1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype tuple bigop binomial order ssralg.
From mathcomp Require Import zmodp poly ssrnum ssrint archimedean rat matrix.
From mathcomp Require Import mxalgebra mxpoly closed_field polyrcf realalg.
(**********************************************************************)
(* This files defines the extension R[i] of a real field R, *)
(* and provide it a structure of numeric field with a norm operator. *)
(* When R is a real closed field, it also provides a structure of *)
(* algebraically closed field for R[i], using a proof by Derksen *)
(* (cf comments below, thanks to Pierre Lairez for finding the paper) *)
(**********************************************************************)
Import Order.TTheory GRing.Theory Num.Theory.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
#[local] Obligation Tactic := idtac.
Local Open Scope ring_scope.
Reserved Notation "x +i* y"
(at level 40, left associativity, format "x +i* y").
Reserved Notation "x -i* y"
(at level 40, left associativity, format "x -i* y").
Reserved Notation "R [i]"
(at level 2, left associativity, format "R [i]").
Local Notation sgr := Num.sg.
Local Notation sqrtr := Num.sqrt.
Record complex (R : Type) : Type := Complex { Re : R; Im : R }.
Declare Scope complex_scope.
Delimit Scope complex_scope with C.
Local Open Scope complex_scope.
Definition real_complex_def (F : ringType) (phF : phant F) (x : F) :=
Complex x 0.
Notation real_complex F := (@real_complex_def _ (Phant F)).
Notation "x %:C" := (real_complex _ x)
(at level 2, left associativity, format "x %:C") : complex_scope.
Notation "x +i* y" := (Complex x y) : complex_scope.
Notation "x -i* y" := (Complex x (- y)) : complex_scope.
Notation "x *i " := (Complex 0 x) (at level 8, format "x *i") : complex_scope.
Notation "''i'" := (Complex 0 1) : complex_scope.
Notation "R [i]" := (complex R)
(at level 2, left associativity, format "R [i]").
(* Module ComplexInternal. *)
Module ComplexEqChoice.
Section ComplexEqChoice.
Variable R : Type.
Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [:: a; b].
Definition complex_of_sqR (x : seq R) :=
if x is [:: a; b] then Some (a +i* b) else None.
Lemma complex_of_sqRK : pcancel sqR_of_complex complex_of_sqR.
Proof. by case. Qed.
End ComplexEqChoice.
End ComplexEqChoice.
HB.instance Definition _ (R : eqType) := Equality.copy R[i]
(pcan_type (@ComplexEqChoice.complex_of_sqRK R)).
HB.instance Definition _ (R : choiceType) := Choice.copy R[i]
(pcan_type (@ComplexEqChoice.complex_of_sqRK R)).
HB.instance Definition _ (R : countType) := Countable.copy R[i]
(pcan_type (@ComplexEqChoice.complex_of_sqRK R)).
Lemma eq_complex : forall (R : eqType) (x y : complex R),
(x == y) = (Re x == Re y) && (Im x == Im y).
Proof.
move=> R [a b] [c d] /=.
apply/eqP/andP; first by move=> [-> ->]; split.
by case; move/eqP->; move/eqP->.
Qed.
Lemma complexr0 (R : ringType) (x : R) : x +i* 0 = x%:C. Proof. by []. Qed.
Module ComplexField.
Section ComplexField_ringType.
Variable R : ringType.
Local Notation C := R[i].
Local Notation C0 := ((0 : R)%:C).
Definition addc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in
(a + c) +i* (b + d).
Definition oppc (x : R[i]) := let: a +i* b := x in (- a) +i* (- b).
Program Definition complex_zmodMixin := @GRing.isZmodule.Build R[i]
C0 oppc addc _ _ _ _.
Next Obligation. by move=> [a b] [c d] [e f] /=; rewrite !addrA. Qed.
Next Obligation. by move=> [a b] [c d] /=; congr (_ +i* _); rewrite addrC. Qed.
Next Obligation. by move=> [a b] /=; rewrite !add0r. Qed.
Next Obligation. by move=> [a b] /=; rewrite !addNr. Qed.
HB.instance Definition _ := complex_zmodMixin.
Definition scalec (a : R) (x : R[i]) :=
let: b +i* c := x in (a * b) +i* (a * c).
Program Definition complex_lmodMixin := @GRing.Zmodule_isLmodule.Build R R[i]
scalec _ _ _ _.
Next Obligation. by move=> a b [c d] /=; rewrite !mulrA. Qed.
Next Obligation. by move=> [a b] /=; rewrite !mul1r. Qed.
Next Obligation. by move=> a [b c] [d e] /=; rewrite !mulrDr. Qed.
Next Obligation. by move=> [a b] c d /=; rewrite !mulrDl. Qed.
#[local]
HB.instance Definition _ := complex_lmodMixin.
End ComplexField_ringType.
Section ComplexField_comRingType.
Variable R : comRingType.
Local Notation C := R[i].
Definition mulc (x y : C) := let: a +i* b := x in let: c +i* d := y in
((a * c) - (b * d)) +i* ((a * d) + (b * c)).
Lemma mulcC : commutative mulc.
Proof.
move=> [a b] [c d] /=.
by rewrite [c * b + _]addrC ![_ * c]mulrC ![_ * d]mulrC.
Qed.
Lemma mulcA : associative mulc.
Proof.
move=> [a b] [c d] [e f] /=.
rewrite !mulrDr !mulrDl !mulrN !mulNr !mulrA !opprD -!addrA.
by congr ((_ + _) +i* (_ + _)); rewrite !addrA addrAC;
congr (_ + _); rewrite addrC.
Qed.
End ComplexField_comRingType.
Section ComplexField_fieldType.
Variable R : fieldType.
Local Notation C := R[i].
Local Notation C0 := ((0 : R)%:C).
Local Notation C1 := ((1 : R)%:C).
Definition invc (x : R[i]) := let: a +i* b := x in let n2 := (a ^+ 2 + b ^+ 2) in
(a / n2) -i* (b / n2).
Lemma mul1c : left_id C1 (@mulc R).
Proof. by move=> [a b] /=; rewrite !mul1r !mul0r subr0 addr0. Qed.
Lemma mulc_addl : left_distributive (@mulc R) (@addc R).
Proof.
move=> [a b] [c d] [e f] /=; rewrite !mulrDl !opprD -!addrA.
by congr ((_ + _) +i* (_ + _)); rewrite addrCA.
Qed.
Lemma nonzero1c : C1 != C0. Proof. by rewrite eq_complex /= oner_eq0. Qed.
HB.instance Definition _ := GRing.Zmodule_isComRing.Build R[i]
(@mulcA R) (@mulcC R) mul1c mulc_addl nonzero1c.
#[local]
HB.instance Definition _ := complex_lmodMixin R.
Program Definition complex_lalgMixin :=
@GRing.Lmodule_isLalgebra.Build R R[i] _.
Next Obligation.
by move=> a [ru iu] [rv iv]; apply/eqP; do 2?[apply/andP; split];
rewrite // mulrDr ?mulrN !mulrA.
Qed.
#[local]
HB.instance Definition _ := complex_lalgMixin.
End ComplexField_fieldType.
Local Ltac simpc := do ?
[ rewrite -[(_ +i* _) - (_ +i* _)]/(_ +i* _)
| rewrite -[(_ +i* _) + (_ +i* _)]/(_ +i* _)
| rewrite -[(_ +i* _) * (_ +i* _)]/(_ +i* _)].
Section ComplexField_realFieldType.
Variable R : realFieldType.
Local Notation C := R[i].
Local Notation C0 := ((0 : R)%:C).
Local Notation C1 := ((1 : R)%:C).
Lemma mulVc : forall x, x != C0 -> mulc (invc x) x = C1.
Proof.
move=> [a b]; rewrite eq_complex => /= hab; rewrite !mulNr opprK.
rewrite ![_ / _ * _]mulrAC [b * a]mulrC subrr complexr0 -mulrDl mulfV //.
by rewrite paddr_eq0 -!expr2 ?expf_eq0 ?sqr_ge0.
Qed.
Lemma invc0 : invc C0 = C0. Proof. by rewrite /= !mul0r oppr0. Qed.
HB.instance Definition _ := GRing.ComRing_isField.Build C mulVc invc0.
Lemma real_complex_is_additive : additive (real_complex R).
Proof. by move=> a b /=; simpc; rewrite subrr. Qed.
Lemma real_complex_is_multiplicative : multiplicative (real_complex R).
Proof. by split=> // a b /=; simpc; rewrite !mulr0 !mul0r addr0 subr0. Qed.
HB.instance Definition _ := GRing.isAdditive.Build R R[i]
(real_complex R) real_complex_is_additive.
HB.instance Definition _ := GRing.isMultiplicative.Build R R[i]
(real_complex R) real_complex_is_multiplicative.
End ComplexField_realFieldType.
Module Normc.
Section Normc.
Variable R : rcfType.
Implicit Types x : R[i].
(* TODO: when Pythagorean Fields are added, weaken to Pythagorean Field *)
Definition normc x :=
let: a +i* b := x in sqrtr (a ^+ 2 + b ^+ 2).
Lemma normc0 : normc 0%C = 0 :> R.
Proof. by rewrite /normc /= expr0n/= addr0 sqrtr0. Qed.
Lemma normc1 : normc 1%C = 1 :> R.
Proof. by rewrite /normc /= expr0n/= expr1n addr0 sqrtr1. Qed.
Lemma eq0_normc x : normc x = 0 -> x = 0.
Proof.
case: x => a b /= /eqP; rewrite sqrtr_eq0 le_eqVlt => /orP[|]; last first.
by rewrite ltNge addr_ge0 ?sqr_ge0.
by rewrite paddr_eq0 ?sqr_ge0 ?expf_eq0 //= => /andP[/eqP -> /eqP ->].
Qed.
Lemma normcM x y : normc (x * y) = normc x * normc y.
Proof.
move: x y => [a b] [c d] /=; rewrite -sqrtrM ?addr_ge0 ?sqr_ge0 //.
rewrite sqrrB sqrrD mulrDl !mulrDr -!exprMn.
rewrite mulrAC [b * d]mulrC !mulrA.
suff -> : forall (u v w z t : R), (u - v + w) + (z + v + t) = u + w + (z + t).
by rewrite addrAC !addrA.
by move=> u v w z t; rewrite [_ - _ + _]addrAC [z + v]addrC !addrA addrNK.
Qed.
Lemma normcV x : normc x^-1 = (normc x)^-1.
Proof.
have [->|x0] := eqVneq x 0; first by rewrite ?(invr0,normc0).
have nx0 : normc x != 0 by apply: contra x0 => /eqP/eq0_normc ->.
by apply: (mulfI nx0); rewrite -normcM !divrr ?unitfE// normc1.
Qed.
End Normc.
End Normc.
Section ComplexField.
Variable R : rcfType.
Implicit Types x y : R[i].
Local Notation C := R[i].
Local Notation C0 := ((0 : R)%:C).
Local Notation C1 := ((1 : R)%:C).
#[local]
HB.instance Definition _ := complex_lmodMixin R.
Lemma Re_is_scalar : scalar (@Re R).
Proof. by move=> a [b c] [d e]. Qed.
HB.instance Definition _ :=
GRing.isLinear.Build R [the lmodType R of R[i]] R _ (@Re R)
Re_is_scalar.
Lemma Im_is_scalar : scalar (@Im R).
Proof. by move=> a [b c] [d e]. Qed.
HB.instance Definition _ :=
GRing.isLinear.Build R [the lmodType R of R[i]] R _ (@Im R)
Im_is_scalar.
Definition lec x y :=
let: a +i* b := x in let: c +i* d := y in
(d == b) && (a <= c).
Definition ltc x y :=
let: a +i* b := x in let: c +i* d := y in
(d == b) && (a < c).
Lemma ltc0_add x y : ltc 0 x -> ltc 0 y -> ltc 0 (x + y).
Proof.
move: x y => [a b] [c d] /= /andP [/eqP-> ha] /andP [/eqP-> hc].
by rewrite addr0 eqxx addr_gt0.
Qed.
Lemma ge0_lec_total x y : lec 0 x -> lec 0 y -> lec x y || lec y x.
Proof.
move: x y => [a b] [c d] /= /andP[/eqP -> a_ge0] /andP[/eqP -> c_ge0].
by rewrite eqxx le_total.
Qed.
Lemma subc_ge0 x y : lec 0 (y - x) = lec x y.
Proof. by move: x y => [a b] [c d] /=; simpc; rewrite subr_ge0 subr_eq0. Qed.
Lemma ltc_def x y : ltc x y = (y != x) && lec x y.
Proof.
move: x y => [a b] [c d] /=; simpc; rewrite eq_complex /=.
by have [] := altP eqP; rewrite ?(andbF, andbT) //= lt_def.
Qed.
Import Normc.
Notation normC x := (normc x)%:C.
Lemma eq0_normC x : normC x = 0 -> x = 0. Proof. by case=> /eq0_normc. Qed.
Lemma normCM x y : normC (x * y) = normC x * normC y.
Proof. by rewrite -rmorphM normcM. Qed.
Lemma lec_def x y : lec x y = (normC (y - x) == y - x).
Proof.
rewrite -subc_ge0; move: (_ - _) => [a b]; rewrite eq_complex /= eq_sym.
have [<- /=|_] := altP eqP; last by rewrite andbF.
by rewrite [0 ^+ _]mul0r addr0 andbT sqrtr_sqr ger0_def.
Qed.
Lemma lec_normD x y : lec (normC (x + y)) (normC x + normC y).
Proof.
move: x y => [a b] [c d] /=; simpc; rewrite addr0 eqxx /=.
rewrite -(@ler_pXn2r _ 2) -?topredE /= ?(ler_wpDr, sqrtr_ge0) //.
rewrite [X in _ <= X] sqrrD ?sqr_sqrtr;
do ?by rewrite ?(ler_wpDr, sqrtr_ge0, sqr_ge0, mulr_ge0) //.
rewrite -addrA addrCA (monoRL (addrNK _) (lerD2r _)) !sqrrD.
set u := _ *+ 2; set v := _ *+ 2.
rewrite [a ^+ _ + _ + _]addrAC [b ^+ _ + _ + _]addrAC -[X in X - _]addrA.
rewrite [u + _]addrC [X in _ - X]addrAC [b ^+ _ + _]addrC.
rewrite [u]lock [v]lock !addrA; set x := (a ^+ 2 + _ + _ + _).
rewrite -addrA [leLHS]addrC addKr -!lock addrC.
have [huv|] := ger0P (u + v); last first.
by move=> /ltW /le_trans -> //; rewrite pmulrn_lge0 // mulr_ge0 ?sqrtr_ge0.
rewrite -(@ler_pXn2r _ 2) -?topredE //=; last first.
by rewrite ?(pmulrn_lge0, mulr_ge0, sqrtr_ge0) //.
rewrite -mulr_natl !exprMn !sqr_sqrtr ?(ler_wpDr, sqr_ge0) //.
rewrite -mulrnDl -[in leLHS]mulr_natl !exprMn ler_pM2l ?exprn_gt0 ?ltr0n //.
rewrite sqrrD mulrDl !mulrDr -!exprMn addrAC -!addrA lerD2l !addrA.
rewrite [_ + (b * d) ^+ 2]addrC -addrA lerD2l.
have: 0 <= (a * d - b * c) ^+ 2 by rewrite sqr_ge0.
by rewrite sqrrB addrAC subr_ge0 [_ * c]mulrC mulrACA [d * _]mulrC.
Qed.
HB.instance Definition _ := Num.IntegralDomain_isNumRing.Build C
lec_normD ltc0_add eq0_normC ge0_lec_total normCM lec_def ltc_def.
End ComplexField.
End ComplexField.
HB.export ComplexField.
(* we do not export the canonical structure of lmodType on purpose *)
(* i.e. no: Canonical ComplexField.complex_lmodType. *)
(* indeed, this would prevent C fril having a normed module over C *)
Definition conjc {R : ringType} (x : R[i]) := let: a +i* b := x in a -i* b.
Notation "x ^*" := (conjc x) (at level 2, format "x ^*") : complex_scope.
Local Open Scope complex_scope.
Delimit Scope complex_scope with C.
Ltac simpc := do ?
[ rewrite -[- (_ +i* _)%C]/(_ +i* _)%C
| rewrite -[(_ +i* _)%C - (_ +i* _)%C]/(_ +i* _)%C
| rewrite -[(_ +i* _)%C + (_ +i* _)%C]/(_ +i* _)%C
| rewrite -[(_ +i* _)%C * (_ +i* _)%C]/(_ +i* _)%C
| rewrite -[(_ +i* _)%C ^*]/(_ +i* _)%C
| rewrite -[_ *: (_ +i* _)%C]/(_ +i* _)%C
| rewrite -[(_ +i* _)%C <= (_ +i* _)%C]/((_ == _) && (_ <= _))
| rewrite -[(_ +i* _)%C < (_ +i* _)%C]/((_ == _) && (_ < _))
| rewrite -[`|(_ +i* _)%C|]/(sqrtr (_ + _))%:C%C
| rewrite (mulrNN, mulrN, mulNr, opprB, opprD, mulr0, mul0r,
subr0, sub0r, addr0, add0r, mulr1, mul1r, subrr, opprK, oppr0,
eqxx) ].
Section ComplexTheory.
Variable R : rcfType.
Implicit Types (k : R) (x y z : R[i]).
Lemma ReiNIm : forall x, Re (x * 'i%C) = - Im x.
Proof. by case=> a b; simpc. Qed.
Lemma ImiRe : forall x, Im (x * 'i%C) = Re x.
Proof. by case=> a b; simpc. Qed.
Lemma complexE x : x = (Re x)%:C + 'i%C * (Im x)%:C :> R[i].
Proof. by case: x => *; simpc. Qed.
Local Lemma real_complexE_deprecated k : k%:C = k +i* 0 :> R[i]. Proof. done. Qed.
#[deprecated(since="1.1.3", note="Use complexr0 instead.")]
Notation real_complexE := real_complexE_deprecated.
Lemma sqr_i : 'i%C ^+ 2 = -1 :> R[i].
Proof. by rewrite exprS; simpc; rewrite complexr0 rmorphN. Qed.
Lemma complexI : injective (real_complex R). Proof. by move=> x y []. Qed.
Lemma ler0c k : (0 <= k%:C) = (0 <= k). Proof. by simpc. Qed.
Lemma lecE : forall x y, (x <= y) = (Im y == Im x) && (Re x <= Re y).
Proof. by move=> [a b] [c d]. Qed.
Lemma ltcE : forall x y, (x < y) = (Im y == Im x) && (Re x < Re y).
Proof. by move=> [a b] [c d]. Qed.
Lemma lecR : forall k k', (k%:C <= k'%:C) = (k <= k').
Proof. by move=> k k'; simpc. Qed.
Lemma ltcR : forall k k', (k%:C < k'%:C) = (k < k').
Proof. by move=> k k'; simpc. Qed.
Lemma conjc_is_additive : additive (@conjc R).
Proof. by move=> [a b] [c d] /=; simpc; rewrite [d - _]addrC. Qed.
Lemma conjc_is_multiplicative : multiplicative (@conjc R).
Proof. by split=> [[a b] [c d]|] /=; simpc. Qed.
HB.instance Definition _ := GRing.isAdditive.Build R[i] R[i] conjc
conjc_is_additive.
HB.instance Definition _ := GRing.isMultiplicative.Build R[i] R[i] conjc
conjc_is_multiplicative.
Lemma conjcK : involutive (@conjc R).
Proof. by move=> [a b] /=; rewrite opprK. Qed.
Lemma mulcJ_ge0 (x : R[i]) : 0 <= x * x^*%C.
Proof.
by move: x=> [a b]; simpc; rewrite mulrC addNr eqxx addr_ge0 ?sqr_ge0.
Qed.
Lemma conjc_real (x : R) : x%:C^* = x%:C.
Proof. by rewrite /= oppr0. Qed.
Lemma ReJ_add (x : R[i]) : (Re x)%:C = (x + x^*%C) / 2%:R.
Proof.
case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=.
rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA.
by rewrite divff ?mulr1 // -natrM pnatr_eq0.
Qed.
Lemma ImJ_sub (x : R[i]) : (Im x)%:C = (x^*%C - x) / 2%:R * 'i%C.
Proof.
case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=.
rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA.
by rewrite divff ?mulr1 ?opprK // -natrM pnatr_eq0.
Qed.
Lemma ger0_Im (x : R[i]) : 0 <= x -> Im x = 0.
Proof. by move: x=> [a b] /=; simpc => /andP [/eqP]. Qed.
(* Todo : extend theory of : *)
(* - signed exponents *)
Lemma conj_ge0 : forall x, (0 <= x ^*) = (0 <= x).
Proof. by move=> [a b] /=; simpc; rewrite oppr_eq0. Qed.
Lemma conjc_nat : forall n, (n%:R : R[i])^* = n%:R.
Proof. exact: rmorph_nat. Qed.
Lemma conjc0 : (0 : R[i]) ^* = 0.
Proof. exact: (conjc_nat 0). Qed.
Lemma conjc1 : (1 : R[i]) ^* = 1.
Proof. exact: (conjc_nat 1). Qed.
Lemma conjc_eq0 : forall x, (x ^* == 0) = (x == 0).
Proof. by move=> [a b]; rewrite !eq_complex /= eqr_oppLR oppr0. Qed.
Lemma conjc_inv: forall x, (x^-1)^* = (x^*%C )^-1.
Proof. exact: fmorphV. Qed.
Lemma complex_root_conj (p : {poly R[i]}) (x : R[i]) :
root (map_poly conjc p) x = root p x^*.
Proof. by rewrite /root -{1}[x]conjcK horner_map /= conjc_eq0. Qed.
Lemma complex_algebraic_trans (T : comRingType) (toR : {rmorphism T -> R}) :
integralRange toR -> integralRange (real_complex R \o toR).
Proof.
set f := _ \o _ => R_integral [a b].
have integral_real k : integralOver f (k%:C) by apply: integral_rmorph.
rewrite [_ +i* _]complexE.
apply: integral_add => //; apply: integral_mul => //=.
exists ('X^2 + 1).
by rewrite monicE lead_coefDl ?size_polyXn ?size_poly1 ?lead_coefXn.
by rewrite rmorphD rmorph1 /= ?map_polyXn rootE !hornerE -?expr2 sqr_i addNr.
(* FIXME: remove the -?expr2 when requiring MC >= 1.16.0 *)
Qed.
Lemma normc_def (z : R[i]) : `|z| = (sqrtr ((Re z)^+2 + (Im z)^+2))%:C.
Proof. by case: z. Qed.
Lemma add_Re2_Im2 (z : R[i]) : ((Re z)^+2 + (Im z)^+2)%:C = `|z|^+2.
Proof. by rewrite normc_def -rmorphXn sqr_sqrtr ?addr_ge0 ?sqr_ge0. Qed.
Lemma addcJ (z : R[i]) : z + z^*%C = 2%:R * (Re z)%:C.
Proof. by rewrite ReJ_add mulrC mulfVK ?pnatr_eq0. Qed.
Lemma subcJ (z : R[i]) : z - z^*%C = 2%:R * (Im z)%:C * 'i%C.
Proof.
rewrite ImJ_sub mulrCA mulrA mulfVK ?pnatr_eq0 //.
by rewrite -mulrA ['i%C * _]sqr_i mulrN1 opprB.
Qed.
Lemma complex_real (a b : R) : a +i* b \is Num.real = (b == 0).
Proof.
rewrite realE; simpc; rewrite [0 == _]eq_sym.
by have [] := ltrgtP 0 a; rewrite ?(andbF, andbT, orbF, orbb).
Qed.
Lemma complex_realP x : reflect (exists k, x = k%:C) (x \is Num.real).
Proof.
case: x=> [a b] /=; rewrite complex_real.
by apply: (iffP eqP) => [->|[c []//]]; exists a.
Qed.
Lemma RRe_real x : x \is Num.real -> (Re x)%:C = x.
Proof. by move=> /complex_realP [y ->]. Qed.
Lemma RIm_real x : x \is Num.real -> (Im x)%:C = 0.
Proof. by move=> /complex_realP [y ->]. Qed.
End ComplexTheory.
Definition Rcomplex := complex.
HB.instance Definition _ (R : eqType) := Equality.on (Rcomplex R).
HB.instance Definition _ (R : countType) := Countable.on (Rcomplex R).
HB.instance Definition _ (R : choiceType) := Choice.on (Rcomplex R).
HB.instance Definition _ (R : rcfType) := GRing.Field.on (Rcomplex R).
HB.instance Definition _ (R : rcfType) := complex_lmodMixin R.
HB.instance Definition _ (R : rcfType) := complex_lalgMixin R.
HB.instance Definition _ (R : rcfType) := GRing.Lalgebra.on (Rcomplex R).
Section RComplexLMod.
Variable R : rcfType.
Implicit Types (k : R) (x y z : Rcomplex R).
Lemma conjc_is_scalable : scalable (conjc : Rcomplex R -> Rcomplex R).
Proof. by move=> a [b c]; simpc. Qed.
HB.instance Definition _ :=
GRing.isScalable.Build R R[i] R[i] *:%R conjc conjc_is_scalable.
End RComplexLMod.
(* Section RcfDef. *)
(* Variable R : realFieldType. *)
(* Notation C := (complex R). *)
(* Definition rcf_odd := forall (p : {poly R}), *)
(* ~~odd (size p) -> {x | p.[x] = 0}. *)
(* Definition rcf_square := forall x : R, *)
(* {y | (0 <= y) && if 0 <= x then (y ^ 2 == x) else y == 0}. *)
(* Lemma rcf_odd_sqr_from_ivt : rcf_axiom R -> rcf_odd * rcf_square. *)
(* Proof. *)
(* move=> ivt. *)
(* split. *)
(* move=> p sp. *)
(* move: (ivt p). *)
(* admit. *)
(* move=> x. *)
(* case: (boolP (0 <= x)) (@ivt ('X^2 - x%:P) 0 (1 + x))=> px; last first. *)
(* by move=> _; exists 0; rewrite lerr eqxx. *)
(* case. *)
(* * by rewrite ler_wpDr ?ler01. *)
(* * rewrite !horner_lin oppr_le0 px /=. *)
(* rewrite subr_ge0 (@ler_trans _ (1 + x)) //. *)
(* by rewrite ler_wpDl ?ler01 ?lerr. *)
(* by rewrite ler_peMr // addrC -subr_ge0 ?addrK // subr0 ler_wpDl ?ler01. *)
(* * move=> y hy; rewrite /root !horner_lin; move/eqP. *)
(* move/(canRL (@addrNK _ _)); rewrite add0r=> <-. *)
(* by exists y; case/andP: hy=> -> _; rewrite eqxx. *)
(* Qed. *)
(* Lemma ivt_from_closed : GRing.ClosedField.axiom [ringType of C] -> rcf_axiom R. *)
(* Proof. *)
(* rewrite /GRing.ClosedField.axiom /= => hclosed. *)
(* move=> p a b hab. *)
(* Admitted. *)
(* Lemma closed_form_rcf_odd_sqr : rcf_odd -> rcf_square *)
(* -> GRing.ClosedField.axiom [ringType of C]. *)
(* Proof. *)
(* Admitted. *)
(* Lemma closed_form_ivt : rcf_axiom R -> GRing.ClosedField.axiom [ringType of C]. *)
(* Proof. *)
(* move/rcf_odd_sqr_from_ivt; case. *)
(* exact: closed_form_rcf_odd_sqr. *)
(* Qed. *)
(* End RcfDef. *)
Section ComplexClosed.
Variable R : rcfType.
Definition sqrtc (x : R[i]) : R[i] :=
let: a +i* b := x in
let sgr1 b := if b == 0 then 1 else sgr b in
let r := sqrtr (a^+2 + b^+2) in
(sqrtr ((r + a)/2%:R)) +i* (sgr1 b * sqrtr ((r - a)/2%:R)).
Lemma sqr_sqrtc : forall x, (sqrtc x) ^+ 2 = x.
Proof.
have sqr: forall x : R, x ^+ 2 = x * x.
by move=> x; rewrite exprS expr1.
case=> a b; rewrite exprS expr1; simpc.
have F0: 2%:R != 0 :> R by rewrite pnatr_eq0.
have F1: 0 <= 2%:R^-1 :> R by rewrite invr_ge0 ler0n.
have F2: `|a| <= sqrtr (a^+2 + b^+2).
rewrite -sqrtr_sqr ler_wsqrtr //.
by rewrite addrC -subr_ge0 addrK exprn_even_ge0.
have F3: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) - a) / 2%:R.
rewrite mulr_ge0 // subr_ge0 (le_trans _ F2) //.
by rewrite -(maxrN a) le_max lexx.
have F4: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) + a) / 2%:R.
rewrite mulr_ge0 // -{2}[a]opprK subr_ge0 (le_trans _ F2) //.
by rewrite -(maxrN a) le_max lexx orbT.
congr (_ +i* _); set u := if _ then _ else _.
rewrite mulrCA !mulrA.
have->: (u * u) = 1.
rewrite /u; case: (altP (_ =P _)); rewrite ?mul1r //.
by rewrite -expr2 sqr_sg => ->.
rewrite mul1r -!sqr !sqr_sqrtr //.
rewrite [_+a]addrC -mulrBl opprD addrA addrK.
by rewrite opprK -mulr2n -[a *+ 2]mulr_natl [_*a]mulrC mulfK.
rewrite mulrCA -mulrA -mulrDr [sqrtr _ * _]mulrC.
rewrite -mulr2n -sqrtrM // mulrAC !mulrA ?[_ * (_ - _)]mulrC -subr_sqr.
rewrite sqr_sqrtr; last first.
by rewrite ler_wpDr // exprn_even_ge0.
rewrite [_^+2 + _]addrC addrK -mulrA -expr2 sqrtrM ?exprn_even_ge0 //.
rewrite !sqrtr_sqr -(mulr_natr (_ * _)).
rewrite [`|_^-1|]ger0_norm // -mulrA [_ * _%:R]mulrC divff //.
rewrite mulr1 /u; case: (_ =P _)=>[->|].
by rewrite normr0 mulr0.
by rewrite mulr_sg_norm.
Qed.
Lemma sqrtc_sqrtr :
forall (x : R[i]), 0 <= x -> sqrtc x = (sqrtr (Re x))%:C.
Proof.
move=> [a b] /andP [/eqP->] /= a_ge0.
rewrite eqxx mul1r [0 ^+ _]exprS mul0r addr0 sqrtr_sqr.
rewrite ger0_norm // subrr mul0r sqrtr0 -mulr2n.
by rewrite -[_*+2]mulr_natr mulfK // pnatr_eq0.
Qed.
Lemma sqrtc0 : sqrtc 0 = 0.
Proof. by rewrite sqrtc_sqrtr ?lexx // sqrtr0. Qed.
Lemma sqrtc1 : sqrtc 1 = 1.
Proof. by rewrite sqrtc_sqrtr ?ler01 // sqrtr1. Qed.
Lemma sqrtN1 : sqrtc (-1) = 'i.
Proof.
rewrite /sqrtc /= oppr0 eqxx [0^+_]exprS mulr0 addr0.
rewrite exprS expr1 mulN1r opprK sqrtr1 subrr mul0r sqrtr0.
by rewrite mul1r -mulr2n divff ?sqrtr1 // pnatr_eq0.
Qed.
Lemma sqrtc_ge0 (x : R[i]) : (0 <= sqrtc x) = (0 <= x).
Proof.
apply/idP/idP=> [psx|px]; last first.
by rewrite sqrtc_sqrtr // lecR sqrtr_ge0.
by rewrite -[x]sqr_sqrtc exprS expr1 mulr_ge0.
Qed.
Lemma sqrtc_eq0 (x : R[i]) : (sqrtc x == 0) = (x == 0).
Proof.
apply/eqP/eqP=> [eqs|->]; last by rewrite sqrtc0.
by rewrite -[x]sqr_sqrtc eqs exprS mul0r.
Qed.
Lemma normcE x : `|x| = sqrtc (x * x^*%C).
Proof.
case: x=> a b; simpc; rewrite [b * a]mulrC addNr sqrtc_sqrtr //.
by simpc; rewrite /= addr_ge0 ?sqr_ge0.
Qed.
Lemma sqr_normc (x : R[i]) : (`|x| ^+ 2) = x * x^*%C.
Proof. by rewrite normcE sqr_sqrtc. Qed.
Lemma normc_ge_Re (x : R[i]) : `|Re x|%:C <= `|x|.
Proof.
by case: x => a b; simpc; rewrite -sqrtr_sqr ler_wsqrtr // lerDl sqr_ge0.
Qed.
Lemma normcJ (x : R[i]) : `|x^*%C| = `|x|.
Proof. by case: x => a b; simpc; rewrite /= sqrrN. Qed.
Lemma invc_norm (x : R[i]) : x^-1 = `|x|^-2 * x^*%C.
Proof.
case: (altP (x =P 0)) => [->|dx]; first by rewrite rmorph0 mulr0 invr0.
apply: (mulIf dx); rewrite mulrC divff // -mulrA [_^*%C * _]mulrC -(sqr_normc x).
by rewrite mulVf // expf_neq0 ?normr_eq0.
Qed.
Lemma canonical_form (a b c : R[i]) :
a != 0 ->
let d := b ^+ 2 - 4%:R * a * c in
let r1 := (- b - sqrtc d) / 2%:R / a in
let r2 := (- b + sqrtc d) / 2%:R / a in
a *: 'X^2 + b *: 'X + c%:P = a *: (('X - r1%:P) * ('X - r2%:P)).
Proof.
move=> a_neq0 d r1 r2.
rewrite !(mulrDr, mulrDl, mulNr, mulrN, opprK, scalerDr).
rewrite [_ * _%:P]mulrC !mul_polyC !scalerN !scalerA -!addrA; congr (_ + _).
rewrite addrA; congr (_ + _).
rewrite -opprD -scalerDl -scaleNr; congr(_ *: _).
rewrite ![a * _]mulrC !divfK // !mulrDl addrACA !mulNr addNr addr0.
rewrite -opprD opprK -mulrDr -mulr2n.
by rewrite -(mulr_natl (_^-1)) divff ?mulr1 ?pnatr_eq0.
symmetry; rewrite -!alg_polyC scalerA; congr (_%:A).
rewrite [a * _]mulrC divfK // /r2 mulrA mulrACA -invfM -natrM -subr_sqr.
rewrite sqr_sqrtc sqrrN /d opprB addrC addrNK -2!mulrA.
by rewrite mulrACA -natf_div // mul1r mulrAC divff ?mul1r.
Qed.
Lemma monic_canonical_form (b c : R[i]) :
let d := b ^+ 2 - 4%:R * c in
let r1 := (- b - sqrtc d) / 2%:R in
let r2 := (- b + sqrtc d) / 2%:R in
'X^2 + b *: 'X + c%:P = (('X - r1%:P) * ('X - r2%:P)).
Proof.
by rewrite /= -['X^2]scale1r canonical_form ?oner_eq0 // scale1r mulr1 !divr1.
Qed.
Section extramx.
(* missing lemmas from matrix.v or mxalgebra.v *)
Lemma mul_mx_rowfree_eq0 (K : fieldType) (m n p: nat)
(W : 'M[K]_(m,n)) (V : 'M[K]_(n,p)) :
row_free V -> (W *m V == 0) = (W == 0).
Proof. by move=> free; rewrite -!mxrank_eq0 mxrankMfree ?mxrank_eq0. Qed.
Lemma sub_sums_genmxP (F : fieldType) (I : finType) (P : pred I) (m n : nat)
(A : 'M[F]_(m, n)) (B_ : I -> 'M_(m, n)) :
reflect (exists u_ : I -> 'M_m, A = \sum_(i | P i) u_ i *m B_ i)
(A <= \sum_(i | P i) <<B_ i>>)%MS.
Proof.
apply: (iffP idP); last first.
by move=> [u_ ->]; rewrite summx_sub_sums // => i _; rewrite genmxE submxMl.
move=> /sub_sumsmxP [u_ hA].
have Hu i : exists v, u_ i *m <<B_ i>>%MS = v *m B_ i.
by apply/submxP; rewrite (submx_trans (submxMl _ _)) ?genmxE.
exists (fun i => projT1 (sig_eqW (Hu i))); rewrite hA.
by apply: eq_bigr => i /= P_i; case: sig_eqW.
Qed.
Lemma mulmxP (K : fieldType) (m n : nat) (A B : 'M[K]_(m, n)) :
reflect (forall u : 'rV__, u *m A = u *m B) (A == B).
Proof.
apply: (iffP eqP) => [-> //|eqAB].
apply: (@row_full_inj _ _ _ _ 1%:M); first by rewrite row_full_unit unitmx1.
by apply/row_matrixP => i; rewrite !row_mul eqAB.
Qed.
Section Skew.
Variable (K : numFieldType).
Implicit Types (phK : phant K) (n : nat).
Definition skew_vec n i j : 'rV[K]_(n * n) :=
(mxvec ((delta_mx i j)) - (mxvec (delta_mx j i))).
Definition skew_def phK n : 'M[K]_(n * n) :=
(\sum_(i | ((i.2 : 'I__) < (i.1 : 'I__))%N) <<skew_vec i.1 i.2>>)%MS.
Variable (n : nat).
Local Notation skew := (@skew_def (Phant K) n).
Lemma skew_direct_sum : mxdirect skew.
Proof.
apply/mxdirect_sumsE => /=; split => [i _|]; first exact: mxdirect_trivial.
apply/mxdirect_sumsP => [] [i j] /= lt_ij; apply/eqP; rewrite -submx0.
apply/rV_subP => v; rewrite sub_capmx => /andP []; rewrite !genmxE.
move=> /submxP [w ->] /sub_sums_genmxP [/= u_].
move/matrixP => /(_ 0 (mxvec_index i j)); rewrite !mxE /= big_ord1.
rewrite /skew_vec /= !mxvec_delta !mxE !eqxx /=.
have /(_ _ _ (_, _) (_, _)) /= eq_mviE :=
inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))).
rewrite eq_mviE xpair_eqE -!val_eqE /= eq_sym andbb.
rewrite ltn_eqF // subr0 mulr1 summxE big1.
rewrite [w as X in X *m _]mx11_scalar => ->.
by rewrite mul_scalar_mx scale0r submx0.
move=> [i' j'] /= /andP[lt_j'i'].
rewrite xpair_eqE /= => neq'_ij.
rewrite /= !mxvec_delta !mxE big_ord1 !mxE !eqxx !eq_mviE.
rewrite !xpair_eqE /= [_ == i']eq_sym [_ == j']eq_sym (negPf neq'_ij) /=.
set z := (_ && _); suff /negPf -> : ~~ z by rewrite subrr mulr0.
by apply: contraL lt_j'i' => /andP [/eqP <- /eqP <-]; rewrite ltnNge ltnW.
Qed.
Hint Resolve skew_direct_sum : core.
Lemma rank_skew : \rank skew = (n * n.-1)./2.
Proof.
rewrite /skew (mxdirectP _) //= -bin2 -triangular_sum big_mkord.
rewrite (eq_bigr (fun _ => 1%N)); last first.
move=> [i j] /= lt_ij; rewrite genmxE.
apply/eqP; rewrite eqn_leq rank_leq_row /= lt0n mxrank_eq0.
rewrite /skew_vec /= !mxvec_delta /= subr_eq0.
set j1 := mxvec_index _ _.
apply/negP => /eqP /matrixP /(_ 0 j1) /=; rewrite !mxE /= eqxx.
have /(_ _ _ (_, _) (_, _)) -> :=
inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))).
rewrite xpair_eqE -!val_eqE /= eq_sym andbb ltn_eqF //.
by move/eqP; rewrite oner_eq0.
transitivity (\sum_(i < n) (\sum_(j < n | j < i) 1))%N.
by rewrite pair_big_dep.
apply: eq_bigr => [] [[|i] Hi] _ /=; first by rewrite big1.
rewrite (eq_bigl _ _ (fun _ => ltnS _ _)).
have [n_eq0|n_gt0] := posnP n; first by move: Hi (Hi); rewrite {1}n_eq0.
rewrite -[n]prednK // big_ord_narrow_leq /=.
by rewrite -ltnS prednK // (leq_trans _ Hi).
by rewrite sum_nat_const card_ord muln1.
Qed.
Lemma skewP (M : 'rV_(n * n)) :
reflect ((vec_mx M)^T = - vec_mx M) (M <= skew)%MS.
Proof.
apply: (iffP idP).
move/sub_sumsmxP => [v ->]; rewrite !linear_sum /=.
apply: eq_bigr => [] [i j] /= lt_ij; rewrite !mulmx_sum_row !linear_sum /=.
apply: eq_bigr => k _; rewrite !linearZ /=; congr (_ *: _) => {v}.
set r := << _ >>%MS; move: (row _ _) (row_sub k r) => v.
move: @r; rewrite /= genmxE => /sub_rVP [a ->]; rewrite !linearZ /=.
by rewrite /skew_vec !linearB /= !mxvecK !scalerN opprK addrC !trmx_delta.
move=> skewM; pose M' := vec_mx M.
pose xM i j := (M' i j - M' j i) *: skew_vec i j.
suff -> : M = 2%:R^-1 *:
(\sum_(i | true && ((i.2 : 'I__) < (i.1 : 'I__))%N) xM i.1 i.2).
rewrite scalemx_sub // summx_sub_sums // => [] [i j] /= lt_ij.
by rewrite scalemx_sub // genmxE.
rewrite /xM /= /skew_vec (eq_bigr _ (fun _ _ => scalerBr _ _ _)).
rewrite big_split /= sumrN !(eq_bigr _ (fun _ _ => scalerBl _ _ _)).
rewrite !big_split /= !sumrN opprD ?opprK addrACA [- _ + _]addrC.
rewrite -!sumrN -2!big_split /=.
rewrite /xM /= /skew_vec -!(eq_bigr _ (fun _ _ => scalerBr _ _ _)).
apply: (can_inj vec_mxK); rewrite !(linearZ, linearB, linearD, linear_sum) /=.
have -> /= : vec_mx M = 2%:R^-1 *: (M' - M'^T).
by rewrite skewM opprK -mulr2n -scaler_nat scalerA mulVf ?pnatr_eq0 ?scale1r.
rewrite [M' in LHS]matrix_sum_delta; congr (_ *: _).
rewrite pair_big /= !linear_sum /= -big_split /=.
rewrite (bigID (fun ij => (ij.2 : 'I__) < (ij.1 : 'I__))%N) /=; congr (_ + _).
apply: eq_bigr => [] [i j] /= lt_ij.
by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr.
rewrite (bigID (fun ij => (ij.1 : 'I__) == (ij.2 : 'I__))%N) /=.
rewrite big1 ?add0r; last first.
by move=> [i j] /= /andP[_ /eqP ->]; rewrite linearZ /= trmx_delta subrr.
rewrite (@reindex_inj _ _ _ _ (fun ij => (ij.2, ij.1))) /=; last first.
by move=> [? ?] [? ?] [] -> ->.
apply: eq_big => [] [i j] /=; first by rewrite -leqNgt ltn_neqAle andbC.
by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr.
Qed.
End Skew.
Notation skew K n := (@skew_def _ (Phant K) n).
Section Restriction.
Variable K : fieldType.
Variable m : nat.
Variable (V : 'M[K]_m).
Implicit Types f : 'M[K]_m.
Definition restrict f : 'M_(\rank V) := row_base V *m f *m (pinvmx (row_base V)).
Lemma stable_row_base f :
(row_base V *m f <= row_base V)%MS = (V *m f <= V)%MS.
Proof.
rewrite eq_row_base.
by apply/idP/idP=> /(submx_trans _) ->; rewrite ?submxMr ?eq_row_base.
Qed.
Lemma eigenspace_restrict f : (V *m f <= V)%MS ->
forall n a (W : 'M_(n, \rank V)),
(W <= eigenspace (restrict f) a)%MS =
(W *m row_base V <= eigenspace f a)%MS.
Proof.
move=> f_stabV n a W; apply/eigenspaceP/eigenspaceP; rewrite scalemxAl.
by move<-; rewrite -mulmxA -[X in _ = X]mulmxA mulmxKpV ?stable_row_base.
move/(congr1 (mulmx^~ (pinvmx (row_base V)))).
rewrite -2!mulmxA [_ *m (f *m _)]mulmxA => ->.
by apply: (row_free_inj (row_base_free V)); rewrite mulmxKpV ?submxMl.
Qed.
Lemma eigenvalue_restrict f : (V *m f <= V)%MS ->
{subset eigenvalue (restrict f) <= eigenvalue f}.
Proof.
move=> f_stabV a /eigenvalueP [x /eigenspaceP]; rewrite eigenspace_restrict //.
move=> /eigenspaceP Hf x_neq0; apply/eigenvalueP.
by exists (x *m row_base V); rewrite ?mul_mx_rowfree_eq0 ?row_base_free.
Qed.
Lemma restrictM : {in [pred f | (V *m f <= V)%MS] &,
{morph restrict : f g / f *m g}}.
Proof.
move=> f g; rewrite !inE => Vf Vg /=.
by rewrite /restrict 2!mulmxA mulmxA mulmxKpV ?stable_row_base.
Qed.
End Restriction.
End extramx.
Notation skew K n := (@skew_def _ (Phant K) n).
Section Paper_HarmDerksen.
(* Following http://www.math.lsa.umich.edu/~hderksen/preprints/linalg.pdf *)
(* quite literally except for Lemma5 where we don't use hermitian matrices. *)
(* Instead we encode the morphism by hand in 'M[R]_(n * n), which turns out *)
(* to be very clumsy for formalizing commutation and the end of Lemma 4. *)
(* Moreover, the Qed takes time, so it would be far much better to formalize *)
(* Herm C n and use it instead ! *)
Implicit Types (K : fieldType).
Definition CommonEigenVec_def K (phK : phant K) (d r : nat) :=
forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) ->
forall (sf : seq 'M_m), size sf = r ->
{in sf, forall f, (V *m f <= V)%MS} ->
{in sf &, forall f g, f *m g = g *m f} ->
exists2 v : 'rV_m, (v != 0) & forall f, f \in sf ->
exists a, (v <= eigenspace f a)%MS.
Notation CommonEigenVec K d r := (@CommonEigenVec_def _ (Phant K) d r).
Definition Eigen1Vec_def K (phK : phant K) (d : nat) :=
forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) ->
forall (f : 'M_m), (V *m f <= V)%MS -> exists a, eigenvalue f a.
Notation Eigen1Vec K d := (@Eigen1Vec_def _ (Phant K) d).
Lemma Eigen1VecP (K : fieldType) (d : nat) :
CommonEigenVec K d 1%N <-> Eigen1Vec K d.
Proof.
split=> [Hd m V HV f|Hd m V HV [] // f [] // _ /(_ _ (mem_head _ _))] f_stabV.
have [] := Hd _ _ HV [::f] (erefl _).
+ by move=> ?; rewrite in_cons orbF => /eqP ->.
+ by move=> ? ?; rewrite /= !in_cons !orbF => /eqP -> /eqP ->.
move=> v v_neq0 /(_ f (mem_head _ _)) [a /eigenspaceP].
by exists a; apply/eigenvalueP; exists v.
have [a /eigenvalueP [v /eigenspaceP v_eigen v_neq0]] := Hd _ _ HV _ f_stabV.
by exists v => // ?; rewrite in_cons orbF => /eqP ->; exists a.
Qed.
Lemma Lemma3 K d : Eigen1Vec K d -> forall r, CommonEigenVec K d r.+1.
Proof.
move=> E1V_K_d; elim=> [|r IHr m V]; first exact/Eigen1VecP.
move: (\rank V) {-2}V (leqnn (\rank V)) => n {V}.
elim: n m => [|n IHn] m V.
by rewrite leqn0 => /eqP ->; rewrite dvdn0.
move=> le_rV_Sn HrV [] // f sf /= [] ssf f_sf_stabV f_sf_comm.
have [->|f_neq0] := altP (f =P 0).
have [||v v_neq0 Hsf] := (IHr _ _ HrV _ ssf).
+ by move=> g f_sf /=; rewrite f_sf_stabV // in_cons f_sf orbT.
+ move=> g h g_sf h_sf /=.
by apply: f_sf_comm; rewrite !in_cons ?g_sf ?h_sf ?orbT.
exists v => // g; rewrite in_cons => /orP [/eqP->|]; last exact: Hsf.
by exists 0; apply/eigenspaceP; rewrite mulmx0 scale0r.
have f_stabV : (V *m f <= V)%MS by rewrite f_sf_stabV ?mem_head.
have sf_stabV : {in sf, forall f, (V *m f <= V)%MS}.
by move=> g g_sf /=; rewrite f_sf_stabV // in_cons g_sf orbT.
pose f' := restrict V f; pose sf' := map (restrict V) sf.
have [||a a_eigen_f'] := E1V_K_d _ 1%:M _ f'; do ?by rewrite ?mxrank1 ?submx1.
pose W := (eigenspace f' a)%MS; pose Z := (f' - a%:M).
have rWZ : (\rank W + \rank Z)%N = \rank V.
by rewrite (mxrank_ker (f' - a%:M)) subnK // rank_leq_row.
have f'_stabW : (W *m f' <= W)%MS.
by rewrite (eigenspaceP (submx_refl _)) scalemx_sub.
have f'_stabZ : (Z *m f' <= Z)%MS.
rewrite (submx_trans _ (submxMl f' _)) //.
by rewrite mulmxDl mulmxDr mulmxN mulNmx scalar_mxC.
have sf'_comm : {in [::f' & sf'] &, forall f g, f *m g = g *m f}.
move=> g' h' /=; rewrite -!map_cons.
move=> /mapP [g g_s_sf -> {g'}] /mapP [h h_s_sf -> {h'}].
by rewrite -!restrictM ?inE /= ?f_sf_stabV // f_sf_comm.
have sf'_stabW : {in sf', forall f, (W *m f <= W)%MS}.
move=> g g_sf /=; apply/eigenspaceP.
rewrite -mulmxA -[g *m _]sf'_comm ?(mem_head, in_cons, g_sf, orbT) //.
by rewrite mulmxA scalemxAl (eigenspaceP (submx_refl _)).
have sf'_stabZ : {in sf', forall f, (Z *m f <= Z)%MS}.
move=> g g_sf /=.
rewrite mulmxBl sf'_comm ?(mem_head, in_cons, g_sf, orbT) //.
by rewrite -scalar_mxC -mulmxBr submxMl.
have [eqWV|neqWV] := altP (@eqmxP _ _ _ _ W 1%:M).
have [] // := IHr _ W _ sf'; do ?by rewrite ?eqWV ?mxrank1 ?size_map.
move=> g h g_sf' h_sf'; apply: sf'_comm;
by rewrite in_cons (g_sf', h_sf') orbT.
move=> v v_neq0 Hv; exists (v *m row_base V).
by rewrite mul_mx_rowfree_eq0 ?row_base_free.
move=> g; rewrite in_cons => /orP [/eqP ->|g_sf]; last first.
have [|b] := Hv (restrict V g); first by rewrite map_f.
by rewrite eigenspace_restrict // ?sf_stabV //; exists b.
by exists a; rewrite -eigenspace_restrict // eqWV submx1.
have lt_WV : (\rank W < \rank V)%N.
rewrite -[X in (_ < X)%N](@mxrank1 K) rank_ltmx //.
by rewrite ltmxEneq neqWV // submx1.
have ltZV : (\rank Z < \rank V)%N.
rewrite -[X in (_ < X)%N]rWZ -subn_gt0 addnK lt0n mxrank_eq0 -lt0mx.
move: a_eigen_f' => /eigenvalueP [v /eigenspaceP] sub_vW v_neq0.
by rewrite (ltmx_sub_trans _ sub_vW) // lt0mx.
have [] // := IHn _ (if d %| \rank Z then W else Z) _ _ [:: f' & sf'].
+ by rewrite -ltnS (@leq_trans (\rank V)) //; case: ifP.
+ by apply: contra HrV; case: ifP => [*|-> //]; rewrite -rWZ dvdn_add.
+ by rewrite /= size_map ssf.
+ move=> g; rewrite in_cons => /= /orP [/eqP -> {g}|g_sf']; case: ifP => _ //;
by rewrite (sf'_stabW, sf'_stabZ).
move=> v v_neq0 Hv; exists (v *m row_base V).
by rewrite mul_mx_rowfree_eq0 ?row_base_free.
move=> g Hg; have [|b] := Hv (restrict V g); first by rewrite -map_cons map_f.
rewrite eigenspace_restrict //; first by exists b.
by move: Hg; rewrite in_cons => /orP [/eqP -> //|/sf_stabV].
Qed.
Lemma Lemma4 r : CommonEigenVec R 2 r.+1.
Proof.
apply: Lemma3=> m V hV f f_stabV.
have [|a] := @odd_poly_root _ (char_poly (restrict V f)).
by rewrite size_char_poly /= -dvdn2.
rewrite -eigenvalue_root_char => /eigenvalueP [v] /eigenspaceP v_eigen v_neq0.
exists a; apply/eigenvalueP; exists (v *m row_base V).
by apply/eigenspaceP; rewrite -eigenspace_restrict.
by rewrite mul_mx_rowfree_eq0 ?row_base_free.
Qed.
Notation toC := (real_complex R).
Notation MtoC := (map_mx toC).
Lemma Lemma5 : Eigen1Vec R[i] 2.
Proof.
move=> m V HrV f f_stabV.
suff: exists a, eigenvalue (restrict V f) a.
by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf.
move: (\rank V) (restrict V f) => {f f_stabV V m} n f in HrV *.
pose u := map_mx (@Re R) f; pose v := map_mx (@Im R) f.
have fE : f = MtoC u + 'i%C *: MtoC v.
rewrite /u /v [f]lock; apply/matrixP => i j; rewrite !mxE /=.
by case: (locked f i j) => a b; simpc.
move: u v => u v in fE *.
pose L1fun : 'M[R]_n -> _ :=
2%:R^-1 \*: (mulmxr u \+ (mulmxr v \o trmx)
\+ ((mulmx (u^T)) \- (mulmx (v^T) \o trmx))).
pose L1 := lin_mx L1fun.
pose L2fun : 'M[R]_n -> _ :=
2%:R^-1 \*: (((@GRing.opp _) \o (mulmxr u \o trmx) \+ mulmxr v)
\+ ((mulmx (u^T) \o trmx) \+ (mulmx (v^T)))).
pose L2 := lin_mx L2fun.
have [] := @Lemma4 _ _ 1%:M _ [::L1; L2] (erefl _).
+ by move: HrV; rewrite mxrank1 !dvdn2 ?negbK oddM andbb.
+ by move=> ? _ /=; rewrite submx1.
+ suff {f fE}: L1 *m L2 = L2 *m L1.
move: L1 L2 => L1 L2 commL1L2 La Lb.
rewrite !{1}in_cons !{1}in_nil !{1}orbF.
by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry.
apply/eqP/mulmxP => x; rewrite [X in X = _]mulmxA [X in _ = X]mulmxA.
rewrite 4!mul_rV_lin !mxvecK /= /L1fun /L2fun /=; congr (mxvec (_ *: _)).
move=> {L1 L2 L1fun L2fun}.
case: n {x} (vec_mx x) => [//|n] x in HrV u v *.
do ?[rewrite -(scalemxAl, scalemxAr, scalerN, scalerDr)
|rewrite (mulmxN, mulNmx, trmxK, trmx_mul)
|rewrite ?[(_ *: _)^T]linearZ ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=].
congr (_ *: _).
rewrite !(mulmxDr, mulmxDl, mulNmx, mulmxN, mulmxA, opprD, opprK).
do ![move: (_ *m _ *m _)] => t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12.
rewrite [X in X + _ + _]addrC [X in X + _ = _]addrACA.
rewrite [X in _ = (_ + _ + X) + _]addrC [X in _ = X + _]addrACA.
rewrite [X in _ + (_ + _ + X) = _]addrC [X in _ + X = _]addrACA.
rewrite [X in _ = _ + (X + _)]addrC [X in _ = _ + X]addrACA.
rewrite [X in X = _]addrACA [X in _ = X]addrACA; congr (_ + _).
by rewrite addrC [X in X + _ = _]addrACA [X in _ + X = _]addrACA.
move=> g g_neq0 Hg; have [] := (Hg L1, Hg L2).
rewrite !(mem_head, in_cons, orbT) => [].
move=> [//|a /eigenspaceP g_eigenL1] [//|b /eigenspaceP g_eigenL2].
rewrite !mul_rV_lin /= /L1fun /L2fun /= in g_eigenL1 g_eigenL2.
do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL1.
do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL2.
move=> {L1 L2 L1fun L2fun Hg HrV}.
set vg := vec_mx g in g_eigenL1 g_eigenL2.
exists (a +i* b); apply/eigenvalueP.
pose w := (MtoC vg - 'i%C *: MtoC vg^T).
exists (nz_row w); last first.
rewrite nz_row_eq0 subr_eq0; apply: contraNneq g_neq0 => Hvg.
rewrite -vec_mx_eq0; apply/eqP/matrixP => i j; rewrite !mxE /=.
move: Hvg => /matrixP /(_ i j); rewrite !mxE /=; case.
by rewrite !(mul0r, mulr0, add0r, mul1r, oppr0) => ->.
apply/eigenspaceP.
case: n f => [|n] f in u v g g_neq0 vg w fE g_eigenL1 g_eigenL2 *.
by rewrite thinmx0 eqxx in g_neq0.
rewrite (submx_trans (nz_row_sub _)) //; apply/eigenspaceP.
rewrite fE [a +i* b]complexE /=.
rewrite !(mulmxDr, mulmxBl, =^~scalemxAr, =^~scalemxAl) -!map_mxM.
rewrite !(scalerDl, scalerDr, scalerN, =^~scalemxAr, =^~scalemxAl).
rewrite !scalerA /= mulrAC ['i%C * _]sqr_i ?mulN1r scaleN1r scaleNr !opprK.
rewrite [_ * 'i%C]mulrC -!scalerA -!map_mxZ /=.
rewrite ['i%C *: _ + _]addrC [LHS]addrACA ['i%C *: _ + _]addrC [RHS]addrACA.
rewrite [X in _ + _ + X]addrC -scalerBr -!(rmorphB, rmorphD)/=.
rewrite [- _ + _ in RHS]addrC -scalerBr -!(rmorphB, rmorphD)/=.
congr (_ + 'i%C *: _); congr map_mx; rewrite -[_ *: _^T]linearZ /=;
rewrite -g_eigenL1 -g_eigenL2 linearZ -(scalerDr, scalerBr);
do ?rewrite ?trmxK ?trmx_mul ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=;
rewrite -[in X in _ *: (_ + X)]addrC 1?opprD 1?opprB ?mulmxN ?mulNmx;
rewrite [X in _ *: X]addrACA.
rewrite -mulr2n [X in _ *: (_ + X)]addrACA subrr addNr !addr0.
by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r.
rewrite subrr addr0 addrA addrAC -addrA -mulr2n addrC.
by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r.
Qed.
Lemma Lemma6 k r : CommonEigenVec R[i] (2^k.+1) r.+1.
Proof.
elim: k {-2}k (leqnn k) r => [|k IHk] l.
by rewrite leqn0 => /eqP ->; apply: Lemma3; apply: Lemma5.
rewrite leq_eqVlt ltnS => /orP [/eqP ->|/IHk //] r {l}.
apply: Lemma3 => m V Hn f f_stabV {r}.
have [dvd2n|Ndvd2n] := boolP (2 %| \rank V); last first.
exact: @Lemma5 _ _ Ndvd2n _ f_stabV.
suff: exists a, eigenvalue (restrict V f) a.
by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf.
case: (\rank V) (restrict V f) => {f f_stabV V m} [|n] f in Hn dvd2n *.
by rewrite dvdn0 in Hn.
pose L1 := lin_mx (mulmxr f \+ mulmx f^T).
pose L2 := lin_mx (mulmxr f \o mulmx f^T).
have [] /= := IHk _ (leqnn _) _ _ (skew R[i] n.+1) _ [::L1; L2] (erefl _).
+ rewrite rank_skew; apply: contra Hn.
rewrite -(@dvdn_pmul2r 2) //= -expnSr muln2 -[_.*2]add0n.
have n_odd : odd n by rewrite dvdn2 /= ?negbK in dvd2n *.
have {2}<- : odd (n.+1 * n) = 0%N :> nat by rewrite oddM /= andNb.
by rewrite odd_double_half Gauss_dvdl // coprime_pexpl // coprime2n.
+ move=> L; rewrite 2!in_cons in_nil orbF => /orP [] /eqP ->;
apply/rV_subP => v /submxP [s -> {v}]; rewrite mulmxA; apply/skewP;
set u := _ *m skew _ _;
do [have /skewP : (u <= skew R[i] n.+1)%MS by rewrite submxMl];
rewrite mul_rV_lin /= !mxvecK => skew_u.
by rewrite opprD linearD /= !trmx_mul skew_u mulmxN mulNmx addrC trmxK.
by rewrite !trmx_mul trmxK skew_u mulNmx mulmxN mulmxA.
+ suff commL1L2: L1 *m L2 = L2 *m L1.
move=> La Lb; rewrite !in_cons !in_nil !orbF.
by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry.
apply/eqP/mulmxP => u; rewrite !mulmxA !mul_rV_lin ?mxvecK /=.
by rewrite !(mulmxDr, mulmxDl, mulmxA).
move=> v v_neq0 HL1L2; have [] := (HL1L2 L1, HL1L2 L2).
rewrite !(mem_head, in_cons) orbT => [] [] // a vL1 [] // b vL2 {HL1L2}.
move/eigenspaceP in vL1; move/eigenspaceP in vL2.
move: vL2 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK.
move: vL1 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK.
move=> /(canRL (addKr _)) ->; rewrite mulmxDl mulNmx => Hv.
pose p := 'X^2 + (- a) *: 'X + b%:P.
have : vec_mx v *m (horner_mx f p) = 0.
rewrite !(rmorphN, rmorphB, rmorphD, rmorphM) /= linearZ /=.
rewrite horner_mx_X horner_mx_C !mulmxDr mul_mx_scalar -Hv.
rewrite addrAC addrA mulmxA addrN add0r.
by rewrite -scalemxAl -scalemxAr scaleNr addrN.
rewrite [p]monic_canonical_form; move: (_ / 2%:R) (_ / 2%:R).
move=> r2 r1 {Hv p a b L1 L2 Hn}.
rewrite rmorphM /= !rmorphB /= horner_mx_X !horner_mx_C mulmxA => Hv.
have: exists2 w : 'M_n.+1, w != 0 & exists a, (w <= eigenspace f a)%MS.
move: Hv; set w := vec_mx _ *m _.
have [w_eq0 _|w_neq0 r2_eigen] := altP (w =P 0).
exists (vec_mx v); rewrite ?vec_mx_eq0 //; exists r1.
apply/eigenspaceP/eqP.
by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr -/w w_eq0.
exists w => //; exists r2; apply/eigenspaceP/eqP.
by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr r2_eigen.
move=> [w w_neq0 [a /(submx_trans (nz_row_sub _)) /eigenspaceP Hw]].
by exists a; apply/eigenvalueP; exists (nz_row w); rewrite ?nz_row_eq0.
Qed.
(* We enunciate a corollary of Theorem 7 *)
Corollary Theorem7' (m : nat) (f : 'M[R[i]]_m) : (0 < m)%N -> exists a, eigenvalue f a.
Proof.
case: m f => // m f _; have /Eigen1VecP := @Lemma6 m 0.
move=> /(_ m.+1 1 _ f) []; last by move=> a; exists a.
+ by rewrite mxrank1 (contra (dvdn_leq _)) // -ltnNge ltn_expl.
+ by rewrite submx1.
Qed.
Lemma complex_acf_axiom : GRing.closed_field_axiom R[i].
Proof.
move=> n c n_gt0; pose p := 'X^n - \poly_(i < n) c i.
suff [x rpx] : exists x, root p x.
exists x; move: rpx; rewrite /root /p hornerD hornerN hornerXn subr_eq0.
by move=> /eqP ->; rewrite horner_poly.
have p_monic : p \is monic.
rewrite qualifE/= lead_coefDl ?lead_coefXn //.
by rewrite size_opp size_polyXn ltnS size_poly.
have sp_gt1 : (size p > 1)%N.
by rewrite size_addl size_polyXn // size_opp ltnS size_poly.
case: n n_gt0 p => //= n _ p in p_monic sp_gt1 *.
have [] := Theorem7' (companionmx p); first by rewrite -(subnK sp_gt1) addn2.
by move=> x; rewrite eigenvalue_root_char companionmxK //; exists x.
Qed.
HB.instance Definition _ := Field_isAlgClosed.Build R[i] complex_acf_axiom.
HB.instance Definition _ := Num.NumField_isImaginary.Build R[i]
(sqr_i R) sqr_normc.
End Paper_HarmDerksen.
End ComplexClosed.
Section ComplexClosedTheory.
Variable R : rcfType.
Lemma complexiE : 'i%C = 'i%R :> R[i].
Proof. by []. Qed.
Lemma complexRe (x : R[i]) : (Re x)%:C = 'Re x.
Proof.
rewrite {1}[x]Crect raddfD /= mulrC ReiNIm rmorphB /=.
by rewrite ?RRe_real ?RIm_real ?Creal_Im ?Creal_Re // subr0.
Qed.
Lemma complexIm (x : R[i]) : (Im x)%:C = 'Im x.
Proof.
rewrite {1}[x]Crect raddfD /= mulrC ImiRe rmorphD /=.
by rewrite ?RRe_real ?RIm_real ?Creal_Im ?Creal_Re // add0r.
Qed.
End ComplexClosedTheory.
Definition complexalg := realalg[i].
HB.instance Definition _ := Num.ClosedField.on complexalg.
Lemma complexalg_algebraic : integralRange (@ratr complexalg).
Proof.
move=> x; suff [p p_monic] : integralOver (real_complex _ \o realalg_of _) x.
by rewrite (eq_map_poly (fmorph_eq_rat _)); exists p.
by apply: complex_algebraic_trans; apply: realalg_algebraic.
Qed.
|