT.
case=> u0 _; near=> g; apply: subP => y /mem_set Ay; rewrite -!(sigLE A).
move: (SigSub _); near: g.
have := (@cvg_image _ _ (@sigL_arrow _ A V) _ f (nbhs_filter f)
(image_sigL (f u0))).1 cvg_id [set h | forall y, E (sigL A f y, h y)].
case.
exists [set fg | forall y, E (fg.1 y, fg.2 y)] => //; first by exists E.
by move=> g /xsectionP.
move=> B nbhsB rBrE; apply: (filterS _ nbhsB) => g Bg [y yA].
by move: rBrE; rewrite eqEsubset; case => [+ _]; apply; exists g.
Unshelve. all: by end_near. Qed.
Lemma uniform_entourage :
@entourage {uniform` A -> V} =
filter_from
(@entourage V)
(fun P => [set fg | forall t : U, A t -> P (fg.1 t, fg.2 t)]).
Proof.
rewrite eqEsubset; split => P /=.
case=> /= E [F entF FsubE EsubP]; exists F => //; case=> f g Ffg.
by apply/EsubP/FsubE=> [[x p]] /=; apply: Ffg; move/set_mem: (p).
case=> E entE EsubP; exists [set fg | forall t, E (fg.1 t, fg.2 t)].
by exists E.
case=> f g Efg; apply: EsubP => t /mem_set At.
by move: Efg => /= /(_ (@exist _ (fun x => in_mem x (mem A)) _ At)).
Qed.
End RestrictedUniformTopology.
Lemma restricted_cvgE {U : choiceType} {V : uniformType}
(F : set_system (U -> V)) A (f : U -> V) :
{uniform A, F --> f} = (F --> (f : {uniform` A -> V})).
Proof. by []. Qed.
Lemma pointwise_cvgE {U : Type} {V : topologicalType}
(F : set_system (U -> V)) (A : set U) (f : U -> V) :
{ptws, F --> f} = (F --> (f : {ptws U -> V})).
Proof. by []. Qed.
(**md We use this function to help Coq identify the correct notation to use
when printing. Otherwise you get goals like `F --> f -> F --> f`. *)
Definition uniform_fun_family {U} V (fam : set U -> Prop) := U -> V.
Notation "{ 'family' fam , U -> V }" := (@uniform_fun_family U V fam).
Notation "{ 'family' fam , F --> f }" :=
(cvg_to F (@nbhs _ {family fam, _ -> _} f)) : type_scope.
HB.instance Definition _ {U : choiceType} {V : uniformType}
(fam : set U -> Prop) :=
Uniform.copy {family fam, U -> V} (sup_topology (fun k : sigT fam =>
Uniform.class {uniform` projT1 k -> V})).
Section UniformCvgLemmas.
Context {U : choiceType} {V : uniformType}.
Lemma uniform_set1 F (f : U -> V) (x : U) :
Filter F -> {uniform [set x], F --> f} = (g x @[g --> F] --> f x).
Proof.
move=> FF; rewrite propeqE; split.
move=> + W => /(_ [set t | W (t x)]) +; rewrite -nbhs_entourageE.
rewrite uniform_nbhs => + [Q entQ subW].
by apply; exists Q; split => // h Qf; exact/subW/xsectionP/Qf.
move=> Ff W; rewrite uniform_nbhs => [[E] [entE subW]].
apply: (filterS subW); move/(nbhs_entourage (f x))/Ff: entE => //=; near_simpl.
by apply: filter_app; apply: nearW=> ? /xsectionP ? ? ->.
Qed.
Lemma uniform_subset_nbhs (f : U -> V) (A B : set U) :
B `<=` A -> nbhs (f : {uniform` A -> V}) `=>` nbhs (f : {uniform` B -> V}).
Proof.
move => BsubA P /uniform_nbhs [E [entE EsubP]].
apply: (filterS EsubP); apply/uniform_nbhs; exists E; split => //.
by move=> h Eh y /BsubA Ay; exact: Eh.
Qed.
Lemma uniform_subset_cvg (f : U -> V) (A B : set U) F :
Filter F -> B `<=` A -> {uniform A, F --> f} -> {uniform B, F --> f}.
Proof.
move => FF /uniform_subset_nbhs => /(_ f).
by move=> nbhsF Acvg; apply: cvg_trans; [exact: Acvg|exact: nbhsF].
Qed.
Lemma pointwise_uniform_cvg (f : U -> V) (F : set_system (U -> V)) :
Filter F -> {uniform, F --> f} -> {ptws, F --> f}.
Proof.
move=> FF; rewrite cvg_sup => + i; have isubT : [set i] `<=` setT by move=> ?.
move=> /(uniform_subset_cvg _ isubT); rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
apply: cvg_trans => W /=; rewrite nbhs_simpl; exists (@^~ i @^-1` W) => //.
by rewrite image_preimage // eqEsubset; split=> // j _; exists (fun _ => j).
Qed.
Lemma cvg_sigL (A : set U) (f : U -> V) (F : set_system (U -> V)) :
Filter F ->
{uniform A, F --> f} <->
{uniform, sigL A @ F --> sigL A f}.
Proof.
move=> FF; split.
- move=> cvgF P' /uniform_nbhs [E [entE EsubP]].
apply: (filterS EsubP); apply: cvgF => /=.
apply: (filterS (P := [set h | forall y, A y -> E (f y, h y)])).
+ by move=> h/= Eh [y ?] _; apply Eh; rewrite -inE.
+ by (apply/uniform_nbhs; eexists; split; eauto).
- move=> cvgF P' /= /uniform_nbhs [ E [/= entE EsubP]].
apply: (filterS EsubP).
move: (cvgF [set h | (forall y , E (sigL A f y, h y))]) => /=.
set Q := (x in (_ -> x) -> _); move=> W.
have: Q by apply W, uniform_nbhs; exists E; split => // h + ?; apply.
rewrite {}/W {}/Q; near_simpl => /= R; apply: (filterS _ R) => h /=.
by rewrite forall_sig /sigL /=.
Qed.
Lemma eq_in_close (A : set U) (f g : {uniform` A -> V}) :
{in A, f =1 g} -> close f g.
Proof.
rewrite entourage_close => /eq_sigLP eqfg ? [E entE]; apply=> /=.
by rewrite /map_pair/sigL_arrow eqfg; exact: entourage_refl.
Qed.
Lemma hausdorrf_close_eq_in (A : set U) (f g : {uniform` A -> V}) :
hausdorff_space V -> close f g = {in A, f =1 g}.
Proof.
move=> hV.
rewrite propeqE; split; last exact: eq_in_close.
rewrite entourage_close => C u; rewrite inE => uA; apply: hV.
rewrite /cluster -nbhs_entourageE /= => X Y [X' eX X'X] [Y' eY Y'Y].
exists (g u); split; [apply: X'X| apply: Y'Y]; apply/xsectionP; last first.
exact: entourage_refl.
apply: (C [set fg | forall y, A y -> X' (fg.1 y, fg.2 y)]) => //=.
by rewrite uniform_entourage; exists X'.
Qed.
Lemma uniform_nbhsT (f : U -> V) :
(nbhs (f : {uniform U -> V})) = nbhs (f : arrow_uniform_type U V).
Proof.
rewrite eqEsubset; split=> A.
case/uniform_nbhs => E [entE] /filterS; apply.
exists [set fh | forall y, E (fh.1 y, fh.2 y)]; first by exists E.
by move=> ? /xsectionP /=.
case => J [E entE EJ] /filterS; apply; apply/uniform_nbhs; exists E.
by split => // z /= Efz; apply/xsectionP/EJ => t /=; exact: Efz.
Qed.
Lemma cvg_uniformU (f : U -> V) (F : set_system (U -> V)) A B : Filter F ->
{uniform A, F --> f} -> {uniform B, F --> f} ->
{uniform (A `|` B), F --> f}.
Proof.
move=> FF AFf BFf Q /=/uniform_nbhs [E [entE EsubQ]].
apply: (filterS EsubQ).
rewrite (_: [set h | (forall y : U, (A `|` B) y -> E (f y, h y))] =
[set h | forall y, A y -> E (f y, h y)] `&`
[set h | forall y, B y -> E (f y, h y)]).
- apply: filterI; [apply: AFf| apply: BFf].
+ by apply/uniform_nbhs; exists E; split.
+ by apply/uniform_nbhs; exists E; split.
- rewrite eqEsubset; split=> h.
+ by move=> R; split=> t ?; apply: R;[left| right].
+ by move=> [R1 R2] y [? | ?]; [apply: R1| apply: R2].
Qed.
Lemma cvg_uniform_set0 (F : set_system (U -> V)) (f : U -> V) : Filter F ->
{uniform set0, F --> f}.
Proof.
move=> FF P /= /uniform_nbhs [E [? R]].
suff -> : P = setT by exact: filterT.
rewrite eqEsubset; split => //=.
by apply: subset_trans R => g _ ?.
Qed.
Lemma fam_cvgP (fam : set U -> Prop) (F : set_system (U -> V)) (f : U -> V) :
Filter F -> {family fam, F --> f} <->
(forall A : set U, fam A -> {uniform A, F --> f }).
Proof.
split; first by move=> /cvg_sup + A FA; move/(_ (existT _ _ FA)).
by move=> famFf /=; apply/cvg_sup => [[? ?] FA]; apply: famFf.
Qed.
Lemma family_cvg_subset (famA famB : set U -> Prop) (F : set_system (U -> V))
(f : U -> V) : Filter F ->
famA `<=` famB -> {family famB, F --> f} -> {family famA, F --> f}.
Proof.
by move=> FF S /fam_cvgP famBFf; apply/fam_cvgP => A ?; apply/famBFf/S.
Qed.
Lemma family_cvg_finite_covers (famA famB : set U -> Prop)
(F : set_system (U -> V)) (f : U -> V) : Filter F ->
(forall P, famA P ->
exists (I : choiceType) f,
(forall i, famB (f i)) /\ finite_subset_cover [set: I] f P) ->
{family famB, F --> f} -> {family famA, F --> f}.
Proof.
move=> FF ex_finCover /fam_cvgP rFf; apply/fam_cvgP => A famAA.
move: ex_finCover => /(_ _ famAA) [R [g [g_famB [D _]]]].
move/uniform_subset_cvg; apply.
elim/finSet_rect: D => X IHX.
have [->|/set0P[x xX]] := eqVneq [set` X] set0.
by rewrite coverE bigcup_set0; apply: cvg_uniform_set0.
rewrite coverE (bigcup_fsetD1 x)//; apply: cvg_uniformU.
exact/rFf/g_famB.
exact/IHX/fproperD1.
Qed.
End UniformCvgLemmas.
Lemma uniform_restrict_cvg {U : choiceType} {V : puniformType}
(F : set_system (U -> V)) (f : U -> V) A : Filter F ->
{uniform A, F --> f} <-> {uniform, restrict A @ F --> restrict A f}.
Proof.
move=> FF; rewrite cvg_sigL; split.
- rewrite -sigLK; move/(cvg_app valL) => D.
apply: cvg_trans; first exact: D.
move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
apply/uniform_nbhs; exists E; split=> //= h /=.
rewrite /sigL => R u _; rewrite oinv_set_val.
by case: insubP=> /= *; [apply: R|apply: entourage_refl].
- move/(@cvg_app _ _ _ _ (sigL A)).
rewrite -fmap_comp sigL_restrict => D.
apply: cvg_trans; first exact: D.
move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
apply/uniform_nbhs; exists E; split=> //= h /=.
rewrite /sigL => R [u Au] _ /=.
by have := R u I; rewrite /patch Au.
Qed.
Section FamilyConvergence.
Lemma fam_cvgE {U : choiceType} {V : uniformType} (F : set_system (U -> V))
(f : U -> V) fam :
{family fam, F --> f} = (F --> (f : {family fam, U -> V})).
Proof. by []. Qed.
Lemma fam_nbhs {U : choiceType} {V : uniformType} (fam : set U -> Prop)
(A : set U) (E : set (V * V)) (f : {family fam, U -> V}) :
entourage E -> fam A -> nbhs f [set g | forall y, A y -> E (f y, g y)].
Proof.
move=> entE famA; have /fam_cvgP /(_ A) : (nbhs f --> f) by []; apply => //.
by apply uniform_nbhs; exists E; split.
Qed.
Lemma fam_compact_nbhs {U : topologicalType} {V : uniformType}
(A : set U) (O : set V) (f : {family compact, U -> V}) :
open O -> f @` A `<=` O -> compact A -> continuous f ->
nbhs (f : {family compact, U -> V}) [set g | forall y, A y -> O (g y)].
Proof.
move=> oO fAO /[dup] cA /compact_near_coveringP/near_covering_withinP cfA ctsf.
near=> z => /=; (suff: A `<=` [set y | O (z y)] by exact); near: z.
apply: cfA => x Ax; have : O (f x) by exact: fAO.
move: (oO); rewrite openE /= => /[apply] /[dup] /ctsf Ofx /=.
rewrite /interior -nbhs_entourageE => -[E entE EfO].
exists (f @^-1` xsection (split_ent E) (f x),
[set g | forall w, A w -> split_ent E (f w, g w)]).
split => //=; last exact: fam_nbhs.
by apply: ctsf; rewrite /= -nbhs_entourageE; exists (split_ent E).
case=> y g [/= /xsectionP Efxy] AEg Ay; apply/EfO/xsectionP.
by apply: subset_split_ent => //; exists (f y) => //=; exact: AEg.
Unshelve. all: by end_near. Qed.
End FamilyConvergence.
(**md It turns out `{family compact, U -> V}` can be generalized to only assume
`topologicalType` on `V`. This topology is called the compact-open topology.
This topology is special because it is the _only_ topology that will allow
`curry`/`uncurry` to be continuous. *)
Section compact_open.
Context {T U : topologicalType}.
Definition compact_open : Type := T -> U.
Section compact_open_setwise.
Context {K : set T}.
Definition compact_openK := let _ := K in compact_open.
Definition compact_openK_nbhs (f : compact_openK) :=
filter_from
[set O | f @` K `<=` O /\ open O]
(fun O => [set g | g @` K `<=` O]).
Global Instance compact_openK_nbhs_filter (f : compact_openK) :
ProperFilter (compact_openK_nbhs f).
Proof.
split; first by case=> g [gKO oO] /(_ f); apply.
apply: filter_from_filter; first by exists setT; split => //; exact: openT.
move=> P Q [fKP oP] [fKQ oQ]; exists (P `&` Q); first split.
- by move=> ? [z Kz M-]; split; [apply: fKP | apply: fKQ]; exists z.
- exact: openI.
by move=> g /= gPQ; split; exact: (subset_trans gPQ).
Qed.
HB.instance Definition _ := Choice.on compact_openK.
HB.instance Definition _ := hasNbhs.Build compact_openK compact_openK_nbhs.
Definition compact_open_of_nbhs := [set A : set compact_openK | A `<=` nbhs^~ A].
Lemma compact_openK_nbhsE_subproof (p : compact_openK) :
compact_openK_nbhs p =
[set A | exists B : set compact_openK,
[/\ compact_open_of_nbhs B, B p & B `<=` A]].
Proof.
rewrite eqEsubset; split => A /=.
case=> B /= [fKB oB gKBA]; exists [set g | g @` K `<=` B]; split => //.
by move=> h /= hKB; exists B.
by case=> B [oB Bf /filterS]; apply; exact: oB.
Qed.
Lemma compact_openK_openE_subproof :
compact_open_of_nbhs = [set A | A `<=` compact_openK_nbhs^~ A].
Proof. by []. Qed.
HB.instance Definition _ :=
Nbhs_isTopological.Build compact_openK compact_openK_nbhs_filter
compact_openK_nbhsE_subproof compact_openK_openE_subproof.
End compact_open_setwise.
Definition compact_open_def :=
sup_topology (fun i : sigT (@compact T) =>
Topological.class (@compact_openK (projT1 i))).
HB.instance Definition _ := Nbhs.copy compact_open compact_open_def.
HB.instance Definition _ : Nbhs_isTopological compact_open :=
Topological.copy compact_open compact_open_def.
Lemma compact_open_cvgP (F : set_system compact_open)
(f : compact_open) :
Filter F ->
F --> f <-> forall K O, @compact T K -> @open U O -> f @` K `<=` O ->
F [set g | g @` K `<=` O].
Proof.
move=> FF; split.
by move/cvg_sup => + K O cptK ? ? => /(_ (existT _ _ cptK)); apply; exists O.
move=> fko; apply/cvg_sup => -[A cptK] O /= [C /= [fAC oC]].
by move/filterS; apply; exact: fko.
Qed.
Lemma compact_open_open (K : set T) (O : set U) :
compact K -> open O -> open ([set g | g @` K `<=` O] : set compact_open).
Proof.
pose C := [set g | g @` K `<=` O]; move=> cptK oO.
exists [set C]; last by rewrite bigcup_set1.
move=> _ ->; exists (fset1 C) => //; last by rewrite set_fset1 bigcap_set1.
by move=> _ /[!inE] ->; exists (existT _ _ cptK) => // z Cz; exists O.
Qed.
End compact_open.
HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} K :=
Pointed.on (@compact_openK U V K).
HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} :=
Pointed.on (@compact_open U V).
Notation "{ 'compact-open' , U -> V }" := (@compact_open U V).
Notation "{ 'compact-open' , F --> f }" :=
(F --> (f : @compact_open _ _)).
Section compact_open_uniform.
Context {U : topologicalType} {V : puniformType}.
Let small_ent_sub := @small_set_sub _ (@entourage V).
Lemma compact_open_fam_compactP (f : U -> V) (F : set_system (U -> V)) :
continuous f -> Filter F ->
{compact-open, F --> f} <-> {family compact, F --> f}.
Proof.
move=> ctsf FF; split; first last.
move=> cptF; apply/compact_open_cvgP => K O cptK oO fKO.
apply: cptF; have := fam_compact_nbhs oO fKO cptK ctsf; apply: filter_app.
by near=> g => /= gKO ? [z Kx <-]; exact: gKO.
move/compact_open_cvgP=> cptOF; apply/cvg_sup => -[K cptK R].
case=> D [[E oE <-] Ekf] /filterS; apply.
move: oE; rewrite openE => /(_ _ Ekf); case => A [J entJ] EKR KfE.
near=> z; apply/KfE/xsectionP/EKR => -[u Kp]; rewrite /sigL_arrow /= /set_val /= /eqincl.
(have Ku : K u by rewrite inE in Kp); move: u Ku {D Kp}; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply.
move=> u Ku; near (powerset_filter_from (@entourage V)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose C := f @^-1` xsection E' (f u).
pose B := \bigcup_(z in K `&` closure C) interior (xsection E' (f z)).
have oB : open B by apply: bigcup_open => ? ?; exact: open_interior.
have fKB : f @` (K `&` closure C) `<=` B.
move=> _ [z KCz <-]; exists z => //; rewrite /interior.
by rewrite -nbhs_entourageE; exists E'.
have cptKC : compact (K `&` closure C).
by apply: compact_closedI => //; exact: closed_closure.
have := cptOF (K `&` closure C) B cptKC oB fKB.
exists (C, [set g | [set g x | x in K `&` closure C] `<=` B]).
split; last exact: cptOF.
by apply: (ctsf) => //; rewrite /filter_of -nbhs_entourageE; exists E'.
case=> z h /= [Cz KB Kz].
case: (KB (h z)); first by exists z; split => //; exact: subset_closure.
move=> w [Kw Cw /interior_subset Jfwhz]; apply: subset_split_ent => //.
exists (f w); last first.
apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
apply: subset_split_ent => //; exists (f u).
apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
have [] := Cw (f @^-1` xsection E' (f w)).
by apply: ctsf; rewrite /= -nbhs_entourageE; exists E'.
move=> r [Cr /= Ewr]; apply: subset_split_ent => //; exists (f r).
apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
Unshelve. all: by end_near. Qed.
End compact_open_uniform.
Module ArrowAsCompactOpen.
HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
Topological.copy (U -> V) {compact-open, U -> V}.
HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
Topological.copy (continuousType U V)
(weak_topology (id : (continuousType U V) -> (U -> V)) ).
End ArrowAsCompactOpen.
Definition compactly_in {U : topologicalType} (A : set U) :=
[set B | B `<=` A /\ compact B].
Lemma compact_cvg_within_compact {U : topologicalType} {V : uniformType}
(C : set U) (F : set_system (U -> V)) (f : U -> V) :
Filter F -> compact C ->
{uniform C, F --> f} <-> {family compactly_in C, F --> f}.
Proof.
move=> FF CC.
apply: (iff_trans _ (iff_sym (fam_cvgP _ _ FF))); split.
- by move=> CFf D [/uniform_subset_cvg + _]; apply.
- by apply; split.
Qed.
Section UniformContinuousLimits.
Lemma uniform_limit_continuous {U : topologicalType} {V : uniformType}
(F : set_system (U -> V)) (f : U -> V) :
ProperFilter F -> (\forall g \near F, continuous (g : U -> V)) ->
{uniform, F --> f} -> continuous f.
Proof.
move=> PF ctsF Ff x; apply/cvg_app_entourageP => A entA; near F => g; near=> y.
apply: (entourage_split (g x)) => //.
by near: g; apply/Ff/uniform_nbhs; exists (split_ent A); split => // ?; exact.
apply: (entourage_split (g y)) => //; near: y; near: g.
by apply: (filterS _ ctsF) => g /(_ x) /cvg_app_entourageP; exact.
apply/Ff/uniform_nbhs; exists (split_ent (split_ent A))^-1%relation.
by split; [exact: entourage_inv | move=> g fg; near_simpl; near=> z; exact: fg].
Unshelve. all: end_near. Qed.
Lemma uniform_limit_continuous_subspace {U : topologicalType} {V : puniformType}
(K : set U) (F : set_system (U -> V)) (f : subspace K -> V) :
ProperFilter F -> (\forall g \near F, continuous (g : subspace K -> V)) ->
{uniform K, F --> f} -> {within K, continuous f}.
Proof.
move=> PF ctsF Ff; apply: (@subspace_eq_continuous _ _ _ (restrict K f)).
by rewrite /restrict => ? ->.
apply: (@uniform_limit_continuous (subspace K) _ (restrict K @ F) _).
apply: (filterS _ ctsF) => g; apply: subspace_eq_continuous.
by rewrite /restrict => ? ->.
by apply (@uniform_restrict_cvg _ _ F ) => //; exact: PF.
Qed.
End UniformContinuousLimits.
Section UniformPointwise.
Context {U : topologicalType} {V : uniformType}.
Definition singletons {T : Type} := [set [set x] | x in [set: T]].
Lemma pointwise_cvg_family_singleton F (f: U -> V):
Filter F -> {ptws, F --> f} = {family @singletons U, F --> f}.
Proof.
move=> FF; apply/propext.
rewrite (@fam_cvgP _ _ singletons). (* BUG: slowdown if no arguments *)
rewrite cvg_sup; split.
move=> + A [x _ <-] => /(_ x); rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
apply: cvg_trans => W /=; rewrite ?nbhs_simpl /fmap /= => [[W' + <-]].
by apply: filterS => g W'g /=; exists g.
move=> + i; have /[swap] /[apply] : singletons [set i] by exists i.
rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
move=> + W //=; rewrite ?nbhs_simpl => Q => /Q Q'; exists (@^~ i @^-1` W) => //.
by rewrite eqEsubset; split => [j [? + <-//]|j Wj]; exists (fun _ => j).
Qed.
Lemma pointwise_cvg_compact_family F (f : U -> V) :
Filter F -> {family compact, F --> f} -> {ptws, F --> f}.
Proof.
move=> PF; rewrite pointwise_cvg_family_singleton; apply: family_cvg_subset.
by move=> A [x _ <-]; exact: compact_set1.
Qed.
Lemma pointwise_cvgP F (f: U -> V):
Filter F -> {ptws, F --> f} <-> forall (t : U), (fun g => g t) @ F --> f t.
Proof.
move=> Ff; rewrite pointwise_cvg_family_singleton; split.
move/fam_cvgP => + t A At => /(_ [set t]); rewrite uniform_set1; apply => //.
by exists t.
by move=> pf; apply/fam_cvgP => ? [t _ <-]; rewrite uniform_set1; exact: pf.
Qed.
End UniformPointwise.
Section ArzelaAscoli.
Context {X : topologicalType} {Y : puniformType} {hsdf : hausdorff_space Y}.
Implicit Types (I : Type).
(** The key condition in Arzela-Ascoli that, like uniform continuity, moves a
quantifier around so all functions have the same "deltas": *)
Definition equicontinuous {I} (W : set I) (d : I -> (X -> Y)) :=
forall x (E : set (Y * Y)), entourage E ->
\forall y \near x, forall i, W i -> E (d i x, d i y).
Lemma equicontinuous_subset {I J} (W : set I) (V : set J)
{fW : I -> X -> Y} {fV : J -> X -> Y} :
fW @`W `<=` fV @` V -> equicontinuous V fV -> equicontinuous W fW.
Proof.
move=> WsubV + x E entE => /(_ x E entE); apply: filterS => y VE i Wi.
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exact: VE].
Qed.
Lemma equicontinuous_subset_id (W V : set (X -> Y)) :
W `<=` V -> equicontinuous V id -> equicontinuous W id.
Proof.
move=> WsubV; apply: equicontinuous_subset => ? [y ? <- /=]; exists y => //.
exact: WsubV.
Qed.
Lemma equicontinuous_continuous_for {I} (W : set I) (fW : I -> X -> Y) i x :
{for x, equicontinuous W fW} -> W i -> {for x, continuous (fW i)}.
Proof.
move=> ectsW Wf; apply/cvg_entourageP => E entE; near_simpl.
by near=> y; apply: (near (ectsW _ entE) y).
Unshelve. end_near. Qed.
Lemma equicontinuous_continuous {I} (W : set I) (fW : I -> (X -> Y)) (i : I) :
equicontinuous W fW -> W i -> continuous (fW i).
Proof.
move=> ectsW Wf x; apply: equicontinuous_continuous_for; last exact: Wf.
by move=> ?; exact: ectsW.
Qed.
(**md A convenient notion that is in between compactness in
`{family compact, X -> y}` and compactness in `{ptws X -> y}`: *)
Definition pointwise_precompact {I} (W : set I) (d : I -> X -> Y) :=
forall x, precompact [set d i x | i in W].
Lemma pointwise_precompact_subset {I J} (W : set I) (V : set J)
{fW : I -> X -> Y} {fV : J -> X -> Y} :
fW @` W `<=` fV @` V -> pointwise_precompact V fV ->
pointwise_precompact W fW.
Proof.
move=> WsubV + x => /(_ x) pcptV; apply: precompact_subset pcptV => y [i Wi <-].
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exists j].
Qed.
Lemma pointwise_precompact_precompact {I} (W : set I) (fW : I -> (X -> Y)) :
pointwise_precompact W fW -> precompact ((fW @` W) : set {ptws X -> Y}).
Proof.
rewrite precompactE => ptwsPreW.
pose K := fun x => closure [set fW i x | i in W].
set R := [set f : {ptws X -> Y} | forall x : X, K x (f x)].
have C : compact R.
by apply: tychonoff => x; rewrite -precompactE; move: ptwsPreW; exact.
apply: (subclosed_compact _ C); first exact: closed_closure.
have WsubR : (fW @` W) `<=` R.
move=> f Wf x; rewrite /R /K closure_limit_point; left.
by case: Wf => i ? <-; exists i.
rewrite closureE; apply: smallest_sub (compact_closed _ C) WsubR.
exact: hausdorff_product.
Qed.
Lemma uniform_pointwise_compact (W : set (X -> Y)) :
compact (W : set (@uniform_fun_family X Y compact)) ->
compact (W : set {ptws X -> Y}).
Proof.
rewrite [x in x _ -> _]compact_ultra [x in _ -> x _]compact_ultra.
move=> + F UF FW => /(_ F UF FW) [h [Wh Fh]]; exists h; split => //.
by move=> Q Fq; apply: (pointwise_cvg_compact_family _ Fh).
Qed.
Lemma precompact_pointwise_precompact (W : set {family compact, X -> Y}) :
precompact W -> pointwise_precompact W id.
Proof.
move=> + x; rewrite ?precompactE => pcptW.
have : compact (proj x @` (closure W)).
apply: continuous_compact => //; apply: continuous_subspaceT=> g.
move=> E nbhsE; have := (@proj_continuous _ _ x g E nbhsE).
exact: (@pointwise_cvg_compact_family _ _ (nbhs g)).
move=> /[dup]/(compact_closed hsdf)/closure_id -> /subclosed_compact.
apply; first exact: closed_closure.
by apply/closure_subset/image_subset; exact: (@subset_closure _ W).
Qed.
Lemma pointwise_cvg_entourage (x : X) (f : {ptws X -> Y}) E :
entourage E -> \forall g \near f, E (f x, g x).
Proof.
move=> entE; have : ({ptws, nbhs f --> f}) by [].
have ? : Filter (nbhs f) by exact: nbhs_pfilter. (* NB: This Filter (nbhs f) used to infer correctly. *)
rewrite pointwise_cvg_family_singleton => /fam_cvgP /(_ [set x]).
rewrite uniform_set1 => /(_ _ [set y | E (f x, y)]); apply; first by exists x.
by move: E entE; exact/cvg_entourageP.
Qed.
Lemma equicontinuous_closure (W : set {ptws X -> Y}) :
equicontinuous W id -> equicontinuous (closure W) id.
Proof.
move=> ectsW x E entE; near=> y => f clWf.
have ? : ProperFilter (within W (nbhs (f : {ptws X -> Y}))).
exact: within_nbhs_proper. (* TODO: This ProperFilter _ also used to infer correctly. *)
near (within W (nbhs (f : {ptws X -> Y}))) => g.
near: g; rewrite near_withinE; near_simpl; near=> g => Wg.
apply: (@entourage_split _ (g x)) => //.
exact: (near (pointwise_cvg_entourage _ _ _)).
apply: (@entourage_split _ (g y)) => //; first exact: (near (@ectsW x _ _)).
by apply/entourage_sym; exact: (near (pointwise_cvg_entourage _ _ _)).
Unshelve. all: by end_near. Qed.
Definition small_ent_sub := @small_set_sub _ (@entourage Y).
Lemma pointwise_compact_cvg (F : set_system {ptws X -> Y}) (f : {ptws X -> Y}) :
ProperFilter F ->
(\forall W \near powerset_filter_from F, equicontinuous W id) ->
{ptws, F --> f} <-> {family compact, F --> f}.
Proof.
move=> PF /near_powerset_filter_fromP; case.
exact: equicontinuous_subset_id.
move=> W; wlog Wf : f W / W f.
move=> + FW /equicontinuous_closure => /(_ f (closure (W : set {ptws X -> Y}))) Q.
split => Ff; last by apply: pointwise_cvg_compact_family.
apply/Q => //.
by rewrite closureEcvg; exists F; [|split] => // ? /= /filterS; apply.
by apply: (filterS _ FW) => z Wz; apply: subset_closure.
move=> FW ectsW; split=> [ptwsF|]; last exact: pointwise_cvg_compact_family.
apply/fam_cvgP => K ? U /=; rewrite uniform_nbhs => [[E [eE EsubU]]].
suff : \forall g \near within W (nbhs (f : {ptws X -> Y})),
forall y, K y -> E (f y, g y).
rewrite near_withinE; near_simpl => N; apply: (filter_app _ _ FW).
by apply: ptwsF; near=> g => ?; apply: EsubU; apply: (near N g).
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (h : X -> Y) x => E' (f x, h x).
apply: (iffLR (compact_near_coveringP K)) => // x Kx.
near=> y g => /=.
apply: (entourage_split (f x) eE).
apply entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact: (near (ectsW x E' entE') y).
apply: (@entourage_split _ (g x)) => //.
apply: (near (small_ent_sub _) E') => //.
near: g; near_simpl; apply: (@cvg_within _ (nbhs (f : {ptws X -> Y}))).
exact: pointwise_cvg_entourage.
apply: (near (small_ent_sub _) E') => //.
apply: (near (ectsW x E' entE')) => //.
exact: (near (withinT _ (nbhs_filter (f : {ptws X -> Y})))).
Unshelve. all: end_near. Qed.
Lemma pointwise_compact_closure (W : set (X -> Y)) :
equicontinuous W id ->
closure (W : set {family compact, X -> Y}) =
closure (W : set {ptws X -> Y}).
Proof.
rewrite ?closureEcvg // predeqE => ? ?.
split; move=> [F PF [Fx WF]]; (exists F; last split) => //.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
Qed.
Lemma pointwise_precompact_equicontinuous (W : set (X -> Y)) :
pointwise_precompact W id ->
equicontinuous W id ->
precompact (W : set {family compact, X -> Y }).
Proof.
move=> /pointwise_precompact_precompact + ectsW.
rewrite ?precompactE compact_ultra compact_ultra pointwise_compact_closure //.
move=> /= + F UF FcW => /(_ F UF); rewrite image_id => /(_ FcW)[p [cWp Fp]].
exists p; split => //; apply/pointwise_compact_cvg => //.
apply/near_powerset_filter_fromP; first exact: equicontinuous_subset_id.
exists (closure (W : set {ptws X -> Y })) => //.
exact: equicontinuous_closure.
Qed.
Section precompact_equicontinuous.
Hypothesis lcptX : locally_compact [set: X].
Lemma compact_equicontinuous (W : set {family compact, X -> Y}) :
(forall f, W f -> continuous f) ->
compact (W : set {family compact, X -> Y}) ->
equicontinuous W id.
Proof.
move=> ctsW cptW x E entE.
have [//|U UWx [cptU clU]] := @lcptX x; rewrite withinET in UWx.
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (y : X) (f : {family compact, X -> Y}) => E' (f x, f y).
apply: (iffLR (compact_near_coveringP W)) => // f Wf; near=> g y => /=.
apply: (entourage_split (f x) entE).
apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact: (near (fam_nbhs _ entE' (@compact_set1 _ x)) g).
apply: (entourage_split (f y) (entourage_split_ent entE)).
apply: (near (small_ent_sub _) E') => //.
by apply/xsectionP; near: y; apply: (@ctsW f Wf x); exact: nbhs_entourage.
apply: (near (small_ent_sub _) E') => //.
by apply: (near (fam_nbhs _ entE' cptU) g) => //; exact: (near UWx y).
Unshelve. all: end_near. Qed.
Lemma precompact_equicontinuous (W : set {family compact, X -> Y}) :
(forall f, W f -> continuous f) ->
precompact (W : set {family compact, X -> Y}) ->
equicontinuous W id.
Proof.
move=> pcptW ctsW; apply: (equicontinuous_subset_id (@subset_closure _ W)).
apply: compact_equicontinuous; last by rewrite -precompactE.
move=> f; rewrite closureEcvg => [[G PG [Gf GW]]] x B /=.
rewrite -nbhs_entourageE => -[E entE] /filterS; apply; near_simpl.
suff ctsf : continuous f.
near=> x0; apply/xsectionP; near: x0.
by move: E entE; apply/cvg_app_entourageP; exact: ctsf.
apply/continuous_localP => x'; apply/near_powerset_filter_fromP.
by move=> ? ?; exact: continuous_subspaceW.
case: (@lcptX x') => // U; rewrite withinET => nbhsU [cptU _].
exists U => //; apply: (uniform_limit_continuous_subspace PG _ _).
by near=> g; apply: continuous_subspaceT; near: g; exact: GW.
by move/fam_cvgP/(_ _ cptU) : Gf.
Unshelve. all: end_near. Qed.
End precompact_equicontinuous.
Theorem Ascoli (W : set {family compact, X -> Y}) :
locally_compact [set: X] ->
pointwise_precompact W id /\ equicontinuous W id <->
(forall f, W f -> continuous f) /\
precompact (W : set {family compact, X -> Y}).
Proof.
move=> lcpt; split => [[Wid ectsW]|[fWf]pcptW].
split=> [?|]; first exact: equicontinuous_continuous.
exact: pointwise_precompact_equicontinuous.
split; last exact: precompact_equicontinuous.
exact: precompact_pointwise_precompact.
Qed.
End ArzelaAscoli.
Section currying.
Local Import ArrowAsCompactOpen.
Section cartesian_closed.
Context {U V W : topologicalType}.
(**md In this section, we consider under what conditions \
`[f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)]` \
and \
`[f in U * V ~> W | continuous f]` \
are homeomorphic.
- Always: \
`curry` sends continuous functions to continuous functions.
- `V` locally_compact + regular or Hausdorff: \
`uncurry` sends continuous functions to continuous functions.
- `U` regular or Hausdorff: \
`curry` itself is a continuous map.
- `U` regular or Hausdorff AND `V` locally_compact + regular or Hausdorff \
`uncurry` itself is a continuous map. \
Therefore `curry`/`uncurry` are homeomorphisms.
So the category of locally compact regular spaces is cartesian closed.
*)
Lemma continuous_curry (f : U * V -> W) :
continuous f ->
continuous (curry f) /\ forall u, continuous (curry f u).
Proof.
move=> ctsf; split; first last.
move=> u z; apply: continuous_comp; last exact: ctsf.
by apply: cvg_pair => //=; exact: cvg_cst.
move=> x; apply/compact_open_cvgP => K O /= cptK oO fKO.
near=> z => w /= [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : cptK; apply.
move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (x, v) (f @^-1` O).
by apply: ctsf; move: oO; rewrite openE; apply; apply: fKO; exists v.
by exists (Q, P) => // -[b a] /= [Qb Pa] Kb; exact: PQfO.
Unshelve. all: by end_near. Qed.
Lemma continuous_curry_fun (f : U * V -> W) :
continuous f -> continuous (curry f).
Proof. by case/continuous_curry. Qed.
Lemma continuous_curry_cvg (f : U * V -> W) (u : U) (v : V) :
continuous f -> curry f z.1 z.2 @[z --> (u, v)] --> curry f u v.
Proof.
move=> cf D /cf; rewrite !nbhs_simpl /curry /=; apply: filterS => z ? /=.
by rewrite -surjective_pairing.
Qed.
Lemma continuous_uncurry_regular (f : U -> V -> W) :
locally_compact [set: V] -> @regular_space V -> continuous f ->
(forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV reg cf cfp /= [u v] D; rewrite /= nbhsE => -[O [oO Ofuv]] /filterS.
apply; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
have [R Rv RO] : exists2 R, nbhs v R & forall z, closure R z -> O (f u z).
have [] := reg v (f u @^-1` O); first by apply: cfp; exact: open_nbhs_nbhs.
by move=> R ? ?; exists R.
exists (f @^-1` [set g | g @` (B `&` closure R) `<=` O], B `&` closure R).
split; [apply/cf/open_nbhs_nbhs; split | apply: filterI] => //.
- apply: compact_open_open => //; apply: compact_closedI => //.
exact: closed_closure.
- by move=> ? [x [? + <-]]; apply: RO.
- by apply: filterS; first exact: subset_closure.
by case=> a r /= [fBMO [Br] cmR]; apply: fBMO; exists r.
Qed.
Lemma continuous_uncurry (f : U -> V -> W) :
locally_compact [set: V] -> hausdorff_space V -> continuous f ->
(forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV hsdf ctsf cf; apply: continuous_uncurry_regular => //.
move=> v; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
by move=> z; exact: (compact_regular _ cptB).
Qed.
Lemma curry_continuous (f : (U * V)%type -> W) : continuous f -> @regular_space U ->
{for f, continuous curry}.
Proof.
move=> ctsf regU; apply/compact_open_cvgP.
by apply: fmap_filter; exact: nbhs_filter.
move=> K ? cptK [D OfinIo <-] fKD /=; near=> z => w [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply => u Ku.
have [] := fKD (curry f u); first by exists u.
move=> E /[dup] /[swap] /OfinIo [N Asub <- DIN INf].
suff : \forall x' \near u & i \near nbhs f, K x' ->
(\bigcap_(i in [set` N]) i) (curry i x').
apply: filter_app; near=> a b => /[apply] ?.
by exists (\bigcap_(i in [set` N]) i).
apply: filter_bigI_within => R RN; have /set_mem [[M cptM _]] := Asub _ RN.
have Rfu : R (curry f u) by exact: INf.
move/(_ _ Rfu) => [O [fMO oO] MOR]; near=> p => /= Ki; apply: MOR => + [+ + <-].
move=> _ v Mv; move: v Mv Ki; near: p.
have umb : \forall y \near u, (forall b, M b -> nbhs (y, b) (f @^-1` O)).
move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
have [[P Q] [Pu Qv] PQO] : nbhs (u, v) (f @^-1` O).
by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: fMO; exists v.
exists (Q, P); [by []| move=> [b a [/= Qb Pa Mb]]].
by apply: ctsf; apply: open_nbhs_nbhs; split => //; exact: PQO.
move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
have [P' P'u cPO] := regU u _ umb.
pose L := [set h | h @` ((K `&` closure P') `*` M) `<=` O].
exists (setT, P' `*` L).
split => //; [exact: filterT|]; exists (P', L) => //; split => //.
apply: open_nbhs_nbhs; split; first apply: compact_open_open => //.
apply: compact_setX => //; apply: compact_closedI => //.
exact: closed_closure.
by move=> ? [[a b] [[Ka /cPO +] Mb <-]] => /(_ _ Mb)/nbhs_singleton.
move=> [b [a h]] [/= _ [Pa] +] Ma Ka; apply.
by exists (a, b); split => //; split => //; exact/subset_closure.
Unshelve. all: by end_near. Qed.
Lemma uncurry_continuous (f : U -> V -> W) :
locally_compact [set: V] -> @regular_space V -> @regular_space U ->
continuous f -> (forall u, continuous (f u)) ->
{for f, continuous uncurry}.
Proof.
move=> lcV regV regU ctsf ctsfp; apply/compact_open_cvgP.
by apply: fmap_filter; exact:nbhs_filter.
move=> /= K O cptK oO fKO; near=> h => ? [+ + <-]; near: h.
move/compact_near_coveringP/near_covering_withinP: (cptK); apply.
case=> u v Kuv.
have : exists P Q, [/\ closed P, compact Q, nbhs u P,
nbhs v Q & P `*` Q `<=` uncurry f @^-1` O].
have : continuous (uncurry f) by exact: continuous_uncurry_regular.
move/continuousP/(_ _ oO); rewrite openE => /(_ (u, v))[].
by apply: fKO; exists (u, v).
case=> /= P' Q' [P'u Q'v] PQO.
have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB].
have [P Pu cPP'] := regU u P' P'u; have [Q Qv cQQ'] := regV v Q' Q'v.
exists (closure P), (B `&` closure Q); split.
- exact: closed_closure.
- by apply: compact_closedI => //; exact: closed_closure.
- by apply: filterS; first exact: subset_closure.
- by apply: filterI=> //; apply: filterS; first exact: subset_closure.
- by case => a b [/cPP' ?] [_ /cQQ' ?]; exact: PQO.
case=> P [Q [clP cptQ Pu Qv PQfO]]; pose R := [set g : V -> W | g @` Q `<=` O].
(have oR : open R by exact: compact_open_open); pose P' := f @^-1` R.
pose L := [set h : U -> V -> W | h @` (fst @` K `&` P) `<=` R].
exists ((P `&` P') `*` Q, L); first split => /=.
- exists (P `&` P', Q) => //; split => //=; apply: filterI => //.
apply: ctsf; apply: open_nbhs_nbhs; split => // _ [b Qb <-].
by apply: (PQfO (u, b)); split => //; exact: nbhs_singleton.
- rewrite nbhs_simpl /=; apply: open_nbhs_nbhs; split.
apply: compact_open_open => //; apply: compact_closedI => //.
apply: continuous_compact => //; apply: continuous_subspaceT => x.
exact: cvg_fst.
move=> /= _ [a [Kxa Pa] <-] _ [b Qb <-].
by apply: (PQfO (a, b)); split => //; exact: nbhs_singleton.
move=> [[a b h]] [/= [[Pa P'a] Qb Lh] Kab].
apply: (Lh (h a)); first by exists a => //; split => //; exists (a, b).
by exists b.
Unshelve. all: by end_near. Qed.
End cartesian_closed.
End currying.
Definition eval {X Y : topologicalType} : continuousType X Y * X -> Y :=
uncurry (id : continuousType X Y -> (X -> Y)).
Section composition.
Local Import ArrowAsCompactOpen.
Lemma eval_continuous {X Y : topologicalType} :
locally_compact [set: X] -> regular_space X -> continuous (@eval X Y).
Proof.
move=> lcX rsX; apply: continuous_uncurry_regular => //.
exact: weak_continuous.
by move=> ?; exact: cts_fun.
Qed.
Lemma compose_continuous {X Y Z : topologicalType} :
locally_compact [set: X] -> @regular_space X ->
locally_compact [set: Y] -> @regular_space Y ->
continuous (uncurry
(comp : continuousType Y Z -> continuousType X Y -> continuousType X Z)).
Proof.
move=> lX rX lY rY; apply: continuous_comp_weak.
set F := _ \o _.
rewrite -[F]uncurryK; apply: continuous_curry_fun.
pose g := uncurry F \o prodAr \o swap; rewrite /= in g *.
have -> : uncurry F = uncurry F \o prodAr \o prodA by rewrite funeqE => -[[]].
move=> z; apply: continuous_comp; first exact: prodA_continuous.
have -> : uncurry F \o prodAr = uncurry F \o prodAr \o swap \o swap.
by rewrite funeqE => -[[]].
apply: continuous_comp; first exact: swap_continuous.
pose h (fxg : continuousType X Y * X * continuousType Y Z) : Z :=
eval (fxg.2, (eval fxg.1)).
have <- : h = uncurry F \o prodAr \o swap.
by rewrite /h/g/uncurry/swap/F funeqE => -[[]].
rewrite /h.
apply: (@continuous2_cvg _ _ _ _ _ _ snd (eval \o fst) (curry eval)).
- by apply: continuous_curry_cvg; exact: eval_continuous.
- exact: cvg_snd.
- by apply: cvg_comp; [exact: cvg_fst | exact: eval_continuous].
Qed.
End composition.
|