File: mxtens.v

package info (click to toggle)
mathcomp-real-closed 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 800 kB
  • sloc: makefile: 28
file content (312 lines) | stat: -rw-r--r-- 11,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype bigop ssralg zmodp matrix.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.
Local Open Scope ring_scope.

Section ExtraBigOp.

Lemma sumr_add : forall (R : ringType) m n (F : 'I_(m + n) -> R),
  \sum_(i < m + n) F i = \sum_(i < m) F (lshift _ i)
  + \sum_(i < n) F (rshift _ i).
Proof.
move=> R; elim=> [|m ihm] n F.
  rewrite !big_ord0 add0r; apply: congr_big=> // [[i hi]] _.
  by rewrite /rshift /=; congr F; apply: val_inj.
rewrite !big_ord_recl ihm -addrA.
congr (_ + _); first by congr F; apply: val_inj.
congr (_ + _); by apply: congr_big=> // i _ /=; congr F; apply: val_inj.
Qed.

Lemma mxtens_index_proof m n (ij : 'I_m * 'I_n) : ij.1 * n + ij.2 < m * n.
Proof.
case: m ij=> [[[] //]|] m ij; rewrite mulSn addnC -addSn leq_add //.
by rewrite leq_mul2r; case: n ij=> // n ij; rewrite leq_ord orbT.
Qed.

Definition mxtens_index m n ij := Ordinal (@mxtens_index_proof m n ij).

Lemma mxtens_index_proof1 m n (k : 'I_(m * n)) : k %/ n < m.
Proof. by move: m n k=> [_ [] //|m] [|n] k; rewrite ?divn0 // ltn_divLR. Qed.
Lemma mxtens_index_proof2 m n (k : 'I_(m * n)) : k %% n < n.
Proof. by rewrite ltn_mod; case: n k=> //; rewrite muln0=> [] []. Qed.

Definition mxtens_unindex m n k :=
  (Ordinal (@mxtens_index_proof1 m n k), Ordinal (@mxtens_index_proof2 m n k)).

Arguments mxtens_index {m n}.
Arguments mxtens_unindex {m n}.

Lemma mxtens_indexK m n : cancel (@mxtens_index m n) (@mxtens_unindex m n).
Proof.
case: m=> [[[] //]|m]; case: n=> [[_ [] //]|n].
move=> [i j]; congr (_, _); apply: val_inj=> /=.
  by rewrite divnMDl // divn_small ?addn0.
by rewrite modnMDl // modn_small.
Qed.

Lemma mxtens_unindexK m n : cancel (@mxtens_unindex m n) (@mxtens_index m n).
Proof.
case: m=> [[[] //]|m]. case: n=> [|n] k.
  by suff: False by []; move: k; rewrite muln0=> [] [].
by apply: val_inj=> /=; rewrite -divn_eq.
Qed.

Variant is_mxtens_index (m n : nat) : 'I_(m * n) -> Type :=
    IsMxtensIndex : forall (i : 'I_m) (j : 'I_n),
                   is_mxtens_index (mxtens_index (i, j)).

Lemma mxtens_indexP (m n : nat) (k : 'I_(m * n)) : is_mxtens_index k.
Proof. by rewrite -[k]mxtens_unindexK; constructor. Qed.

Lemma mulr_sum (R : ringType) m n (Fm : 'I_m -> R) (Fn : 'I_n -> R) :
  (\sum_(i < m) Fm i) * (\sum_(i < n) Fn i)
  = \sum_(i < m * n) ((Fm (mxtens_unindex i).1) * (Fn (mxtens_unindex i).2)).
Proof.
rewrite mulr_suml; transitivity (\sum_i (\sum_(j < n) Fm i * Fn j)).
  by apply: eq_big=> //= i _; rewrite -mulr_sumr.
rewrite pair_big; apply: reindex=> //=.
by exists mxtens_index=> i; rewrite (mxtens_indexK, mxtens_unindexK).
Qed.

End ExtraBigOp.

Section ExtraMx.

Lemma castmx_mul (R : ringType)
  (m m' n p p': nat) (em : m = m') (ep : p = p')
  (M : 'M[R]_(m, n)) (N : 'M[R]_(n, p)) :
  castmx (em, ep) (M *m N) = castmx (em, erefl _) M *m castmx (erefl _, ep) N.
Proof. by case: m' / em; case: p' / ep. Qed.

Lemma mulmx_cast (R : ringType)
  (m n n' p p' : nat) (en : n' = n) (ep : p' = p)
  (M : 'M[R]_(m, n)) (N : 'M[R]_(n', p')) :
  M *m (castmx (en, ep) N) =
  (castmx (erefl _, (esym en)) M) *m (castmx (erefl _, ep) N).
Proof. by case: n / en in M *; case: p / ep in N *. Qed.

Lemma castmx_row (R : Type) (m m' n1 n2 n1' n2' : nat)
  (eq_n1 : n1 = n1') (eq_n2 : n2 = n2') (eq_n12 : (n1 + n2 = n1' + n2')%N)
  (eq_m : m = m') (A1 : 'M[R]_(m, n1)) (A2 : 'M_(m, n2)) :
  castmx (eq_m, eq_n12) (row_mx A1 A2) =
  row_mx (castmx (eq_m, eq_n1) A1) (castmx (eq_m, eq_n2) A2).
Proof.
case: _ / eq_n1 in eq_n12 *; case: _ / eq_n2 in eq_n12 *.
by case: _ / eq_m; rewrite castmx_id.
Qed.

Lemma castmx_col (R : Type) (m m' n1 n2 n1' n2' : nat)
  (eq_n1 : n1 = n1') (eq_n2 : n2 = n2') (eq_n12 : (n1 + n2 = n1' + n2')%N)
  (eq_m : m = m') (A1 : 'M[R]_(n1, m)) (A2 : 'M_(n2, m)) :
  castmx (eq_n12, eq_m) (col_mx A1 A2) =
  col_mx (castmx (eq_n1, eq_m) A1) (castmx (eq_n2, eq_m) A2).
Proof.
case: _ / eq_n1 in eq_n12 *; case: _ / eq_n2 in eq_n12 *.
by case: _ / eq_m; rewrite castmx_id.
Qed.

Lemma castmx_block (R : Type) (m1 m1' m2 m2' n1 n2 n1' n2' : nat)
  (eq_m1 : m1 = m1') (eq_n1 : n1 = n1') (eq_m2 : m2 = m2') (eq_n2 : n2 = n2')
  (eq_m12 : (m1 + m2 = m1' + m2')%N) (eq_n12 : (n1 + n2 = n1' + n2')%N)
  (ul : 'M[R]_(m1, n1)) (ur : 'M[R]_(m1, n2))
  (dl : 'M[R]_(m2, n1)) (dr : 'M[R]_(m2, n2)) :
  castmx (eq_m12, eq_n12) (block_mx ul ur dl dr) =
  block_mx (castmx (eq_m1, eq_n1) ul) (castmx (eq_m1, eq_n2) ur)
  (castmx (eq_m2, eq_n1) dl) (castmx (eq_m2, eq_n2) dr).
Proof.
case: _ / eq_m1 in eq_m12 *; case: _ / eq_m2 in eq_m12 *.
case: _ / eq_n1 in eq_n12 *; case: _ / eq_n2 in eq_n12 *.
by rewrite !castmx_id.
Qed.

End ExtraMx.

Section MxTens.

Variable R : ringType.

Definition tensmx {m n p q : nat}
  (A : 'M_(m, n)) (B : 'M_(p, q)) : 'M[R]_(_,_) := nosimpl
  (\matrix_(i, j) (A (mxtens_unindex i).1 (mxtens_unindex j).1
                 * B (mxtens_unindex i).2 (mxtens_unindex j).2)).

Notation "A *t B" := (tensmx A B)
  (at level 40, left associativity, format "A  *t  B").

Lemma tensmxE {m n p q} (A : 'M_(m, n)) (B : 'M_(p, q)) i j k l :
  (A *t B) (mxtens_index (i, j)) (mxtens_index (k, l)) = A i k * B j l.
Proof. by rewrite !mxE !mxtens_indexK. Qed.

Lemma tens0mx {m n p q} (M : 'M[R]_(p,q)) : (0 : 'M_(m,n)) *t M = 0.
Proof. by apply/matrixP=> i j; rewrite !mxE mul0r. Qed.

Lemma tensmx0 {m n p q} (M : 'M[R]_(m,n)) : M *t (0 : 'M_(p,q)) = 0.
Proof. by apply/matrixP=> i j; rewrite !mxE mulr0. Qed.

Lemma tens_scalar_mx (m n : nat) (c : R) (M : 'M_(m,n)):
  c%:M *t M = castmx (esym (mul1n _), esym (mul1n _)) (c *: M).
Proof.
apply/matrixP=> i j.
case: (mxtens_indexP i)=> i0 i1; case: (mxtens_indexP j)=> j0 j1.
rewrite tensmxE [i0]ord1 [j0]ord1 !castmxE !mxE /= mulr1n.
by congr (_ * M _ _); apply: val_inj.
Qed.

Lemma tens_scalar1mx (m n : nat) (M : 'M_(m,n)) :
  1 *t M = castmx (esym (mul1n _), esym (mul1n _)) M.
Proof. by rewrite tens_scalar_mx scale1r. Qed.

Lemma tens_scalarN1mx (m n : nat) (M : 'M_(m,n)) :
  (-1) *t M = castmx (esym (mul1n _), esym (mul1n _)) (-M).
Proof. by rewrite [-1]mx11_scalar /= tens_scalar_mx !mxE scaleNr scale1r. Qed.

Lemma trmx_tens {m n p q} (M :'M[R]_(m,n)) (N : 'M[R]_(p,q)) :
  (M *t N)^T = M^T *t N^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.

Lemma tens_col_mx {m n p q} (r : 'rV[R]_n)
  (M :'M[R]_(m, n)) (N : 'M[R]_(p, q)) :
  (col_mx r M) *t N =
  castmx (esym (mulnDl _ _ _), erefl _) (col_mx (r *t N) (M *t N)).
Proof.
apply/matrixP=> i j.
case: (mxtens_indexP i)=> i0 i1; case: (mxtens_indexP j)=> j0 j1.
rewrite !tensmxE castmxE /= cast_ord_id esymK !mxE /=.
case: splitP=> i0' /= hi0'; case: splitP=> k /= hk.
+ case: (mxtens_indexP k) hk=> k0 k1 /=; rewrite tensmxE.
  move=> /(f_equal (edivn^~ p)); rewrite !edivn_eq // => [] [h0 h1].
  by congr (r _ _ * N _ _); apply: val_inj; rewrite /= -?h0 ?h1.
+ move: hk (ltn_ord i1); rewrite hi0'.
  by rewrite [i0']ord1 mul0n mul1n add0n ltnNge=> ->; rewrite leq_addr.
+ move: (ltn_ord k); rewrite -hk hi0' ltnNge {1}mul1n.
  by rewrite mulnDl {1}mul1n -addnA leq_addr.
case: (mxtens_indexP k) hk=> k0 k1 /=; rewrite tensmxE.
rewrite hi0' mulnDl -addnA=> /addnI.
 move=> /(f_equal (edivn^~ p)); rewrite !edivn_eq // => [] [h0 h1].
by congr (M _ _ * N _ _); apply: val_inj; rewrite /= -?h0 ?h1.
Qed.

Lemma tens_row_mx {m n p q} (r : 'cV[R]_m) (M :'M[R]_(m,n)) (N : 'M[R]_(p,q)) :
  (row_mx r M) *t N =
  castmx (erefl _, esym (mulnDl _ _ _)) (row_mx (r *t N) (M *t N)).
Proof.
rewrite -[_ *t _]trmxK trmx_tens tr_row_mx tens_col_mx.
apply/eqP; rewrite -(can2_eq (castmxKV _ _) (castmxK _ _)); apply/eqP.
by rewrite trmx_cast castmx_comp castmx_id tr_col_mx -!trmx_tens !trmxK.
Qed.

Lemma tens_block_mx {m n p q}
  (ul : 'M[R]_1) (ur : 'rV[R]_n) (dl : 'cV[R]_m)
  (M :'M[R]_(m,n)) (N : 'M[R]_(p,q)) :
  (block_mx ul ur dl M) *t N =
  castmx (esym (mulnDl _ _ _), esym (mulnDl _ _ _))
  (block_mx (ul *t N) (ur *t N) (dl *t N) (M *t N)).
Proof.
rewrite !block_mxEv tens_col_mx !tens_row_mx -!cast_col_mx castmx_comp.
by congr (castmx (_,_)); apply nat_irrelevance.
Qed.


Fixpoint ntensmx_rec {m n} (A : 'M_(m,n)) k : 'M_(m ^ k.+1,n ^ k.+1) :=
  if k is k'.+1 then (A *t (ntensmx_rec A k')) else A.

Definition ntensmx {m n} (A : 'M_(m, n)) k := nosimpl
  (if k is k'.+1 return 'M[R]_(m ^ k,n ^ k) then ntensmx_rec A k' else 1).

Notation "A ^t k" := (ntensmx A k)
  (at level 39, left associativity, format "A  ^t  k").

Lemma ntensmx0 : forall {m n} (A : 'M_(m,n)) , A ^t 0 = 1.
Proof. by []. Qed.

Lemma ntensmx1 : forall {m n} (A : 'M_(m,n)) , A ^t 1 = A.
Proof. by []. Qed.

Lemma ntensmx2 : forall {m n} (A : 'M_(m,n)) , A ^t 2 = A *t A.
Proof. by []. Qed.

Lemma ntensmxSS : forall {m n} (A : 'M_(m,n)) k, A ^t k.+2 = A *t A ^t k.+1.
Proof. by []. Qed.

Definition ntensmxS := (@ntensmx1, @ntensmx2, @ntensmxSS).

End MxTens.

Notation "A *t B" := (tensmx A B)
  (at level 40, left associativity, format "A  *t  B").

Notation "A ^t k" := (ntensmx A k)
  (at level 39, left associativity, format "A  ^t  k").

Section MapMx.
Variables (aR rR : ringType).
Hypothesis f : {rmorphism aR -> rR}.
Local Notation "A ^f" := (map_mx f A) : ring_scope.

Variables m n p q: nat.
Implicit Type A : 'M[aR]_(m, n).
Implicit Type B : 'M[aR]_(p, q).

Lemma map_mxT A B : (A *t B)^f = A^f *t B^f :> 'M_(m*p, n*q).
Proof. by apply/matrixP=> i j; rewrite !mxE /= rmorphM. Qed.

End MapMx.

Section Misc.

Lemma tensmx_mul (R : comRingType) m n p q r s
  (A : 'M[R]_(m,n)) (B : 'M[R]_(p,q)) (C : 'M[R]_(n, r)) (D : 'M[R]_(q, s)) :
  (A *t B) *m (C *t D) = (A *m C) *t (B *m D).
Proof.
apply/matrixP=> /= i j.
case (mxtens_indexP i)=> [im ip] {i}; case (mxtens_indexP j)=> [jr js] {j}.
rewrite !mxE !mxtens_indexK mulr_sum; apply: congr_big=> // k _.
by rewrite !mxE !mxtens_indexK mulrCA !mulrA [C _ _ * A _ _]mulrC.
Qed.

(* Todo : move to div ? *)
Lemma eq_addl_mul q q' m m' d : m < d -> m' < d ->
  (q * d + m == q' * d  + m')%N = ((q, m) == (q', m')).
Proof.
move=> lt_md lt_m'd; apply/eqP/eqP; last by move=> [-> ->].
by move=> /(f_equal (edivn^~ d)); rewrite !edivn_eq.
Qed.

Lemma tensmx_unit (R : fieldType) m n (A : 'M[R]_m%N) (B : 'M[R]_n%N) :
  m != 0%N -> n != 0%N -> A \in unitmx -> B \in unitmx -> (A *t B) \in unitmx.
Proof.
move: m n A B => [|m] [|n] // A B _ _ uA uB.
suff : (A^-1 *t B^-1) *m (A *t B) = 1 by case/mulmx1_unit.
rewrite tensmx_mul !mulVmx //; apply/matrixP=> /= i j.
rewrite !mxE /=; symmetry; rewrite -natrM -!val_eqE /=.
rewrite {1}(divn_eq i n.+1) {1}(divn_eq j n.+1).
by rewrite eq_addl_mul ?ltn_mod // xpair_eqE mulnb.
Qed.


Lemma tens_mx_scalar : forall (R : comRingType)
  (m n : nat) (c : R) (M : 'M[R]_(m,n)),
  M *t c%:M = castmx (esym (muln1 _), esym (muln1 _)) (c *: M).
Proof.
move=> R0 m n c M; apply/matrixP=> i j.
case: (mxtens_indexP i)=> i0 i1; case: (mxtens_indexP j)=> j0 j1.
rewrite tensmxE [i1]ord1 [j1]ord1 !castmxE !mxE /= mulr1n mulrC.
by congr (_ * M _ _); apply: val_inj=> /=; rewrite muln1 addn0.
Qed.

Lemma tensmx_decr : forall (R : comRingType) m n (M :'M[R]_m) (N : 'M[R]_n),
  M *t N = (M *t 1%:M) *m (1%:M *t N).
Proof. by move=> R0 m n M N; rewrite tensmx_mul mul1mx mulmx1. Qed.

Lemma tensmx_decl : forall (R : comRingType) m n (M :'M[R]_m) (N : 'M[R]_n),
  M *t N = (1%:M *t N) *m (M *t 1%:M).
Proof. by move=> R0 m n M N; rewrite tensmx_mul mul1mx mulmx1. Qed.

End Misc.