1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
(*************************************************************************)
(* Copyright (C) 2013 - 2015 *)
(* Author C. Cohen *)
(* DRAFT - PLEASE USE WITH CAUTION *)
(* License CeCILL-B *)
(*************************************************************************)
Set Warnings "-notation-incompatible-format".
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.
Set Warnings "notation-incompatible-format".
From mathcomp Require Import choice finset finfun fintype bigop tuple.
Require Import finmap.
(*****************************************************************************)
(* This file provides a representation of multisets based on fsfun *)
(* {mset T} == the type of multisets on a choiceType T *)
(* The following notations are in the %mset scope *)
(* mset0 == the empty multiset *)
(* mset n a == the multiset with n times element a *)
(* [mset a] == the singleton multiset {k} := mset 1 a *)
(* [mset a1; ..; an] == the multiset obtained from the elements a1,..,an *)
(* A `&` B == the intersection of A and B (the min of each) *)
(* A `|` B == the union of A and B (the max of each) *)
(* A `+` B == the sum of A and B *)
(* a |` B == the union of singleton a and B *)
(* a +` B == the addition of singleton a to B *)
(* A `\` B == the difference A minus B *)
(* A `\ b == A without one b *)
(* A `*` B == the product of A and B *)
(* [disjoint A & B] := A `&` B == 0 *)
(* A `<=` B == A is a sub-multiset of B *)
(* A `<` B == A is a proper sub-multiset of B *)
(*****************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Lemma sumn_map I (f : I -> nat) s :
sumn [seq f i | i <- s] = \sum_(i <- s) f i.
Proof. by elim: s => [|i s IHs] in f *; rewrite ?(big_nil, big_cons) //= IHs. Qed.
Lemma sumn_filter s P : sumn [seq i <- s | P i] = \sum_(i <- s | P i) i.
Proof. by rewrite -big_filter -sumn_map map_id. Qed.
Lemma sumn_map_filter I s (f : I -> nat) P :
sumn [seq f i | i <- s & P i] = \sum_(i <- s | P i) f i.
Proof. by rewrite sumn_map big_filter. Qed.
Declare Scope mset_scope.
Delimit Scope mset_scope with mset.
Local Open Scope fset_scope.
Local Open Scope fmap_scope.
Local Open Scope mset_scope.
Local Open Scope nat_scope.
Definition multiset (T : choiceType) := {fsfun T -> nat with 0}.
Definition multiset_of (T : choiceType) of phant T := @multiset T.
Notation "'{mset' T }" := (@multiset_of _ (Phant T))
(format "'{mset' T }") : mset_scope.
Notation "[ 'mset[' key ] x 'in' aT => F ]" := ([fsfun[key] x in aT => F] : {mset _})
(at level 0, x name, only parsing) : mset_scope.
Notation "[ 'mset' x 'in' aT => F ]" := ([fsfun x in aT => F] : {mset _})
(at level 0, x name, only parsing) : mset_scope.
Notation "[ 'm' 'set' x 'in' aT => F ]" := ([fsfun[_] x in aT => F] : {mset _})
(at level 0, x name, format "[ 'm' 'set' x 'in' aT => F ]") : mset_scope.
Identity Coercion multiset_multiset_of : multiset_of >-> multiset.
Notation enum_mset_def A :=
(flatten [seq nseq (A%mset x) x | x <- finsupp A%mset]).
Module Type EnumMsetSig.
Axiom f : forall K, multiset K -> seq K.
Axiom E : f = (fun K (A : multiset K) => enum_mset_def A).
End EnumMsetSig.
Module EnumMset : EnumMsetSig.
Definition f K (A : multiset K) := enum_mset_def A.
Definition E := (erefl f).
End EnumMset.
Notation enum_mset := EnumMset.f.
Coercion enum_mset : multiset >-> seq.
Canonical enum_mset_unlock := Unlockable EnumMset.E.
Canonical multiset_predType (K : choiceType) :=
PredType (fun (A : multiset K) a => a \in enum_mset A).
Canonical mset_finpredType (T: choiceType) :=
mkFinPredType (multiset T) (fun A => undup (enum_mset A))
(fun _ => undup_uniq _) (fun _ _ => mem_undup _ _).
Section MultisetOps.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Definition mset0 : {mset K} := [fsfun].
Fact msetn_key : unit. Proof. exact: tt. Qed.
Definition msetn n a := [mset[msetn_key] x in [fset a] => n].
Fact seq_mset_key : unit. Proof. exact: tt. Qed.
Definition seq_mset (s : seq K) :=
[mset[seq_mset_key] x in [fset x in s] => count (pred1 x) s].
Fact msetU_key : unit. Proof. exact: tt. Qed.
Definition msetU A B :=
[mset[msetU_key] x in finsupp A `|` finsupp B => maxn (A x) (B x)].
Fact msetI_key : unit. Proof. exact: tt. Qed.
Definition msetI A B :=
[mset[msetI_key] x in finsupp A `|` finsupp B => minn (A x) (B x)].
Fact msetD_key : unit. Proof. exact: tt. Qed.
Definition msetD A B :=
[mset[msetD_key] x in finsupp A `|` finsupp B => A x + B x].
Fact msetB_key : unit. Proof. exact: tt. Qed.
Definition msetB A B :=
[mset[msetB_key] x in finsupp A `|` finsupp B => A x - B x].
Fact msetM_key : unit. Proof. exact: tt. Qed.
Definition msetM A B :=
[mset[msetM_key] x in finsupp A `*` finsupp B => A x.1 * B x.2].
Definition msubset A B := [forall x : finsupp A, A (val x) <= B (val x)].
Definition mproper A B := msubset A B && ~~ msubset B A.
Definition mdisjoint A B := (msetI A B == mset0).
End MultisetOps.
Notation "[ 'mset' a ]" := (msetn 1 a)
(at level 0, a at level 99, format "[ 'mset' a ]") : mset_scope.
Notation "[ 'mset' a : T ]" := [mset (a : T)]
(at level 0, a at level 99, format "[ 'mset' a : T ]") : mset_scope.
Notation "A `|` B" := (msetU A B) : mset_scope.
Notation "A `+` B" := (msetD A B) : mset_scope.
Notation "A `\` B" := (msetB A B) : mset_scope.
Notation "A `\ a" := (A `\` [mset a]) : mset_scope.
Notation "a |` A" := ([mset (a)] `|` A) : mset_scope.
Notation "a +` A" := ([mset (a)] `+` A) : mset_scope.
Notation "A `*` B" := (msetM A B) : mset_scope.
Notation "A `<=` B" := (msubset A B)
(at level 70, no associativity) : mset_scope.
Notation "A `<` B" := (mproper A B)
(at level 70, no associativity) : mset_scope.
(* This is left-associative due to historical limitations of the .. Notation. *)
Notation "[ 'mset' a1 ; a2 ; .. ; an ]" :=
(msetD .. (a1 +` (msetn 1 a2)) .. (msetn 1 an))
(at level 0, a1 at level 99,
format "[ 'mset' a1 ; a2 ; .. ; an ]") : mset_scope.
Notation "A `&` B" := (msetI A B) : mset_scope.
Section MSupp.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Lemma enum_msetE a A :
(a \in A) = (a \in flatten [seq nseq (A x) x | x <- finsupp A]).
Proof. by transitivity (a \in enum_mset A); rewrite // unlock. Qed.
Lemma msuppE a A : (a \in finsupp A) = (a \in A).
Proof.
rewrite enum_msetE.
apply/idP/flattenP => [aA|/=[_ /mapP[x xA -> /nseqP[->//]]]].
exists (nseq (A a) a); first by apply/mapP; exists a.
by apply/nseqP; split=> //; rewrite lt0n -mem_finsupp.
Qed.
End MSupp.
Section MSetTheory.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Lemma msetP {A B} : A =1 B <-> A = B.
Proof. exact: fsfunP. Qed.
Lemma mset_neq0 a A : (A a != 0) = (a \in A).
Proof. by rewrite -msuppE mem_finsupp. Qed.
Lemma in_mset a A : (a \in A) = (A a > 0).
Proof. by rewrite -mset_neq0 lt0n. Qed.
Lemma mset_eq0 a A : (A a == 0) = (a \notin A).
Proof. by rewrite -mset_neq0 negbK. Qed.
Lemma mset_eq0P {a A} : reflect (A a = 0) (a \notin A).
Proof. by rewrite -mset_eq0; apply: eqP. Qed.
Lemma mset_gt0 a A : (A a > 0) = (a \in A).
Proof. by rewrite -in_mset. Qed.
Lemma mset_eqP {A B} : reflect (A =1 B) (A == B).
Proof. exact: (equivP eqP (iff_sym msetP)). Qed.
Lemma mset0E a : mset0 a = 0.
Proof. by rewrite /mset0 fsfunE. Qed.
Lemma msetnE n a b : (msetn n a) b = if b == a then n else 0.
Proof. by rewrite fsfunE inE. Qed.
Lemma msetnxx n a : (msetn n a) a = n. Proof. by rewrite msetnE eqxx. Qed.
Lemma msetE2 A B a :
((A `+` B) a = A a + B a) * ((A `|` B) a = maxn (A a) (B a))
* ((A `&` B) a = minn (A a) (B a)) * ((A `\` B) a = (A a) - (B a)).
Proof.
rewrite !fsfunE !inE !msuppE -!mset_neq0; case: ifPn => //.
by rewrite negb_or !negbK => /andP [/eqP-> /eqP->].
Qed.
Lemma count_mem_mset a A : count_mem a A = A a.
Proof.
rewrite unlock count_flatten sumn_map big_map.
rewrite (eq_bigr _ (fun _ _ => esym (sum1_count _ _))) /=.
rewrite (eq_bigr _ (fun _ _ => big_nseq_cond _ _ _ _ _ _)) /= -big_mkcond /=.
have [aNA|aA] := finsuppP.
by rewrite big1_fset // => i iA /eqP eq_ia; rewrite -eq_ia iA in aNA.
rewrite big_fset_condE/= (big_fsetD1 a) ?inE ?eqxx ?andbT //= iter_addn mul1n.
rewrite (_ : (_ `\ _)%fset = fset0) ?big_seq_fset0 ?addn0//.
by apply/fsetP=> i; rewrite !inE; case: (i == a); rewrite ?(andbF, andbT).
Qed.
Lemma perm_undup_mset A : perm_eq (undup A) (finsupp A).
Proof.
apply: uniq_perm; rewrite ?undup_uniq // => a.
by rewrite mem_undup msuppE.
Qed.
Section big_com.
Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Implicit Types (X : {mset K}) (P : pred K) (F : K -> R).
Lemma big_mset X P F :
\big[op/idx]_(i <- X | P i) F i =
\big[op/idx]_(i <- finsupp X | P i) iterop (X i) op (F i) idx.
Proof.
rewrite [in RHS](perm_big (undup X)) 1?perm_sym ?perm_undup_mset//.
rewrite -[in LHS]big_undup_iterop_count; apply: eq_bigr => i _.
by rewrite count_mem_mset.
Qed.
End big_com.
Lemma sum_mset (X : {mset K}) (P : pred K) (F : K -> nat) :
\sum_(i <- X | P i) F i = \sum_(i <- finsupp X | P i) X i * F i.
Proof.
rewrite big_mset; apply: eq_bigr => i _ //.
by rewrite Monoid.iteropE iter_addn addn0 mulnC.
Qed.
Lemma prod_mset (X : {mset K}) (P : pred K) (F : K -> nat) :
\prod_(i <- X | P i) F i = \prod_(i <- finsupp X | P i) F i ^ X i.
Proof. by rewrite big_mset. Qed.
Lemma mset_seqE s a : (seq_mset s) a = count_mem a s.
Proof. by rewrite fsfunE inE/=; case: ifPn => // /count_memPn ->. Qed.
Lemma perm_eq_seq_mset s : perm_eq (seq_mset s) s.
Proof. by apply/allP => a _ /=; rewrite count_mem_mset mset_seqE. Qed.
Lemma seq_mset_id A : seq_mset A = A.
Proof. by apply/msetP=> a; rewrite mset_seqE count_mem_mset. Qed.
Lemma eq_seq_msetP s s' : reflect (seq_mset s = seq_mset s') (perm_eq s s').
Proof.
apply: (iffP idP) => [/permP perm_ss'|eq_ss'].
by apply/msetP => a; rewrite !mset_seqE perm_ss'.
by apply/allP => a _ /=; rewrite -!mset_seqE eq_ss'.
Qed.
Lemma msetME A B (u : K * K) : (A `*` B) u = A u.1 * B u.2.
Proof.
rewrite !fsfunE inE; case: ifPn => //=.
by rewrite negb_and !memNfinsupp => /orP [] /eqP->; rewrite ?muln0.
Qed.
Lemma mset1DE a A b : (a +` A) b = (b == a) + A b.
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Lemma mset1UE a A b : (a |` A) b = maxn (b == a) (A b).
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Lemma msetB1E a A b : (A `\ a) b = (A b) - (b == a).
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Let msetE := (mset0E, msetE2, msetnE, msetnxx,
mset1DE, mset1UE, msetB1E,
mset_seqE, msetME).
Lemma in_mset0 a : a \in mset0 = false.
Proof. by rewrite in_mset !msetE. Qed.
Lemma in_msetn n a' a : a \in msetn n a' = (n > 0) && (a == a').
Proof. by rewrite in_mset msetE; case: (a == a'); rewrite ?andbT ?andbF. Qed.
Lemma in_mset1 a' a : a \in [mset a'] = (a == a').
Proof. by rewrite in_msetn. Qed.
Lemma in_msetD A B a : (a \in A `+` B) = (a \in A) || (a \in B).
Proof. by rewrite !in_mset !msetE addn_gt0. Qed.
Lemma in_msetU A B a : (a \in A `|` B) = (a \in A) || (a \in B).
Proof. by rewrite !in_mset !msetE leq_max. Qed.
Lemma in_msetDU A B a : (a \in A `+` B) = (a \in A `|` B).
Proof. by rewrite in_msetU in_msetD. Qed.
Lemma in_msetI A B a : (a \in A `&` B) = (a \in A) && (a \in B).
Proof. by rewrite !in_mset msetE leq_min. Qed.
Lemma in_msetB A B a : (a \in A `\` B) = (B a < A a).
Proof. by rewrite -mset_neq0 msetE subn_eq0 ltnNge. Qed.
Lemma in_mset1U a' A a : (a \in a' |` A) = (a == a') || (a \in A).
Proof. by rewrite in_msetU in_mset msetE; case: (_ == _). Qed.
Lemma in_mset1D a' A a : (a \in a' +` A) = (a == a') || (a \in A).
Proof. by rewrite in_msetDU in_mset1U. Qed.
Lemma in_msetB1 A b a : (a \in A `\ b) = ((a == b) ==> (A a > 1)) && (a \in A).
Proof.
by rewrite in_msetB msetE in_mset; case: (_ == _); rewrite -?geq_max.
Qed.
Lemma in_msetM A B (u : K * K) : (u \in A `*` B) = (u.1 \in A) && (u.2 \in B).
Proof. by rewrite -!msuppE !mem_finsupp msetE muln_eq0 negb_or. Qed.
Definition in_msetE := (in_mset0, in_msetn,
in_msetB1, in_msetU, in_msetI, in_msetD, in_msetM).
Let inE := (inE, in_msetE, (@msuppE K)).
Lemma enum_mset0 : mset0 = [::] :> seq K.
Proof. by rewrite unlock finsupp0. Qed.
Lemma msetn0 (a : K) : msetn 0 a = mset0.
Proof. by apply/msetP=> i; rewrite !msetE if_same. Qed.
Lemma finsupp_msetn n a : finsupp (msetn n a) = if n > 0 then [fset a] else fset0.
Proof. by apply/fsetP => i; rewrite !inE; case: ifP => //=; rewrite inE. Qed.
Lemma enum_msetn n a : msetn n a = nseq n a :> seq K.
Proof.
case: n => [|n]; first by rewrite msetn0 /= enum_mset0.
rewrite unlock finsupp_msetn /= enum_fsetE /= enum_fset1 /= cats0.
by rewrite msetE eqxx.
Qed.
Section big.
Variables (R : Type) (idx : R) (op : Monoid.law idx).
Implicit Types (X : {mset K}) (P : pred K) (F : K -> R).
Lemma big_mset0 P F : \big[op/idx]_(i <- mset0 | P i) F i = idx.
Proof. by rewrite enum_mset0 big_nil. Qed.
Lemma big_msetn n a P F :
\big[op/idx]_(i <- msetn n a | P i) F i =
if P a then iterop n op (F a) idx else idx.
Proof. by rewrite enum_msetn big_nseq_cond Monoid.iteropE. Qed.
End big.
Lemma msetDC (A B : {mset K}) : A `+` B = B `+` A.
Proof. by apply/msetP=> a; rewrite !msetE addnC. Qed.
Lemma msetIC (A B : {mset K}) : A `&` B = B `&` A.
Proof. by apply/msetP=> a; rewrite !msetE minnC. Qed.
Lemma msetUC (A B : {mset K}) : A `|` B = B `|` A.
Proof. by apply/msetP => a; rewrite !msetE maxnC. Qed.
(* intersection *)
Lemma mset0I A : mset0 `&` A = mset0.
Proof. by apply/msetP => x; rewrite !msetE min0n. Qed.
Lemma msetI0 A : A `&` mset0 = mset0.
Proof. by rewrite msetIC mset0I. Qed.
Lemma msetIA A B C : A `&` (B `&` C) = A `&` B `&` C.
Proof. by apply/msetP=> x; rewrite !msetE minnA. Qed.
Lemma msetICA A B C : A `&` (B `&` C) = B `&` (A `&` C).
Proof. by rewrite !msetIA (msetIC A). Qed.
Lemma msetIAC A B C : A `&` B `&` C = A `&` C `&` B.
Proof. by rewrite -!msetIA (msetIC B). Qed.
Lemma msetIACA A B C D : (A `&` B) `&` (C `&` D) = (A `&` C) `&` (B `&` D).
Proof. by rewrite -!msetIA (msetICA B). Qed.
Lemma msetIid A : A `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE minnn. Qed.
Lemma msetIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C).
Proof. by rewrite msetIA !(msetIAC _ C) -(msetIA _ C) msetIid. Qed.
Lemma msetIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C).
Proof. by rewrite !(msetIC A) msetIIl. Qed.
(* union *)
Lemma mset0U A : mset0 `|` A = A.
Proof. by apply/msetP => x; rewrite !msetE max0n. Qed.
Lemma msetU0 A : A `|` mset0 = A.
Proof. by rewrite msetUC mset0U. Qed.
Lemma msetUA A B C : A `|` (B `|` C) = A `|` B `|` C.
Proof. by apply/msetP=> x; rewrite !msetE maxnA. Qed.
Lemma msetUCA A B C : A `|` (B `|` C) = B `|` (A `|` C).
Proof. by rewrite !msetUA (msetUC B). Qed.
Lemma msetUAC A B C : A `|` B `|` C = A `|` C `|` B.
Proof. by rewrite -!msetUA (msetUC B). Qed.
Lemma msetUACA A B C D : (A `|` B) `|` (C `|` D) = (A `|` C) `|` (B `|` D).
Proof. by rewrite -!msetUA (msetUCA B). Qed.
Lemma msetUid A : A `|` A = A.
Proof. by apply/msetP=> x; rewrite !msetE maxnn. Qed.
Lemma msetUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C).
Proof. by rewrite msetUA !(msetUAC _ C) -(msetUA _ C) msetUid. Qed.
Lemma msetUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C).
Proof. by rewrite !(msetUC A) msetUUl. Qed.
(* adjunction *)
Lemma mset0D A : mset0 `+` A = A.
Proof. by apply/msetP => x; rewrite !msetE add0n. Qed.
Lemma msetD0 A : A `+` mset0 = A.
Proof. by rewrite msetDC mset0D. Qed.
Lemma msetDA A B C : A `+` (B `+` C) = A `+` B `+` C.
Proof. by apply/msetP=> x; rewrite !msetE addnA. Qed.
Lemma msetDCA A B C : A `+` (B `+` C) = B `+` (A `+` C).
Proof. by rewrite !msetDA (msetDC B). Qed.
Lemma msetDAC A B C : A `+` B `+` C = A `+` C `+` B.
Proof. by rewrite -!msetDA (msetDC B). Qed.
Lemma msetDACA A B C D : (A `+` B) `+` (C `+` D) = (A `+` C) `+` (B `+` D).
Proof. by rewrite -!msetDA (msetDCA B). Qed.
(* adjunction, union and difference with one element *)
Lemma msetU1l x A B : x \in A -> x \in A `|` B.
Proof. by move=> Ax /=; rewrite inE Ax. Qed.
Lemma msetU1r A b : b \in A `|` [mset b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma msetB1P x A b : reflect ((x = b -> A x > 1) /\ x \in A) (x \in A `\ b).
Proof.
rewrite !inE. apply: (iffP andP); first by move=> [/implyP Ax ->]; split => // /eqP.
by move=> [Ax ->]; split => //; apply/implyP => /eqP.
Qed.
Lemma msetB11 b A : (b \in A `\ b) = (A b > 1).
Proof. by rewrite inE eqxx /= in_mset -geq_max. Qed.
Lemma msetB1K a A : a \in A -> a +` (A `\ a) = A.
Proof.
move=> aA; apply/msetP=> x; rewrite !msetE subnKC //=.
by have [->|//] := altP eqP; rewrite mset_gt0.
Qed.
Lemma msetD1K a B : (a +` B) `\ a = B.
Proof. by apply/msetP => x; rewrite !msetE addKn. Qed.
Lemma msetU1K a B : a \notin B -> (a |` B) `\ a = B.
Proof.
move=> aB; apply/msetP=> x; rewrite !msetE.
have [->|] := altP eqP; first by rewrite (mset_eq0P _).
by rewrite max0n subn0.
Qed.
Lemma mset1U1 x B : x \in x |` B. Proof. by rewrite !inE eqxx. Qed.
Lemma mset1D1 x B : x \in x +` B. Proof. by rewrite !inE eqxx. Qed.
Lemma mset1Ur x a B : x \in B -> x \in a |` B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma mset1Dr x a B : x \in B -> x \in a +` B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma mset2P x a b : reflect (x = a \/ x = b) (x \in [mset a; b]).
Proof. by rewrite !inE; apply: (iffP orP) => [] [] /eqP; intuition. Qed.
Lemma in_mset2 x a b : (x \in [mset a; b]) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma mset21 a b : a \in [mset a; b]. Proof. by rewrite mset1D1. Qed.
Lemma mset22 a b : b \in [mset a; b]. Proof. by rewrite in_mset2 eqxx orbT. Qed.
Lemma msetUP x A B : reflect (x \in A \/ x \in B) (x \in A `|` B).
Proof. by rewrite !inE; exact: orP. Qed.
Lemma msetDP x A B : reflect (x \in A \/ x \in B) (x \in A `+` B).
Proof. by rewrite !inE; exact: orP. Qed.
Lemma msetULVR x A B : x \in A `|` B -> (x \in A) + (x \in B).
Proof. by rewrite inE; case: (x \in A); [left|right]. Qed.
Lemma msetDLVR x A B : x \in A `+` B -> (x \in A) + (x \in B).
Proof. by rewrite inE; case: (x \in A); [left|right]. Qed.
(* distribute /cancel *)
Lemma msetIUr A B C : A `&` (B `|` C) = (A `&` B) `|` (A `&` C).
Proof. by apply/msetP=> x; rewrite !msetE minn_maxr. Qed.
Lemma msetIUl A B C : (A `|` B) `&` C = (A `&` C) `|` (B `&` C).
Proof. by apply/msetP=> x; rewrite !msetE minn_maxl. Qed.
Lemma msetUIr A B C : A `|` (B `&` C) = (A `|` B) `&` (A `|` C).
Proof. by apply/msetP=> x; rewrite !msetE maxn_minr. Qed.
Lemma msetUIl A B C : (A `&` B) `|` C = (A `|` C) `&` (B `|` C).
Proof. by apply/msetP=> x; rewrite !msetE maxn_minl. Qed.
Lemma msetUKC A B : (A `|` B) `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE maxnK. Qed.
Lemma msetUK A B : (B `|` A) `&` A = A.
Proof. by rewrite msetUC msetUKC. Qed.
Lemma msetKUC A B : A `&` (B `|` A) = A.
Proof. by rewrite msetIC msetUK. Qed.
Lemma msetKU A B : A `&` (A `|` B) = A.
Proof. by rewrite msetIC msetUKC. Qed.
Lemma msetIKC A B : (A `&` B) `|` A = A.
Proof. by apply/msetP=> x; rewrite !msetE minnK. Qed.
Lemma msetIK A B : (B `&` A) `|` A = A.
Proof. by rewrite msetIC msetIKC. Qed.
Lemma msetKIC A B : A `|` (B `&` A) = A.
Proof. by rewrite msetUC msetIK. Qed.
Lemma msetKI A B : A `|` (A `&` B) = A.
Proof. by rewrite msetIC msetKIC. Qed.
Lemma msetUKid A B : B `|` A `|` A = B `|` A.
Proof. by rewrite -msetUA msetUid. Qed.
Lemma msetUKidC A B : A `|` B `|` A = A `|` B.
Proof. by rewrite msetUAC msetUid. Qed.
Lemma msetKUid A B : A `|` (A `|` B) = A `|` B.
Proof. by rewrite msetUA msetUid. Qed.
Lemma msetKUidC A B : A `|` (B `|` A) = B `|` A.
Proof. by rewrite msetUCA msetUid. Qed.
Lemma msetIKid A B : B `&` A `&` A = B `&` A.
Proof. by rewrite -msetIA msetIid. Qed.
Lemma msetIKidC A B : A `&` B `&` A = A `&` B.
Proof. by rewrite msetIAC msetIid. Qed.
Lemma msetKIid A B : A `&` (A `&` B) = A `&` B.
Proof. by rewrite msetIA msetIid. Qed.
Lemma msetKIidC A B : A `&` (B `&` A) = B `&` A.
Proof. by rewrite msetICA msetIid. Qed.
Lemma msetDIr A B C : A `+` (B `&` C) = (A `+` B) `&` (A `+` C).
Proof. by apply/msetP=> x; rewrite !msetE addn_minr. Qed.
Lemma msetDIl A B C : (A `&` B) `+` C = (A `+` C) `&` (B `+` C).
Proof. by apply/msetP=> x; rewrite !msetE addn_minl. Qed.
Lemma msetDKIC A B : (A `+` B) `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE (minn_idPr _) // leq_addr. Qed.
Lemma msetDKI A B : (B `+` A) `&` A = A.
Proof. by rewrite msetDC msetDKIC. Qed.
Lemma msetKDIC A B : A `&` (B `+` A) = A.
Proof. by rewrite msetIC msetDKI. Qed.
Lemma msetKDI A B : A `&` (A `+` B) = A.
Proof. by rewrite msetDC msetKDIC. Qed.
(* adjunction / subtraction *)
Lemma msetDKB A : cancel (msetD A) (msetB^~ A).
Proof. by move=> B; apply/msetP => a; rewrite !msetE addKn. Qed.
Lemma msetDKBC A : cancel (msetD^~ A) (msetB^~ A).
Proof. by move=> B; rewrite msetDC msetDKB. Qed.
Lemma msetBSKl A B a : ((a +` A) `\` B) `\ a = A `\` B.
Proof.
apply/msetP=> b; rewrite !msetE; case: ifPn; rewrite ?add0n ?subn0 //.
by rewrite add1n subn1 subSKn.
Qed.
Lemma msetBDl C A B : (C `+` A) `\` (C `+` B) = A `\` B.
Proof. by apply/msetP=> a; rewrite !msetE subnDl. Qed.
Lemma msetBDr C A B : (A `+` C) `\` (B `+` C) = A `\` B.
Proof. by apply/msetP=> a; rewrite !msetE subnDr. Qed.
Lemma msetBDA A B C : B `\` (A `+` C) = B `\` A `\` C.
Proof. by apply/msetP=> a; rewrite !msetE subnDA. Qed.
Lemma msetUE A B C : msetU A B = A `+` (B `\` A).
Proof. by apply/msetP=> a; rewrite !msetE maxnE. Qed.
(* subset *)
Lemma msubsetP {A B} : reflect (forall x, A x <= B x) (A `<=` B).
Proof.
apply: (iffP forallP)=> // ? x; case: (in_fsetP (finsupp A) x) => //.
by rewrite msuppE => /mset_eq0P->.
Qed.
Lemma msubset_subset {A B} : A `<=` B -> {subset A <= B}.
Proof.
by move=> /msubsetP AB x; rewrite !in_mset => ?; exact: (leq_trans _ (AB _)).
Qed.
Lemma msetB_eq0 (A B : {mset K}) : (A `\` B == mset0) = (A `<=` B).
Proof.
apply/mset_eqP/msubsetP => AB a;
by have := AB a; rewrite !msetE -subn_eq0 => /eqP.
Qed.
Lemma msubset_refl A : A `<=` A. Proof. exact/msubsetP. Qed.
Hint Resolve msubset_refl : core.
Lemma msubset_trans : transitive (@msubset K).
Proof.
move=> y x z /msubsetP xy /msubsetP yz ; apply/msubsetP => a.
by apply: (leq_trans (xy _)).
Qed.
Arguments msubset_trans {C A B} _ _ : rename.
Lemma msetUS C A B : A `<=` B -> C `|` A `<=` C `|` B.
Proof.
move=> sAB; apply/msubsetP=> x; rewrite !msetE.
by rewrite geq_max !leq_max leqnn (msubsetP sAB) orbT.
Qed.
Lemma msetDS C A B : A `<=` B -> C `+` A `<=` C `+` B.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_add2l.
Qed.
Lemma msetSU C A B : A `<=` B -> A `|` C `<=` B `|` C.
Proof. by move=> sAB; rewrite -!(msetUC C) msetUS. Qed.
Lemma msetSD C A B : A `<=` B -> A `+` C `<=` B `+` C.
Proof. by move=> sAB; rewrite -!(msetDC C) msetDS. Qed.
Lemma msetUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D.
Proof. by move=> /(msetSU B) /msubset_trans sAC /(msetUS C)/sAC. Qed.
Lemma msetDSS A B C D : A `<=` C -> B `<=` D -> A `+` B `<=` C `+` D.
Proof. by move=> /(msetSD B) /msubset_trans sAC /(msetDS C)/sAC. Qed.
Lemma msetIidPl {A B} : reflect (A `&` B = A) (A `<=` B).
Proof.
apply: (iffP msubsetP) => [?|<- a]; last by rewrite !msetE geq_min leqnn orbT.
by apply/msetP => a; rewrite !msetE (minn_idPl _).
Qed.
Lemma msetIidPr {A B} : reflect (A `&` B = B) (B `<=` A).
Proof. by rewrite msetIC; apply: msetIidPl. Qed.
Lemma msubsetIidl A B : (A `<=` A `&` B) = (A `<=` B).
Proof.
apply/msubsetP/msubsetP=> sAB a; have := sAB a; rewrite !msetE.
by rewrite leq_min leqnn.
by move/minn_idPl->.
Qed.
Lemma msubsetIidr A B : (B `<=` A `&` B) = (B `<=` A).
Proof. by rewrite msetIC msubsetIidl. Qed.
Lemma msetUidPr A B : reflect (A `|` B = B) (A `<=` B).
Proof.
apply: (iffP msubsetP) => [AB|<- a]; last by rewrite !msetE leq_max leqnn.
by apply/msetP=> a; rewrite !msetE (maxn_idPr _).
Qed.
Lemma msetUidPl A B : reflect (A `|` B = A) (B `<=` A).
Proof. by rewrite msetUC; apply/msetUidPr. Qed.
Lemma msubsetUl A B : A `<=` A `|` B.
Proof. by apply/msubsetP=> a; rewrite !msetE leq_maxl. Qed.
Hint Resolve msubsetUl : core.
Lemma msubsetUr A B : B `<=` (A `|` B).
Proof. by rewrite msetUC. Qed.
Hint Resolve msubsetUr : core.
Lemma msubsetU1 x A : A `<=` (x |` A).
Proof. by rewrite msubsetUr. Qed.
Hint Resolve msubsetU1 : core.
Lemma msubsetU A B C : (A `<=` B) || (A `<=` C) -> A `<=` (B `|` C).
Proof. by move=> /orP [] /msubset_trans ->. Qed.
Lemma eqEmsubset A B : (A == B) = (A `<=` B) && (B `<=` A).
Proof.
apply/eqP/andP => [<-|[/msubsetP AB /msubsetP BA]]; first by split.
by apply/msetP=> a; apply/eqP; rewrite eqn_leq AB BA.
Qed.
Lemma msubEproper A B : A `<=` B = (A == B) || (A `<` B).
Proof. by rewrite eqEmsubset -andb_orr orbN andbT. Qed.
Lemma mproper_sub A B : A `<` B -> A `<=` B.
Proof. by rewrite msubEproper orbC => ->. Qed.
Lemma eqVmproper A B : A `<=` B -> A = B \/ A `<` B.
Proof. by rewrite msubEproper => /predU1P. Qed.
Lemma mproperEneq A B : A `<` B = (A != B) && (A `<=` B).
Proof. by rewrite andbC eqEmsubset negb_and andb_orr andbN. Qed.
Lemma mproper_neq A B : A `<` B -> A != B.
Proof. by rewrite mproperEneq; case/andP. Qed.
Lemma eqEmproper A B : (A == B) = (A `<=` B) && ~~ (A `<` B).
Proof. by rewrite negb_and negbK andb_orr andbN eqEmsubset. Qed.
Lemma msub0set A : msubset mset0 A.
Proof. by apply/msubsetP=> x; rewrite msetE. Qed.
Hint Resolve msub0set : core.
Lemma msubset0 A : (A `<=` mset0) = (A == mset0).
Proof. by rewrite eqEmsubset msub0set andbT. Qed.
Lemma mproper0 A : (mproper mset0 A) = (A != mset0).
Proof. by rewrite /mproper msub0set msubset0. Qed.
Lemma mproperE A B : (A `<` B) = (A `<=` B) && ~~ (msubset B A).
Proof. by []. Qed.
Lemma mproper_sub_trans B A C : A `<` B -> B `<=` C -> A `<` C.
Proof.
move=> /andP [AB NBA] BC; rewrite /mproper (msubset_trans AB) //=.
by apply: contra NBA=> /(msubset_trans _)->.
Qed.
Lemma msub_proper_trans B A C :
A `<=` B -> B `<` C -> A `<` C.
Proof.
move=> AB /andP [CB NCB]; rewrite /mproper (msubset_trans AB) //=.
by apply: contra NCB=> /msubset_trans->.
Qed.
Lemma msubset_neq0 A B : A `<=` B -> A != mset0 -> B != mset0.
Proof. by rewrite -!mproper0 => sAB /mproper_sub_trans->. Qed.
(* msub is a morphism *)
Lemma msetBDKC A B : A `<=` B -> A `+` (B `\` A) = B.
Proof. by move=> /msubsetP AB; apply/msetP=> a; rewrite !msetE subnKC. Qed.
Lemma msetBDK A B : A `<=` B -> B `\` A `+` A = B.
Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subnK. Qed.
Lemma msetBBK A B : A `<=` B -> B `\` (B `\` A) = A.
Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subKn. Qed.
Lemma msetBD1K A B a : A `<=` B -> A a < B a -> a +` (B `\` (a +` A)) = B `\` A.
Proof.
move=> /msubsetP AB ABa; apply/msetP => b; rewrite !msetE.
by case: ifP => //= /eqP->; rewrite !add1n subnSK.
Qed.
Lemma subset_msetBLR A B C : (msubset (A `\` B) C) = (A `<=` B `+` C).
Proof.
apply/msubsetP/msubsetP => [] sABC a;
by have := sABC a; rewrite !msetE ?leq_subLR.
Qed.
Lemma msetnP n x a : reflect (0 < n /\ x = a) (x \in msetn n a).
Proof. by do [apply: (iffP idP); rewrite !inE] => [/andP[]|[]] -> /eqP. Qed.
Lemma gt0_msetnP n x a : 0 < n -> reflect (x = a) (x \in msetn n a).
Proof. by move=> n_gt0; rewrite inE n_gt0 /=; exact: eqP. Qed.
Lemma msetn1 n a : a \in msetn n a = (n > 0).
Proof. by rewrite inE eqxx andbT. Qed.
Lemma mset1P x a : reflect (x = a) (x \in [mset a]).
Proof. by rewrite inE; exact: eqP. Qed.
Lemma mset11 a : a \in [mset a]. Proof. by rewrite inE /=. Qed.
Lemma msetn_inj n : n > 0 -> injective (@msetn K n).
Proof.
move=> n_gt0 a b eqsab; apply/(gt0_msetnP _ _ n_gt0).
by rewrite -eqsab inE n_gt0 eqxx.
Qed.
Lemma mset1UP x a B : reflect (x = a \/ x \in B) (x \in a |` B).
Proof. by rewrite !inE; exact: predU1P. Qed.
Lemma mset_cons a s : seq_mset (a :: s) = a +` (seq_mset s).
Proof. by apply/msetP=> x; rewrite !msetE /= eq_sym. Qed.
(* intersection *)
Lemma msetIP x A B : reflect (x \in A /\ x \in B) (x \in A `&` B).
Proof. by rewrite inE; apply: andP. Qed.
Lemma msetIS C A B : A `<=` B -> C `&` A `<=` C `&` B.
Proof.
move=> sAB; apply/msubsetP=> x; rewrite !msetE.
by rewrite leq_min !geq_min leqnn (msubsetP sAB) orbT.
Qed.
Lemma msetSI C A B : A `<=` B -> A `&` C `<=` B `&` C.
Proof. by move=> sAB; rewrite -!(msetIC C) msetIS. Qed.
Lemma msetISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D.
Proof. by move=> /(msetSI B) /msubset_trans sAC /(msetIS C) /sAC. Qed.
(* difference *)
Lemma msetSB C A B : A `<=` B -> A `\` C `<=` B `\` C.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2r.
Qed.
Lemma msetBS C A B : A `<=` B -> C `\` B `<=` C `\` A.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2l.
Qed.
Lemma msetBSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D.
Proof. by move=> /(msetSB B) /msubset_trans sAC /(msetBS C) /sAC. Qed.
Lemma msetB0 A : A `\` mset0 = A.
Proof. by apply/msetP=> x; rewrite !msetE subn0. Qed.
Lemma mset0B A : mset0 `\` A = mset0.
Proof. by apply/msetP=> x; rewrite !msetE sub0n. Qed.
Lemma msetBxx A : A `\` A = mset0.
Proof. by apply/msetP=> x; rewrite !msetE subnn. Qed.
(* other inclusions *)
Lemma msubsetIl A B : A `&` B `<=` A.
Proof. by apply/msubsetP=> x; rewrite msetE geq_minl. Qed.
Lemma msubsetIr A B : A `&` B `<=` B.
Proof. by apply/msubsetP=> x; rewrite msetE geq_minr. Qed.
Lemma msubsetDl A B : A `\` B `<=` A.
Proof. by apply/msubsetP=> x; rewrite msetE leq_subLR leq_addl. Qed.
Lemma msubD1set A x : A `\ x `<=` A.
Proof. by rewrite msubsetDl. Qed.
Hint Resolve msubsetIl msubsetIr msubsetDl msubD1set : core.
(* cardinal lemmas for msets *)
Lemma mem_mset1U a A : a \in A -> a |` A = A.
Proof.
rewrite in_mset => aA; apply/msetP => x; rewrite !msetE (maxn_idPr _) //.
by have [->|//] := altP eqP; rewrite (leq_trans _ aA).
Qed.
Lemma mem_msetD1 a A : a \notin A -> A `\ a = A.
Proof.
move=> /mset_eq0P aA; apply/msetP => x; rewrite !msetE.
by have [->|] := altP eqP; rewrite ?aA ?subn0.
Qed.
Lemma msetIn a A n : A `&` msetn n a = msetn (minn (A a) n) a.
Proof.
by apply/msetP => x; rewrite !msetE; have [->|] := altP eqP; rewrite ?minn0.
Qed.
Lemma msubIset A B C : (B `<=` A) || (C `<=` A) -> (B `&` C `<=` A).
Proof. by case/orP; apply: msubset_trans; rewrite (msubsetIl, msubsetIr). Qed.
Lemma msubsetI A B C : (A `<=` B `&` C) = (A `<=` B) && (A `<=` C).
Proof.
rewrite !(sameP msetIidPl eqP) msetIA; have [-> //| ] := altP (A `&` B =P A).
by apply: contraNF => /eqP <-; rewrite -msetIA -msetIIl msetIAC.
Qed.
Lemma msubsetIP A B C : reflect (A `<=` B /\ A `<=` C) (A `<=` B `&` C).
Proof. by rewrite msubsetI; exact: andP. Qed.
Lemma msubUset A B C : (B `|` C `<=` A) = (B `<=` A) && (C `<=` A).
Proof.
apply/idP/idP => [subA|/andP [AB CA]]; last by rewrite -[A]msetUid msetUSS.
by rewrite !(msubset_trans _ subA).
Qed.
Lemma msubUsetP A B C : reflect (A `<=` C /\ B `<=` C) (A `|` B `<=` C).
Proof. by rewrite msubUset; exact: andP. Qed.
Lemma msetU_eq0 A B : (A `|` B == mset0) = (A == mset0) && (B == mset0).
Proof. by rewrite -!msubset0 msubUset. Qed.
Lemma setD_eq0 A B : (A `\` B == mset0) = (A `<=` B).
Proof. by rewrite -msubset0 subset_msetBLR msetD0. Qed.
Lemma msub1set A a : ([mset a] `<=` A) = (a \in A).
Proof.
apply/msubsetP/idP; first by move/(_ a); rewrite msetnxx in_mset.
by move=> ainA b; rewrite msetnE; case: eqP => // ->; rewrite -in_mset.
Qed.
Lemma msetDBA A B C : C `<=` B -> A `+` B `\` C = (A `+` B) `\` C.
Proof.
by move=> /msubsetP CB; apply/msetP=> a; rewrite !msetE2 addnBA.
Qed.
Lemma mset_0Vmem A : (A = mset0) + {x : K | x \in A}.
Proof.
have [/fsetP Aisfset0 | [a ainA]] := fset_0Vmem (finsupp A); last first.
by right; exists a; rewrite -msuppE.
left; apply/msetP => a; rewrite mset0E; apply/mset_eq0P.
by rewrite -msuppE Aisfset0 inE.
Qed.
Definition size_mset A : size A = \sum_(a <- finsupp A) A a.
Proof. by rewrite -sum1_size sum_mset; apply: eq_bigr => i; rewrite muln1. Qed.
Lemma size_mset0 : size (mset0 : {mset K}) = 0.
Proof. by rewrite -sum1_size big_mset0. Qed.
Lemma sum_nat_seq_eq0 (I : eqType) r (P : pred I) (E : I -> nat) :
(\sum_(i <- r | P i) E i == 0) = all [pred i | P i ==> (E i == 0)] r.
Proof.
rewrite big_tnth sum_nat_eq0; apply/forallP/allP => /= HE x.
by move=> /seq_tnthP[i ->]; apply: HE.
by apply: HE; rewrite mem_tnth.
Qed.
Lemma size_mset_eq0 A : (size A == 0) = (A == mset0).
Proof.
apply/idP/eqP => [|->]; last by rewrite size_mset0.
rewrite size_mset sum_nat_seq_eq0 => /allP AP.
apply/msetP => a /=; rewrite msetE.
by have /= := AP a; case: finsuppP => // _ /(_ _)/eqP->.
Qed.
End MSetTheory.
|