1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets fsbigop.
From mathcomp Require Import functions cardinality set_interval.
From mathcomp Require Import interval_inference reals ereal topology normedtype.
From mathcomp Require Import sequences function_spaces.
(**md**************************************************************************)
(* # Numerical functions *)
(* *)
(* This file provides definitions and lemmas about numerical functions. *)
(* *)
(* ``` *)
(* {nnfun T >-> R} == type of non-negative functions *)
(* f ^\+ == the function formed by the non-negative outputs *)
(* of f (from a type to the type of extended real *)
(* numbers) and 0 otherwise *)
(* rendered as f ⁺ with company-coq (U+207A) *)
(* f ^\- == the function formed by the non-positive outputs *)
(* of f and 0 o.w. *)
(* rendered as f ⁻ with company-coq (U+207B) *)
(* \1_ A == indicator function 1_A *)
(* ``` *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
HB.mixin Record isNonNegFun (aT : Type) (rT : numDomainType) (f : aT -> rT) := {
fun_ge0 : forall x, (0 <= f x)%R
}.
HB.structure Definition NonNegFun aT rT := {f of @isNonNegFun aT rT f}.
Reserved Notation "{ 'nnfun' aT >-> T }"
(at level 0, format "{ 'nnfun' aT >-> T }").
Reserved Notation "[ 'nnfun' 'of' f ]"
(at level 0, format "[ 'nnfun' 'of' f ]").
Notation "{ 'nnfun' aT >-> T }" := (@NonNegFun.type aT T) : form_scope.
Notation "[ 'nnfun' 'of' f ]" := [the {nnfun _ >-> _} of f] : form_scope.
#[global] Hint Extern 0 (is_true (0 <= _)) => solve [apply: fun_ge0] : core.
Section fimfun_bin.
Context (T : Type) (R : numDomainType).
Variables f g : {fimfun T >-> R}.
Lemma max_fimfun_subproof : @FiniteImage T R (f \max g).
Proof. by split; apply: (finite_image11 maxr). Qed.
HB.instance Definition _ := max_fimfun_subproof.
End fimfun_bin.
Reserved Notation "f ^\+" (at level 1, format "f ^\+").
Reserved Notation "f ^\-" (at level 1, format "f ^\-").
Section restrict_lemmas.
Context {aT : Type} {rT : numFieldType}.
Implicit Types (f g : aT -> rT) (D : set aT).
Lemma restrict_set0 f : f \_ set0 = cst 0.
Proof. by rewrite patch_set0. Qed.
Lemma restrict_ge0 D f :
(forall x, D x -> 0 <= f x) -> forall x, 0 <= (f \_ D) x.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.
Lemma ler_restrict D f g :
(forall x, D x -> f x <= g x) -> forall x, (f \_ D) x <= (g \_ D) x.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.
Lemma restrict_normr D f : (normr \o f) \_ D = normr \o (f \_ D).
Proof.
by apply/funext => t; rewrite /= !patchE; case: ifPn =>// tD; rewrite ger0_norm.
Qed.
End restrict_lemmas.
Lemma erestrict_ge0 {aT} {rT : numFieldType} (D : set aT) (f : aT -> \bar rT) :
(forall x, D x -> (0 <= f x)%E) -> forall x, (0 <= (f \_ D) x)%E.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.
Lemma lee_restrict {aT} {rT : numFieldType} (D : set aT) (f g : aT -> \bar rT) :
(forall x, D x -> f x <= g x)%E -> forall x, ((f \_ D) x <= (g \_ D) x)%E.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.
Lemma restrict_lee {aT} {rT : numFieldType} (D E : set aT) (f : aT -> \bar rT) :
(forall x, E x -> 0 <= f x)%E ->
D `<=` E -> forall x, ((f \_ D) x <= (f \_ E) x)%E.
Proof.
move=> f0 ED x; rewrite /restrict; case: ifPn => [xD|xD].
by rewrite mem_set//; apply: ED; rewrite in_setE in xD.
by case: ifPn => // xE; apply: f0; rewrite in_setE in xE.
Qed.
Section erestrict_lemmas.
Local Open Scope ereal_scope.
Variables (T : Type) (R : realDomainType) (D : set T).
Implicit Types (f g : T -> \bar R) (r : R).
Lemma erestrict_set0 f : f \_ set0 = cst 0.
Proof. by rewrite patch_set0. Qed.
Lemma erestrict0 : (cst 0 : T -> \bar R) \_ D = cst 0.
Proof. by apply/funext => x; rewrite /patch/=; case: ifP. Qed.
Lemma erestrictD f g : (f \+ g) \_ D = f \_ D \+ g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?adde0. Qed.
Lemma erestrictN f : (\- f) \_ D = \- f \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?oppe0. Qed.
Lemma erestrictB f g : (f \- g) \_ D = f \_ D \- g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?sube0. Qed.
Lemma erestrictM f g : (f \* g) \_ D = f \_ D \* g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed.
Lemma erestrict_scale k f :
(fun x => k%:E * f x) \_ D = (fun x => k%:E * (f \_ D) x).
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed.
End erestrict_lemmas.
HB.lock
Definition funepos T (R : realDomainType) (f : T -> \bar R) :=
fun x => maxe (f x) 0.
HB.lock
Definition funeneg T (R : realDomainType) (f : T -> \bar R) :=
fun x => maxe (oppe (f x)) 0.
Notation "f ^\+" := (funepos f) : ereal_scope.
Notation "f ^\-" := (funeneg f) : ereal_scope.
Section funposneg_lemmas.
Local Open Scope ereal_scope.
Variables (T U : Type) (R : realDomainType) (D : set T).
Implicit Types (f g : T -> \bar R) (h : U -> T) (r : R).
Lemma funeposE f x : f^\+ x = maxe (f x) 0.
Proof. by rewrite unlock. Qed.
Lemma funenegE f x : f^\- x = maxe (- f x) 0.
Proof. by rewrite unlock. Qed.
Lemma funepos_ge0 f x : 0 <= f^\+ x.
Proof. by rewrite funeposE le_max lexx orbT. Qed.
Lemma funeneg_ge0 f x : 0 <= f^\- x.
Proof. by rewrite funenegE le_max lexx orbT. Qed.
Lemma funeposN f : (\- f)^\+ = f^\-.
Proof. by apply/funext => x; rewrite funeposE funenegE. Qed.
Lemma funenegN f : (\- f)^\- = f^\+.
Proof. by apply/funext => x; rewrite funeposE funenegE oppeK. Qed.
Lemma funepos_comp f h : (f \o h)^\+ = f^\+ \o h.
Proof. by rewrite !unlock. Qed.
Lemma funeneg_comp f h : (f \o h)^\- = f^\- \o h.
Proof. by rewrite !unlock. Qed.
Lemma funepos_restrict f : (f \_ D)^\+ = (f^\+) \_ D.
Proof.
by apply/funext => x; rewrite /patch !funeposE; case: ifP; rewrite //= maxxx.
Qed.
Lemma funeneg_restrict f : (f \_ D)^\- = (f^\-) \_ D.
Proof.
apply/funext => x; rewrite /patch !funenegE.
by case: ifP; rewrite //= oppr0 maxxx.
Qed.
Lemma ge0_funeposE f : (forall x, D x -> 0 <= f x) -> {in D, f^\+ =1 f}.
Proof. by move=> f0 x; rewrite inE funeposE => Dx; apply/max_idPl/f0. Qed.
Lemma ge0_funenegE f : (forall x, D x -> 0 <= f x) -> {in D, f^\- =1 cst 0}.
Proof.
move=> f0 x; rewrite inE funenegE => Dx; apply/max_idPr.
by rewrite leeNl oppe0 f0.
Qed.
Lemma le0_funeposE f : (forall x, D x -> f x <= 0) -> {in D, f^\+ =1 cst 0}.
Proof. by move=> f0 x; rewrite inE funeposE => Dx; exact/max_idPr/f0. Qed.
Lemma le0_funenegE f : (forall x, D x -> f x <= 0) -> {in D, f^\- =1 \- f}.
Proof.
move=> f0 x; rewrite inE funenegE => Dx; apply/max_idPl.
by rewrite leeNr oppe0 f0.
Qed.
Lemma ge0_funeposM r f : (0 <= r)%R ->
(fun x => r%:E * f x)^\+ = (fun x => r%:E * (f^\+ x)).
Proof.
move=> ?; rewrite funeqE => x.
by rewrite !funeposE maxe_pMr// mule0.
Qed.
Lemma ge0_funenegM r f : (0 <= r)%R ->
(fun x => r%:E * f x)^\- = (fun x => r%:E * (f^\- x)).
Proof.
by move=> r0; rewrite funeqE => x; rewrite !funenegE -muleN maxe_pMr// mule0.
Qed.
Lemma le0_funeposM r f : (r <= 0)%R ->
(fun x => r%:E * f x)^\+ = (fun x => - r%:E * (f^\- x)).
Proof.
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe.
by rewrite funeposN ge0_funenegM ?oppr_ge0.
Qed.
Lemma le0_funenegM r f : (r <= 0)%R ->
(fun x => r%:E * f x)^\- = (fun x => - r%:E * (f^\+ x)).
Proof.
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe.
by rewrite funenegN ge0_funeposM ?oppr_ge0.
Qed.
Lemma fune_abse f : abse \o f = f^\+ \+ f^\-.
Proof.
rewrite funeqE => x /=; have [fx0|/ltW fx0] := leP (f x) 0.
- rewrite lee0_abs// funeposE funenegE.
move/max_idPr : (fx0) => ->; rewrite add0e.
by move: fx0; rewrite -{1}oppe0 leeNr => /max_idPl ->.
- rewrite gee0_abs// funeposE funenegE; move/max_idPl : (fx0) => ->.
by move: fx0; rewrite -{1}oppe0 leeNl => /max_idPr ->; rewrite adde0.
Qed.
Lemma funeposneg f : f = (fun x => f^\+ x - f^\- x).
Proof.
rewrite funeqE => x; rewrite funeposE funenegE; have [|/ltW] := leP (f x) 0.
by rewrite -{1}oppe0 -leeNr => /max_idPl ->; rewrite oppeK add0e.
by rewrite -{1}oppe0 -leeNl => /max_idPr ->; rewrite sube0.
Qed.
Lemma add_def_funeposneg f x : (f^\+ x +? - f^\- x).
Proof.
by rewrite funenegE funeposE; case: (f x) => [r| |];
[rewrite -fine_max/=|rewrite /maxe /= ltNyr|rewrite /maxe /= ltNyr].
Qed.
Lemma funeD_Dpos f g : f \+ g = (f \+ g)^\+ \- (f \+ g)^\-.
Proof.
apply/funext => x; rewrite funeposE funenegE; have [|/ltW] := leP 0 (f x + g x).
- by rewrite -{1}oppe0 -leeNl => /max_idPr ->; rewrite sube0.
- by rewrite -{1}oppe0 -leeNr => /max_idPl ->; rewrite oppeK add0e.
Qed.
Lemma funeD_posD f g : f \+ g = (f^\+ \+ g^\+) \- (f^\- \+ g^\-).
Proof.
apply/funext => x; rewrite !funeposE !funenegE.
have [|fx0] := leP 0 (f x); last rewrite add0e.
- rewrite -{1}oppe0 leeNl => /max_idPr ->; have [|/ltW] := leP 0 (g x).
by rewrite -{1}oppe0 leeNl => /max_idPr ->; rewrite adde0 sube0.
by rewrite -{1}oppe0 -leeNr => /max_idPl ->; rewrite adde0 sub0e oppeK.
- move/ltW : (fx0); rewrite -{1}oppe0 leeNr => /max_idPl ->.
have [|] := leP 0 (g x); last rewrite add0e.
by rewrite -{1}oppe0 leeNl => /max_idPr ->; rewrite adde0 oppeK addeC.
move gg' : (g x) => g'; move: g' gg' => [g' gg' g'0|//|goo _].
+ move/ltW : (g'0); rewrite -{1}oppe0 -leeNr => /max_idPl => ->.
by rewrite fin_num_oppeD// 2!oppeK.
+ by rewrite /maxe /=; case: (f x) fx0.
Qed.
Lemma funepos_le f g :
{in D, forall x, f x <= g x} -> {in D, forall x, f^\+ x <= g^\+ x}.
Proof.
move=> fg x Dx; rewrite !funeposE /maxe; case: ifPn => fx; case: ifPn => gx //.
- by rewrite leNgt.
- by move: fx; rewrite -leNgt => /(lt_le_trans gx); rewrite ltNge fg.
- exact: fg.
Qed.
Lemma funeneg_le f g :
{in D, forall x, f x <= g x} -> {in D, forall x, g^\- x <= f^\- x}.
Proof.
move=> fg x Dx; rewrite !funenegE /maxe; case: ifPn => gx; case: ifPn => fx //.
- by rewrite leNgt.
- by move: gx; rewrite -leNgt => /(lt_le_trans fx); rewrite lteN2 ltNge fg.
- by rewrite leeN2; exact: fg.
Qed.
End funposneg_lemmas.
#[global]
Hint Extern 0 (is_true (0%R <= _ ^\+ _)%E) => solve [apply: funepos_ge0] : core.
#[global]
Hint Extern 0 (is_true (0%R <= _ ^\- _)%E) => solve [apply: funeneg_ge0] : core.
Definition indic {T} {R : ringType} (A : set T) (x : T) : R := (x \in A)%:R.
Reserved Notation "'\1_' A" (at level 8, A at level 2, format "'\1_' A") .
Notation "'\1_' A" := (indic A) : ring_scope.
Section indic_lemmas.
Context (T : Type) (R : ringType).
Implicit Types A D : set T.
Lemma indicE A (x : T) : \1_A x = (x \in A)%:R :> R. Proof. by []. Qed.
Lemma indicT : \1_[set: T] = cst (1 : R).
Proof. by apply/funext=> x; rewrite indicE in_setT. Qed.
Lemma indic0 : \1_(@set0 T) = cst (0 : R).
Proof. by apply/funext=> x; rewrite indicE in_set0. Qed.
Lemma indicI A B : \1_(A `&` B) = \1_A \* \1_B :> (_ -> R).
Proof. by apply/funext=> u/=; rewrite !indicE in_setI -natrM mulnb. Qed.
Lemma image_indic D A :
\1_D @` A = (if A `\` D != set0 then [set 0] else set0) `|`
(if A `&` D != set0 then [set 1 : R] else set0).
Proof.
rewrite /indic; apply/predeqP => x; split => [[t At /= <-]|].
by rewrite /indic; case: (boolP (t \in D)); rewrite ?(inE, notin_setE) => Dt;
[right|left]; rewrite ifT//=; apply/set0P; exists t.
by move=> []; case: ifPn; rewrite ?negbK// => /set0P[t [At Dt]] ->;
exists t => //; case: (boolP (t \in D)); rewrite ?(inE, notin_setE).
Qed.
Lemma preimage_indic (D : set T) (B : set R) :
\1_D @^-1` B = if 1 \in B then (if 0 \in B then setT else D)
else (if 0 \in B then ~` D else set0).
Proof.
rewrite /preimage/= /indic; apply/seteqP; split => x;
case: ifPn => B1; case: ifPn => B0 //=.
- have [|] := boolP (x \in D); first by rewrite inE.
by rewrite notin_setE in B0.
- have [|] := boolP (x \in D); last by rewrite notin_setE.
by rewrite notin_setE in B1.
- by have [xD|xD] := boolP (x \in D);
[rewrite notin_setE in B1|rewrite notin_setE in B0].
- by have [xD|xD] := boolP (x \in D); [rewrite inE in B1|rewrite inE in B0].
- have [xD|] := boolP (x \in D); last by rewrite notin_setE.
by rewrite inE in B1.
- have [|xD] := boolP (x \in D); first by rewrite inE.
by rewrite inE in B0.
Qed.
Lemma image_indic_sub D A : \1_D @` A `<=` ([set 0; 1] : set R).
Proof.
by rewrite image_indic; do ![case: ifP=> //= _] => // t []//= ->; [left|right].
Qed.
Lemma fimfunE (f : {fimfun T >-> R}) x :
f x = \sum_(y \in range f) (y * \1_(f @^-1` [set y]) x).
Proof.
rewrite (fsbigD1 (f x))// /= indicE mem_set// mulr1 fsbig1 ?addr0//.
by move=> y [fy /= /nesym yfx]; rewrite indicE memNset ?mulr0.
Qed.
Lemma fimfunEord (f : {fimfun T >-> R})
(s := fset_set (f @` setT)) :
forall x, f x = \sum_(i < #|`s|) (s`_i * \1_(f @^-1` [set s`_i]) x).
Proof.
move=> x; rewrite fimfunE fsbig_finite//= (big_nth 0)/= big_mkord.
exact: eq_bigr.
Qed.
End indic_lemmas.
Lemma patch_indic T {R : numFieldType} (f : T -> R) (D : set T) :
f \_ D = (f \* \1_D)%R.
Proof.
apply/funext => x /=; rewrite patchE /= indicE.
by case: ifPn => _; rewrite ?(mulr1, mulr0).
Qed.
Lemma epatch_indic T (R : numDomainType) (f : T -> \bar R) (D : set T) :
(f \_ D = f \* (EFin \o \1_D))%E.
Proof.
apply/funext => x; rewrite patchE/= indicE.
by case: ifPn => /=; rewrite ?mule1// mule0.
Qed.
Lemma xsection_indic (R : ringType) T1 T2 (A : set (T1 * T2)) x :
xsection A x = (fun y => (\1_A (x, y) : R)) @^-1` [set 1].
Proof.
apply/seteqP; split => [y/mem_set/=|y/=]; rewrite indicE.
by rewrite mem_xsection => ->.
by rewrite /xsection/=; case: (_ \in _) => //= /esym/eqP /[!oner_eq0].
Qed.
Lemma ysection_indic (R : ringType) T1 T2 (A : set (T1 * T2)) y :
ysection A y = (fun x => (\1_A (x, y) : R)) @^-1` [set 1].
Proof.
apply/seteqP; split => [x/mem_set/=|x/=]; rewrite indicE.
by rewrite mem_ysection => ->.
by rewrite /ysection/=; case: (_ \in _) => //= /esym/eqP /[!oner_eq0].
Qed.
Lemma indic_restrict {T : pointedType} {R : numFieldType} (A : set T) :
\1_A = (1 : T -> R) \_ A.
Proof. by apply/funext => x; rewrite indicE /patch; case: ifP. Qed.
Lemma restrict_indic T (R : numFieldType) (E A : set T) :
((\1_E : T -> R) \_ A) = \1_(E `&` A).
Proof.
apply/funext => x; rewrite /restrict 2!indicE.
case: ifPn => [|] xA; first by rewrite in_setI xA andbT.
by rewrite in_setI (negbTE xA) andbF.
Qed.
Lemma cvg_indic {R : realFieldType} (x : R^o) k :
x \in (ball 0 k : set R^o) ->
\1_(ball 0 k : set R^o) y @[y --> x] --> (\1_(ball 0 k) x : R).
Proof.
move=> xB; apply/(@cvgrPdist_le _ R^o) => /= e e0; near=> t.
rewrite !indicE xB/= mem_set//=; first by rewrite subrr normr0// ltW.
near: t.
rewrite inE /ball /= sub0r normrN in xB.
exists ((k - `|x|)/2) => /=; first by rewrite divr_gt0// subr_gt0.
rewrite /ball_/= => z /= h; rewrite /ball/= sub0r normrN.
rewrite -(subrK x z) (le_lt_trans (ler_normD _ _))//.
rewrite -ltrBrDr distrC (lt_le_trans h)//.
by rewrite ler_pdivrMr//= ler_pMr// ?subr_gt0// ler1n.
Unshelve. all: by end_near. Qed.
Section ring.
Context (aT : pointedType) (rT : ringType).
Lemma fimfun_mulr_closed : mulr_closed (@fimfun aT rT).
Proof.
split=> [|f g]; rewrite !inE/=; first exact: finite_image_cst.
by move=> fA gA; exact: (finite_image11 (fun x y => x * y)).
Qed.
HB.instance Definition _ :=
@GRing.isMulClosed.Build _ (@fimfun aT rT) fimfun_mulr_closed.
HB.instance Definition _ := [SubZmodule_isSubRing of {fimfun aT >-> rT} by <:].
Implicit Types f g : {fimfun aT >-> rT}.
Lemma fimfunM f g : f * g = f \* g :> (_ -> _). Proof. by []. Qed.
Lemma fimfun1 : (1 : {fimfun aT >-> rT}) = cst 1 :> (_ -> _). Proof. by []. Qed.
Lemma fimfun_prod I r (P : {pred I}) (f : I -> {fimfun aT >-> rT}) (x : aT) :
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed.
Lemma fimfunX f n : f ^+ n = (fun x => f x ^+ n) :> (_ -> _).
Proof.
by apply/funext => x; elim: n => [|n IHn]//; rewrite !exprS fimfunM/= IHn.
Qed.
Lemma indic_fimfun_subproof X : @FiniteImage aT rT \1_X.
Proof.
split; apply: (finite_subfset [fset 0; 1]%fset) => x [tt /=].
by rewrite !inE indicE; case: (_ \in _) => _ <-; rewrite ?eqxx ?orbT.
Qed.
HB.instance Definition _ X := indic_fimfun_subproof X.
Definition indic_fimfun (X : set aT) : {fimfun aT >-> rT} := \1_X.
HB.instance Definition _ k f := FImFun.copy (k \o* f) (f * cst_fimfun k).
Definition scale_fimfun k f : {fimfun aT >-> rT} := k \o* f.
End ring.
Arguments indic_fimfun {aT rT} _.
Section comring.
Context (aT : pointedType) (rT : comRingType).
HB.instance Definition _ := [SubRing_isSubComRing of {fimfun aT >-> rT} by <:].
Implicit Types (f g : {fimfun aT >-> rT}).
HB.instance Definition _ f g := FImFun.copy (f \* g) (f * g).
End comring.
HB.factory Record FiniteDecomp (T : pointedType) (R : ringType) (f : T -> R) :=
{ fimfunE : exists (r : seq R) (A_ : R -> set T),
forall x, f x = \sum_(y <- r) (y * \1_(A_ y) x) }.
HB.builders Context T R f of @FiniteDecomp T R f.
Lemma finite_subproof: @FiniteImage T R f.
Proof.
split; have [r [A_ fE]] := fimfunE.
suff -> : f = \sum_(y <- r) cst_fimfun y * indic_fimfun (A_ y) by [].
by apply/funext=> x; rewrite fE fimfun_sum.
Qed.
HB.instance Definition _ := finite_subproof.
HB.end.
Section Tietze.
Context {X : topologicalType} {R : realType}.
Hypothesis normalX : normal_space X.
Lemma urysohn_ext_itv A B x y :
closed A -> closed B -> A `&` B = set0 -> x < y ->
exists f : X -> R, [/\ continuous f,
f @` A `<=` [set x], f @` B `<=` [set y] & range f `<=` `[x, y]].
Proof.
move=> cA cB A0 xy; move/normal_separatorP : normalX => urysohn_ext.
have /(@uniform_separatorP _ R)[f [cf f01 f0 f1]] := urysohn_ext R _ _ cA cB A0.
pose g : X -> R := line_path x y \o f; exists g; split; rewrite /g /=.
move=> t; apply: continuous_comp; first exact: cf.
apply: (@continuousD R R^o).
apply: continuousM; last exact: cvg_cst.
by apply: (@continuousB R R^o) => //; exact: cvg_cst.
by apply: continuousM; [exact: cvg_id|exact: cvg_cst].
- by rewrite -image_comp => z /= [? /f0 -> <-]; rewrite line_path0.
- by rewrite -image_comp => z /= [? /f1 -> <-]; rewrite line_path1.
- rewrite -image_comp; apply: (subset_trans (image_subset _ f01)).
by rewrite range_line_path.
Qed.
Context (A : set X).
Hypothesis clA : closed A.
Local Lemma tietze_step' (f : X -> R) (M : R) :
0 < M -> {within A, continuous f} ->
(forall x, A x -> `|f x| <= M) ->
exists g : X -> R, [/\ continuous g,
(forall x, A x -> `|f x - g x| <= 2/3 * M) &
(forall x, `|g x| <= 1/3 * M)].
Proof.
move: M => _/posnumP[M] ctsf fA1.
have [] := @urysohn_ext_itv (A `&` f @^-1` `]-oo, -(1/3) * M%:num])
(A `&` f @^-1` `[1/3 * M%:num,+oo[) (-(1/3) * M%:num) (1/3 * M%:num).
- by rewrite closed_setSI//; exact: closed_comp.
- by rewrite closed_setSI//; apply: closed_comp => //; exact: interval_closed.
- rewrite setIACA -preimage_setI eqEsubset; split => z // [_ []].
rewrite !set_itvE/= => /[swap] /le_trans /[apply].
by rewrite leNgt mulNr gtrN// mulr_gt0// divr_gt0.
- by rewrite mulNr gtrN// mulr_gt0//.
move=> g [ctsg gL3 gR3 grng]; exists g; split => //; first last.
by move=> x; rewrite ler_norml -mulNr; apply: grng; exists x.
move=> x Ax; have := fA1 _ Ax; rewrite 2!ler_norml => /andP[Mfx fxM].
have [xL|xL] := leP (f x) (-(1/3) * M%:num).
have: [set g x | x in A `&` f@^-1` `]-oo, -(1/3) * M%:num]] (g x) by exists x.
move/gL3=> ->; rewrite !mulNr opprK; apply/andP; split.
by rewrite -lerBlDr -opprD -2!mulrDl natr1 divrr ?unitfE// mul1r.
rewrite -lerBrDr -2!mulrBl -(@natrB _ 2 1)// (le_trans xL)//.
by rewrite ler_pM2r// ltW// gtrN// divr_gt0.
have [xR|xR] := lerP (1/3 * M%:num) (f x).
have : [set g x | x in A `&` f@^-1` `[1/3 * M%:num, +oo[] (g x).
by exists x => //; split => //; rewrite /= in_itv //= xR.
move/gR3 => ->; apply/andP; split.
rewrite lerBrDl -2!mulrBl (le_trans _ xR)// ler_pM2r//.
by rewrite ler_wpM2r ?invr_ge0 ?ler0n// lerBlDl natr1 ler1n.
by rewrite lerBlDl -2!mulrDl nat1r divrr ?mul1r// unitfE.
have /andP[ng3 pg3] : -(1/3) * M%:num <= g x <= 1/3 * M%:num.
by apply: grng; exists x.
rewrite ?(intrD _ 1 1) !mulrDl; apply/andP; split.
by rewrite opprD lerB// -mulNr ltW.
by rewrite (lerD (ltW _))// lerNl -mulNr.
Qed.
Let tietze_step (f : X -> R) M :
{g : X -> R^o | {within A, continuous f} -> 0 < M ->
(forall x, A x -> `|f x| <= M) -> [/\ continuous g,
forall x, A x -> `|f x - g x| <= 2/3 * M :>R
& forall x, `|g x| <= 1/3 * M ]}.
Proof.
apply: cid.
have [|?] := pselect ({within A, continuous f}); last by exists point.
have [|?] := ltP 0 M; last by exists point.
have [|?] := pselect (forall x, A x -> `|f x| <= M); last by exists point.
by move=> bd pm cf; have [g ?] := tietze_step' pm cf bd; exists g.
Qed.
Let onem_twothirds : 1 - 2/3 = 1/3 :> R.
Proof. by apply/eqP; rewrite subr_eq/= -mulrDl nat1r divrr// unitfE. Qed.
Lemma continuous_bounded_extension (f : X -> R^o) M :
0 < M -> {within A, continuous f} -> (forall x, A x -> `|f x| <= M) ->
exists g, [/\ {in A, f =1 g}, continuous g & forall x, `|g x| <= M].
Proof.
move: M => _/posnumP[M] Af fbd; pose M2d3 n := geometric M%:num (2/3) n.
have MN0 n : 0 < M2d3 n by rewrite /M2d3 /geometric /mk_sequence.
pose f_ := fix F n :=
if n is n.+1 then F n - projT1 (tietze_step (F n) (M2d3 n)) else f.
pose g_ n := projT1 (tietze_step (f_ n) (M2d3 n)).
have fgE n : f_ n - f_ n.+1 = g_ n by rewrite /= opprB addrC subrK.
have twothirds1 : `|2/3| < 1 :> R.
by rewrite gtr0_norm//= ltr_pdivrMr// mul1r ltr_nat.
have f_geo n : {within A, continuous f_ n} /\
(forall x, A x -> `|f_ n x| <= geometric M%:num (2/3) n).
elim: n => [|n [ctsN bdN]]; first by split=> //= x ?; rewrite expr0 mulr1 fbd.
have [cg bdNS bd2] := projT2 (tietze_step (f_ n) _) ctsN (MN0 n) bdN.
split=> [x|]; first by apply: cvgB; [exact:ctsN|exact/continuous_subspaceT/cg].
by move=> x Ax; rewrite (le_trans (bdNS _ Ax))// /M2d3/= mulrCA -exprS.
have g_cts n : continuous (g_ n).
by have [? ?] := f_geo n; case: (projT2 (tietze_step (f_ n) _) _ (MN0 n)).
have g_bd n : forall x, `|g_ n x| <= geometric ((1/3) * M%:num) (2/3) n.
have [ctsN bdfN] := f_geo n; rewrite /geometric /= -[_ * M%:num * _]mulrA.
by have [_ _] := projT2 (tietze_step (f_ n) _) ctsN (MN0 n) bdfN.
pose h_ : nat -> arrow_uniform_type X R^o := @series {uniform X -> _} g_.
have cvgh' : cvg (h_ @ \oo).
apply/cauchy_cvgP/cauchy_ballP => eps epos; near_simpl.
suff : \forall x & x' \near \oo, (x' <= x)%N -> ball (h_ x) eps (h_ x').
move=>/[dup]; rewrite {1}near_swap; apply: filter_app2; near=> n m.
by have /orP[mn /(_ mn)/ball_sym + _| ? _] := leq_total n m; apply.
near=> n m; move=> /= MN; rewrite /ball /= /h_ => t; rewrite /ball /=.
rewrite -[X in `|X|]/((series g_ n - series g_ m) t) sub_series MN fct_sumE.
rewrite (le_lt_trans (ler_norm_sum _ _ _))//.
rewrite (le_lt_trans (ler_sum _ (fun i _ => g_bd i t)))// -mulr_sumr.
rewrite -(subnKC MN) geometric_partial_tail.
pose L := (1/3) * M%:num * ((2/3) ^+ m / (1 - (2/3))).
apply: (@le_lt_trans _ _ L); first by rewrite ler_pM2l // geometric_le_lim.
rewrite /L onem_twothirds.
rewrite [_ ^+ _ * _ ^-1]mulrC mulrA -[x in x < _]ger0_norm; last by [].
near: m; near_simpl; move: eps epos.
by apply: (cvgr0_norm_lt (fun _ => _ : R^o)); exact: cvg_geometric.
have cvgh : {uniform, h_ @ \oo --> lim (h_ @ \oo)}.
by move=> ?; rewrite /= uniform_nbhsT; exact: cvgh'.
exists (lim (h_ @ \oo)); split.
- move=> t /set_mem At; have /pointwise_cvgP/(_ t)/(cvg_lim (@Rhausdorff _)) :=
[elaborate pointwise_uniform_cvg _ cvgh].
rewrite -fmap_comp /comp /h_ => <-; apply/esym/(@cvg_lim _ (@Rhausdorff R)).
apply: (@cvg_zero R R^o); apply: norm_cvg0; under eq_fun => n.
rewrite distrC /series /cst /= -mulN1r fct_sumE mulr_sumr.
under [fun _ : nat => _]eq_fun => ? do rewrite mulN1r -fgE opprB.
rewrite telescope_sumr //= addrCA subrr addr0.
over.
apply/norm_cvg0P/cvgr0Pnorm_lt => eps epos.
have /(_ _ epos) := @cvgr0_norm_lt R _ _ _ eventually_filter (_ : nat -> R^o)
(cvg_geometric M%:num twothirds1).
apply: filter_app; near_simpl; apply: nearW => n /le_lt_trans; apply.
by rewrite (le_trans ((f_geo n).2 _ _)) // ler_norm.
- apply: (@uniform_limit_continuous X _ (h_ @ \oo) (lim (h_ @ \oo))) =>//.
near_simpl; apply: nearW; elim.
by rewrite /h_ /series /= big_geq// => ?; exact: cvg_cst.
move=> n; rewrite /h_ /series /= big_nat_recr /= // => IH t.
by apply: continuousD; [exact: IH|exact: g_cts].
- move=> t.
have /pointwise_cvgP/(_ t)/(cvg_lim (@Rhausdorff _)) :=
[elaborate pointwise_uniform_cvg _ cvgh].
rewrite -fmap_comp /comp /h_ => <-.
under [fun _ : nat => _]eq_fun => ? do rewrite /series /= fct_sumE.
have cvg_gt : cvgn [normed series (g_^~ t)].
apply: (series_le_cvg _ _ (g_bd ^~ t) (is_cvg_geometric_series _)) => //.
by move=> n; rewrite mulr_ge0.
rewrite (le_trans (lim_series_norm _))//; apply: le_trans.
exact/(lim_series_le cvg_gt _ (g_bd ^~ t))/is_cvg_geometric_series.
rewrite (cvg_lim _ (cvg_geometric_series _))//; last exact: Rhausdorff.
by rewrite onem_twothirds mulrAC divrr ?mul1r// unitfE.
Unshelve. all: by end_near. Qed.
End Tietze.
|