1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop binomial order perm ssralg poly.
From mathcomp Require Import polydiv ssrnum ssrint rat matrix mxpoly polyXY.
From mathcomp Require Import bigenough polyorder.
(***************************************************************************)
(* This is a standalone construction of Cauchy reals over an arbitrary *)
(* discrete archimedian field R. *)
(* creals R == setoid of Cauchy sequences, it is not discrete and *)
(* cannot be equipped with any ssreflect algebraic structure *)
(***************************************************************************)
Import Order.TTheory GRing.Theory Num.Theory BigEnough.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope creal_scope.
Delimit Scope creal_scope with CR.
Section poly_extra.
Local Open Scope ring_scope.
Lemma monic_monic_from_neq0 (F : fieldType) (p : {poly F}) :
(p != 0)%B -> (lead_coef p) ^-1 *: p \is monic.
Proof. by move=> ?; rewrite monicE lead_coefZ mulVf ?lead_coef_eq0. Qed.
(* GG -- lemmas with ssrnum dependencies cannot go in poly! *)
Lemma size_derivn (R : realDomainType) (p : {poly R}) n :
size p^`(n) = (size p - n)%N.
Proof.
elim: n=> [|n ihn]; first by rewrite derivn0 subn0.
by rewrite derivnS size_deriv ihn -subnS.
Qed.
Lemma size_nderivn (R : realDomainType) (p : {poly R}) n :
size p^`N(n) = (size p - n)%N.
Proof.
rewrite -size_derivn nderivn_def -mulr_natl.
by rewrite -polyC1 -!polyCMn size_Cmul // pnatr_eq0 -lt0n fact_gt0.
Qed.
End poly_extra.
Local Notation eval := horner_eval.
Section ordered_extra.
Definition gtr0E := (invr_gt0, exprn_gt0, ltr0n, @ltr01).
Definition ger0E := (invr_ge0, exprn_ge0, ler0n, @ler01).
End ordered_extra.
Section polyorder_extra.
Variable F : realDomainType.
Local Open Scope ring_scope.
Definition poly_bound (p : {poly F}) (a r : F) : F
:= 1 + \sum_(i < size p) `|p`_i| * (`|a| + `|r|) ^+ i.
Lemma poly_boundP p a r x : `|x - a| <= r ->
`|p.[x]| <= poly_bound p a r.
Proof.
have [r_ge0|r_lt0] := lerP 0 r; last first.
by move=> hr; have := le_lt_trans hr r_lt0; rewrite normr_lt0.
rewrite ler_distl=> /andP[lx ux].
rewrite ler_wpDl //.
elim/poly_ind: p=> [|p c ihp].
by rewrite horner0 normr0 size_poly0 big_ord0.
rewrite hornerMXaddC size_MXaddC.
have [->|p_neq0 /=] := altP eqP.
rewrite horner0 !mul0r !add0r size_poly0.
have [->|c_neq0] /= := altP eqP; first by rewrite normr0 big_ord0.
rewrite big_ord_recl big_ord0 addr0 coefC /=.
by rewrite ler_pMr ?normr_gt0 // lerDl ler_maxr !normr_ge0.
rewrite big_ord_recl coefD coefMX coefC eqxx add0r.
rewrite (le_trans (ler_normD _ _)) // addrC lerD //.
by rewrite expr0 mulr1.
rewrite normrM.
move: ihp=> /(ler_wpM2r (normr_ge0 x)) /le_trans-> //.
rewrite mulr_suml ler_sum // => i _.
rewrite coefD coefC coefMX /= addr0 exprSr mulrA.
rewrite ler_wpM2l //.
by rewrite ?mulr_ge0 ?exprn_ge0 ?ler_maxr ?addr_ge0 ?normr_ge0 // ltrW.
rewrite (ger0_norm r_ge0) ler_norml opprD.
rewrite (le_trans _ lx) ?(le_trans ux) // lerD2r.
by rewrite ler_normr lexx.
by rewrite lerNl ler_normr lexx orbT.
Qed.
Lemma poly_bound_gt0 p a r : 0 < poly_bound p a r.
Proof.
rewrite ltr_wpDr // sumr_ge0 // => i _.
by rewrite mulr_ge0 ?exprn_ge0 ?addr_ge0 ?ler_maxr ?normr_ge0 // ltrW.
Qed.
Lemma poly_bound_ge0 p a r : 0 <= poly_bound p a r.
Proof. by rewrite ltW // poly_bound_gt0. Qed.
Definition poly_accr_bound (p : {poly F}) (a r : F) : F
:= (Num.max 1 (2%:R * r)) ^+ (size p).-1
* (1 + \sum_(i < (size p).-1) poly_bound p^`N(i.+1) a r).
Lemma poly_accr_bound1P p a r x y :
`|x - a| <= r -> `|y - a| <= r ->
`|p.[y] - p.[x]| <= `|y - x| * poly_accr_bound p a r.
Proof.
have [|r_lt0] := lerP 0 r; last first.
by move=> hr; have := le_lt_trans hr r_lt0; rewrite normr_lt0.
rewrite le0r=> /orP[/eqP->|r_gt0 hx hy].
by rewrite !normr_le0 !subr_eq0=> /eqP-> /eqP->; rewrite !subrr normr0 mul0r.
rewrite mulrA mulrDr mulr1 ler_wpDl ?mulr_ge0 ?normr_ge0 //=.
by rewrite exprn_ge0 ?le_max ?mulr_ge0 ?ger0E ?ltW.
rewrite -{1}(addNKr x y) [- _ + _]addrC /= -mulrA.
rewrite nderiv_taylor; last exact: mulrC.
have [->|p_neq0] := eqVneq p 0.
rewrite size_poly0 big_ord0 horner0 subr0 normr0 mulr_ge0 ?normr_ge0 //.
by rewrite big_ord0 mulr0 lexx.
rewrite -[size _]prednK ?lt0n ?size_poly_eq0 //.
rewrite big_ord_recl expr0 mulr1 nderivn0 [X in `|X|]addrC addKr !mulr_sumr.
have := le_trans (ler_norm_sum _ _ _); apply.
rewrite ler_sum // => i _.
rewrite exprSr mulrA !normrM mulrC ler_wpM2l ?normr_ge0 //.
suff /ler_wpM2l /le_trans :
`|(y - x) ^+ i| <= Num.max 1 (2%:R * r) ^+ (size p).-1.
apply; rewrite ?normr_ge0 // mulrC ler_wpM2l ?poly_boundP //.
by rewrite ?exprn_ge0 // le_max ler01 mulr_ge0 ?ler0n ?ltW.
case: (leP _ 1)=> hr.
rewrite expr1n normrX exprn_ile1 ?normr_ge0 //.
rewrite (le_trans (ler_distD a _ _)) // addrC distrC.
by rewrite (le_trans _ hr) // mulrDl lerD ?mul1r.
apply: le_trans (_ : (2%:R * r) ^+ i <= _).
rewrite normrX lerXn2r -?topredE /= ?normr_ge0 ?mulr_ge0 ?ler0n //.
by rewrite ltW.
rewrite (le_trans (ler_distD a _ _)) // addrC distrC.
by rewrite mulrDl lerD ?mul1r.
by rewrite ler_eXn2l // ltnW.
Qed.
Lemma poly_accr_bound_gt0 p a r : 0 < poly_accr_bound p a r.
Proof.
rewrite /poly_accr_bound pmulr_rgt0 //.
rewrite ltr_wpDr ?ltr01 //.
by rewrite sumr_ge0 // => i; rewrite poly_bound_ge0.
by rewrite exprn_gt0 // lt_max ltr01 pmulr_rgt0 ?ltr0n.
Qed.
Lemma poly_accr_bound_ge0 p a r : 0 <= poly_accr_bound p a r.
Proof. by rewrite ltW // poly_accr_bound_gt0. Qed.
(* Todo : move to polyorder => need char 0 *)
Lemma gdcop_eq0 (p q : {poly F}) :
(gdcop p q == 0)%B = (q == 0)%B && (p != 0)%B.
Proof.
have [[->|q_neq0] [->|p_neq0] /=] := (altP (q =P 0), altP (p =P 0)).
+ by rewrite gdcop0 eqxx oner_eq0.
+ by rewrite gdcop0 (negPf p_neq0) eqxx.
+ apply/negP=> /eqP hg; have := coprimep_gdco 0 q_neq0.
by rewrite hg coprimep0 eqp01.
by apply/negP=> /eqP hg; have := dvdp_gdco p q; rewrite hg dvd0p; apply/negP.
Qed.
End polyorder_extra.
Section polyXY_order_extra.
Variable F : realFieldType.
Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Local Notation "'Y" := 'X%:P.
Definition norm_poly2 (p : {poly {poly F}}) := p ^ (map_poly (fun x => `|x|)).
Lemma coef_norm_poly2 p i j : (norm_poly2 p)`_i`_j = `|p`_i`_j|.
Proof.
rewrite !coef_map_id0 ?normr0 //; last first.
by rewrite /map_poly poly_def size_poly0 big_ord0.
Qed.
Lemma size_norm_poly2 p : size (norm_poly2 p) = size p.
Proof.
rewrite /norm_poly2; have [->|p0] := eqVneq p 0.
by rewrite /map_poly poly_def !(size_poly0, big_ord0).
rewrite /map_poly size_poly_eq // -size_poly_eq0 size_poly_eq //.
by rewrite -lead_coefE size_poly_eq0 lead_coef_eq0.
by rewrite -!lead_coefE normr_eq0 !lead_coef_eq0.
Qed.
End polyXY_order_extra.
Section polyorder_field_extra.
Variable F : realFieldType.
Local Open Scope ring_scope.
Definition poly_accr_bound2 (p : {poly F}) (a r : F) : F
:= (Num.max 1 (2%:R * r)) ^+ (size p).-2
* (1 + \sum_(i < (size p).-2) poly_bound p^`N(i.+2) a r).
Lemma poly_accr_bound2_gt0 p a r : 0 < poly_accr_bound2 p a r.
Proof.
rewrite /poly_accr_bound pmulr_rgt0 //.
rewrite ltr_wpDr ?ltr01 //.
by rewrite sumr_ge0 // => i; rewrite poly_bound_ge0.
by rewrite exprn_gt0 // lt_max ltr01 pmulr_rgt0 ?ltr0n.
Qed.
Lemma poly_accr_bound2_ge0 p a r : 0 <= poly_accr_bound2 p a r.
Proof. by rewrite ltW // poly_accr_bound2_gt0. Qed.
Lemma poly_accr_bound2P p (a r x y : F) : (x != y)%B ->
`|x - a| <= r -> `|y - a| <= r ->
`|(p.[y] - p.[x]) / (y - x) - p^`().[x]|
<= `|y - x| * poly_accr_bound2 p a r.
Proof.
have [|r_lt0] := lerP 0 r; last first.
by move=> _ hr; have := le_lt_trans hr r_lt0; rewrite normr_lt0.
rewrite le0r=> /orP[/eqP->|r_gt0].
rewrite !normr_le0 !subr_eq0.
by move=> nxy /eqP xa /eqP xb; rewrite xa xb eqxx in nxy.
move=> neq_xy hx hy.
rewrite mulrA mulrDr mulr1 ler_wpDl ?mulr_ge0 ?normr_ge0 //=.
by rewrite exprn_ge0 ?le_max ?mulr_ge0 ?ger0E ?ltW.
rewrite -{1}(addNKr x y) [- _ + _]addrC /= -mulrA.
rewrite nderiv_taylor; last exact: mulrC.
have [->|p_neq0] := eqVneq p 0.
by rewrite derivC !horner0 size_poly0 !(big_ord0, subrr, mul0r) normr0 !mulr0.
rewrite -[size _]prednK ?lt0n ?size_poly_eq0 //.
rewrite big_ord_recl expr0 mulr1 nderivn0 /= -size_deriv.
have [->|p'_neq0] := eqVneq p^`() 0.
by rewrite horner0 size_poly0 !big_ord0 addr0 !(subrr, mul0r) normr0 !mulr0.
rewrite -[size _]prednK ?lt0n ?size_poly_eq0 // big_ord_recl expr1.
rewrite addrAC subrr add0r mulrDl mulfK; last by rewrite subr_eq0 eq_sym.
rewrite nderivn1 addrAC subrr add0r mulr_sumr normrM normfV.
rewrite ler_pdivrMr ?normr_gt0; last by rewrite subr_eq0 eq_sym.
rewrite mulrAC -expr2 mulrC mulr_suml.
have := le_trans (ler_norm_sum _ _ _); apply.
rewrite ler_sum // => i _ /=; rewrite /bump /= !add1n.
rewrite normrM normrX 3!exprSr expr1 !mulrA !ler_wpM2r ?normr_ge0 //.
suff /ler_wpM2l /le_trans :
`|(y - x)| ^+ i <= Num.max 1 (2%:R * r) ^+ (size p^`()).-1.
apply; rewrite ?normr_ge0 // mulrC ler_wpM2l ?poly_boundP //.
by rewrite ?exprn_ge0 // le_max ler01 mulr_ge0 ?ler0n ?ltW.
case: (leP _ 1)=> hr.
rewrite expr1n exprn_ile1 ?normr_ge0 //.
rewrite (le_trans (ler_distD a _ _)) // addrC distrC.
by rewrite (le_trans _ hr) // mulrDl lerD ?mul1r.
apply: le_trans (_ : (2%:R * r) ^+ i <= _).
rewrite lerXn2r -?topredE /= ?normr_ge0 ?mulr_ge0 ?ler0n //.
by rewrite ltW.
rewrite (le_trans (ler_distD a _ _)) // addrC distrC.
by rewrite mulrDl lerD ?mul1r.
by rewrite ler_eXn2l // ltnW.
Qed.
End polyorder_field_extra.
Section monotony.
Variable F : realFieldType.
Local Open Scope ring_scope.
Definition accr_pos p (a r : F) :=
({ k | 0 < k & forall x y, (x != y)%B ->
`|x - a| <= r -> `|y - a| <= r -> (p.[x] - p.[y]) / (x - y) > k }
* forall x, `|x - a| <= r -> p^`().[x] > 0)%type.
Definition accr_neg p (a r : F) :=
({ k | 0 < k & forall x y, (x != y)%B ->
`|x - a| <= r -> `|y - a| <= r -> (p.[x] - p.[y]) / (x - y) < - k}
* forall x, `|x - a| <= r -> p^`().[x] < 0)%type.
Definition strong_mono p (a r : F) := (accr_pos p a r + accr_neg p a r)%type.
Lemma accr_pos_incr p a r : accr_pos p a r ->
forall x y, `|x - a| <= r -> `|y - a| <= r -> (p.[x] <= p.[y]) = (x <= y).
Proof.
move=> [[k k_gt0 hk] _] x y hx hy.
have [->|neq_xy] := eqVneq x y; first by rewrite !lexx.
have hkxy := hk _ _ neq_xy hx hy.
have := lt_trans k_gt0 hkxy.
have [lpxpy|lpypx|->] := ltrgtP p.[x] p.[y].
+ by rewrite nmulr_rgt0 ?subr_lt0 // ?invr_lt0 subr_lt0=> /ltW->.
+ by rewrite pmulr_rgt0 ?subr_gt0 // ?invr_gt0 subr_gt0 leNgt=> ->.
by rewrite subrr mul0r ltxx.
Qed.
Lemma accr_neg_decr p a r : accr_neg p a r ->
forall x y, `|x - a| <= r -> `|y - a| <= r -> (p.[x] <= p.[y]) = (y <= x).
Proof.
move=> [] [k]; rewrite -oppr_lt0=> Nk_lt0 hk _ x y hx hy.
have [->|neq_xy] := eqVneq x y; first by rewrite !lexx.
have hkxy := hk _ _ neq_xy hx hy.
have := lt_trans hkxy Nk_lt0.
have [lpxpy|lpypx|->] := ltrgtP p.[x] p.[y].
+ by rewrite nmulr_rlt0 ?subr_lt0 // ?invr_gt0 subr_gt0=> /ltW->.
+ by rewrite pmulr_rlt0 ?subr_gt0 // ?invr_lt0 subr_lt0 leNgt=> ->.
by rewrite subrr mul0r ltxx.
Qed.
Lemma accr_negN p a r : accr_pos p a r -> accr_neg (- p) a r.
Proof.
case=> [[k k_gt0 hk] h].
split; [ exists k=> // x y nxy hx hy;
by rewrite !hornerN -opprD mulNr ltrN2; apply: hk
| by move=> x hx; rewrite derivN hornerN oppr_lt0; apply: h ].
Qed.
Lemma accr_posN p a r : accr_neg p a r -> accr_pos (- p) a r.
Proof.
case=> [[k k_gt0 hk] h].
split; [ exists k=> // x y nxy hx hy;
by rewrite !hornerN -opprD mulNr ltrNr; apply: hk
| by move=> x hx; rewrite derivN hornerN oppr_gt0; apply: h ].
Qed.
Lemma strong_monoN p a r : strong_mono p a r -> strong_mono (- p) a r.
Proof. by case=> [] hp; [right; apply: accr_negN|left; apply: accr_posN]. Qed.
Lemma strong_mono_bound p a r : strong_mono p a r
-> {k | 0 < k & forall x y, `|x - a| <= r -> `|y - a| <= r ->
`| x - y | <= k * `| p.[x] - p.[y] | }.
Proof.
case=> [] [[k k_gt0 hk] _]; exists k^-1; rewrite ?invr_gt0=> // x y hx hy;
have [->|neq_xy] := eqVneq x y; do ?[by rewrite !subrr normr0 mulr0];
move: (hk _ _ neq_xy hx hy); rewrite 1?ltrNr ler_pdivlMl //;
rewrite -ler_pdivlMr ?normr_gt0 ?subr_eq0 // => /ltW /le_trans-> //;
by rewrite -normfV -normrM ler_normr lexx ?orbT.
Qed.
Definition merge_intervals (ar1 ar2 : F * F) :=
let l := Num.min (ar1.1 - ar1.2) (ar2.1 - ar2.2) in
let u := Num.max (ar1.1 + ar1.2) (ar2.1 + ar2.2) in
((l + u) / 2%:R, (u - l) / 2%:R).
Local Notation center ar1 ar2 := ((merge_intervals ar1 ar2).1).
Local Notation radius ar1 ar2 := ((merge_intervals ar1 ar2).2).
Lemma split_interval (a1 a2 r1 r2 x : F) :
0 < r1 -> 0 < r2 -> `|a1 - a2| <= r1 + r2 ->
(`|x - center (a1, r1) (a2, r2)| <= radius (a1, r1) (a2, r2))
= (`|x - a1| <= r1) || (`|x - a2| <= r2).
Proof.
move=> r1_gt0 r2_gt0 le_ar.
rewrite /merge_intervals /=.
set l : F := Num.min _ _; set u : F := Num.max _ _.
rewrite ler_pdivlMr ?gtr0E // -{2}[2%:R]ger0_norm ?ger0E //.
rewrite -normrM mulrBl mulfVK ?pnatr_eq0 // ler_distl.
rewrite opprB addrCA addrK (addrC (l + u)) addrA addrNK.
rewrite -!mulr2n !mulr_natr !lerMn2r !orFb.
rewrite ge_min le_max !ler_distl /=.
set le := <=%R; rewrite {}/le.
have [] := lerP=> /= a1N; have [] := lerP=> //= a1P;
have [] := lerP=> //= a2P; rewrite ?(andbF, andbT) //; symmetry.
rewrite ltW // (le_lt_trans _ a1P) //.
rewrite (monoLR (addrK _) (lerD2r _)) -addrA.
rewrite (monoRL (addNKr _) (lerD2l _)) [leLHS]addrC.
by rewrite (le_trans _ le_ar) // ler_normr opprB lexx orbT.
rewrite ltW // (lt_le_trans a1N) //.
rewrite (monoLR (addrK _) (lerD2r _)) -addrA.
rewrite (monoRL (addNKr _) (lerD2l _)) [leRHS]addrC [leLHS]addrC.
by rewrite (le_trans _ le_ar) // ler_normr lexx.
Qed.
Lemma merge_mono p a1 a2 r1 r2 :
0 < r1 -> 0 < r2 ->
`|a1 - a2| <= (r1 + r2) ->
strong_mono p a1 r1 -> strong_mono p a2 r2 ->
strong_mono p (center (a1, r1) (a2, r2)) (radius (a1, r1) (a2, r2)).
Proof.
move=> r1_gt0 r2_gt0 har sm1; wlog : p sm1 / accr_pos p a1 r1.
move=> hwlog; case: (sm1); first exact: hwlog.
move=> accr_p smp; rewrite -[p]opprK; apply: strong_monoN.
apply: hwlog=> //; do ?exact: strong_monoN.
exact: accr_posN.
case=> [[k1 k1_gt0 hk1]] h1.
move=> [] accr2_p; last first.
set m := (r2 * a1 + r1 * a2) / (r1 + r2).
have pm_gt0 := h1 m.
case: accr2_p=> [_] /(_ m) pm_lt0.
suff: 0 < 0 :> F by rewrite ltxx.
have r_gt0 : 0 < r1 + r2 by rewrite ?addr_gt0.
apply: (lt_trans (pm_gt0 _) (pm_lt0 _)).
rewrite -(@ler_pM2l _ (r1 + r2)) //.
rewrite -{1}[r1 + r2]ger0_norm ?(ltW r_gt0) //.
rewrite -normrM mulrBr /m mulrC mulrVK ?unitfE ?gt_eqF //.
rewrite mulrDl opprD addrA addrC addrA addKr.
rewrite distrC -mulrBr normrM ger0_norm ?(ltW r1_gt0) //.
by rewrite mulrC ler_wpM2r // ltW.
rewrite -(@ler_pM2l _ (r1 + r2)) //.
rewrite -{1}[r1 + r2]ger0_norm ?(ltW r_gt0) //.
rewrite -normrM mulrBr /m mulrC mulrVK ?unitfE ?gt_eqF //.
rewrite mulrDl opprD addrA addrK.
rewrite -mulrBr normrM ger0_norm ?(ltW r2_gt0) //.
by rewrite mulrC ler_wpM2r // ltW.
case: accr2_p=> [[k2 k2_gt0 hk2]] h2.
left; split; last by move=> x; rewrite split_interval // => /orP [/h1|/h2].
exists (Num.min k1 k2); first by rewrite lt_min k1_gt0.
move=> x y neq_xy; rewrite !split_interval //.
wlog lt_xy: x y neq_xy / y < x.
move=> hwlog; have [] := ltrP y x; first exact: hwlog.
rewrite le_eqVlt (negPf neq_xy) /= => /hwlog hwlog' hx hy.
rewrite -mulrNN -!invrN !opprB.
by apply: hwlog'; rewrite // eq_sym.
move=> {h1} {h2} {sm1}.
wlog le_xr1 : a1 a2 r1 r2 k1 k2
r1_gt0 r2_gt0 k1_gt0 k2_gt0 har hk1 hk2 / `|x - a1| <= r1.
move=> hwlog h; move: (h)=> /orP [/hwlog|]; first exact.
move=> /(hwlog a2 a1 r2 r1 k2 k1) hwlog' ley; rewrite minC.
by apply: hwlog'; rewrite 1?orbC // distrC [r2 + _]addrC.
move=> _.
have [le_yr1|gt_yr1] := (lerP _ r1)=> /= [_|le_yr2].
by rewrite gt_min hk1.
rewrite ltr_pdivlMr ?subr_gt0 //.
pose z := a1 - r1.
have hz1 : `|z - a1| <= r1 by rewrite addrC addKr normrN gtr0_norm.
have gt_yr1' : y + r1 < a1.
rewrite addrC; move: gt_yr1.
rewrite (monoLR (addrNK _) (ltrD2r _)).
rewrite /z ltr_normr opprB=> /orP[|-> //].
rewrite (monoRL (addrK a1) (ltrD2r _))=> /lt_trans /(_ lt_xy).
by rewrite ltNge addrC; move: le_xr1; rewrite ler_distl=> /andP [_ ->].
have lt_yz : y < z by rewrite (monoRL (addrK _) (ltrD2r _)).
have hz2 : `|z - a2| <= r2.
move: (har); rewrite ler_norml=> /andP [la ua].
rewrite addrAC ler_distl ua andbT.
rewrite -[a1](addrNK y) -[_ - _ + _ - _]addrA.
rewrite lerD //.
by rewrite (monoRL (addrK _) (lerD2r _)) addrC ltW.
by move: le_yr2; rewrite ler_norml=> /andP[].
have [<-|neq_zx] := eqVneq z x.
by rewrite -ltr_pdivlMr ?subr_gt0 // gt_min hk2 ?orbT // gt_eqF.
have lt_zx : z < x.
rewrite lt_neqAle neq_zx /=.
move: le_xr1; rewrite distrC ler_norml=> /andP[_].
by rewrite !(monoLR (addrK _) (lerD2r _)) addrC.
rewrite -{1}[x](addrNK z) -{1}[p.[x]](addrNK p.[z]).
rewrite !addrA -![_ - _ + _ - _]addrA mulrDr ltrD //.
rewrite -ltr_pdivlMr ?subr_gt0 //.
by rewrite gt_min hk1 ?gt_eqF.
rewrite -ltr_pdivlMr ?subr_gt0 //.
by rewrite gt_min hk2 ?orbT ?gt_eqF.
Qed.
End monotony.
Section CauchyReals.
Local Open Scope creal_scope.
Local Open Scope ring_scope.
Definition asympt1 (R : numDomainType) (P : R -> nat -> Prop)
:= {m : R -> nat | forall eps i, 0 < eps -> (m eps <= i)%N -> P eps i}.
Definition asympt2 (R : numDomainType) (P : R -> nat -> nat -> Prop)
:= {m : R -> nat | forall eps i j, 0 < eps -> (m eps <= i)%N -> (m eps <= j)%N -> P eps i j}.
Notation "{ 'asympt' e : i / P }" := (asympt1 (fun e i => P))
(at level 0, e name, i name, format "{ 'asympt' e : i / P }") : type_scope.
Notation "{ 'asympt' e : i j / P }" := (asympt2 (fun e i j => P))
(at level 0, e name, i name, j name, format "{ 'asympt' e : i j / P }") : type_scope.
Lemma asympt1modP (R : numDomainType) P (a : asympt1 P) e i :
0 < e :> R -> (projT1 a e <= i)%N -> P e i.
Proof. by case: a e i. Qed.
Lemma asympt2modP (R : numDomainType) P (a : asympt2 P) e i j :
0 < e :> R -> (projT1 a e <= i)%N -> (projT1 a e <= j)%N -> P e i j.
Proof. by case: a e i j. Qed.
Variable F : realFieldType.
(* Lemma asympt_mulLR (k : F) (hk : 0 < k) (P : F -> nat -> Prop) : *)
(* {asympt e : i / P e i} -> {asympt e : i / P (e * k) i}. *)
(* Proof. *)
(* case=> m hm; exists (fun e => m (e * k))=> e i he hi. *)
(* by apply: hm=> //; rewrite -ltr_pdivrMr // mul0r. *)
(* Qed. *)
(* Lemma asympt_mulRL (k : F) (hk : 0 < k) (P : F -> nat -> Prop) : *)
(* {asympt e : i / P (e * k) i} -> {asympt e : i / P e i}. *)
(* Proof. *)
(* case=> m hm; exists (fun e => m (e / k))=> e i he hi. *)
(* rewrite -[e](@mulfVK _ k) ?gtr_eqF //. *)
(* by apply: hm=> //; rewrite -ltr_pdivrMr ?invr_gt0 // mul0r. *)
(* Qed. *)
Lemma asymptP (P1 : F -> nat -> Prop) (P2 : F -> nat -> Prop) :
(forall e i, 0 < e -> P1 e i -> P2 e i) ->
{asympt e : i / P1 e i} -> {asympt e : i / P2 e i}.
Proof.
by move=> hP; case=> m hm; exists m=> e i he me; apply: hP=> //; apply: hm.
Qed.
(* Lemma asympt2_mulLR (k : F) (hk : 0 < k) (P : F -> nat -> nat -> Prop) : *)
(* {asympt e : i j / P e i j} -> {asympt e : i j / P (e * k) i j}. *)
(* Proof. *)
(* case=> m hm; exists (fun e => m (e * k))=> e i j he hi hj. *)
(* by apply: hm=> //; rewrite -ltr_pdivrMr // mul0r. *)
(* Qed. *)
(* Lemma asympt2_mulRL (k : F) (hk : 0 < k) (P : F -> nat -> nat -> Prop) : *)
(* {asympt e : i j / P (e * k) i j} -> {asympt e : i j / P e i j}. *)
(* Proof. *)
(* case=> m hm; exists (fun e => m (e / k))=> e i j he hi hj. *)
(* rewrite -[e](@mulfVK _ k) ?gtr_eqF //. *)
(* by apply: hm=> //; rewrite -ltr_pdivrMr ?invr_gt0 // mul0r. *)
(* Qed. *)
(* Lemma asympt2P (P1 : F -> nat -> nat -> Prop) (P2 : F -> nat -> nat -> Prop) : *)
(* (forall e i j, 0 < e -> P1 e i j -> P2 e i j) -> *)
(* {asympt e : i j / P1 e i j} -> {asympt e : i j / P2 e i j}. *)
(* Proof. *)
(* move=> hP; case=> m hm; exists m=> e i j he mei mej. *)
(* by apply: hP=> //; apply: hm. *)
(* Qed. *)
Lemma splitf (n : nat) (e : F) : e = iterop n +%R (e / n%:R) e.
Proof.
case: n=> // n; set e' := (e / _).
have -> : e = e' * n.+1%:R by rewrite mulfVK ?pnatr_eq0.
move: e'=> {}e; rewrite iteropS.
by elim: n=> /= [|n <-]; rewrite !mulr_natr ?mulr1n.
Qed.
Lemma splitD (x y e : F) : x < e / 2%:R -> y < e / 2%:R -> x + y < e.
Proof. by move=> hx hy; rewrite [e](splitf 2) ltrD. Qed.
Lemma divrn_gt0 (e : F) (n : nat) : 0 < e -> (0 < n)%N -> 0 < e / n%:R.
Proof. by move=> e_gt0 n_gt0; rewrite pmulr_rgt0 ?gtr0E. Qed.
Lemma split_norm_add (x y e : F) :
`|x| < e / 2%:R -> `|y| < e / 2%:R -> `|x + y| < e.
Proof. by move=> hx hy; rewrite (le_lt_trans (ler_normD _ _)) // splitD. Qed.
Lemma split_norm_sub (x y e : F) :
`|x| < e / 2%:R -> `|y| < e / 2%:R -> `|x - y| < e.
Proof. by move=> hx hy; rewrite (le_lt_trans (ler_normB _ _)) // splitD. Qed.
Lemma split_dist_add (z x y e : F) :
`|x - z| < e / 2%:R -> `|z - y| < e / 2%:R -> `|x - y| < e.
Proof.
by move=> *; rewrite (le_lt_trans (ler_distD z _ _)) ?splitD // 1?distrC.
Qed.
Definition creal_axiom (x : nat -> F) := {asympt e : i j / `|x i - x j| < e}.
Record creal := CReal {cauchyseq :> nat -> F; _ : creal_axiom cauchyseq}.
Bind Scope creal_scope with creal.
Lemma crealP (x : creal) : {asympt e : i j / `|x i - x j| < e}.
Proof. by case: x. Qed.
Definition cauchymod :=
nosimpl (fun (x : creal) => let: CReal _ m := x in projT1 m).
Lemma cauchymodP (x : creal) eps i j : 0 < eps ->
(cauchymod x eps <= i)%N -> (cauchymod x eps <= j)%N -> `|x i - x j| < eps.
Proof. by case: x=> [x [m mP] //] /mP; apply. Qed.
Definition neq_creal (x y : creal) : Prop :=
exists eps, (0 < eps) &&
(eps * 3%:R <= `|x (cauchymod x eps) - y (cauchymod y eps)|).
Notation "!=%CR" := neq_creal : creal_scope.
Notation "x != y" := (neq_creal x y) : creal_scope.
Definition eq_creal x y := (~ (x != y)%CR).
Notation "x == y" := (eq_creal x y) : creal_scope.
Lemma ltr_distl_creal (e : F) (i : nat) (x : creal) (j : nat) (a b : F) :
0 < e -> (cauchymod x e <= i)%N -> (cauchymod x e <= j)%N ->
`| x i - a | <= b - e -> `| x j - a | < b.
Proof.
move=> e_gt0 hi hj hb.
rewrite (le_lt_trans (ler_distD (x i) _ _)) ?ltr_leD //.
by rewrite -[b](addrNK e) addrC ler_ltD ?cauchymodP.
Qed.
Lemma ltr_distr_creal (e : F) (i : nat) (x : creal) (j : nat) (a b : F) :
0 < e -> (cauchymod x e <= i)%N -> (cauchymod x e <= j)%N ->
a + e <= `| x i - b | -> a < `| x j - b |.
Proof.
move=> e_gt0 hi hj hb; apply: contraLR hb; rewrite -ltNge -leNgt.
by move=> ha; rewrite (@ltr_distl_creal e j) // addrK.
Qed.
(* Lemma asympt_neq (x y : creal) : x != y -> *)
(* {e | 0 < e & forall i, (cauchymod x e <= i)%N -> *)
(* (cauchymod y e <= i)%N -> `|x i - y i| >= e}. *)
(* Proof. *)
(* case/sigW=> e /andP[e_gt0 hxy]. *)
(* exists e=> // i hi hj; move: hxy; rewrite !lerNgt; apply: contra=> hxy. *)
(* rewrite !mulrDr !mulr1 distrC (@ltr_distl_creal i) //. *)
(* by rewrite distrC ltrW // (@ltr_distl_creal i) // ltrW. *)
(* Qed. *)
Definition lbound (x y : creal) (neq_xy : x != y) : F :=
projT1 (sigW neq_xy).
Lemma lboundP (x y : creal) (neq_xy : x != y) i :
(cauchymod x (lbound neq_xy) <= i)%N ->
(cauchymod y (lbound neq_xy) <= i)%N -> lbound neq_xy <= `|x i - y i|.
Proof.
rewrite /lbound; case: (sigW _)=> /= d /andP[d_gt0 hd] hi hj.
apply: contraLR hd; rewrite -!ltNge=> hd.
rewrite (@ltr_distl_creal d i) // distrC ltW // (@ltr_distl_creal d i) //.
by rewrite distrC ltW // !mulrDr mulr1 !addrA !addrK.
Qed.
Notation lbound_of p := (@lboundP _ _ p _ _ _).
Lemma lbound_gt0 (x y : creal) (neq_xy : x != y) : lbound neq_xy > 0.
Proof. by rewrite /lbound; case: (sigW _)=> /= d /andP[]. Qed.
Definition lbound_ge0 x y neq_xy := (ltW (@lbound_gt0 x y neq_xy)).
Lemma cst_crealP (x : F) : creal_axiom (fun _ => x).
Proof. by exists (fun _ => 0%N)=> *; rewrite subrr normr0. Qed.
Definition cst_creal (x : F) := CReal (cst_crealP x).
Notation "x %:CR" := (cst_creal x)
(at level 2, left associativity, format "x %:CR") : creal_scope.
Notation "0" := (0 %:CR) : creal_scope.
Lemma lbound0P (x : creal) (x_neq0 : x != 0) i :
(cauchymod x (lbound x_neq0) <= i)%N ->
(cauchymod 0%CR (lbound x_neq0) <= i)%N -> lbound x_neq0 <= `|x i|.
Proof. by move=> cx c0; rewrite -[X in `|X|]subr0 -[0]/(0%CR i) lboundP. Qed.
Notation lbound0_of p := (@lbound0P _ p _ _ _).
Lemma neq_crealP e i j (e_gt0 : 0 < e) (x y : creal) :
(cauchymod x (e / 5%:R) <= i)%N -> (cauchymod y (e / 5%:R) <= j)%N ->
e <= `|x i - y j| -> x != y.
Proof.
move=> hi hj he; exists (e / 5%:R); rewrite pmulr_rgt0 ?gtr0E //=.
rewrite distrC ltW // (@ltr_distr_creal (e / 5%:R) j) ?pmulr_rgt0 ?gtr0E //.
rewrite distrC ltW // (@ltr_distr_creal (e / 5%:R) i) ?pmulr_rgt0 ?gtr0E //.
by rewrite mulr_natr -!mulrSr -mulrnAr -mulr_natr mulVf ?pnatr_eq0 ?mulr1.
Qed.
Lemma eq_crealP (x y : creal) : {asympt e : i / `|x i - y i| < e} ->
(x == y)%CR.
Proof.
case=> m hm neq_xy; pose d := lbound neq_xy.
pose_big_enough i.
have := (hm d i); rewrite lbound_gt0; big_enough => /(_ isT isT).
by apply/negP; rewrite -leNgt lboundP.
by close.
Qed.
Lemma eq0_crealP (x : creal) : {asympt e : i / `|x i| < e} -> x == 0.
Proof.
by move=> hx; apply: eq_crealP; apply: asymptP hx=> e i; rewrite subr0.
Qed.
Lemma asympt_eq (x y : creal) (eq_xy : x == y) :
{asympt e : i / `|x i - y i| < e}.
Proof.
exists_big_modulus m F.
move=> e i e0 hi; rewrite ltNge; apply/negP=> he; apply: eq_xy.
by apply: (@neq_crealP e i i).
by close.
Qed.
Lemma asympt_eq0 (x : creal) : x == 0 -> {asympt e : i / `|x i| < e}.
Proof. by move/asympt_eq; apply: asymptP=> e i; rewrite subr0. Qed.
Definition eq_mod (x y : creal) (eq_xy : x == y) := projT1 (asympt_eq eq_xy).
Lemma eq_modP (x y : creal) (eq_xy : x == y) eps i : 0 < eps ->
(eq_mod eq_xy eps <= i)%N -> `|x i - y i| < eps.
Proof.
by move=> eps_gt0; rewrite /eq_mod; case: (asympt_eq _)=> /= m hm /hm; apply.
Qed.
Lemma eq0_modP (x : creal) (x_eq0 : x == 0) eps i : 0 < eps ->
(eq_mod x_eq0 eps <= i)%N -> `|x i| < eps.
Proof.
by move=> eps_gt0 hi; rewrite -[X in `|X|]subr0 -[0]/(0%CR i) eq_modP.
Qed.
Lemma eq_creal_refl x : x == x.
Proof.
apply: eq_crealP; exists (fun _ => 0%N).
by move=> e i e_gt0 _; rewrite subrr normr0.
Qed.
Hint Resolve eq_creal_refl : core.
Lemma neq_creal_sym x y : x != y -> y != x.
Proof.
move=> neq_xy; pose_big_enough i.
apply: (@neq_crealP (lbound neq_xy) i i);
by rewrite ?lbound_gt0 1?distrC ?(lbound_of neq_xy).
by close.
Qed.
Lemma eq_creal_sym x y : x == y -> y == x.
Proof. by move=> eq_xy /neq_creal_sym. Qed.
Lemma eq_creal_trans x y z : x == y -> y == z -> x == z.
Proof.
move=> eq_xy eq_yz; apply: eq_crealP; exists_big_modulus m F.
by move=> e i *; rewrite (@split_dist_add (y i)) ?eq_modP ?divrn_gt0.
by close.
Qed.
Lemma creal_neq_always (x y : creal) i (neq_xy : x != y) :
(cauchymod x (lbound neq_xy) <= i)%N ->
(cauchymod y (lbound neq_xy) <= i)%N -> (x i != y i)%B.
Proof.
move=> hx hy; rewrite -subr_eq0 -normr_gt0.
by rewrite (lt_le_trans _ (lbound_of neq_xy)) ?lbound_gt0.
Qed.
Definition creal_neq0_always (x : creal) := @creal_neq_always x 0.
Definition lt_creal (x y : creal) : Prop :=
exists eps, (0 < eps) &&
(x (cauchymod x eps) + eps * 3%:R <= y (cauchymod y eps)).
Notation "<%CR" := lt_creal : creal_scope.
Notation "x < y" := (lt_creal x y) : creal_scope.
Definition le_creal (x y : creal) : Prop := ~ (y < x)%CR.
Notation "<=%CR" := le_creal : creal_scope.
Notation "x <= y" := (le_creal x y) : creal_scope.
Lemma ltr_creal (e : F) (i : nat) (x : creal) (j : nat) (a : F) :
0 < e -> (cauchymod x e <= i)%N -> (cauchymod x e <= j)%N ->
x i <= a - e -> x j < a.
Proof.
move=> e_gt0 hi hj ha; have := cauchymodP e_gt0 hj hi.
rewrite ltr_distl=> /andP[_ /lt_le_trans-> //].
by rewrite -(lerD2r (- e)) addrK.
Qed.
Lemma gtr_creal (e : F) (i : nat) (x : creal) (j : nat) (a : F) :
0 < e -> (cauchymod x e <= i)%N -> (cauchymod x e <= j)%N ->
a + e <= x i-> a < x j.
Proof.
move=> e_gt0 hi hj ha; have := cauchymodP e_gt0 hj hi.
rewrite ltr_distl=> /andP[/(le_lt_trans _)-> //].
by rewrite -(lerD2r e) addrNK.
Qed.
Definition diff (x y : creal) (lt_xy : (x < y)%CR) : F := projT1 (sigW lt_xy).
Lemma diff_gt0 (x y : creal) (lt_xy : (x < y)%CR) : diff lt_xy > 0.
Proof. by rewrite /diff; case: (sigW _)=> /= d /andP[]. Qed.
Definition diff_ge0 x y lt_xy := (ltW (@diff_gt0 x y lt_xy)).
Lemma diffP (x y : creal) (lt_xy : (x < y)%CR) i :
(cauchymod x (diff lt_xy) <= i)%N ->
(cauchymod y (diff lt_xy) <= i)%N -> x i + diff lt_xy <= y i.
Proof.
rewrite /diff; case: (sigW _)=> /= e /andP[e_gt0 he] hi hj.
rewrite ltW // (@gtr_creal e (cauchymod y e)) // (le_trans _ he) //.
rewrite !mulrDr mulr1 !addrA !lerD2r ltW //.
by rewrite (@ltr_creal e (cauchymod x e)) // addrK.
Qed.
Notation diff_of p := (@diffP _ _ p _ _ _).
Lemma diff0P (x : creal) (x_gt0 : (0 < x)%CR) i :
(cauchymod x (diff x_gt0) <= i)%N ->
(cauchymod 0%CR (diff x_gt0) <= i)%N -> diff x_gt0 <= x i.
Proof. by move=> cx c0; rewrite -[diff _]add0r -[0]/(0%CR i) diffP. Qed.
Notation diff0_of p := (@diff0P _ p _ _ _).
Lemma lt_crealP e i j (e_gt0 : 0 < e) (x y : creal) :
(cauchymod x (e / 5%:R) <= i)%N -> (cauchymod y (e / 5%:R) <= j)%N ->
x i + e <= y j -> (x < y)%CR.
Proof.
move=> hi hj he; exists (e / 5%:R); rewrite pmulr_rgt0 ?gtr0E //=.
rewrite ltW // (@gtr_creal (e / 5%:R) j) ?pmulr_rgt0 ?gtr0E //.
rewrite (le_trans _ he) // -addrA (monoLR (addrNK _) (lerD2r _)).
rewrite ltW // (@ltr_creal (e / 5%:R) i) ?pmulr_rgt0 ?gtr0E //.
rewrite -!addrA lerDl !addrA -mulrA -{1}[e]mulr1 -!(mulrBr, mulrDr).
rewrite pmulr_rge0 // {1}[1](splitf 5) /= !mul1r !mulrDr mulr1.
by rewrite !opprD !addrA !addrK addrN.
Qed.
Lemma le_crealP i (x y : creal) :
(forall j, (i <= j)%N -> x j <= y j) -> (x <= y)%CR.
Proof.
move=> hi lt_yx; pose_big_enough j.
have := hi j; big_enough => /(_ isT); apply/negP; rewrite -ltNge.
by rewrite (lt_le_trans _ (diff_of lt_yx)) ?ltr_pwDr ?diff_gt0.
by close.
Qed.
Lemma le_creal_refl (x : creal) : (x <= x)%CR.
Proof. by apply: (@le_crealP 0%N). Qed.
Hint Resolve le_creal_refl : core.
Lemma lt_neq_creal (x y : creal) : (x < y)%CR -> x != y.
Proof.
move=> ltxy; pose_big_enough i.
apply: (@neq_crealP (diff ltxy) i i) => //; first by rewrite diff_gt0.
by rewrite distrC leNgt ltr_distl negb_and -!leNgt diffP ?orbT.
by close.
Qed.
Lemma creal_lt_always (x y : creal) i (lt_xy : (x < y)%CR) :
(cauchymod x (diff lt_xy) <= i)%N ->
(cauchymod y (diff lt_xy) <= i)%N -> x i < y i.
Proof.
by move=> hx hy; rewrite (lt_le_trans _ (diff_of lt_xy)) ?ltrDl ?diff_gt0.
Qed.
Definition creal_gt0_always := @creal_lt_always 0.
Lemma eq_le_creal (x y : creal) : x == y -> (x <= y)%CR.
Proof. by move=> /eq_creal_sym ? /lt_neq_creal. Qed.
Lemma asympt_le (x y : creal) (le_xy : (x <= y)%CR) :
{asympt e : i / x i < y i + e}.
Proof.
exists_big_modulus m F.
move=> e i e0 hm; rewrite ltNge; apply/negP=> he; apply: le_xy.
by apply: (@lt_crealP e i i).
by close.
Qed.
Lemma asympt_ge0 (x : creal) : (0 <= x)%CR -> {asympt e : i / - e < x i}.
Proof. by move/asympt_le; apply: asymptP=> *; rewrite -subr_gt0 opprK. Qed.
Definition le_mod (x y : creal) (le_xy : (x <= y)%CR) := projT1 (asympt_le le_xy).
Lemma le_modP (x y : creal) (le_xy : (x <= y)%CR) eps i : 0 < eps ->
(le_mod le_xy eps <= i)%N -> x i < y i + eps.
Proof.
by move=> eps_gt0; rewrite /le_mod; case: (asympt_le _)=> /= m hm /hm; apply.
Qed.
Lemma ge0_modP (x : creal) (x_ge0 : (0 <= x)%CR) eps i : 0 < eps ->
(le_mod x_ge0 eps <= i)%N -> - eps < x i.
Proof.
by move=> eps_gt0 hi; rewrite -(ltrD2r eps) addNr -[0]/(0%CR i) le_modP.
Qed.
Lemma opp_crealP (x : creal) : creal_axiom (fun i => - x i).
Proof. by case: x=> [x [m mP]]; exists m=> *; rewrite /= -opprD normrN mP. Qed.
Definition opp_creal (x : creal) := CReal (opp_crealP x).
Notation "-%CR" := opp_creal : creal_scope.
Notation "- x" := (opp_creal x) : creal_scope.
Lemma add_crealP (x y : creal) : creal_axiom (fun i => x i + y i).
Proof.
exists_big_modulus m F.
move=> e i j he hi hj; rewrite opprD addrAC addrA -addrA [- _ + _]addrC.
by rewrite split_norm_add ?cauchymodP ?divrn_gt0.
by close.
Qed.
Definition add_creal (x y : creal) := CReal (add_crealP x y).
Notation "+%CR" := add_creal : creal_scope.
Notation "x + y" := (add_creal x y) : creal_scope.
Notation "x - y" := (x + - y)%CR : creal_scope.
Lemma ubound_subproof (x : creal) : {b : F | b > 0 & forall i, `|x i| <= b}.
Proof.
pose_big_enough i; first set b := 1 + `|x i|.
exists (foldl Num.max b [seq `|x n| | n <- iota 0 i]) => [|n].
have : 0 < b by rewrite ltr_pwDl.
by elim: iota b => //= a l IHl b b_gt0; rewrite IHl ?lt_max ?b_gt0.
have [|le_in] := (ltnP n i).
elim: i b => [|i IHi] b //.
rewrite ltnS -addn1 iotaD add0n map_cat foldl_cat /= le_max leq_eqVlt.
by case/orP=> [/eqP->|/IHi->] //; rewrite lexx orbT.
set xn := `|x n|; suff : xn <= b.
by elim: iota xn b => //= a l IHl xn b Hxb; rewrite IHl ?le_max ?Hxb.
rewrite -lerBlDr (le_trans (ler_norm _)) //.
by rewrite (le_trans (ler_dist_dist _ _)) ?ltW ?cauchymodP.
by close.
Qed.
Definition ubound (x : creal) :=
nosimpl (let: exist2 b _ _ := ubound_subproof x in b).
Lemma uboundP (x : creal) i : `|x i| <= ubound x.
Proof. by rewrite /ubound; case: ubound_subproof. Qed.
Lemma ubound_gt0 x : 0 < ubound x.
Proof. by rewrite /ubound; case: ubound_subproof. Qed.
Definition ubound_ge0 x := (ltW (ubound_gt0 x)).
Lemma mul_crealP (x y : creal) : creal_axiom (fun i => x i * y i).
Proof.
exists_big_modulus m F.
move=> e i j e_gt0 hi hj.
rewrite -[_ * _]subr0 -(subrr (x j * y i)) opprD opprK addrA.
rewrite -mulrBl -addrA -mulrBr split_norm_add // !normrM.
have /ler_wpM2l /le_lt_trans-> // := uboundP y i.
rewrite -ltr_pdivlMr ?ubound_gt0 ?cauchymodP //.
by rewrite !pmulr_rgt0 ?invr_gt0 ?ubound_gt0 ?ltr0n.
rewrite mulrC; have /ler_wpM2l /le_lt_trans-> // := uboundP x j.
rewrite -ltr_pdivlMr ?ubound_gt0 ?cauchymodP //.
by rewrite !pmulr_rgt0 ?gtr0E ?ubound_gt0.
by close.
Qed.
Definition mul_creal (x y : creal) := CReal (mul_crealP x y).
Notation "*%CR" := mul_creal : creal_scope.
Notation "x * y" := (mul_creal x y) : creal_scope.
Lemma inv_crealP (x : creal) (x_neq0 : x != 0) : creal_axiom (fun i => (x i)^-1).
Proof.
pose d := lbound x_neq0.
exists_big_modulus m F.
(* exists (fun e => [CC x # e * d ^+ 2; ! x_neq0]). *)
move=> e i j e_gt0 hi hj.
have /andP[xi_neq0 xj_neq0] : (x i != 0) && (x j != 0).
by rewrite -!normr_gt0 !(lt_le_trans _ (lbound0_of x_neq0)) ?lbound_gt0.
rewrite -(@ltr_pM2r _ `|x i * x j|); last by rewrite normr_gt0 mulf_neq0.
rewrite -normrM !mulrBl mulrA mulVf // mulrCA mulVf // mul1r mulr1.
apply: lt_le_trans (_ : e * d ^+ 2 <= _).
by apply: cauchymodP; rewrite // !pmulr_rgt0 ?lbound_gt0.
rewrite ler_wpM2l ?(ltW e_gt0) // normrM.
have /(_ j) hx /= := lbound0_of x_neq0.
have -> // := (le_trans (ler_wpM2l _ (hx _ _))).
by rewrite ltW // lbound_gt0.
by rewrite ler_wpM2r ?normr_ge0 // lbound0P.
by close.
Qed.
Definition inv_creal (x : creal) (x_neq0 : x != 0) := CReal (inv_crealP x_neq0).
Notation "x_neq0 ^-1" := (inv_creal x_neq0) : creal_scope.
Notation "x / y_neq0" := (x * (y_neq0 ^-1))%CR : creal_scope.
Lemma norm_crealP (x : creal) : creal_axiom (fun i => `|x i|).
Proof.
exists (cauchymod x).
by move=> *; rewrite (le_lt_trans (ler_dist_dist _ _)) ?cauchymodP.
Qed.
Definition norm_creal x := CReal (norm_crealP x).
Local Notation "`| x |" := (norm_creal x) : creal_scope.
Lemma horner_crealP (p : {poly F}) (x : creal) :
creal_axiom (fun i => p.[x i]).
Proof.
exists_big_modulus m F=> [e i j e_gt0 hi hj|].
rewrite (le_lt_trans (@poly_accr_bound1P _ p (x (cauchymod x 1)) 1 _ _ _ _));
do ?[by rewrite ?e_gt0 | by rewrite ltW // cauchymodP].
rewrite -ltr_pdivlMr ?poly_accr_bound_gt0 ?cauchymodP //.
by rewrite pmulr_rgt0 ?invr_gt0 ?poly_accr_bound_gt0.
by close.
Qed.
Definition horner_creal (p : {poly F}) (x : creal) := CReal (horner_crealP p x).
Notation "p .[ x ]" := (horner_creal p x) : creal_scope.
Lemma neq_creal_horner p (x y : creal) : p.[x] != p.[y] -> x != y.
Proof.
move=> neq_px_py.
pose d := lbound neq_px_py.
pose_big_enough i.
pose k := 2%:R + poly_accr_bound p (y i) d.
have /andP[d_gt0 k_gt0] : (0 < d) && (0 < k).
rewrite ?(ltr_pwDl, poly_accr_bound_ge0);
by rewrite ?ltr0n ?ltW ?ltr01 ?lbound_gt0.
pose_big_enough j.
apply: (@neq_crealP (d / k) j j) => //.
by rewrite ?(pmulr_lgt0, invr_gt0, ltr0n).
rewrite ler_pdivrMr //.
have /(_ j) // := (lbound_of neq_px_py).
big_enough=> /(_ isT isT).
apply: contraLR; rewrite -!ltNge=> hxy.
rewrite (le_lt_trans (@poly_accr_bound1P _ _ (y i) d _ _ _ _)) //.
+ by rewrite ltW // cauchymodP.
+ rewrite ltW // (@split_dist_add (y j)) //; last first.
by rewrite cauchymodP ?divrn_gt0.
rewrite ltr_pdivlMr ?ltr0n // (le_lt_trans _ hxy) //.
by rewrite ler_wpM2l ?normr_ge0 // ler_wpDr // poly_accr_bound_ge0.
rewrite (le_lt_trans _ hxy) // ler_wpM2l ?normr_ge0 //.
by rewrite ler_wpDl // ?ler0n.
by close.
by close.
Qed.
Lemma eq_creal_horner p (x y : creal) : x == y -> p.[x] == p.[y].
Proof. by move=> hxy /neq_creal_horner. Qed.
Import Setoid Relation_Definitions.
Add Relation creal eq_creal
reflexivity proved by eq_creal_refl
symmetry proved by eq_creal_sym
transitivity proved by eq_creal_trans
as eq_creal_rel.
Global Existing Instance eq_creal_rel.
Add Morphism add_creal with
signature eq_creal ==> eq_creal ==> eq_creal as add_creal_morph.
Proof.
move=> x y eq_xy z t eq_zt; apply: eq_crealP.
exists_big_modulus m F.
move=> e i e_gt0 hi; rewrite opprD addrA [X in X + _]addrAC -addrA.
by rewrite split_norm_add ?eq_modP ?divrn_gt0.
by close.
Qed.
Global Existing Instance add_creal_morph_Proper.
Add Morphism opp_creal with
signature eq_creal ==> eq_creal as opp_creal_morph.
Proof.
move=> x y /asympt_eq [m hm]; apply: eq_crealP; exists m.
by move=> e i e_gt0 hi /=; rewrite -opprD normrN hm.
Qed.
Global Existing Instance opp_creal_morph_Proper.
Add Morphism mul_creal with
signature eq_creal ==> eq_creal ==> eq_creal as mul_creal_morph.
Proof.
move=> x y eq_xy z t eq_zt; apply: eq_crealP.
exists_big_modulus m F.
move=> e i e_gt0 hi.
rewrite (@split_dist_add (y i * z i)) // -(mulrBl, mulrBr) normrM.
have /ler_wpM2l /le_lt_trans-> // := uboundP z i.
rewrite -ltr_pdivlMr ?ubound_gt0 ?eq_modP //.
by rewrite !pmulr_rgt0 ?invr_gt0 ?ubound_gt0 ?ltr0n.
rewrite mulrC; have /ler_wpM2l /le_lt_trans-> // := uboundP y i.
rewrite -ltr_pdivlMr ?ubound_gt0 ?eq_modP //.
by rewrite !pmulr_rgt0 ?invr_gt0 ?ubound_gt0 ?ltr0n.
by close.
Qed.
Global Existing Instance mul_creal_morph_Proper.
Lemma eq_creal_inv (x y : creal) (x_neq0 : x != 0) (y_neq0 : y != 0) :
(x == y) -> (x_neq0^-1 == y_neq0^-1).
Proof.
move=> eq_xy; apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=.
rewrite -(@ltr_pM2r _ (lbound x_neq0 * lbound y_neq0));
do ?by rewrite ?pmulr_rgt0 ?lbound_gt0.
apply: le_lt_trans (_ : `|(x i)^-1 - (y i)^-1| * (`|x i| * `|y i|) < _).
rewrite ler_wpM2l ?normr_ge0 //.
apply: le_trans (_ : `|x i| * lbound y_neq0 <= _).
by rewrite ler_wpM2r ?lbound_ge0 ?lbound0P.
by rewrite ler_wpM2l ?normr_ge0 ?lbound0P.
rewrite -!normrM mulrBl mulKf ?creal_neq0_always //.
rewrite mulrCA mulVf ?mulr1 ?creal_neq0_always //.
by rewrite distrC eq_modP ?pmulr_rgt0 ?lbound_gt0.
by close.
Qed.
Add Morphism horner_creal with
signature (@eq _) ==> eq_creal ==> eq_creal as horner_creal_morph.
Proof. exact: eq_creal_horner. Qed.
Global Existing Instance horner_creal_morph_Proper.
Add Morphism lt_creal with
signature eq_creal ==> eq_creal ==> iff as lt_creal_morph.
Proof.
move=> x y eq_xy z t eq_zt.
wlog lxz : x y z t eq_xy eq_zt / (x < z)%CR.
move=> hwlog; split=> h1; move: (h1) => /hwlog; apply=> //;
by apply: eq_creal_sym.
split=> // _.
pose e' := diff lxz / 4%:R.
have e'_gt0 : e' > 0 by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
have le_zt : (z <= t)%CR by apply: eq_le_creal.
have le_xy : (y <= x)%CR by apply: eq_le_creal; apply: eq_creal_sym.
pose_big_enough i.
apply: (@lt_crealP e' i i)=> //.
rewrite ltW // -(ltrD2r e').
rewrite (le_lt_trans _ (@le_modP _ _ le_zt _ _ _ _)) //.
rewrite -addrA (monoLR (@addrNK _ _) (@lerD2r _ _)) ltW //.
rewrite (lt_le_trans (@le_modP _ _ le_xy e' _ _ _)) //.
rewrite -(monoLR (@addrNK _ _) (@lerD2r _ _)) ltW //.
rewrite (lt_le_trans _ (diff_of lxz)) //.
rewrite -addrA ler_ltD // /e' -!mulrDr gtr_pMr ?diff_gt0 //.
by rewrite [X in _ < X](splitf 4) /= mul1r !ltrDr ?gtr0E.
by close.
Qed.
Global Existing Instance lt_creal_morph_Proper.
Add Morphism le_creal with
signature eq_creal ==> eq_creal ==> iff as le_creal_morph.
Proof. by move=> x y exy z t ezt; rewrite /le_creal exy ezt. Qed.
Global Existing Instance le_creal_morph_Proper.
Add Morphism norm_creal
with signature eq_creal ==> eq_creal as norm_creal_morph.
Proof.
move=> x y hxy; apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi.
by rewrite (le_lt_trans (ler_dist_dist _ _)) ?eq_modP.
by close.
Qed.
Global Existing Instance norm_creal_morph_Proper.
Lemma neq_creal_ltVgt (x y : creal) : x != y -> {(x < y)%CR} + {(y < x)%CR}.
Proof.
move=> neq_xy; pose_big_enough i.
have := (@lboundP _ _ neq_xy i); big_enough => /(_ isT isT).
have [le_xy|/ltW le_yx'] := lerP (x i) (y i).
rewrite -(lerD2r (x i)) ?addrNK addrC.
move=> /lt_crealP; rewrite ?lbound_gt0; big_enough.
by do 3!move/(_ isT); left.
rewrite -(lerD2r (y i)) ?addrNK addrC.
move=> /lt_crealP; rewrite ?lbound_gt0; big_enough.
by do 3!move/(_ isT); right.
by close.
Qed.
Lemma lt_creal_neq (x y : creal) : (x < y -> x != y)%CR.
Proof.
move=> lxy; pose_big_enough i.
apply: (@neq_crealP (diff lxy) i i); rewrite ?diff_gt0 //.
rewrite distrC ler_normr (monoRL (addrK _) (lerD2r _)) addrC.
by rewrite (diff_of lxy).
by close.
Qed.
Lemma gt_creal_neq (x y : creal) : (y < x -> x != y)%CR.
Proof. by move/lt_creal_neq /neq_creal_sym. Qed.
Lemma lt_creal_trans (x y z : creal) : (x < y -> y < z -> x < z)%CR.
Proof.
move=> lt_xy lt_yz; pose_big_enough i.
apply: (@lt_crealP (diff lt_xy + diff lt_yz) i i) => //.
by rewrite addr_gt0 ?diff_gt0.
rewrite (le_trans _ (diff_of lt_yz)) //.
by rewrite addrA lerD2r (diff_of lt_xy).
by close.
Qed.
Lemma lt_crealW (x y : creal) : (x < y)%CR -> (x <= y)%CR.
Proof. by move=> /lt_creal_trans /(_ _) /le_creal_refl. Qed.
Add Morphism neq_creal with
signature eq_creal ==> eq_creal ==> iff as neq_creal_morph.
Proof.
move=> x y eq_xy z t eq_zt; split=> /neq_creal_ltVgt [].
+ by rewrite eq_xy eq_zt=> /lt_creal_neq.
+ by rewrite eq_xy eq_zt=> /gt_creal_neq.
+ by rewrite -eq_xy -eq_zt=> /lt_creal_neq.
by rewrite -eq_xy -eq_zt=> /gt_creal_neq.
Qed.
Global Existing Instance neq_creal_morph_Proper.
Local Notation m0 := (fun (_ : F) => 0%N).
Lemma add_0creal x : 0 + x == x.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite add0r subrr normr0. Qed.
Lemma add_creal0 x : x + 0 == x.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite addr0 subrr normr0. Qed.
Lemma mul_creal0 x : x * 0 == 0.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite mulr0 subrr normr0. Qed.
Lemma mul_0creal x : 0 * x == 0.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite mul0r subrr normr0. Qed.
Lemma mul_creal1 x : x * 1%:CR == x.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite mulr1 subrr normr0. Qed.
Lemma mul_1creal x : 1%:CR * x == x.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite mul1r subrr normr0. Qed.
Lemma opp_creal0 : - 0 == 0.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite oppr0 addr0 normr0. Qed.
Lemma horner_crealX (x : creal) : 'X.[x] == x.
Proof. by apply: eq_crealP; exists m0=> *; rewrite /= hornerX subrr normr0. Qed.
Lemma horner_crealM (p q : {poly F}) (x : creal) :
((p * q).[x] == p.[x] * q.[x])%CR.
Proof.
by apply: eq_crealP; exists m0=> * /=; rewrite hornerM subrr normr0.
Qed.
Lemma neq_creal_cst x y : reflect (cst_creal x != cst_creal y) (x != y).
Proof.
apply: (iffP idP)=> neq_xy; pose_big_enough i.
+ by apply (@neq_crealP `|x - y| i i); rewrite ?normr_gt0 ?subr_eq0 .
+ by close.
+ by rewrite (@creal_neq_always _ _ i neq_xy).
+ by close.
Qed.
Lemma eq_creal_cst x y : reflect (cst_creal x == cst_creal y) (x == y).
Proof.
apply: (iffP idP)=> [|eq_xy]; first by move/eqP->.
by apply/negP=> /negP /neq_creal_cst; rewrite eq_xy; apply: eq_creal_refl.
Qed.
Lemma lt_creal_cst x y : reflect (cst_creal x < cst_creal y)%CR (x < y).
Proof.
apply: (iffP idP)=> lt_xy; pose_big_enough i.
+ apply: (@lt_crealP (y - x) i i); rewrite ?subr_gt0 //=.
by rewrite addrCA subrr addr0.
+ by close.
+ by rewrite (@creal_lt_always _ _ i lt_xy).
+ by close.
Qed.
Lemma le_creal_cst x y : reflect (cst_creal x <= cst_creal y)%CR (x <= y).
Proof. by rewrite leNgt; apply: (iffP negP)=> ? /lt_creal_cst. Qed.
Lemma mul_creal_neq0 x y : x != 0 -> y != 0 -> x * y != 0.
Proof.
move=> x_neq0 y_neq0.
pose d := lbound x_neq0 * lbound y_neq0.
have d_gt0 : 0 < d by rewrite pmulr_rgt0 lbound_gt0.
pose_big_enough i.
apply: (@neq_crealP d i i)=> //; rewrite subr0 normrM.
apply: le_trans (_ : `|x i| * lbound y_neq0 <= _).
by rewrite ler_wpM2r ?lbound_ge0 // lbound0P.
by rewrite ler_wpM2l ?normr_ge0 // lbound0P.
by close.
Qed.
Lemma mul_neq0_creal x y : x * y != 0 -> y != 0.
Proof.
move=> xy_neq0; pose_big_enough i.
apply: (@neq_crealP ((ubound x)^-1 * lbound xy_neq0) i i) => //.
by rewrite pmulr_rgt0 ?invr_gt0 ?lbound_gt0 ?ubound_gt0.
rewrite subr0 ler_pdivrMl ?ubound_gt0 //.
have /(_ i)-> // := (le_trans (lbound0_of xy_neq0)).
by rewrite normrM ler_wpM2r ?normr_ge0 ?uboundP.
by close.
Qed.
Lemma poly_mul_creal_eq0_coprime p q x :
coprimep p q ->
p.[x] * q.[x] == 0 -> {p.[x] == 0} + {q.[x] == 0}.
Proof.
move=> /Bezout_eq1_coprimepP /sig_eqW [[u v] /= hpq]; pose_big_enough i.
have := (erefl ((1 : {poly F}).[x i])).
rewrite -{1}hpq /= hornerD hornerC.
set upxi := (u * _).[_].
move=> hpqi.
have [p_small|p_big] := lerP `|upxi| 2%:R^-1=> pqx0; [left|right].
move=> px0; apply: pqx0; apply: mul_creal_neq0=> //.
apply: (@mul_neq0_creal v.[x]).
apply: (@neq_crealP 2%:R^-1 i i); rewrite ?gtr0E //.
rewrite /= subr0 -hornerM -(lerD2l `|upxi|).
rewrite (le_trans _ (ler_normD _ _)) // hpqi normr1.
rewrite (monoLR (addrNK _) (lerD2r _)).
by rewrite {1}[1](splitf 2) /= mul1r addrK.
move=> qx0; apply: pqx0; apply: mul_creal_neq0=> //.
apply: (@mul_neq0_creal u.[x]).
apply: (@neq_crealP 2%:R^-1 i i); rewrite ?gtr0E //.
by rewrite /= subr0 -hornerM ltW.
by close.
Qed.
Lemma dvdp_creal_eq0 p q x : p %| q -> p.[x] == 0 -> q.[x] == 0.
Proof.
by move=> dpq px0; rewrite -[q](divpK dpq) horner_crealM px0 mul_creal0.
Qed.
Lemma root_poly_expn_creal p k x : (0 < k)%N
-> (p ^+ k).[x] == 0 -> p.[x] == 0.
Proof.
move=> k_gt0 pkx_eq0; apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi; rewrite /= subr0.
rewrite -(@ltr_pXn2r _ k) -?topredE /= ?normr_ge0 ?ltW //.
by rewrite -normrX -horner_exp (@eq0_modP _ pkx_eq0) ?exprn_gt0 //.
by close.
Qed.
Lemma horner_cst_creal c x : c%:P.[x] == c%:CR.
Proof.
apply: eq_crealP; exists (fun _ => 0%N)=> e i e_gt0 _.
by rewrite /= hornerC subrr normr0.
Qed.
Lemma horner_creal_cst (p : {poly F}) (x : F) : p.[x%:CR] == p.[x]%:CR.
Proof. by apply: eq_crealP; exists m0=> *; rewrite /= subrr normr0. Qed.
Lemma poly_mul_creal_eq0 p q x :
p.[x] * q.[x] == 0 -> {p.[x] == 0} + {q.[x] == 0}.
Proof.
move=> mul_px_qx_eq0.
have [->|p_neq0] := altP (p =P 0); first by left; rewrite horner_cst_creal.
have [->|q_neq0] := altP (q =P 0); first by right; rewrite horner_cst_creal.
pose d := gcdp p q; pose p' := gdcop d p; pose q' := gdcop d q.
have cop_q'_d': coprimep p' q'.
rewrite /coprimep size_poly_eq1.
apply: (@coprimepP _ p' d _).
+ by rewrite coprimep_gdco.
+ by rewrite dvdp_gcdl.
rewrite dvdp_gcd (dvdp_trans (dvdp_gcdl _ _)) ?dvdp_gdco //.
by rewrite (dvdp_trans (dvdp_gcdr _ _)) ?dvdp_gdco.
suff : (p' * q').[x] * (d ^+ (size p + size q)).[x] == 0.
case/poly_mul_creal_eq0_coprime.
+ by rewrite coprimep_expr // coprimepMl ?coprimep_gdco.
+ move=> p'q'x_eq0.
have : p'.[x] * q'.[x] == 0 by rewrite -horner_crealM.
case/poly_mul_creal_eq0_coprime=> // /dvdp_creal_eq0 hp'q'.
by left; apply: hp'q'; rewrite dvdp_gdco.
by right; apply: hp'q'; rewrite dvdp_gdco.
move/root_poly_expn_creal.
rewrite addn_gt0 lt0n size_poly_eq0 p_neq0=> /(_ isT) dx_eq0.
by left; apply: dvdp_creal_eq0 dx_eq0; rewrite dvdp_gcdl.
move: mul_px_qx_eq0; rewrite -!horner_crealM.
rewrite exprD mulrAC mulrA -mulrA [_ ^+ _ * _]mulrC.
apply: dvdp_creal_eq0; rewrite ?dvdp_mul // dvdp_gdcor //;
by rewrite gcdp_eq0 negb_and p_neq0.
Qed.
Lemma coprimep_root (p q : {poly F}) x :
coprimep p q -> p.[x] == 0 -> q.[x] != 0.
Proof.
move=> /Bezout_eq1_coprimepP /sig_eqW [[u v] hpq] px0.
have upx_eq0 : u.[x] * p.[x] == 0 by rewrite px0 mul_creal0.
pose_big_enough i.
have := (erefl ((1 : {poly F}).[x i])).
rewrite -{1}hpq /= hornerD hornerC.
set upxi := (u * _).[_] => hpqi.
apply: (@neq_crealP ((ubound v.[x])%CR^-1 / 2%:R) i i) => //.
by rewrite pmulr_rgt0 ?gtr0E // ubound_gt0.
rewrite /= subr0 ler_pdivrMl ?ubound_gt0 //.
apply: le_trans (_ : `|(v * q).[x i]| <= _); last first.
by rewrite hornerM normrM ler_wpM2r ?normr_ge0 ?(uboundP v.[x]).
rewrite -(lerD2l `|upxi|) (le_trans _ (ler_normD _ _)) // hpqi normr1.
rewrite (monoLR (addrNK _) (lerD2r _)).
rewrite {1}[1](splitf 2) /= mul1r addrK ltW // /upxi hornerM.
by rewrite (@eq0_modP _ upx_eq0) ?gtr0E.
by close.
Qed.
Lemma deriv_neq0_mono (p : {poly F}) (x : creal) : p^`().[x] != 0 ->
{ r : F & 0 < r &
{ i : nat & (cauchymod x r <= i)%N & (strong_mono p (x i) r)} }.
Proof.
move=> px_neq0.
wlog : p px_neq0 / (0 < p^`().[x])%CR.
case/neq_creal_ltVgt: (px_neq0)=> px_lt0; last exact.
case/(_ (- p)).
+ pose_big_enough i.
apply: (@neq_crealP (lbound px_neq0) i i); do ?by rewrite ?lbound_gt0.
rewrite /= derivN hornerN subr0 normrN.
by rewrite (lbound0_of px_neq0).
by close.
+ pose_big_enough i.
apply: (@lt_crealP (diff px_lt0) i i); do ?by rewrite ?diff_gt0.
rewrite /= add0r derivN hornerN -subr_le0 opprK addrC.
by rewrite (diff_of px_lt0) //.
by close.
move=> r r_ge0 [i hi]; move/strong_monoN; rewrite opprK=> sm.
by exists r=> //; exists i.
move=> px_gt0.
pose b1 := poly_accr_bound p^`() 0 (1 + ubound x).
pose b2 := poly_accr_bound2 p 0 (1 + ubound x).
pose r : F := Num.min 1 (Num.min
(diff px_gt0 / 4%:R / b1)
(diff px_gt0 / 4%:R / b2 / 2%:R)).
exists r.
rewrite !lt_min ?ltr01 ?pmulr_rgt0 ?gtr0E ?diff_gt0;
by rewrite ?poly_accr_bound2_gt0 ?poly_accr_bound_gt0.
pose_big_enough i.
exists i => //; left; split; last first.
move=> y hy; have := (@poly_accr_bound1P _ p^`() 0 (1 + ubound x) (x i) y).
rewrite ?subr0 ler_wpDl ?ler01 ?uboundP //.
rewrite (le_trans (_ : _ <= r + `|x i|)) ?subr0; last 2 first.
+ rewrite (monoRL (addrNK _) (lerD2r _)).
by rewrite (le_trans (lerB_dist _ _)).
+ by rewrite lerD ?ge_min ?lexx ?uboundP.
move=> /(_ isT isT).
rewrite ler_distl=> /andP[le_py ge_py].
rewrite (lt_le_trans _ le_py) // subr_gt0 -/b1.
rewrite (lt_le_trans _ (diff0_of px_gt0)) //.
apply: le_lt_trans (_ : r * b1 < _).
by rewrite ler_wpM2r ?poly_accr_bound_ge0.
rewrite -ltr_pdivlMr ?poly_accr_bound_gt0 //.
rewrite !gt_min ltr_pM2r ?invr_gt0 ?poly_accr_bound_gt0 //.
by rewrite gtr_pMr ?diff_gt0 // invf_lt1 ?gtr0E ?ltr1n ?orbT.
exists (diff px_gt0 / 4%:R).
by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
move=> y z neq_yz hy hz.
have := (@poly_accr_bound1P _ p^`() 0 (1 + ubound x) (x i) z).
have := @poly_accr_bound2P _ p 0 (1 + ubound x) z y; rewrite eq_sym !subr0.
rewrite neq_yz ?ler01 ?ubound_ge0=> // /(_ isT).
rewrite (le_trans (_ : _ <= r + `|x i|)); last 2 first.
+ rewrite (monoRL (addrNK _) (lerD2r _)).
by rewrite (le_trans (lerB_dist _ _)).
+ by rewrite lerD ?ge_min ?lexx ?uboundP.
rewrite (le_trans (_ : _ <= r + `|x i|)); last 2 first.
+ rewrite (monoRL (addrNK _) (lerD2r _)).
by rewrite (le_trans (lerB_dist _ _)).
+ by rewrite lerD ?ge_min ?lexx ?uboundP.
rewrite ler_wpDl ?uboundP ?ler01 //.
move=> /(_ isT isT); rewrite ler_distl=> /andP [haccr _].
move=> /(_ isT isT); rewrite ler_distl=> /andP [hp' _].
rewrite (lt_le_trans _ haccr) // (monoRL (addrK _) (ltrD2r _)).
rewrite (lt_le_trans _ hp') // (monoRL (addrK _) (ltrD2r _)).
rewrite (lt_le_trans _ (diff0_of px_gt0)) //.
rewrite {2}[diff _](splitf 4) /= -!addrA ltrD2l ltr_pwDl //.
by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
rewrite -/b1 -/b2 lerD //.
+ rewrite -ler_pdivlMr ?poly_accr_bound2_gt0 //.
rewrite (le_trans (ler_distD (x i) _ _)) //.
apply: le_trans (_ : r * 2%:R <= _).
by rewrite mulrDr mulr1 lerD // distrC.
by rewrite -ler_pdivlMr ?ltr0n // !ge_min lexx !orbT.
+ rewrite -ler_pdivlMr ?poly_accr_bound_gt0 //.
by rewrite (le_trans hz) // !ge_min lexx !orbT.
by close.
Qed.
Lemma smaller_factor (p q : {poly F}) x :
p \is monic-> p.[x] == 0 ->
~~(p %| q) -> ~~ coprimep p q ->
{r : {poly F} | (size r < size p)%N && (r \is monic) & r.[x] == 0}.
Proof.
move=> monic_p px0 ndvd_pq.
rewrite /coprimep; set d := gcdp _ _=> sd_neq1.
pose r1 : {poly F} := (lead_coef d)^-1 *: d.
pose r2 := p %/ r1.
have ld_neq0 : lead_coef d != 0 :> F.
by rewrite lead_coef_eq0 gcdp_eq0 negb_and monic_neq0.
have monic_r1 : r1 \is monic.
by rewrite monicE /r1 -mul_polyC lead_coefM lead_coefC mulVf.
have eq_p_r2r1: p = r2 * r1.
by rewrite divpK // (@eqp_dvdl _ d) ?dvdp_gcdl // eqp_scale ?invr_eq0.
have monic_r2 : r2 \is monic by rewrite -(monicMr _ monic_r1) -eq_p_r2r1.
have eq_sr1_sd : size r1 = size d by rewrite size_scale ?invr_eq0.
have sr1 : (1 < size r1)%N.
by rewrite ltn_neqAle eq_sym lt0n size_poly_eq0 monic_neq0 ?andbT ?eq_sr1_sd.
have sr2 : (1 < size r2)%N.
rewrite size_divp ?size_dvdp ?monic_neq0 //.
rewrite ltn_subRL addn1 prednK ?(leq_trans _ sr1) // eq_sr1_sd.
rewrite ltn_neqAle dvdp_leq ?monic_neq0 ?andbT ?dvdp_size_eqp ?dvdp_gcdl //.
by apply: contra ndvd_pq=> /eqp_dvdl <-; rewrite dvdp_gcdr.
move: (px0); rewrite eq_p_r2r1=> r2r1x_eq0.
have : (r2.[x] * r1.[x] == 0) by rewrite -horner_crealM.
case/poly_mul_creal_eq0=> [r2x_eq0|r1x_eq0].
exists r2; rewrite ?monic_r2 ?andbT // mulrC.
by rewrite -ltn_divpl ?divpp ?monic_neq0 // size_poly1.
exists r1; rewrite ?monic_r1 ?andbT //.
by rewrite -ltn_divpl ?divpp ?monic_neq0 // size_poly1.
Qed.
Lemma root_cst_creal (x : F) : ('X - x%:P).[cst_creal x] == 0.
Proof.
apply: eq_crealP; exists_big_modulus m F.
by move=> e i e_gt0 hi; rewrite /= subr0 !hornerE subrr normr0.
by close.
Qed.
Lemma has_root_creal_size_gt1 (x : creal) (p : {poly F}) :
(p != 0)%B -> p.[x] == 0 -> (1 < size p)%N.
Proof.
move=> p_neq0 rootpa.
rewrite ltnNge leq_eqVlt ltnS leqn0 size_poly_eq0 (negPf p_neq0) orbF.
apply/negP=> /size_poly1P [c c_neq0 eq_pc]; apply: rootpa.
by rewrite eq_pc horner_cst_creal; apply/neq_creal_cst.
Qed.
Definition bound_poly_bound (z : creal) (q : {poly {poly F}}) (a r : F) i :=
(1 + \sum_(j < sizeY q)
`|(norm_poly2 q).[(ubound z)%:P]^`N(i.+1)`_j| * (`|a| + `|r|) ^+ j).
Lemma bound_poly_boundP (z : creal) i (q : {poly {poly F}}) (a r : F) j :
poly_bound q.[(z i)%:P]^`N(j.+1) a r <= bound_poly_bound z q a r j.
Proof.
rewrite /poly_bound.
pose f (q : {poly F}) (k : nat) := `|q^`N(j.+1)`_k| * (`|a| + `|r|) ^+ k.
rewrite lerD //=.
rewrite (big_ord_widen (sizeY q) (f q.[(z i)%:P])); last first.
rewrite size_nderivn leq_subLR (leq_trans (max_size_evalC _ _)) //.
by rewrite leq_addl.
rewrite big_mkcond /= ler_sum // /f => k _.
case: ifP=> _; last by rewrite mulr_ge0 ?exprn_ge0 ?addr_ge0 ?normr_ge0.
rewrite ler_wpM2r ?exprn_ge0 ?addr_ge0 ?normr_ge0 //.
rewrite !horner_coef.
rewrite !(@big_morph _ _ (fun p => p^`N(j.+1)) 0 +%R);
do ?[by rewrite raddf0|by move=> x y /=; rewrite raddfD].
rewrite !coef_sum.
rewrite (le_trans (ler_norm_sum _ _ _)) //.
rewrite ger0_norm; last first.
rewrite sumr_ge0=> //= l _.
rewrite coef_nderivn mulrn_wge0 ?natr_ge0 //.
rewrite -polyC_exp coefMC coef_norm_poly2 mulr_ge0 ?normr_ge0 //.
by rewrite exprn_ge0 ?ltW ?ubound_gt0.
rewrite size_norm_poly2 ler_sum //= => l _.
rewrite !{1}coef_nderivn normrMn ler_pMn2r ?bin_gt0 ?leq_addr //.
rewrite -!polyC_exp !coefMC coef_norm_poly2 normrM ler_wpM2l ?normr_ge0 //.
rewrite normrX; case: (val l)=> // {}l.
by rewrite ler_pXn2r -?topredE //= ?uboundP ?ltW ?ubound_gt0.
Qed.
Lemma bound_poly_bound_ge0 z q a r i : 0 <= bound_poly_bound z q a r i.
Proof.
by rewrite (le_trans _ (bound_poly_boundP _ 0%N _ _ _ _)) ?poly_bound_ge0.
Qed.
Definition bound_poly_accr_bound (z : creal) (q : {poly {poly F}}) (a r : F) :=
Num.max 1 (2%:R * r) ^+ (sizeY q).-1 *
(1 + \sum_(i < (sizeY q).-1) bound_poly_bound z q a r i).
Lemma bound_poly_accr_boundP (z : creal) i (q : {poly {poly F}}) (a r : F) :
poly_accr_bound q.[(z i)%:P] a r <= bound_poly_accr_bound z q a r.
Proof.
rewrite /poly_accr_bound /bound_poly_accr_bound /=.
set ui := _ ^+ _; set u := _ ^+ _; set vi := 1 + _.
apply: le_trans (_ : u * vi <= _).
rewrite ler_wpM2r //.
by rewrite addr_ge0 ?ler01 // sumr_ge0 //= => j _; rewrite poly_bound_ge0.
rewrite /ui /u; case: (ltP 1%R); last by rewrite !expr1n.
move=> r2_gt1; rewrite ler_eXn2l //.
rewrite -subn1 leq_subLR add1n (leq_trans _ (leqSpred _)) //.
by rewrite max_size_evalC.
rewrite ler_wpM2l ?exprn_ge0 ?le_max ?ler01 // lerD //.
pose f j := poly_bound q.[(z i)%:P]^`N(j.+1) a r.
rewrite (big_ord_widen (sizeY q).-1 f); last first.
rewrite -subn1 leq_subLR add1n (leq_trans _ (leqSpred _)) //.
by rewrite max_size_evalC.
rewrite big_mkcond /= ler_sum // /f => k _.
by case: ifP=> _; rewrite ?bound_poly_bound_ge0 ?bound_poly_boundP.
Qed.
Lemma bound_poly_accr_bound_gt0 (z : creal) (q : {poly {poly F}}) (a r : F) :
0 < bound_poly_accr_bound z q a r.
Proof.
rewrite (lt_le_trans _ (bound_poly_accr_boundP _ 0%N _ _ _)) //.
by rewrite poly_accr_bound_gt0.
Qed.
Lemma horner2_crealP (p : {poly {poly F}}) (x y : creal) :
creal_axiom (fun i => p.[x i, y i]).
Proof.
set a := x (cauchymod x 1).
exists_big_modulus m F.
move=> e i j e_gt0 hi hj; rewrite (@split_dist_add p.[x i, y j]) //.
rewrite (le_lt_trans (@poly_accr_bound1P _ _ 0 (ubound y) _ _ _ _)) //;
do ?by rewrite ?subr0 ?uboundP.
apply: le_lt_trans
(_ : `|y i - y j| * bound_poly_accr_bound x p 0 (ubound y) < _).
by rewrite ler_wpM2l ?normr_ge0 // bound_poly_accr_boundP.
rewrite -ltr_pdivlMr ?bound_poly_accr_bound_gt0 //.
by rewrite cauchymodP // !pmulr_rgt0 ?gtr0E ?bound_poly_accr_bound_gt0.
rewrite -[p]swapXYK ![(swapXY (swapXY _)).[_, _]]horner2_swapXY.
rewrite (le_lt_trans (@poly_accr_bound1P _ _ 0 (ubound x) _ _ _ _)) //;
do ?by rewrite ?subr0 ?uboundP.
apply: le_lt_trans
(_ : `|x i - x j| * bound_poly_accr_bound y (swapXY p) 0 (ubound x) < _).
by rewrite ler_wpM2l ?normr_ge0 // bound_poly_accr_boundP.
rewrite -ltr_pdivlMr ?bound_poly_accr_bound_gt0 //.
by rewrite cauchymodP // !pmulr_rgt0 ?gtr0E ?bound_poly_accr_bound_gt0.
by close.
Qed.
Definition horner2_creal (p : {poly {poly F}}) (x y : creal) :=
CReal (horner2_crealP p x y).
Notation "p .[ x , y ]" := (horner2_creal p x y)
(at level 2, left associativity) : creal_scope.
Lemma root_monic_from_neq0 (p : {poly F}) (x : creal) :
p.[x] == 0 -> ((lead_coef p) ^-1 *: p).[x] == 0.
Proof. by rewrite -mul_polyC horner_crealM; move->; rewrite mul_creal0. Qed.
Lemma root_sub_annihilant_creal (x y : creal) (p q : {poly F}) :
(p != 0)%B -> (q != 0)%B -> p.[x] == 0 -> q.[y] == 0 ->
(sub_annihilant p q).[x - y] == 0.
Proof.
move=> p_neq0 q_neq0 px_eq0 qy_eq0.
have [||[u v] /= [hu hv] hpq] := @sub_annihilant_in_ideal _ p q.
+ by rewrite (@has_root_creal_size_gt1 x).
+ by rewrite (@has_root_creal_size_gt1 y).
apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=; rewrite subr0.
rewrite (hpq (y i)) addrCA subrr addr0 split_norm_add // normrM.
apply: le_lt_trans (_ : (ubound u.[y, x - y]) * `|p.[x i]| < _).
by rewrite ler_wpM2r ?normr_ge0 // (uboundP u.[y, x - y] i).
rewrite -ltr_pdivlMl ?ubound_gt0 //.
by rewrite (@eq0_modP _ px_eq0) // !pmulr_rgt0 ?gtr0E ?ubound_gt0.
apply: le_lt_trans (_ : (ubound v.[y, x - y]) * `|q.[y i]| < _).
by rewrite ler_wpM2r ?normr_ge0 // (uboundP v.[y, x - y] i).
rewrite -ltr_pdivlMl ?ubound_gt0 //.
by rewrite (@eq0_modP _ qy_eq0) // !pmulr_rgt0 ?gtr0E ?ubound_gt0.
by close.
Qed.
Lemma root_div_annihilant_creal (x y : creal) (p q : {poly F}) (y_neq0 : y != 0) :
(p != 0)%B -> (q != 0)%B -> p.[x] == 0 -> q.[y] == 0 ->
(div_annihilant p q).[(x / y_neq0)%CR] == 0.
Proof.
move=> p_neq0 q_neq0 px_eq0 qy_eq0.
have [||[u v] /= [hu hv] hpq] := @div_annihilant_in_ideal _ p q.
+ by rewrite (@has_root_creal_size_gt1 x).
+ by rewrite (@has_root_creal_size_gt1 y).
apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=; rewrite subr0.
rewrite (hpq (y i)) mulrCA divff ?mulr1; last first.
by rewrite -normr_gt0 (lt_le_trans _ (lbound0_of y_neq0)) ?lbound_gt0.
rewrite split_norm_add // normrM.
apply: le_lt_trans (_ : (ubound u.[y, x / y_neq0]) * `|p.[x i]| < _).
by rewrite ler_wpM2r ?normr_ge0 // (uboundP u.[y, x / y_neq0] i).
rewrite -ltr_pdivlMl ?ubound_gt0 //.
by rewrite (@eq0_modP _ px_eq0) // !pmulr_rgt0 ?gtr0E ?ubound_gt0.
apply: le_lt_trans (_ : (ubound v.[y, x / y_neq0]) * `|q.[y i]| < _).
by rewrite ler_wpM2r ?normr_ge0 // (uboundP v.[y, x / y_neq0] i).
rewrite -ltr_pdivlMl ?ubound_gt0 //.
by rewrite (@eq0_modP _ qy_eq0) // !pmulr_rgt0 ?gtr0E ?ubound_gt0.
by close.
Qed.
Definition exp_creal x n := (iterop n *%CR x 1%:CR).
Notation "x ^+ n" := (exp_creal x n) : creal_scope.
Add Morphism exp_creal with
signature eq_creal ==> (@eq _) ==> eq_creal as exp_creal_morph.
Proof.
move=> x y eq_xy [//|n]; rewrite /exp_creal !iteropS.
by elim: n=> //= n ->; rewrite eq_xy.
Qed.
Global Existing Instance exp_creal_morph_Proper.
Lemma horner_coef_creal p x :
p.[x] == \big[+%CR/0%:CR]_(i < size p) ((p`_i)%:CR * (x ^+ i))%CR.
Proof.
apply: eq_crealP; exists m0=> e n e_gt0 hn /=; rewrite horner_coef.
rewrite (@big_morph _ _ (fun u : creal => u n) 0%R +%R) //.
rewrite -sumrB /= big1 ?normr0=> //= i _.
apply/eqP; rewrite subr_eq0; apply/eqP; congr (_ * _).
case: val=> {i} // i; rewrite exprS /exp_creal iteropS.
by elim: i=> [|i ihi]; rewrite ?expr0 ?mulr1 //= exprS ihi.
Qed.
End CauchyReals.
Notation "x == y" := (eq_creal x y) : creal_scope.
Notation "!=%CR" := neq_creal : creal_scope.
Notation "x != y" := (neq_creal x y) : creal_scope.
Notation "x %:CR" := (cst_creal x)
(at level 2, left associativity, format "x %:CR") : creal_scope.
Notation "0" := (0 %:CR)%CR : creal_scope.
Notation "<%CR" := lt_creal : creal_scope.
Notation "x < y" := (lt_creal x y) : creal_scope.
Notation "<=%CR" := le_creal : creal_scope.
Notation "x <= y" := (le_creal x y) : creal_scope.
Notation "-%CR" := opp_creal : creal_scope.
Notation "- x" := (opp_creal x) : creal_scope.
Notation "+%CR" := add_creal : creal_scope.
Notation "x + y" := (add_creal x y) : creal_scope.
Notation "x - y" := (x + - y)%CR : creal_scope.
Notation "*%CR" := mul_creal : creal_scope.
Notation "x * y" := (mul_creal x y) : creal_scope.
Notation "x_neq0 ^-1" := (inv_creal x_neq0) : creal_scope.
Notation "x / y_neq0" := (x * (y_neq0 ^-1))%CR : creal_scope.
Notation "p .[ x ]" := (horner_creal p x) : creal_scope.
Notation "p .[ x , y ]" := (horner2_creal p x y)
(at level 2, left associativity) : creal_scope.
Notation "x ^+ n" := (exp_creal x n) : creal_scope.
Notation "`| x |" := (norm_creal x) : creal_scope.
#[global] Hint Resolve eq_creal_refl le_creal_refl : core.
Notation lbound_of p := (@lboundP _ _ _ p _ _ _).
Notation lbound0_of p := (@lbound0P _ _ p _ _ _).
Notation diff_of p := (@diffP _ _ _ p _ _ _).
Notation diff0_of p := (@diff0P _ _ p _ _ _).
Notation "{ 'asympt' e : i / P }" := (asympt1 (fun e i => P))
(at level 0, e name, i name, format "{ 'asympt' e : i / P }") : type_scope.
Notation "{ 'asympt' e : i j / P }" := (asympt2 (fun e i j => P))
(at level 0, e name, i name, j name, format "{ 'asympt' e : i j / P }") : type_scope.
|