1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect all_algebra polyorder.
(****************************************************************************)
(* This files contains basic (and unformatted) theory for polynomials *)
(* over a realclosed fields. From the IVT (contained in the rcfType *)
(* structure), we derive Rolle's Theorem, the Mean Value Theorem, a root *)
(* isolation procedure and the notion of neighborhood. *)
(* *)
(* sgp_minfty p == the sign of p in -oo *)
(* sgp_pinfty p == the sign of p in +oo *)
(* cauchy_bound p == the cauchy bound of p *)
(* (this strictly bounds the norm of roots of p) *)
(* roots p a b == the ordered list of roots of p in `[a, b] *)
(* defaults to [::] when p == 0 *)
(* rootsR p == the ordered list of all roots of p, ([::] if p == 0). *)
(* next_root p x b == the smallest root of p contained in `[x, maxn x b] *)
(* if p has no root on `[x, maxn x b], we pick maxn x b. *)
(* prev_root p x a == the smallest root of p contained in `[minn x a, x] *)
(* if p has no root on `[minn x a, x], we pick minn x a. *)
(* neighpr p a b := `]a, next_root p a b[. *)
(* == an open interval of the form `]a, x[, with x <= b *)
(* in which p has no root. *)
(* neighpl p a b := `]prev_root p a b, b[. *)
(* == an open interval of the form `]x, b[, with a <= x *)
(* in which p has no root. *)
(* sgp_right p a == the sign of p on the right of a. *)
(****************************************************************************)
Import Order.Theory GRing.Theory Num.Theory Pdiv.Idomain.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
Local Notation noroot p := (forall x, ~~ root p x).
Local Notation mid x y := ((x + y) / 2%:R).
Local Notation maxr := Num.max.
Local Notation minr := Num.min.
Local Notation sgr := Num.sg.
Section more.
Section SeqR.
Lemma last1_neq0 (R : ringType) (s : seq R) (c : R) :
c != 0 -> (last c s != 0) = (last 1 s != 0).
Proof. by elim: s c => [|t s ihs] c cn0 //; rewrite oner_eq0 cn0. Qed.
End SeqR.
Section poly.
Import Pdiv.Ring Pdiv.ComRing.
Variable R : idomainType.
Implicit Types p q : {poly R}.
Lemma lead_coefDr p q :
(size q > size p)%N -> lead_coef (p + q) = lead_coef q.
Proof. exact: lead_coefDr. Qed.
Lemma leq1_size_polyC (c : R) : (size c%:P <= 1)%N.
Proof. exact: size_polyC_leq1. Qed.
Lemma my_size_exp p n : p != 0 -> (size (p ^+ n)) = ((size p).-1 * n).+1%N.
Proof. by move=> hp; rewrite -size_exp prednK // size_poly_gt0 expf_neq0. Qed.
Lemma coef_comp_poly p q n :
(p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n.
Proof. exact: coef_comp_poly. Qed.
Lemma gt_size_poly p n : (size p > n)%N -> p != 0.
Proof. by rewrite -size_poly_gt0; apply: leq_trans. Qed.
Lemma lead_coef_comp_poly p q :
(size q > 1)%N ->
lead_coef (p \Po q) = (lead_coef p) * (lead_coef q) ^+ (size p).-1.
Proof. exact: lead_coef_comp. Qed.
End poly.
End more.
(******************************************************************)
(* Definitions and properties for polynomials in a numDomainType. *)
(******************************************************************)
Section PolyNumDomain.
Variable R : numDomainType.
Implicit Types (p q : {poly R}).
Definition sgp_pinfty (p : {poly R}) := Num.sg (lead_coef p).
Definition sgp_minfty (p : {poly R}) :=
Num.sg ((-1) ^+ (size p).-1 * (lead_coef p)).
End PolyNumDomain.
(******************************************************************)
(* Definitions and properties for polynomials in a realFieldType. *)
(******************************************************************)
Section PolyRealField.
Variable R : realFieldType.
Implicit Types (p q : {poly R}).
Section SgpInfty.
Lemma sgp_pinfty_sym p : sgp_pinfty (p \Po -'X) = sgp_minfty p.
Proof.
rewrite /sgp_pinfty /sgp_minfty lead_coef_comp ?size_opp ?size_polyX //.
by rewrite lead_coefN lead_coefX mulrC.
Qed.
Lemma poly_pinfty_gt_lc p :
lead_coef p > 0 ->
exists n, forall x, x >= n -> p.[x] >= lead_coef p.
Proof.
elim/poly_ind: p => [| q c IHq]; first by rewrite lead_coef0 ltxx.
have [->|q_neq0] := eqVneq q 0.
by rewrite mul0r add0r lead_coefC => c_gt0; exists 0 => x _; rewrite hornerC.
rewrite lead_coefDl ?size_mulX ?size_polyC // ?lead_coefMX; last first.
by apply: (leq_trans (leq_b1 _)); rewrite size_poly_gt0.
move=> lq_gt0; have [y Hy] := IHq lq_gt0.
pose z := (1 + (lead_coef q) ^-1 * `|c|); exists (maxr y z) => x.
have z_gt0: 0 < z by rewrite ltr_pwDl ?ltr01 ?mulr_ge0 ?invr_ge0 // ltW.
rewrite !hornerE ge_max => /andP[/Hy Hq Hc].
apply: le_trans (_ : lead_coef q * z + c <= _); last first.
rewrite lerD2r (le_trans (_ : _ <= q.[x] * z)) // ?ler_pM2r //.
by rewrite ler_pM2l // (lt_le_trans _ Hq).
rewrite mulrDr mulr1 -addrA lerDl mulVKf ?gt_eqF //.
by rewrite -[c]opprK subr_ge0 normrN ler_norm.
Qed.
(* :REMARK: not necessary here ! *)
Lemma poly_lim_infty p m :
lead_coef p > 0 -> (size p > 1)%N ->
exists n, forall x, x >= n -> p.[x] >= m.
Proof.
elim/poly_ind: p m => [| q c _] m; first by rewrite lead_coef0 ltxx.
have [-> _|q_neq0] := eqVneq q 0.
by rewrite mul0r add0r size_polyC ltnNge leq_b1.
rewrite lead_coefDl ?size_mulX ?size_polyC // ?lead_coefMX; last first.
by apply: (leq_trans (leq_b1 _)); rewrite size_poly_gt0.
move=> lq_gt0; have [y Hy _] := poly_pinfty_gt_lc lq_gt0.
pose z := (1 + (lead_coef q) ^-1 * (`|m| + `|c|)); exists (maxr y z) => x.
have z_gt0 : 0 < z.
by rewrite ltr_pwDl ?ltr01 ?mulr_ge0 ?invr_ge0 ?addr_ge0 // ?ltW.
rewrite !hornerE ge_max => /andP[/Hy Hq Hc].
apply: le_trans (_ : lead_coef q * z + c <= _); last first.
rewrite lerD2r (le_trans (_ : _ <= q.[x] * z)) // ?ler_pM2r //.
by rewrite ler_pM2l // (lt_le_trans _ Hq).
rewrite mulrDr mulr1 mulVKf ?gt_eqF // addrA -(addrA _ _ c) ler_wpDr //.
by rewrite -[c]opprK subr_ge0 normrN ler_norm.
by rewrite ler_wpDl ?ler_norm // ?ltW.
Qed.
End SgpInfty.
Section CauchyBound.
Definition cauchy_bound (p : {poly R}) :=
1 + `|lead_coef p|^-1 * \sum_(i < size p) `|p`_i|.
(* Could be a sharp bound, and proof should shrink... *)
Lemma cauchy_boundP (p : {poly R}) x :
p != 0 -> p.[x] = 0 -> `| x | < cauchy_bound p.
Proof.
move=> np0 rpx; rewrite ltr_pwDl ?ltr01 //.
have sp_gt0 : (size p > 0)%N by rewrite size_poly_gt0.
have lcn0 : `|lead_coef p| != 0 by rewrite normr_eq0 lead_coef_eq0.
have lcp : `|lead_coef p| > 0 by rewrite lt_def lcn0 /=.
have [x_le1|x_gt1] := lerP `|x| 1.
rewrite (le_trans x_le1) // ler_pdivlMl // mulr1.
by rewrite polySpred// big_ord_recr/= lerDr sumr_ge0.
have x_gt0 : `|x| > 0 by rewrite (lt_trans ltr01).
have [sp_le1|sp_gt1] := leqP (size p) 1.
by move: rpx np0; rewrite [p]size1_polyC// hornerC polyC_eq0 => /eqP->.
rewrite ler_pdivlMl//.
pose n := (size p).-1; have n_gt0 : (n > 0)%N by rewrite /n -subn1 subn_gt0.
have : `|p`_n| * `|x| ^+ n <= \sum_(i < n) `|p`_i * x ^+ i|.
rewrite (le_trans _ (ler_norm_sum _ _ _))//.
have := rpx; rewrite horner_coef polySpred// !big_ord_recr/=.
by move=> /(canRL (@addrK _ _))->; rewrite sub0r normrN normrM normrX.
rewrite -[n in _ ^+ n]prednK// exprS mulrA.
rewrite -[X in _ X -> _]ler_pdivlMr ?exprn_gt0// => /le_trans->//.
rewrite polySpred// big_ord_recr/= ler_wpDr// mulr_suml ler_sum => //i _.
rewrite normrM normrX ler_pdivrMr ?exprn_gt0// ler_pM ?exprn_ge0//.
by rewrite ler_weXn2l// 1?ltW// -ltnS prednK//.
Qed.
Lemma root_in_cauchy_bound (p : {poly R}) : p != 0 ->
{subset root p <= `](- cauchy_bound p), (cauchy_bound p)[ }.
Proof. by move=> p_neq0 x /eqP /(cauchy_boundP p_neq0); rewrite ltr_norml. Qed.
Definition root_cauchy_boundP (p : {poly R}) pN0 x (rpx : root p x) :=
itvP (root_in_cauchy_bound pN0 rpx).
Lemma le_cauchy_bound p : p != 0 -> {in `]-oo, (- cauchy_bound p)], noroot p}.
Proof.
move=> p_neq0 x; rewrite in_itv /=; apply/contra_leN.
by case/rootP/(cauchy_boundP p_neq0)/ltr_normlP; rewrite ltrNl.
Qed.
Hint Resolve le_cauchy_bound : core.
Lemma ge_cauchy_bound p : p != 0 -> {in `[cauchy_bound p, +oo[, noroot p}.
Proof.
move=> p_neq0 x; rewrite in_itv andbT /=; apply/contra_leN.
by case/rootP/(cauchy_boundP p_neq0)/ltr_normlP; rewrite ltrNl.
Qed.
Hint Resolve ge_cauchy_bound : core.
Lemma cauchy_bound_gt0 p : cauchy_bound p > 0.
Proof. by rewrite ltr_pwDl ?ltr01 // mulrC divr_ge0 ?normr_ge0 ?sumr_ge0. Qed.
Hint Resolve cauchy_bound_gt0 : core.
Lemma cauchy_bound_ge0 p : cauchy_bound p >= 0.
Proof. by rewrite ltW. Qed.
Hint Resolve cauchy_bound_ge0 : core.
Lemma cauchy_bound_neq0 p : cauchy_bound p != 0. Proof. by rewrite gt_eqF. Qed.
Hint Resolve cauchy_bound_neq0 : core.
End CauchyBound.
End PolyRealField.
#[export]
Hint Resolve le_cauchy_bound ge_cauchy_bound : core.
#[export]
Hint Resolve cauchy_bound_gt0 cauchy_bound_ge0 : core.
#[export]
Hint Resolve cauchy_bound_neq0 : core.
(************************************************************)
(* Definitions and properties for polynomials in a rcfType. *)
(************************************************************)
Section PolyRCF.
Variable R : rcfType.
Section Prelim.
Implicit Types a b c : R.
Implicit Types x y z t : R.
Implicit Types p q r : {poly R}.
(* we restate poly_ivt in a nicer way. Perhaps the def of PolyRCF should *)
(* be moved in this file, juste above this section *)
Definition poly_ivtW := poly_ivt.
Lemma poly_ivt p a b : a <= b -> p.[a] * p.[b] <= 0 ->
{x | x \in `[a, b] & root p x}.
Proof.
move=> le_ab sgp; apply/sig2W; have []//= := @poly_ivt _ (p.[b] *: p) a b.
by rewrite !hornerZ sqr_ge0 mulrC sgp.
move=> x axb; have [|?] := boolP (root p b); last by rewrite rootZ //; exists x.
by move=> rpb; exists b; rewrite // in_itv/= lexx andbT.
Qed.
Lemma poly_ivtoo p a b : a <= b -> p.[a] * p.[b] < 0 ->
{x | x \in `]a, b[ & root p x}.
Proof.
move=> le_ab; rewrite lt_neqAle mulf_eq0 negb_or -andbA => /and3P[pa0 pb0].
move=> /(poly_ivt le_ab) [c cab rpc].
exists c => //; rewrite in_itv; apply/andP => /=.
by split; rewrite lt_neqAle (itvP cab) andbT; [move: pa0|move: pb0];
apply: contraNneq; [move->|move<-].
Qed.
Lemma ivt_sign_deprecated (p : {poly R}) (a b : R) :
a <= b -> sgr p.[a] * sgr p.[b] = -1 ->
{ x : R | x \in `]a, b[ & root p x}.
Proof.
move=> le_ab sgpab_eqN1; apply: poly_ivtoo => //.
by rewrite -sgr_cp0 sgrM sgpab_eqN1.
Qed.
Definition has_ivt_root p a b :=
if (a <= b) && (p.[a] * p.[b] <= 0) =P true isn't ReflectT pp then None
else Some (projT1 (poly_ivt (proj1 (andP pp)) (proj2 (andP pp)))).
Notation ivt_root p a b := (odflt 0 (has_ivt_root p a b)).
CoInductive has_itv_root_spec p a b : bool -> option R -> Type :=
| HasItvRoot x of (p.[a] * p.[b] <= 0) & x \in `[a, b] & root p x :
has_itv_root_spec p a b true (Some x)
| NoItvRoot of (p.[a] * p.[b] > 0) : has_itv_root_spec p a b false None.
Lemma has_itv_rootP p a b : a <= b ->
has_itv_root_spec p a b (p.[a] * p.[b] <= 0) (has_ivt_root p a b).
Proof.
move=> le_ab; rewrite /has_ivt_root; case: eqP => /= [pp|/negP].
move: {-}(pp) => /andP[_ pab]; rewrite {1}pab; constructor => //;
by case: poly_ivt.
by rewrite le_ab /= -ltNge => pab; rewrite lt_geF //; constructor.
Qed.
Lemma some_ivt_root p a b x : has_ivt_root p a b = Some x -> root p x.
Proof.
by rewrite /has_ivt_root; case: eqP => //= pp; case: poly_ivt => //= ??? [<-].
Qed.
Lemma has_ivt_rootE p a b :
has_ivt_root p a b = (a <= b) && (p.[a] * p.[b] <= 0) :> bool.
Proof. by rewrite /has_ivt_root; case: eqP => //= /negP/negPf->. Qed.
Lemma ivt_root_in p a b : a <= b -> p.[a] * p.[b] <= 0 ->
ivt_root p a b \in `[a, b].
Proof. by move=> ab; case: has_itv_rootP. Qed.
Lemma ivt_rootP p a b : a <= b -> p.[a] * p.[b] <= 0 ->
root p (ivt_root p a b).
Proof. by move=> leab; case: has_itv_rootP. Qed.
Lemma sub_cc_itv a b (i : interval R) :
(a \in i) -> (b \in i) -> (`[a, b] <= i)%O.
Proof.
case: i => [c d]; rewrite !inE/= !/(_ <= Interval _ _)%O/=.
by move=> /andP[-> _] /andP[_ ->].
Qed.
Lemma sub_oo_itv a b (i : interval R) :
(a \in i) -> (b \in i) -> (`]a, b[ <= i)%O.
Proof.
case: i => [c d]; rewrite !inE/= !/(_ <= Interval _ _)%O/=.
move=> /andP[ca _] /andP[_ bd].
by rewrite (le_trans ca) ?bnd_simp// (le_trans _ bd) ?bnd_simp.
Qed.
Lemma polyrN0_itv (i : interval R) (p : {poly R}) : {in i, noroot p} ->
{in i & , forall y x : R, sgr p.[x] = sgr p.[y]}.
Proof.
move=> hi y x hy hx; wlog xy: x y hx hy / x <= y => [hwlog|].
by case/orP: (le_total x y)=> xy; [|symmetry]; apply: hwlog.
have hxyi: {subset `[x, y] <= i} by apply/subitvP; rewrite sub_cc_itv.
have [r _ rin|] := @has_itv_rootP p x y xy.
by rewrite (negPf (hi _ _)) // hxyi.
rewrite -sgr_cp0 sgrM eq_sym; do 2!case: sgzP => //;
by rewrite ?(mul0r, mulr0, mul1r, mulr1, oner_eq0) // => _ _ /eqP.
Qed.
Lemma nth_root x n : x > 0 -> { y | y > 0 & y ^+ (n.+1) = x }.
Proof.
move=> x_gt0; apply/sig2_eqW; pose p := ('X ^+ n.+1 - x%:P).
have xS_ge1: x + 1 >= 1 by rewrite ler_wpDl // ltW.
have xS_ge0: x + 1 > 0 by rewrite (lt_le_trans (@ltr01 _)).
have [//||y /andP[y_ge0 _]] := @poly_ivtW _ p 0 (x + 1); first exact: ltW.
rewrite !(hornerE, horner_exp) expr0n /= sub0r oppr_le0 (ltW x_gt0) /=.
by rewrite subr_ge0 (le_trans _ (ler_eXnr _ _)) // ler_wpDr ?ler01.
rewrite /root !(hornerE, horner_exp) subr_eq0 => /eqP x_eq; exists y => //.
rewrite lt_neqAle y_ge0 andbT; apply: contra_eqN x_eq => /eqP<-.
by rewrite eq_sym expr0n gt_eqF.
Qed.
(* REMOVE or DISPLACE *)
Lemma poly_div_factor (a : R) (P : {poly R} -> Prop) : (forall k, P k%:P) ->
(forall p n k, ~~ root p a -> P p -> P (p * ('X - a%:P) ^+ n.+1 + k%:P)%R) ->
forall p, P p.
Proof.
move=> Pk Pq p; elim: size {-2}p (leqnn (size p)) => {p} [p|n ihn p size_p].
by rewrite size_poly_leq0 => /eqP->; apply: Pk.
have [/size1_polyC->//|p_gt1] := leqP (size p) 1.
have p_neq0 : p != 0 by rewrite -size_poly_eq0 -lt0n ltnW.
rewrite (Pdiv.IdomainMonic.divp_eq (monicXsubC a) p).
have [n' [q /implyP rqa pmod_eq]] := multiplicity_XsubC (p %/ ('X - a%:P)) a.
have Xsuba_neq0 : 'X - a%:P != 0 by rewrite -size_poly_eq0 size_XsubC.
have /size1_polyC-> : (size (p %% ('X - a%:P))%R <= 1)%N.
by rewrite -ltnS (leq_trans (ltn_modpN0 _ _))// ?size_XsubC.
rewrite pmod_eq -mulrA -exprSr; apply: Pq; last apply: ihn.
by rewrite rqa// divpN0// ?size_XsubC.
have [->//|q_neq0] := eqVneq q 0; first by rewrite size_poly0.
rewrite (@leq_trans (size (q * ('X - a%:P) ^ n')))//.
rewrite size_Mmonic// ?monic_exp ?monicXsubC//.
by rewrite size_exp_XsubC addnS/= leq_addr.
rewrite -pmod_eq -ltnS (leq_trans _ size_p)// ltn_divpl//.
by rewrite size_Mmonic// ?monicXsubC// ?size_XsubC ?addn2.
Qed.
Lemma poly_ltsp_roots p (rs : seq R) :
(size rs >= size p)%N -> uniq rs -> all (root p) rs -> p = 0.
Proof.
move=> hrs urs rrs; apply/eqP; apply: contraLR hrs=> np0.
by rewrite -ltnNge; apply: max_poly_roots.
Qed.
Theorem poly_rolle a b p :
a < b -> p.[a] = p.[b] -> {c | c \in `]a, b[ & p^`().[c] = 0}.
Proof.
gen have rolle_weak : a b p / a < b -> p.[a] = 0 -> p.[b] = 0 ->
{c | (c \in `]a, b[) & (p^`().[c] == 0) || (p.[c] == 0)}.
move=> lab pa0 pb0; have ltab := ltW lab; apply/sig2W.
have [->|p_neq0] := eqVneq p 0.
by exists (mid a b); rewrite ?mid_in_itv// derivC horner0 eqxx.
have [n [p' p'a0 hp]] := multiplicity_XsubC p a; rewrite p_neq0 /= in p'a0.
case: n hp pa0 p_neq0 pb0 p'a0 => [ | n -> _ p0 pb0 p'a0].
by rewrite {1}expr0 mulr1 rootE=> ->; move/eqP->.
have [m [q qb0 hp']] := multiplicity_XsubC p' b.
rewrite (contraNneq _ p'a0) /= in qb0 => [|->]; last exact: root0.
case: m hp' pb0 p0 p'a0 qb0=> [|m].
rewrite {1}expr0 mulr1=> ->; move/eqP.
rewrite !(hornerE, horner_exp, mulf_eq0).
by rewrite !expf_eq0 !subr_eq0 !(gt_eqF lab) !andbF !orbF !rootE=> ->.
move=> -> _ p0 p'a0 qb0; case: (sgrP (q.[a] * q.[b])); first 2 last.
- move=> /poly_ivtoo [] // c lacb rqc; exists c=> //.
by rewrite !hornerM (eqP rqc) !mul0r eqxx orbT.
- move/eqP; rewrite mulf_eq0 (rootPf qb0) orbF; move/eqP=> qa0.
by move: p'a0; rewrite ?rootM rootE qa0 eqxx.
move=> hspq; rewrite !derivCE /= !mul1r mulrDl !pmulrn.
set xan := (('X - a%:P) ^+ n); set xbm := (('X - b%:P) ^+ m).
have ->: ('X - a%:P) ^+ n.+1 = ('X - a%:P) * xan by rewrite exprS.
have ->: ('X - b%:P) ^+ m.+1 = ('X - b%:P) * xbm by rewrite exprS.
rewrite -mulrzl -[_ *~ n.+1]mulrzl.
have fac : forall x y z : {poly R}, x * (y * xbm) * (z * xan)
= (y * z * x) * (xbm * xan).
by move=> x y z; rewrite mulrCA !mulrA [_ * y]mulrC mulrA.
rewrite !fac -!mulrDl; set r := _ + _ + _.
case: (@poly_ivtoo (sgr q.[b] *: r) a b) => // [|c lecb].
rewrite !hornerZ mulrACA -expr2 sqr_sg (rootPf qb0) mul1r.
rewrite !(subrr, mul0r, mulr0, addr0, add0r, hornerC, hornerXsubC,
hornerD, hornerN, hornerM, hornerMn) [_ * _%:R]mulrC.
rewrite mulrACA pmulr_llt0 // mulrACA pmulr_rlt0 ?mulr_gt0 ?ltr0n //.
by rewrite -opprB mulNr oppr_lt0 mulr_gt0 ?subr_gt0.
rewrite rootE hornerZ mulf_eq0 sgr_cp0 (rootPf qb0) orFb => rc0.
by exists c => //; rewrite !hornerM !mulf_eq0 rc0.
move=> lab pab; wlog pb0 : p pab / p.[b] = 0 => [hwlog|].
case: (hwlog (p - p.[b]%:P)); rewrite ?hornerE ?pab ?subrr //.
by move=> c acb; rewrite derivE derivC subr0=> hc; exists c.
move: pab; rewrite pb0=> pa0.
have: (forall rs : seq R, {subset rs <= `]a, b[} ->
(size p <= size rs)%N -> uniq rs -> all (root p) rs -> p = 0).
by move=> rs hrs; apply: poly_ltsp_roots.
elim: (size p) a b lab pa0 pb0=> [|n ihn] a b lab pa0 pb0 max_roots.
rewrite (@max_roots [::]) //=.
by exists (mid a b); rewrite ?mid_in_itv // derivE horner0.
case: (@rolle_weak a b p); rewrite // ?pa0 ?pb0 //=.
move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c.
suff: { d : R | d \in `]a, c[ & (p^`()).[d] = 0 }.
case=> [d hd] p'd0; exists d=> //.
by apply: subitvPr hd; rewrite bnd_simp (itvP hc).
apply: ihn => //; [by rewrite (itvP hc)|exact/eqP|].
move=> rs hrs srs urs rrs; apply: (max_roots (c :: rs))=> //=; last exact/andP.
move=> x; rewrite in_cons; case/predU1P=> hx; first by rewrite hx.
have: x \in `]a, c[ by apply: hrs.
by apply: subitvPr; rewrite bnd_simp (itvP hc).
by rewrite urs andbT; apply/negP => /hrs; rewrite bound_in_itv.
Qed.
Theorem poly_mvt a b p : a < b ->
{c | c \in `]a, b[ & p.[b] - p.[a] = p^`().[c] * (b - a)}.
Proof.
pose q := (p.[b] - p.[a])%:P * ('X - a%:P) - (b - a)%:P * (p - p.[a]%:P).
move=> lt_ab; have [//||c le_acb q'x0] := @poly_rolle a b q.
by rewrite /q !hornerE !(subrr,mulr0) mulrC subrr.
exists c=> //; move: q'x0; rewrite /q !derivE !(mul0r,add0r,subr0,mulr1).
by move/eqP; rewrite !hornerE mulrC subr_eq0; move/eqP.
Qed.
Lemma poly_lipshitz p a b :
{ k | k >= 1 & {in `[a, b] &, forall x y, `|p.[y] - p.[x]| <= k * `|y - x| }}.
Proof.
have [ub p_le] := @poly_itv_bound _ p^`() a b; exists (1 + `|ub|).
by rewrite lerDl.
move=> x y xi yi; wlog lt_xy : x y xi yi / x < y => [hw|].
set d := `|y - _|; have [/hw->//|xy|xy//] := ltrgtP x y; last first.
by rewrite /d xy !subrr normr0 mulr0.
by rewrite /d (distrC y) (distrC p.[y]) hw.
have [c ci ->] := poly_mvt p lt_xy; rewrite normrM ler_pM2r ?p_le //; last first.
by rewrite ?normr_gt0 ?subr_eq0 gt_eqF.
rewrite ler_wpDl // (le_trans _ (ler_norm _)) // p_le //.
by have: c \in `[a, b] by apply: subitvP ci; rewrite sub_oo_itv.
Qed.
Lemma poly_cont x p e : e > 0 ->
exists2 d, d > 0 & forall y, `|y - x| < d -> `|p.[y] - p.[x]| < e.
Proof.
move=> e_gt0; have [k k_ge1 kP] := poly_lipshitz p (x - e) (x + e).
have k_gt0 : k > 0 by rewrite (lt_le_trans ltr01).
exists (e / k) => [|y]; first by rewrite mulr_gt0 ?invr_gt0.
have [y_small|y_big] := lerP `|y - x| e.
rewrite ltr_pdivlMr // mulrC; apply/le_lt_trans/kP => //;
by rewrite -![_ \in _]ler_distl ?subrr ?normr0 // ?ltW.
by move=> /(lt_trans y_big); rewrite ltr_pMr // invf_gt1 // le_gtF.
Qed.
Lemma ler_hornerW a b p : (forall x, x \in `]a, b[ -> p^`().[x] >= 0) ->
{in `[a, b] &, {homo horner p : x y / x <= y}}.
Proof.
move=> der_nneg x y axb ayb; rewrite le_eqVlt => /orP[/eqP->//|ltxy].
have [c xcy /(canRL (@subrK _ _))->]:= poly_mvt p ltxy.
rewrite lerDr mulr_ge0 ?subr_ge0 ?(ltW ltxy) ?der_nneg //.
by apply: subitvP xcy; rewrite /(_ <= _)%O/= !bnd_simp ?(itvP axb) ?(itvP ayb).
Qed.
End Prelim.
Lemma le_itv (a a' b b' : itv_bound R) :
(Interval a b <= Interval a' b')%O = (a' <= a)%O && (b <= b')%O.
Proof. by []. Qed.
Section MonotonictyAndRoots.
Section DerPos.
Variable (p : {poly R}).
Variables (a b : R).
Hypothesis der_gt0 : forall x, x \in `]a, b[ -> (p^`()).[x] > 0.
Lemma ltr_hornerW : {in `[a, b] &, {homo horner p : x y / x < y}}.
Proof.
move=> x y axb ayb ltxy; have [c xcy /(canRL (@subrK _ _))->]:= poly_mvt p ltxy.
rewrite ltrDr mulr_gt0 ?subr_gt0 ?der_gt0 //.
apply: subitvP xcy; rewrite le_itv !bnd_simp.
by rewrite /= (itvP axb) (itvP ayb).
Qed.
Lemma ler_horner : {in `[a, b] &, {mono horner p : x y / x <= y}}.
Proof. exact/le_mono_in/ltr_hornerW. Qed.
Lemma ltr_horner : {in `[a, b] &, {mono horner p : x y / x < y}}.
Proof. exact/leW_mono_in/ler_horner. Qed.
Lemma derp_inj : {in `[a, b] &, injective (horner p)}.
Proof. exact/inc_inj_in/ler_horner. Qed.
Lemma derpr x : x \in `]a, b] -> p.[x] > p.[a].
Proof.
by move=> axb; rewrite ltr_horner ?(itvP axb) // subset_itv_oc_cc.
Qed.
Lemma derpl x : x \in `[a, b[ -> p.[x] < p.[b].
Proof.
by move=> axb; rewrite ltr_horner ?(itvP axb) // subset_itv_co_cc.
Qed.
Lemma derprW x : x \in `[a, b] -> p.[x] >= p.[a].
Proof. by move=> axb; rewrite ler_horner ?(itvP axb). Qed.
Lemma derplW x : x \in `[a, b] -> p.[x] <= p.[b].
Proof. by move=> axb; rewrite ler_horner ?(itvP axb). Qed.
End DerPos.
Section NoRoot_sg.
Variable (p : {poly R}).
Variables (a b c : R).
Hypothesis lt_ab : a < b.
Hypothesis derp_neq0 : {in `]a, b[, noroot p^`()}.
Let mid_in : mid a b \in `]a, b[. Proof. exact: mid_in_itv. Qed.
Hint Resolve mid_in : core.
Local Notation s := (p^`().[mid a b] < 0).
Local Notation sp' := ((- 1) ^+ s).
Let q := (sp' *: p).
Lemma sgr_sign : sgr ((-1) ^+ s) = (-1) ^+ s :> R.
Proof. by case: s; rewrite ?(sgr1, sgrN1). Qed.
Fact signpE : p = (sp' *: q).
Proof. by rewrite scalerA [_ ^+ _ * _]sqrr_sign scale1r. Qed.
Fact sgp x : sgr p.[x] = sp' * sgr q.[x].
Proof. by rewrite {1}signpE hornerZ sgrM sgr_sign. Qed.
Fact derq_gt0 x : x \in `]a, b[ -> (q^`()).[x] > 0.
Proof.
move=> hx; rewrite derivZ hornerZ -sgr_cp0 neqr0_sign ?(derp_neq0 _) //.
rewrite sgrM sgr_id mulr_sg_eq1 ?derp_neq0 //=.
by apply/eqP; apply: (@polyrN0_itv `]a, b[).
Qed.
Hint Resolve derq_gt0 : core.
Lemma lgtr_horner : {in `[a, b] &, forall x y,
p.[x] < p.[y] = (sp' * x < sp' * y)}.
Proof.
move=> x y axb ayb; rewrite /= [in LHS]signpE ![(_ *: q).[_]]hornerZ.
by case: s; rewrite ?mul1r ?mulN1r ?ltrN2 (ltr_horner derq_gt0).
Qed.
Lemma lger_horner : {in `[a, b] &, forall x y,
p.[x] <= p.[y] = (sp' * x <= sp' * y)}.
Proof.
move=> x y axb ayb; rewrite /= [in LHS]signpE ![(_ *: q).[_]]hornerZ.
by case: s; rewrite ?mul1r ?mulN1r ?lerN2 (ler_horner derq_gt0).
Qed.
Lemma horner_inj : {in `[a, b] &, injective (horner p)}.
Proof.
move=> x y xab yab; rewrite signpE ![(_ *: q).[_]]hornerE.
by move=> /mulfI /(derp_inj derq_gt0)-> //; rewrite signr_eq0.
Qed.
Lemma uniq_root : {in `[a, b] &, forall x y, root p x -> root p y -> x = y}.
Proof. by move=> x y ?? /eqP? /eqP rpy; apply: horner_inj; rewrite //rpy. Qed.
Lemma sgrB (x y : R) : sgr (x - y) = (- 1) ^+ (x < y)%R *+ (x != y).
Proof.
case: ltrgtP => //= [xy|xy|->]; last by rewrite subrr sgr0.
by rewrite ltr0_sg ?subr_lt0.
by rewrite gtr0_sg ?subr_gt0.
Qed.
Lemma root_sgp : {in `[a, b] &, forall x y, root p x ->
sgr p.[y] = (- 1) ^+ s * sgr (y - x)}.
Proof.
move=> x y xab yab rpx; rewrite {1}signpE hornerZ sgrM sgr_sign; congr (_ * _).
have rqx : root q x by rewrite /root hornerZ mulf_eq0 [p.[_] == _]rpx orbT.
rewrite sgrB; have [xy|xy|<-]/= := ltrgtP x y; last first.
- by rewrite hornerZ sgrM (eqP rpx) sgr0 mulr0.
- by apply/eqP; rewrite sgr_cp0 -(eqP rqx) (ltr_horner derq_gt0).
- by apply/eqP; rewrite sgr_cp0 -(eqP rqx) (ltr_horner derq_gt0).
Qed.
Lemma root_has_ivt r : r \in `[a, b] -> root p r ->
{in `[a, r] & `[r, b], forall x y, p.[x] * p.[y] <= 0}.
Proof.
move=> rab rpr x y xar yrb; rewrite -sgr_le0 sgrM.
have xab : x \in `[a, b]
by apply: subitvP xar; rewrite /= le_itv !bnd_simp ?(itvP rab).
have yab : y \in `[a, b]
by apply: subitvP yrb; rewrite /= le_itv !bnd_simp ?(itvP rab).
rewrite ?(root_sgp _ _ rpr)// mulrACA [_ ^+ _ * _]sqrr_sign mul1r -sgrM sgr_le0.
by rewrite mulr_le0_ge0 ?subr_ge0 ?subr_le0 ?(itvP xar) ?(itvP yrb).
Qed.
Lemma noroot_noivt : {in `[a, b], forall r, ~~ root p r} ->
{in `[a, b] &, forall x y, p.[x] * p.[y] > 0}.
Proof.
move=> rpr x y xar yrb; wlog lt_xy : x y xar yrb / x <= y => [hw|].
by have /orP[/hw->//|/hw] := le_total x y; rewrite mulrC; apply.
rewrite ltNge; case: has_itv_rootP => // r _ r_in.
rewrite (negPf (rpr _ _)) //; apply: subitvP r_in;
by rewrite le_itv !bnd_simp /= ?(itvP xar) ?(itvP yrb).
Qed.
Fact gtr0_sgp x : 0 < q.[x] -> sgr p.[x] = sp'.
Proof. by move=> qx_gt0; rewrite sgp gtr0_sg ?mulr1. Qed.
Fact ltr0_sgpN x : q.[x] < 0 -> sgr p.[x] = - sp'.
Proof. by move=> qx_gt0; rewrite sgp ltr0_sg ?mulrN1. Qed.
Lemma root_dersr : p.[a] = 0 -> {in `]a, b], forall x, sgr p.[x] = sp'}.
Proof.
move=> pa0 x xab; have qa0 : q.[a] = 0 by rewrite hornerE pa0 mulr0.
by rewrite gtr0_sgp// -qa0 (derpr derq_gt0).
Qed.
Lemma derspr : sgr p.[a] = sp' -> {in `[a, b], forall x, sgr p.[x] = sp'}.
Proof.
move=> pa_sp' x xab; rewrite gtr0_sgp// (lt_le_trans _ (derprW derq_gt0 _))//.
by rewrite hornerE -sgr_cp0 sgrM sgr_sign pa_sp' [_ * _]sqrr_sign.
Qed.
Lemma root_dersl : p.[b] = 0 -> {in `[a, b[, forall x, sgr p.[x] = - sp'}.
Proof.
move=> pb0 x xab; have qb0 : q.[b] = 0 by rewrite hornerE pb0 mulr0.
by rewrite ltr0_sgpN// -qb0 (derpl derq_gt0).
Qed.
Lemma derspl : sgr p.[b] = - sp' -> forall x, x \in `[a, b] -> sgr p.[x] = - sp'.
Proof.
move=> pbNsp' x xab; rewrite ltr0_sgpN// (le_lt_trans (derplW derq_gt0 _))//.
by rewrite hornerE -sgr_cp0 sgrM sgr_sign pbNsp' mulrN [_ * _]sqrr_sign.
Qed.
End NoRoot_sg.
Section DerNeg.
Variable (p : {poly R}).
Variables (a b : R).
Hypothesis der_neg : forall x, x \in `]a, b[ -> (p^`()).[x] < 0.
Let dern_gt0 x : x \in `]a, b[ -> ((- p)^`()).[x] > 0.
Proof. by move=> axb; rewrite derivN hornerN oppr_gt0 der_neg. Qed.
Lemma gtr_hornerW : {in `[a, b] &, {homo horner p : x y /~ x < y}}.
Proof.
by move=> x y axb ayb yx; rewrite -ltrN2 -!hornerN (ltr_hornerW dern_gt0).
Qed.
Lemma ger_horner : {in `[a, b] &, {mono horner p : x y /~ x <= y}}.
Proof. exact/le_nmono_in/gtr_hornerW. Qed.
Lemma gtr_horner : {in `[a, b] &, {mono horner p : x y /~ x < y}}.
Proof. exact/leW_nmono_in/ger_horner. Qed.
Lemma dernr x : x \in `]a, b] -> p.[x] < p.[a].
Proof.
by move=> axb; rewrite gtr_horner ?(itvP axb) //; apply: subset_itv_oc_cc.
Qed.
Lemma dernl x : x \in `[a, b[ -> p.[x] > p.[b].
Proof.
by move=> axb; rewrite gtr_horner ?(itvP axb) //; apply: subset_itv_co_cc.
Qed.
Lemma dernrW x : x \in `[a, b] -> p.[x] <= p.[a].
Proof. by move=> axb; rewrite ger_horner ?(itvP axb). Qed.
Lemma dernlW x : x \in `[a, b] -> p.[x] >= p.[b].
Proof. by move=> axb; rewrite ger_horner ?(itvP axb). Qed.
End DerNeg.
Variable (p : {poly R}) (a b : R).
Section der_root.
Hypothesis der_pos : forall x, x \in `]a, b[ -> (p^`()).[x] > 0.
Lemma derp_root : a <= b -> p.[a] * p.[b] < 0 ->
{ r : R |
[/\ forall x, x \in `[a, r[ -> p.[x] < 0,
p.[r] = 0,
r \in `]a, b[ &
forall x, x \in `]r, b] -> p.[x] > 0] }.
Proof.
move=> leab hpab; have [r arb pr0] := poly_ivtoo leab hpab.
exists r; split => //; last 2 first.
- by move/eqP: pr0.
- move=> x rxb; have hd : forall t, t \in `]r, b[ -> 0 < (p^`()).[t].
by move=> t ht; rewrite der_pos // ?(subitvPl _ ht) /<=%O //= ?(itvP arb).
by rewrite (le_lt_trans _ (derpr hd _)) ?(eqP pr0).
- move=> x rxb; have hd : forall t, t \in `]a, r[ -> 0 < (p^`()).[t].
by move=> t ht; rewrite der_pos // ?(subitvPr _ ht) /<=%O //= ?(itvP arb).
by rewrite (lt_le_trans (derpl hd _)) ?(eqP pr0).
Qed.
End der_root.
End MonotonictyAndRoots.
Section RootsOn.
Variable T : predType R.
Definition roots_on (p : {poly R}) (i : T) (s : seq R) :=
forall x, (x \in i) && (root p x) = (x \in s).
Lemma roots_onP p i s : roots_on p i s -> {in i, root p =1 mem s}.
Proof. by move=> hp x hx; move: (hp x); rewrite hx. Qed.
Lemma roots_on_in p i s :
roots_on p i s -> forall x, x \in s -> x \in i.
Proof. by move=> hp x; rewrite -hp; case/andP. Qed.
Lemma roots_on_root p i s :
roots_on p i s -> forall x, x \in s -> root p x.
Proof. by move=> hp x; rewrite -hp; case/andP. Qed.
Lemma root_roots_on p i s :
roots_on p i s -> forall x, x \in i -> root p x -> x \in s.
Proof. by move=> hp x; rewrite -hp=> ->. Qed.
Lemma roots_on_opp p i s : roots_on (- p) i s -> roots_on p i s.
Proof. by move=> hp x; rewrite -hp rootN. Qed.
Lemma roots_on_nil p i : roots_on p i [::] -> {in i, noroot p}.
Proof. by move=> hp x hx; move: (hp x); rewrite in_nil hx /=; move->. Qed.
Lemma roots_on_same s' p i s : s =i s' -> (roots_on p i s <-> roots_on p i s').
Proof. by move=> hss'; split=> hs x; rewrite (hss', (I, hss')). Qed.
End RootsOn.
(* (* Symmetry of center a *) *)
(* Definition symr (a x : R) := a - x. *)
(* Lemma symr_inv : forall a, involutive (symr a). *)
(* Proof. by move=> a y; rewrite /symr opprD addrA subrr opprK add0r. Qed. *)
(* Lemma symr_inj : forall a, injective (symr a). *)
(* Proof. by move=> a; apply: inv_inj; apply: symr_inv. Qed. *)
(* Lemma ltr_sym : forall a x y, (symr a x < symr a y) = (y < x). *)
(* Proof. by move=> a x y; rewrite lterD2rr lterNr opprK. Qed. *)
(* Lemma symr_add_itv : forall a b x, *)
(* (a < symr (a + b) x < b) = (a < x < b). *)
(* Proof. *)
(* move=> a b x; rewrite andbC. *)
(* by rewrite lter_subrA lterD2rr -lter_addlA lterD2rl. *)
(* Qed. *)
Lemma roots_on_comp p a b s :
roots_on (p \Po (-'X)) `](-b), (-a)[ (map (-%R) s) <-> roots_on p `]a, b[ s.
Proof.
split=> /= hs x; rewrite ?root_comp ?hornerE.
move: (hs (- x)); rewrite (mem_map oppr_inj).
by rewrite root_comp ?hornerE oppr_itv !opprK.
by rewrite -[x]opprK oppr_itv /= (mem_map oppr_inj) -(hs (- x)) !opprK.
Qed.
Lemma min_roots_on p a b x s :
all (> x) s -> roots_on p `]a, b[ (x :: s) ->
[/\ x \in `]a, b[, roots_on p `]a, x[ [::], root p x & roots_on p `]x, b[ s].
Proof.
move=> lxs hxs.
have hx: x \in `]a, b[ by rewrite (roots_on_in hxs) ?mem_head.
rewrite hx (roots_on_root hxs) ?mem_head //.
split=> // y; move: (hxs y); rewrite ?in_nil ?in_cons /=.
case hy: (y \in `]a, x[)=> //=.
rewrite (subitvPr _ hy) /<=%O /= ?lt_eqF ?(itvP hx) ?(itvP hy) //= => ->.
by apply/negP; move/allP: lxs=> lxs /lxs; rewrite ?(itvP hy).
case: eqVneq => [-> _|eyx].
by rewrite boundl_in_itv; apply/esym/negP; move/(allP lxs); rewrite ltxx.
case: root; rewrite !(andbT, andbF) // !in_itv /=.
case: (boolP (y \in s)) (allP lxs y) => [_ /(_ isT) -> /andP [] // | ys _].
by apply/contraFF => /andP [xy ->]; rewrite (lt_trans _ xy) ?(itvP hx).
Qed.
Lemma max_roots_on p a b x s :
all (< x) s -> roots_on p `]a, b[ (x :: s) ->
[/\ x \in `]a, b[, roots_on p `]x, b[ [::], root p x & roots_on p `]a, x[ s].
Proof.
move/allP=> lsx /roots_on_comp/=/min_roots_on[].
apply/allP=> y; rewrite -[y]opprK (mem_map oppr_inj).
by move/lsx; rewrite ltrN2.
rewrite oppr_itv root_comp !hornerE !opprK=> -> rxb -> rax.
by split=> //; apply/roots_on_comp.
Qed.
Lemma roots_on_cons p a b r s :
sorted <%R (r :: s) -> roots_on p `]a, b[ (r :: s) -> roots_on p `]r, b[ s.
Proof.
move=> /= hrs hr.
have allrs := order_path_min lt_trans hrs.
by case: (min_roots_on allrs hr).
Qed.
(* move=> p a b r s hp hr x; apply/andP/idP. *)
(* have:= (order_path_min (@ltr_trans _) hp) => /=; case/andP=> ar1 _. *)
(* case; move/ooitvP=> rxb rpx; move: (hr x); rewrite in_cons rpx andbT. *)
(* by rewrite rxb andbT (ltr_trans ar1) 1?eq_sym ?ltr_eqF ?rxb. *)
(* move=> spx. *)
(* have xrsp: x \in r :: s by rewrite in_cons spx orbT. *)
(* rewrite (roots_on_root hr) //. *)
(* rewrite (roots_on_in hr xrsp); move: hp => /=; case/andP=> _. *)
(* by move/(order_path_min (@ltr_trans _)); move/allP; move/(_ _ spx)->. *)
(* Qed. *)
Lemma roots_on_rcons : forall p a b r s,
sorted <%R (rcons s r) -> roots_on p `]a, b[ (rcons s r)
-> roots_on p `]a, r[ s.
Proof.
move=> p a b r s; rewrite -{1}[s]revK -!rev_cons rev_sorted /=.
move=> hrs /(@roots_on_same _ _ _ _ (r::s)) hr.
have allrrs := order_path_min (rev_trans lt_trans) hrs.
have allrs: all (< r) s.
by apply/allP => x hx; apply: (allP allrrs); rewrite mem_rev.
by case: (max_roots_on allrs (hr _))=> // x; rewrite mem_rcons.
Qed.
(* move=> p a b r s; rewrite -{1}[s]revK -!rev_cons rev_sorted. *)
(* rewrite [r :: _]lock /=; unlock; move=> hp hr x; apply/andP/idP. *)
(* have:= (order_path_min (rev_trans (@ltr_trans _)) hp) => /=. *)
(* case/andP=> ar1 _; case; move/ooitvP=> axr rpx. *)
(* move: (hr x); rewrite mem_rcons in_cons rpx andbT axr andTb. *)
(* by rewrite ((rev_trans (@ltr_trans _) ar1)) ?ltr_eqF ?axr. *)
(* move=> spx. *)
(* have xrsp: x \in rcons s r by rewrite mem_rcons in_cons spx orbT. *)
(* rewrite (roots_on_root hr) //. *)
(* rewrite (roots_on_in hr xrsp); move: hp => /=; case/andP=> _. *)
(* move/(order_path_min (rev_trans (@ltr_trans _))); move/allP. *)
(* by move/(_ x)=> -> //; rewrite mem_rev. *)
(* Qed. *)
Lemma no_roots_on (p : {poly R}) a b :
{in `]a, b[, noroot p} -> roots_on p `]a, b[ [::].
Proof. by move=> hr x; case: (boolP (x \in _)) => //= /hr /negPf. Qed.
Lemma monotonic_rootN (p : {poly R}) (a b : R) :
{in `]a, b[, noroot p^`()} ->
((roots_on p `]a, b[ [::]) + ({r : R | roots_on p `]a, b[ [:: r]}))%type.
Proof.
move=> hp'; case: (ltrP a b); last first => leab.
by left => x; rewrite in_nil itv_ge // -leNgt.
wlog {hp'} hp'sg: p / forall x, x \in `]a, b[ -> sgr (p^`()).[x] = 1.
move=> hwlog; move: (mid_in_itvoo leab) (polyrN0_itv hp') => hm /(_ _ _ hm).
case: (sgrP _.[mid a b])=> hpm.
- by move: (hp' _ hm); rewrite rootE hpm eqxx.
- by move/(hwlog p).
- move=> hp'N; case: (hwlog (-p))=> [x|h|[r hr]].
* by rewrite derivE hornerN sgrN=> /hp'N->; rewrite opprK.
* by left; apply: roots_on_opp.
* by right; exists r; apply: roots_on_opp.
have hp'pos x : x \in `]a, b[ -> (p^`()).[x] > 0.
by move=> /hp'sg /eqP; rewrite sgr_cp0.
case: (lerP 0 p.[a]) => ha.
left; apply: no_roots_on => x axb; rewrite rootE gt_eqF //.
by rewrite (le_lt_trans _ (derpr hp'pos _))// (subitvPr _ axb) /<=%O /=.
case: (lerP p.[b] 0) => hb.
left => x; case: (boolP (x \in _)) => //= axb; rewrite rootE lt_eqF //.
by rewrite (lt_le_trans (derpl hp'pos _)) // (subitvPl _ axb) /<=%O /=.
case: (derp_root hp'pos (ltW leab) _) => [|r [h1 h2 h3] h4];
first by rewrite pmulr_llt0.
right; exists r => x; rewrite in_cons in_nil (itv_splitUeq h3).
have [->|exr] := eqVneq; rewrite ?orbT ?orbF /=; first by apply/eqP.
case: rootP => px0; rewrite (andbT, andbF) //; apply/negP; case/orP=> hx.
by move: (h1 x); rewrite (subitvPl _ hx) /<=%O //= px0 ltxx; move/implyP.
by move: (h4 x); rewrite (subitvPr _ hx) /<=%O //= px0 ltxx; move/implyP.
Qed.
(* Inductive polN0 : Type := PolN0 : forall p : {poly R}, p != 0 -> polN0. *)
(* Coercion pol_of_polN0 i := let: PolN0 p _ := i in p. *)
(* Canonical Structure polN0_subType := [subType for pol_of_polN0]. *)
(* Definition polN0_eqMixin := Eval hnf in [eqMixin of polN0 by <:]. *)
(* Canonical Structure polN0_eqType := *)
(* Eval hnf in EqType polN0 polN0_eqMixin. *)
(* Definition polN0_choiceMixin := [choiceMixin of polN0 by <:]. *)
(* Canonical Structure polN0_choiceType := *)
(* Eval hnf in ChoiceType polN0 polN0_choiceMixin. *)
(* Todo : Lemmas about operations of intervall :
itversection, restriction and splitting *)
Lemma cat_roots_on (p : {poly R}) a b x :
x \in `]a, b[ -> ~~ (root p x) ->
forall s s', sorted <%R s -> sorted <%R s' ->
roots_on p `]a, x[ s -> roots_on p `]x, b[ s' ->
roots_on p `]a, b[ (s ++ s').
Proof.
move=> hx /= npx0 s; elim: s a hx => [|y s ihs] a hx s' //= ss ss'.
move/roots_on_nil=> hax hs' y; rewrite -hs' (itv_splitUeq hx).
case: eqP => [->|_]; rewrite ?(negPf npx0) ?andbF //=.
by case: (boolP (y \in `]a, x[)) => [/hax/negPf ->|]; rewrite ?andbF.
move/min_roots_on; rewrite (order_path_min lt_trans) //.
case=> // hy hay py0 hs hs' z.
rewrite in_cons (@itv_splitUeq _ _ y); last first.
by rewrite (subitvPr _ hy) /<=%O //= (itvP hx).
have [->|ezy] := eqVneq; rewrite ?orbT //= -(ihs y) //.
- by case: (z \in `]y, b[); rewrite ?orbF ?orbT //= (hay z).
- by rewrite in_itv /= (itvP hx) (itvP hy).
- exact: path_sorted ss.
Qed.
Variant roots_spec (p : {poly R}) (i : pred R) (s : seq R) :
{poly R} -> bool -> seq R -> Type :=
| Roots0 of p = 0 :> {poly R} & s = [::] : roots_spec p i s 0 true [::]
| Roots of p != 0 & roots_on p i s
& sorted <%R s : roots_spec p i s p false s.
(* still much too long *)
Lemma itv_roots (p :{poly R}) (a b : R) :
{s : seq R & roots_spec p (topred `]a, b[) s p (p == 0) s}.
Proof.
elim: (size p) {-2}p (leqnn (size p)) a b => {p} [|n ihn] p sp a b.
by move/size_poly_leq0P: sp => ->; rewrite eqxx; exists [::]; constructor.
case: eqVneq => [->|p0]; first by exists [::]; constructor.
case: (boolP (p^`() == 0)) => [|p'0].
rewrite -derivn1 -derivn_poly0 => /size1_polyC pC; exists [::].
by constructor=> // x; rewrite pC rootC -polyC_eq0 -pC (negPf p0) andbF.
have {}/ihn /(_ a b) [sp'] : (size p^`() <= n)%N.
rewrite -ltnS; apply: leq_trans sp; rewrite size_deriv prednK // lt0n.
by rewrite size_poly_eq0 p0.
elim: sp' a => [|r1 sp' hsp'] a hp'.
case: hp' p'0 => //= p'0 /roots_on_nil /monotonic_rootN [h| [r rh]] _ _.
by exists [::]; constructor.
by exists [:: r]; constructor; rewrite //= andbT.
case: hp' p'0 => //= p'0 hroots' hpath' _.
case: (min_roots_on _ hroots') => [|hr1 har1 p'r10 hr1b].
by rewrite order_path_min //; apply: lt_trans.
case: (hsp' r1) p0 => [|s].
by rewrite (negPf p'0); constructor; rewrite // (path_sorted hpath').
case; rewrite ?eqxx // => p0 hroot hsort _.
move/monotonic_rootN: (roots_on_nil har1).
case pr1 : (root p r1); case => hrootsl; last 2 first.
- exists s; constructor=> //.
by rewrite -[s]cat0s; apply: (cat_roots_on hr1); rewrite // pr1.
- case: hrootsl=> r hr; exists (r::s); constructor=> //=.
by rewrite -cat1s; apply: (cat_roots_on hr1); rewrite // pr1.
rewrite path_min_sorted //; apply/allP=> y; rewrite -hroot; case/andP=> hy _.
rewrite (lt_trans (_ : _ < r1)) ?(itvP hy) //.
by rewrite (itvP (roots_on_in hr (mem_head _ _))).
- exists (r1::s); constructor=> //=; last first.
rewrite path_min_sorted //; apply/allP => y; rewrite -hroot.
by case/andP => /itvP->.
move=> x; rewrite in_cons; have [->|exr1] /= := eqVneq; first by rewrite hr1.
rewrite -hroot (itv_splitUeq hr1) (negPf exr1) /=.
case: (_ \in `]r1, _[); rewrite (orbT, orbF); [by []|].
by apply: contraFF (hrootsl x) => ->.
(* use // above and remove above line when requiring Coq >= 8.17 *)
- case: hrootsl => r0 /min_roots_on [] // hr0 har0 pr0 hr0r1.
exists [:: r0, r1 & s]; constructor=> //=; last first.
rewrite (itvP hr0) /= path_min_sorted //; apply/allP=> y.
by rewrite -hroot; case/andP => /itvP ->.
move=> y; rewrite !in_cons (itv_splitUeq hr1) (itv_splitUeq hr0).
have [->|eyr0] := eqVneq y r0; rewrite ?orbT ?pr0 //=.
have [->|eyr1] := eqVneq y r1; rewrite ?orbT ?pr1 //=.
move: (hr0r1 y) (har0 y); rewrite -!hroot.
case: (_ \in `]r0, r1[) => /= [->|_]; rewrite ?andbF ?orbF //.
by case: (_ \in `]a, r0[) => /= [->|_]; rewrite ?andbF.
Qed.
Definition roots (p : {poly R}) a b := projT1 (itv_roots p a b).
Lemma rootsP p a b :
roots_spec p (topred `]a, b[) (roots p a b) p (p == 0) (roots p a b).
Proof. by rewrite /roots; case: itv_roots. Qed.
Lemma roots0 a b : roots 0 a b = [::].
Proof. by case: rootsP=> //=; rewrite eqxx. Qed.
Lemma roots_on_roots : forall p a b, p != 0 ->
roots_on p `]a, b[ (roots p a b).
Proof. by move=> a b p; case: rootsP. Qed.
Hint Resolve roots_on_roots : core.
Lemma sorted_roots a b p : sorted <%R (roots p a b).
Proof. by case: rootsP. Qed.
Hint Resolve sorted_roots : core.
Lemma path_roots p a b : path <%R a (roots p a b).
Proof.
case: rootsP=> //= p0 hp sp; rewrite path_min_sorted //.
by apply/allP=> y; rewrite -hp; case/andP => /itvP ->.
Qed.
Hint Resolve path_roots : core.
Lemma root_is_roots (p : {poly R}) (a b : R) :
p != 0 -> forall x, x \in `]a, b[ -> root p x = (x \in roots p a b).
Proof. by case: rootsP=> // p0 hs ps _ y hy /=; rewrite -hs hy. Qed.
Lemma root_in_roots (p : {poly R}) a b :
p != 0 -> forall x, x \in `]a, b[ -> root p x -> x \in (roots p a b).
Proof. by move=> p0 x axb rpx; rewrite -root_is_roots. Qed.
Lemma root_roots p a b x : x \in roots p a b -> root p x.
Proof. by case: rootsP=> // p0 <- _ /andP []. Qed.
Lemma roots_nil p a b : p != 0 ->
roots p a b = [::] -> {in `]a, b[, noroot p}.
Proof.
case: rootsP => // p0 hs ps _ s0 x axb.
by move: (hs x); rewrite s0 in_nil !axb /= => ->.
Qed.
Lemma roots_in p a b x : x \in roots p a b -> x \in `]a, b[.
Proof. by case: rootsP=> //= np0 ron_p *; apply: (roots_on_in ron_p). Qed.
Lemma rootsEba p a b : b <= a -> roots p a b = [::].
Proof.
case: rootsP=> // p0; case: (roots _ _ _) => [|x s] hs ps ba //;
by move: (hs x); rewrite itv_ge -?leNgt //= mem_head.
Qed.
Lemma roots_on_uniq p a b s1 s2 :
sorted <%R s1 -> sorted <%R s2 ->
roots_on p `]a, b[ s1 -> roots_on p `]a, b[ s2 -> s1 = s2.
Proof.
wlog: s1 s2 / (size s1 <= size s2)%N => [hwlog ? ? ? ?|].
by case: (leqP (size s1) (size s2)) => [|/ltnW] /hwlog ->.
elim: s1 p a b s2 => [| r1 s1 ih] p a b [| r2 s2] les12 ps1 ps2 rs1 rs2 //=.
have rpr2 : root p r2 by apply: (roots_on_root rs2); rewrite mem_head.
have abr2 : r2 \in `]a, b[ by apply: (roots_on_in rs2); rewrite mem_head.
by have:= (rs1 r2); rewrite rpr2 !abr2 in_nil.
have er1r2 : r1 = r2.
move: (rs1 r2) (rs2 r1); rewrite rs2 rs1 !mem_head !in_cons //=.
move=> /esym /predU1P [-> //|hr2] /esym /predU1P [-> //|hr1].
move/(order_path_min lt_trans)/allP/(_ r2 hr2): ps1 => h1.
move/(order_path_min lt_trans)/allP/(_ r1 hr1)/(lt_trans h1): ps2.
by rewrite ltxx.
congr (_ :: _) => //; rewrite er1r2 in ps1 rs1.
move: (roots_on_cons ps1 rs1) (roots_on_cons ps2 rs2).
exact: ih (path_sorted ps1) (path_sorted ps2).
Qed.
Lemma roots_eq (p q : {poly R}) (a b : R) :
p != 0 -> q != 0 ->
({in `]a, b[, root p =1 root q} <-> roots p a b = roots q a b).
Proof.
move=> p0 q0; split=> hpq; last first.
by move=> x hx; rewrite !(root_is_roots _ hx) // hpq.
apply: (@roots_on_uniq p a b); rewrite ?path_roots //.
exact: roots_on_roots.
move=> x; case hx: (_ \in _).
by rewrite -hx hpq //; apply: roots_on_roots.
by rewrite /= -(andFb (q.[x] == 0)) -hx; apply: roots_on_roots.
Qed.
Lemma roots_opp p : roots (- p) =2 roots p.
Proof.
move=> a b; have [->|p0] := eqVneq p 0; first by rewrite oppr0.
by apply/roots_eq=> [||x]; rewrite ?oppr_eq0 ?p0 ?rootN.
Qed.
Lemma no_root_roots (p : {poly R}) a b :
{in `]a, b[ , noroot p} -> roots p a b = [::].
Proof.
move=> hr; case: rootsP => // p0 hs ps.
apply: (@roots_on_uniq p a b)=> // x; rewrite in_nil.
by apply/negP; case/andP => /hr/negPf->.
Qed.
Lemma head_roots_on_ge p a b s :
a < b -> roots_on p `]a, b[ s -> a < head b s.
Proof.
case: s => [|x s] ab // /(_ x).
by rewrite in_cons eqxx; case/andP; case/andP.
Qed.
Lemma head_roots_ge : forall p a b, a < b -> a < head b (roots p a b).
Proof.
by move=> p a b; case: rootsP=> // *; apply: head_roots_on_ge.
Qed.
Lemma last_roots_on_le p a b s :
a < b -> roots_on p `]a, b[ s -> last a s < b.
Proof.
case: s => [|x s] ab rs //.
by rewrite (itvP (roots_on_in rs _)) //= mem_last.
Qed.
Lemma last_roots_le p a b : a < b -> last a (roots p a b) < b.
Proof. by case: rootsP=> // *; apply: last_roots_on_le. Qed.
Lemma roots_uniq p a b s :
p != 0 -> roots_on p `]a, b[ s -> sorted <%R s -> s = roots p a b.
Proof.
case: rootsP=> // p0 hs' ps' _ hs ss.
exact: (@roots_on_uniq p a b)=> //.
Qed.
Lemma roots_cons p a b x s :
(roots p a b == x :: s)
= [&& p != 0, x \in `]a, b[,
roots p a x == [::], root p x & roots p x b == s].
Proof.
case: rootsP => //= p0 hs' ps'.
apply/idP/idP.
move/eqP=> es'; move: ps' hs'; rewrite es' /= => sxs.
case/min_roots_on; first by apply: order_path_min=> //; apply: lt_trans.
move=> -> rax px0 rxb.
rewrite px0 (@roots_uniq p a x [::]) // (@roots_uniq p x b s) ?eqxx //=.
by move/path_sorted:sxs.
case: rootsP p0=> // p0 rax sax _.
case/and3P=> hx hax; rewrite (eqP hax) in rax sax.
case: rootsP p0=> // p0 rxb sxb _.
case/andP=> px0 hxb; rewrite (eqP hxb) in rxb sxb.
rewrite [_ :: _](@roots_uniq p a b) //; last first.
rewrite /= path_min_sorted //; apply/allP => y.
by rewrite -(eqP hxb); move/roots_in/itvP->.
move=> y; rewrite (itv_splitUeq hx) !andb_orl in_cons.
have [->|_] := eqVneq y x; first by rewrite px0 orbT.
by rewrite andFb orFb rax rxb in_nil.
Qed.
Lemma roots_rcons p a b x s :
(roots p a b == rcons s x) =
[&& p != 0, x \in `]a , b[,
roots p x b == [::], root p x & roots p a x == s].
Proof.
case: rootsP; first by case: s.
move=> // p0 hs' ps' /=.
apply/idP/idP.
move/eqP=> es'; move: ps' hs'; rewrite es' /= => sxs.
have hsx: rcons s x =i x :: rev s.
by move=> y; rewrite mem_rcons !in_cons mem_rev.
move/(roots_on_same _ _ hsx).
case/max_roots_on.
move: sxs; rewrite -[rcons _ _]revK rev_sorted rev_rcons.
by apply: order_path_min=> u v w /= /(lt_trans _); apply.
move=> -> rax px0 /(@roots_on_same _ s); move/(_ (mem_rev _)) => rxb.
rewrite px0 (@roots_uniq p x b [::]) // (@roots_uniq p a x s) ?eqxx //=.
move: sxs; rewrite -[rcons _ _]revK rev_sorted rev_rcons.
by move/path_sorted; rewrite -rev_sorted revK.
case: rootsP p0=> // p0 rax sax _.
case/and3P=> hx hax; rewrite (eqP hax) in rax sax.
case: rootsP p0=> // p0 rxb sxb _.
case/andP=> px0 hxb; rewrite (eqP hxb) in rxb sxb.
rewrite [rcons _ _](@roots_uniq p a b) //; last first.
rewrite -[rcons _ _]revK rev_sorted rev_rcons /= path_min_sorted.
by rewrite -rev_sorted revK.
apply/allP=> y; rewrite mem_rev; rewrite -(eqP hxb).
by move/roots_in/itvP->.
move=> y; rewrite (itv_splitUeq hx) mem_rcons in_cons !andb_orl.
have [->|_] := eqVneq y x; first by rewrite px0 orbT.
by rewrite rxb rax in_nil !orbF.
Qed.
Section NeighborHood.
Implicit Types a b : R.
Implicit Types p : {poly R}.
Definition next_root (p : {poly R}) x b :=
if p == 0 then x else head (maxr b x) (roots p x b).
Lemma next_root0 a b : next_root 0 a b = a.
Proof. by rewrite /next_root eqxx. Qed.
Variant next_root_spec (p : {poly R}) x b : bool -> R -> Type :=
| NextRootSpec0 of p = 0 : next_root_spec p x b true x
| NextRootSpecRoot y of p != 0 & p.[y] = 0 & y \in `]x, b[
& {in `]x, y[, forall z, ~~(root p z)} : next_root_spec p x b true y
| NextRootSpecNoRoot c of p != 0 & c = maxr b x
& {in `]x, b[, forall z, ~~(root p z)} : next_root_spec p x b (p.[c] == 0) c.
Lemma next_rootP (p : {poly R}) a b :
next_root_spec p a b (p.[next_root p a b] == 0) (next_root p a b).
Proof.
rewrite /next_root /=; case hs: roots => [|x s] /=.
case: (eqVneq p 0) hs => [->|p0] hs.
by rewrite hornerC eqxx; constructor.
by constructor=> // y hy; apply: (roots_nil p0 hs).
move/eqP: hs; rewrite roots_cons; case/and5P=> p0 hx /eqP rap rpx rx.
rewrite (negPf p0) (rootPt rpx); constructor=> //; first by apply/eqP.
by move=> y hy; apply: (roots_nil p0 rap).
Qed.
Lemma next_root_in p a b : next_root p a b \in `[a, maxr b a].
Proof.
case: next_rootP => [p0|y np0 py0 hy _|c np0 hc _].
* by rewrite bound_in_itv /<=%O /= le_max lexx orbT.
* by apply: subitvP hy; rewrite /<=%O /= /<=%O /= le_max !lexx.
* by rewrite hc bound_in_itv /<=%O /= le_max lexx orbT.
Qed.
Lemma next_root_gt p a b : a < b -> p != 0 -> next_root p a b > a.
Proof.
move=> ab np0; case: next_rootP=> [p0|y _ py0 hy _|c _ -> _].
* by rewrite p0 eqxx in np0.
* by rewrite (itvP hy).
* by rewrite lt_max ab.
Qed.
Lemma next_noroot p a b : {in `]a, (next_root p a b)[, noroot p}.
Proof.
move=> z; case: next_rootP; first by rewrite itv_xx.
by move=> y np0 py0 hy hp hz; rewrite (negPf (hp _ _)).
move=> c p0 -> hp hz; rewrite (negPf (hp _ _)) //.
by case: leP hz; first rewrite itv_xx.
Qed.
Lemma is_next_root p a b x :
next_root_spec p a b (root p x) x -> x = next_root p a b.
Proof.
case; first by move->; rewrite /next_root eqxx.
move=> y; case: next_rootP; first by move->; rewrite eqxx.
move=> y' np0 py'0 hy' hp' _ py0 hy hp.
wlog: y y' hy' hy hp' hp py0 py'0 / y <= y'.
by case/orP: (le_total y y')=> lyy' hw; [|symmetry]; apply: hw.
case: ltrgtP=> // hyy' _; move: (hp' y).
by rewrite in_itv /= (itvP hy) hyy' rootE py0 eqxx; move/(_ isT).
move=> c p0 ->; case: leP => hba; first by rewrite itv_ge // -leNgt.
by move=> hpz _ py0 /hpz; rewrite rootE py0 eqxx.
case: next_rootP; first by move->; rewrite eqxx.
by move=> y np0 py0 hy _ c _ _ /(_ _ hy); rewrite rootE py0 eqxx.
by move=> c _ -> _ c' _ ->.
Qed.
Definition prev_root (p : {poly R}) a x :=
if p == 0 then x else last (minr a x) (roots p a x).
Lemma prev_root0 a b : prev_root 0 a b = b.
Proof. by rewrite /prev_root eqxx. Qed.
Variant prev_root_spec (p : {poly R}) a x : bool -> R -> Type :=
| PrevRootSpec0 of p = 0 : prev_root_spec p a x true x
| PrevRootSpecRoot y of p != 0 & p.[y] = 0 & y \in`]a, x[
& {in `]y, x[, forall z, ~~(root p z)} : prev_root_spec p a x true y
| PrevRootSpecNoRoot c of p != 0 & c = minr a x
& {in `]a, x[, forall z, ~~(root p z)} : prev_root_spec p a x (p.[c] == 0) c.
Lemma prev_rootP (p : {poly R}) a b :
prev_root_spec p a b (p.[prev_root p a b] == 0) (prev_root p a b).
Proof.
rewrite /prev_root /=; move hs: (roots _ _ _)=> s.
case: (lastP s) hs=> {s} [|s x] hs /=.
case: (eqVneq p 0) hs => [->|p0] hs.
by rewrite hornerC eqxx; constructor.
by constructor=> // y hy; apply: (roots_nil p0 hs).
move/eqP: hs; rewrite last_rcons roots_rcons.
case/and5P=> p0 hx /eqP rap rpx rx.
rewrite (negPf p0) (rootPt rpx); constructor=> //; first by apply/eqP.
by move=> y hy /=; move/(roots_nil p0): (rap); apply.
Qed.
Lemma prev_root_in p a b : prev_root p a b \in `[minr a b, b].
Proof.
case: prev_rootP => [p0|y np0 py0 hy _|c np0 hc _].
* by rewrite bound_in_itv /<=%O /= ge_min lexx orbT.
* by apply: subitvP hy; rewrite /<=%O /= /<=%O /= ge_min !lexx.
* by rewrite hc bound_in_itv /<=%O /= ge_min lexx orbT.
Qed.
Lemma prev_noroot p a b : {in `](prev_root p a b), b[, noroot p}.
Proof.
move=> z; case: prev_rootP; first by rewrite itv_xx.
by move=> y np0 py0 hy hp hz; rewrite (negPf (hp _ _)).
move=> c np0 ->; case: leP=> hab; last by rewrite itv_xx.
by move=> hp hz; rewrite (negPf (hp _ _)).
Qed.
Lemma prev_root_lt p a b : a < b -> p != 0 -> prev_root p a b < b.
Proof.
move=> ab np0; case: prev_rootP=> [p0|y _ py0 hy _|c _ -> _].
* by rewrite p0 eqxx in np0.
* by rewrite (itvP hy).
* by rewrite gt_min ab.
Qed.
Lemma is_prev_root p a b x :
prev_root_spec p a b (root p x) x -> x = prev_root p a b.
Proof.
case; first by move->; rewrite /prev_root eqxx.
move=> y; case: prev_rootP; first by move->; rewrite eqxx.
move=> y' np0 py'0 hy' hp' _ py0 hy hp.
wlog: y y' hy' hy hp' hp py0 py'0 / y <= y'.
by case/orP: (le_total y y')=> lyy' hw; [|symmetry]; apply: hw.
case: ltrgtP=> // hyy' _; move/implyP: (hp y').
by rewrite rootE py'0 eqxx in_itv /= (itvP hy') hyy'.
by move=> c _ _ hpz _ py0 /hpz; rewrite rootE py0 eqxx.
case: prev_rootP=> //; first by move->; rewrite eqxx.
move=> y ? py0 hy _ c _ ->.
case: ltP hy=> hab; last by rewrite itv_ge // -leNgt.
by move=> hy /(_ _ hy); rewrite rootE py0 eqxx.
by move=> c _ -> _ c' _ ->.
Qed.
Definition neighpr p a b := `]a, (next_root p a b)[.
Definition neighpl p a b := `](prev_root p a b), b[.
Lemma neighpl_root p a x : {in neighpl p a x, noroot p}.
Proof. exact: prev_noroot. Qed.
Lemma sgr_neighplN p a x :
~~ root p x -> {in neighpl p a x, forall y, (sgr p.[y] = sgr p.[x])}.
Proof.
rewrite /neighpl=> nrpx /= y hy.
apply: (@polyrN0_itv `[y, x]); do ?by rewrite bound_in_itv /<=%O /= (itvP hy).
move=> z; rewrite (@itv_splitU _ _ (BLeft x)) ?itv_xx /=; last first.
(* Todo : Lemma itv_splitP *)
by rewrite bound_lexx /<=%O /= (itvP hy).
rewrite orbC => /predU1P[-> // | hz].
rewrite (@prev_noroot _ a x) //.
by apply: subitvPl hz; rewrite /<=%O /= (itvP hy).
Qed.
Lemma sgr_neighpl_same p a x :
{in neighpl p a x &, forall y z, (sgr p.[y] = sgr p.[z])}.
Proof.
by rewrite /neighpl=> y z *; apply: (polyrN0_itv (@prev_noroot p a x)).
Qed.
Lemma neighpr_root p x b : {in neighpr p x b, noroot p}.
Proof. exact: next_noroot. Qed.
Lemma sgr_neighprN p x b :
p.[x] != 0 -> {in neighpr p x b, forall y, (sgr p.[y] = sgr p.[x])}.
Proof.
rewrite /neighpr=> nrpx /= y hy; symmetry.
apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv /<=%O /= (itvP hy).
move=> z; rewrite (@itv_splitU _ _ (BRight x)) ?itv_xx /=; last first.
(* Todo : Lemma itv_splitP *)
by rewrite bound_lexx /<=%O /= (itvP hy).
case/predU1P => [-> //|hz]; rewrite (@next_noroot _ x b) //.
by apply: subitvPr hz; rewrite /<=%O /= (itvP hy).
Qed.
Lemma sgr_neighpr_same p x b :
{in neighpr p x b &, forall y z, (sgr p.[y] = sgr p.[z])}.
Proof.
by rewrite /neighpl=> y z *; apply: (polyrN0_itv (@next_noroot p x b)).
Qed.
Lemma uniq_roots a b p : uniq (roots p a b).
Proof.
have [->|p0] := eqVneq p 0; first by rewrite roots0.
by apply: (@sorted_uniq _ <%R); [apply: lt_trans | apply: ltxx|].
Qed.
Hint Resolve uniq_roots : core.
Lemma in_roots p (a b x : R) :
(x \in roots p a b) = [&& root p x, x \in `]a, b[ & p != 0].
Proof.
case: rootsP=> //=; first by rewrite in_nil !andbF.
by move=> p0 hr sr; rewrite andbT -hr andbC.
Qed.
(* Todo : move to polyorder => need char 0 *)
Lemma gdcop_eq0 p q : (gdcop p q == 0) = (q == 0) && (p != 0).
Proof.
have [->|q0] := eqVneq q.
by rewrite gdcop0 /=; case: (p == 0); rewrite ?eqxx ?oner_eq0.
rewrite /gdcop; move: {-1}(size q) (leqnn (size q))=> k hk; apply: negPf.
elim: k q q0 hk => [|k ihk] /= q q0 hk.
by move: hk q0; rewrite leqn0 size_poly_eq0; move->.
case: ifP=> cpq; first by rewrite (negPf q0).
apply: ihk.
rewrite divpN0; last by rewrite gcdp_eq0 negb_and q0.
by rewrite dvdp_leq // dvdp_gcdl.
rewrite -ltnS; apply: leq_trans hk; move: (dvdp_gcdl q p); rewrite dvdp_eq.
move/eqP=> eqq; move/(f_equal (fun x : {poly R} => size x)): (eqq).
rewrite size_scale; last exact: lc_expn_scalp_neq0.
have gcdn0 : gcdp q p != 0 by rewrite gcdp_eq0 negb_and q0.
have qqn0 : q %/ gcdp q p != 0.
apply: contraNneq q0 => e.
move: (scaler_eq0 (lead_coef (gcdp q p) ^+ scalp q (gcdp q p)) q).
by rewrite (negPf (lc_expn_scalp_neq0 _ _)) /= eqq e mul0r eqxx.
move->; rewrite size_mul //; case sgcd: (size (gcdp q p)) => [|n].
by move/eqP: sgcd gcdn0; rewrite size_poly_eq0; move->.
case: n sgcd => [|n]; first by move/eqP; rewrite size_poly_eq1 gcdp_eqp1 cpq.
by rewrite addnS /= -{1}[size (_ %/ _)]addn0 ltn_add2l.
Qed.
Lemma roots_mul a b : a < b -> forall p q,
p != 0 -> q != 0 -> perm_eq (roots (p*q) a b)
(roots p a b ++ roots ((gdcop p q)) a b).
Proof.
move=> hab p q np0 nq0.
apply: uniq_perm; first exact: uniq_roots.
rewrite cat_uniq ?uniq_roots andbT /=; apply/hasPn=> x /=.
move/root_roots; rewrite root_gdco //; case/andP=> _.
by rewrite in_roots !negb_and=> ->.
move=> x; rewrite mem_cat !in_roots root_gdco //.
rewrite rootM mulf_eq0 gdcop_eq0 negb_and.
case: (x \in `]_, _[); last by rewrite !andbF.
by rewrite negb_or !np0 !nq0 !andbT /=; do 2?case: root=> //=.
Qed.
Lemma roots_mul_coprime a b :
a < b ->
forall p q, p != 0 -> q != 0 -> coprimep p q ->
perm_eq (roots (p * q) a b)
(roots p a b ++ roots q a b).
Proof.
move=> hab p q np0 nq0 cpq.
rewrite (perm_trans (roots_mul hab np0 nq0)) //.
suff ->: roots (gdcop p q) a b = roots q a b by apply: perm_refl.
case: gdcopP=> r rq hrp /(_ q (dvdpp _)).
rewrite coprimep_sym; move/(_ cpq)=> qr.
have erq : r %= q by rewrite /eqp rq qr.
(* Todo : relate eqp with roots *)
apply/roots_eq=> // [|x hx]; last exact: eqp_root.
by rewrite -size_poly_eq0 (eqp_size erq) size_poly_eq0.
Qed.
Lemma next_rootM a b (p q : {poly R}) :
next_root (p * q) a b = minr (next_root p a b) (next_root q a b).
Proof.
apply/esym/is_next_root.
wlog: p q / next_root p a b <= next_root q a b.
case: leP=> hpq; first by move/(_ _ _ hpq); case: leP hpq.
by move/(_ _ _ (ltW hpq)); rewrite mulrC; case: ltP hpq.
case: leP => //; case: next_rootP=> [|y np0 py0 hy|c np0 ->] hp hpq _.
* by rewrite hp mul0r root0; constructor.
* rewrite rootM; move/rootP:(py0)->; constructor=> //.
- by rewrite mulf_neq0 //; case: next_rootP hpq; rewrite // (itvP hy).
- by rewrite hornerM py0 mul0r.
- move=> z hz /=; rewrite rootM negb_or ?hp //.
by rewrite (@next_noroot _ a b) //; apply: subitvPr hz.
* case: (eqVneq q 0) hpq => [->|q0 hpq].
rewrite mulr0 root0 next_root0 ge_max lexx andbT.
by move/max_r->; constructor.
constructor=> //; first by rewrite mulf_neq0.
move=> z hz /=; rewrite rootM negb_or ?hp // (@next_noroot _ a b) //.
by apply: subitvPr hz=> /=; move: hpq; rewrite ge_max; case/andP.
Qed.
Lemma neighpr_mul a b p q :
(neighpr (p * q) a b) =i [predI (neighpr p a b) & (neighpr q a b)].
Proof.
move=> x; rewrite !inE /<=%O /= /<=%O /= next_rootM.
by case: (a < x); rewrite // lt_min.
Qed.
Lemma prev_rootM a b (p q : {poly R}) :
prev_root (p * q) a b = maxr (prev_root p a b) (prev_root q a b).
Proof.
apply/esym/is_prev_root.
wlog: p q / prev_root p a b >= prev_root q a b.
case: leP=> hpq; last by move/(_ _ _ (ltW hpq)); case: leP hpq.
by move/(_ _ _ hpq); case: ltP hpq; rewrite mulrC.
case: ltP => //; case: (@prev_rootP p)=> [|y np0 py0 hy|c np0 ->] hp hpq _.
* by rewrite hp mul0r root0; constructor.
* rewrite rootM; move/rootP:(py0)->; constructor=> //.
- by rewrite mulf_neq0 //; case: prev_rootP hpq; rewrite // (itvP hy).
- by rewrite hornerM py0 mul0r.
- move=> z hz /=; rewrite rootM negb_or ?hp //.
by rewrite (@prev_noroot _ a b) //; apply: subitvPl hz.
* case: (eqVneq q 0) hpq => [->|q0 hpq].
rewrite mulr0 root0 prev_root0 le_min lexx andbT.
by move/min_r->; constructor.
constructor=> //; first by rewrite mulf_neq0.
move=> z hz /=; rewrite rootM negb_or ?hp // (@prev_noroot _ a b) //.
by apply: subitvPl hz=> /=; move: hpq; rewrite le_min; case/andP.
Qed.
Lemma neighpl_mul a b p q :
(neighpl (p * q) a b) =i [predI (neighpl p a b) & (neighpl q a b)].
Proof.
move=> x; rewrite !inE /<=%O /= /<=%O /= prev_rootM.
by case: (x < b); rewrite // gt_max !(andbT, andbF).
Qed.
Lemma neighpr_wit p x b : x < b -> p != 0 -> {y | y \in neighpr p x b}.
Proof.
move=> xb; exists (mid x (next_root p x b)).
by rewrite mid_in_itv //= next_root_gt.
Qed.
Lemma neighpl_wit p a x : a < x -> p != 0 -> {y | y \in neighpl p a x}.
Proof.
move=> xb; exists (mid (prev_root p a x) x).
by rewrite mid_in_itv //= prev_root_lt.
Qed.
End NeighborHood.
Section SignRight.
Definition sgp_right (p : {poly R}) x :=
let fix aux (p : {poly R}) n :=
if n is n'.+1
then if ~~ root p x
then sgr p.[x]
else aux p^`() n'
else 0
in aux p (size p).
Lemma sgp_right0 x : sgp_right 0 x = 0.
Proof. by rewrite /sgp_right size_poly0. Qed.
Lemma sgr_neighpr b p x :
{in neighpr p x b, forall y, (sgr p.[y] = sgp_right p x)}.
Proof.
have [n] := ubnP (size p); elim: n => // -[_|n ihn] in p *; rewrite ltnS.
by move=> /size_poly_leq0P-> y; rewrite /neighpr next_root0 itv_xx.
rewrite leq_eqVlt ltnS; case/orP; last exact: ihn.
move/eqP=> sp; rewrite /sgp_right sp /=.
have pN0 : p != 0 by apply: contra_eq_neq sp => ->; rewrite size_poly0.
case px0: root=> /=; last first.
move=> y; rewrite /neighpr => hy /=; symmetry.
apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv ?bnd_simp /= (itvP hy).
move=> z; rewrite (@itv_splitU _ _ (BRight x))
?bound_in_itv /= ?bnd_simp ?(itvP hy) //.
rewrite itv_xx /=; case/predU1P=> hz; first by rewrite hz px0.
rewrite (@next_noroot p x b) //.
by apply: subitvPr hz=> /=; rewrite !bnd_simp (itvP hy).
have <-: size p^`() = n by rewrite size_deriv sp.
rewrite -/(sgp_right p^`() x).
move=> y; rewrite /neighpr=> hy /=.
case: (@neighpr_wit (p * p^`()) x b)=> [||m hm].
* case: next_rootP hy; first by rewrite itv_xx.
by move=> ? ? ?; move/itvP->.
by move=> c p0 -> _; case: lerP => _; rewrite ?itv_xx //; move/itvP->.
* rewrite mulf_neq0 //.
move: (size_deriv p); rewrite sp /=; move/eqP; apply: contraTneq=> ->.
rewrite size_poly0; apply: contraTneq px0=> hn; rewrite -hn in sp.
by move/eqP: sp; case/size_poly1P=> c nc0 ->; rewrite rootC.
* move: hm; rewrite neighpr_mul /neighpr inE /=; case/andP=> hmp hmp'.
have lt_xm : x < m by rewrite (itvP hmp).
rewrite (polyrN0_itv _ hmp) //; last exact: next_noroot.
have midxmxb : mid x m \in neighpr p^`() x b.
rewrite (subitvP _ (@mid_in_itv _ false true _ _ _)) //=.
by rewrite ?lerr le_itv !bnd_simp (itvP hmp').
rewrite (@root_dersr p x m) ?(eqP px0) ?mid_in_itv ?bound_in_itv //;
rewrite ?bnd_simp /= ?(itvP hmp) //; last first.
move=> u hu /=; rewrite (@next_noroot _ x b) //.
by apply: subitvPr hu; rewrite /= ?bnd_simp (itvP hmp').
rewrite neqr0_sign// ?(@next_noroot _ x b)//.
by rewrite ihn ?size_deriv ?sp /neighpr.
Qed.
Lemma sgr_neighpl a p x :
{in neighpl p a x, forall y,
(sgr p.[y] = (-1) ^+ (odd (\mu_x p)) * sgp_right p x)
}.
Proof.
have [n] := ubnP (size p); elim: n => // -[_|n ihn] in p *; rewrite ltnS.
by move=> /size_poly_leq0P-> y; rewrite /neighpl prev_root0 itv_xx.
rewrite leq_eqVlt ltnS; case/orP; last exact: ihn.
move/eqP=> sp; rewrite /sgp_right sp /=.
have pN0 : p != 0 by apply: contra_eq_neq sp => ->; rewrite size_poly0.
case px0: root=> /=; last first.
move=> y; rewrite /neighpl => hy /=; symmetry.
move: (negbT px0); rewrite -mu_gt0; last first.
by apply: contraFN px0; move/eqP->; rewrite rootC.
rewrite -leqNgt leqn0; move/eqP=> -> /=; rewrite expr0 mul1r.
symmetry; apply: (@polyrN0_itv `[y, x]);
do ?by rewrite bound_in_itv ?bnd_simp /= (itvP hy).
move=> z; rewrite (@itv_splitU _ _ (BLeft x)) ?bound_in_itv ?bnd_simp /= ?(itvP hy) //.
rewrite itv_xx /= orbC; case/predU1P=> hz; first by rewrite hz px0.
rewrite (@prev_noroot p a x) //.
by apply: subitvPl hz=> /=; rewrite bnd_simp (itvP hy).
have <-: size p^`() = n by rewrite size_deriv sp.
rewrite -/(sgp_right p^`() x).
move=> y; rewrite /neighpl=> hy /=.
case: (@neighpl_wit (p * p^`()) a x)=> [||m hm].
* case: prev_rootP hy; first by rewrite itv_xx.
by move=> ? ? ?; move/itvP->.
by move=> c p0 -> _; case: lerP => _; rewrite ?itv_xx //; move/itvP->.
* rewrite mulf_neq0 //.
move: (size_deriv p); rewrite sp /=; move/eqP; apply: contraTneq=> ->.
rewrite size_poly0; apply: contraTneq px0=> hn; rewrite -hn in sp.
by move/eqP: sp; case/size_poly1P=> c nc0 ->; rewrite rootC.
* move: hm; rewrite neighpl_mul /neighpl inE /=; case/andP=> hmp hmp'.
have lt_xm : m < x by rewrite (itvP hmp).
have midxmxb : mid m x \in neighpl p^`() a x.
rewrite (subitvP _ (@mid_in_itv _ false true _ _ _)) //=
?le_itv ?bnd_simp (itvP hmp')//.
rewrite (polyrN0_itv _ hmp) //; last exact: prev_noroot.
rewrite (@root_dersl p m x) ?(eqP px0) ?mid_in_itv ?bound_in_itv //;
rewrite /= ?bnd_simp ?(itvP hmp) //; last first.
move=> u hu /=; rewrite (@prev_noroot _ a x) //.
by apply: subitvPl hu; rewrite /= ?bnd_simp (itvP hmp').
rewrite neqr0_sign ?(@prev_noroot _ a x)// ihn// ?size_deriv ?sp//.
by rewrite mu_deriv// oddB ?mu_gt0//= signr_addb mulrN1 mulNr opprK.
Qed.
Lemma sgp_right_deriv (p : {poly R}) x :
root p x -> sgp_right p x = sgp_right (p^`()) x.
Proof.
elim: (size p) {-2}p (erefl (size p)) x => {p} [p|sp hp p hsp x].
by move/eqP; rewrite size_poly_eq0; move/eqP=> -> x _; rewrite derivC.
by rewrite /sgp_right size_deriv hsp /= => ->.
Qed.
Lemma sgp_rightNroot (p : {poly R}) x :
~~ root p x -> sgp_right p x = sgr p.[x].
Proof.
move=> nrpx; rewrite /sgp_right; case hsp: (size _)=> [|sp].
by move/eqP:hsp; rewrite size_poly_eq0; move/eqP->; rewrite hornerC sgr0.
by rewrite nrpx.
Qed.
Lemma sgp_right_mul p q x : sgp_right (p * q) x = sgp_right p x * sgp_right q x.
Proof.
have [->|q0] := eqVneq q 0; first by rewrite /sgp_right !(size_poly0,mulr0).
have [->|p0] := eqVneq p 0; first by rewrite /sgp_right !(size_poly0,mul0r).
case: (@neighpr_wit (p * q) x (1 + x))=> [||m hpq]; do ?by rewrite mulf_neq0.
by rewrite ltr_pwDl ?ltr01.
rewrite -(@sgr_neighpr (1 + x) _ _ m) //; move: hpq; rewrite neighpr_mul.
by case/andP=> /= hp hq; rewrite hornerM sgrM !(@sgr_neighpr (1 + x) _ x).
Qed.
Lemma sgp_right_scale c p x : sgp_right (c *: p) x = sgr c * sgp_right p x.
Proof.
have [->|c0] := eqVneq c 0; first by rewrite scale0r sgr0 mul0r sgp_right0.
by rewrite -mul_polyC sgp_right_mul sgp_rightNroot ?hornerC ?rootC ?c0.
Qed.
Lemma sgp_right_square p x : p != 0 -> sgp_right p x * sgp_right p x = 1.
Proof.
move=> np0; case: (@neighpr_wit p x (1 + x))=> [||m hpq] //.
by rewrite ltr_pwDl ?ltr01.
rewrite -(@sgr_neighpr (1 + x) _ _ m) //.
by rewrite -expr2 sqr_sg (@next_noroot _ x (1 + x)).
Qed.
Lemma sgp_right_rec p x :
sgp_right p x =
(if p == 0 then 0 else if ~~ root p x then sgr p.[x] else sgp_right p^`() x).
Proof.
rewrite /sgp_right; case hs: size => [|s]; rewrite -size_poly_eq0 hs //=.
by rewrite size_deriv hs.
Qed.
Lemma sgp_right_addp0 (p q : {poly R}) x :
q != 0 -> (\mu_x p > \mu_x q)%N -> sgp_right (p + q) x = sgp_right q x.
Proof.
move=> nq0; move hm: (\mu_x q)=> m.
elim: m p q nq0 hm => [|mq ihmq] p q nq0 hmq; case hmp: (\mu_x p)=> // [mp];
do[rewrite ltnS=> hm; rewrite sgp_right_rec {1}addrC addr_eq0].
case: (eqVneq q (- p)) nq0 hmq => [-> np0 hmq|hqp nq0 hmq].
rewrite sgp_right_rec (negPf np0) -mu_gt0 // hmq ltnn /=; apply/esym/eqP.
by rewrite hornerN sgrN oppr_eq0 sgr_eq0 -[_ == _]mu_gt0 ?hmp // -oppr_eq0.
rewrite rootE hornerD.
have ->: p.[x] = 0.
apply/eqP; rewrite -[_ == _]mu_gt0 ?hmp //.
by apply: contra_eq_neq hmp => ->; rewrite mu0.
by rewrite [RHS]sgp_right_rec (negPf nq0) add0r -/(root _ _) -mu_gt0 // hmq.
case: eqVneq => hqp.
by move: hm; rewrite -ltnS -hmq -hmp hqp mu_opp ltnn.
have px0: p.[x] = 0.
apply/rootP; rewrite -mu_gt0 ?hmp //.
by apply: contra_eq_neq hmp => ->; rewrite mu0.
have qx0: q.[x] = 0 by apply/rootP; rewrite -mu_gt0 ?hmq //.
rewrite rootE hornerD px0 qx0 add0r eqxx /=; symmetry.
rewrite sgp_right_rec rootE (negPf nq0) qx0 eqxx /=.
rewrite derivD ihmq // ?mu_deriv ?rootE ?px0 ?qx0 ?hmp ?hmq ?subn1 //.
apply: contra nq0; rewrite -size_poly_eq0 size_deriv.
case hsq: size=> [|sq] /=.
by move/eqP: hsq; rewrite size_poly_eq0.
move/eqP=> sq0; move/eqP: hsq qx0; rewrite sq0; case/size_poly1P=> c c0 ->.
by rewrite hornerC; move/eqP; rewrite (negPf c0).
Qed.
End SignRight.
(* redistribute some of what follows with in the file *)
Section PolyRCFPdiv.
Import Pdiv.Ring Pdiv.ComRing.
Lemma sgp_rightc (x c : R) : sgp_right c%:P x = sgr c.
Proof.
rewrite /sgp_right size_polyC.
by have [->|cn0] /= := eqVneq; rewrite ?sgr0 // rootC hornerC cn0.
Qed.
Lemma sgp_right_eq0 (x : R) p : (sgp_right p x == 0) = (p == 0).
Proof.
have [->|p0] := eqVneq p; first by rewrite sgp_rightc sgr0 eqxx.
rewrite /sgp_right.
elim: (size p) {-2}p (erefl (size p)) p0=> {p} [|sp ihsp] p esp p0.
by move/eqP: esp; rewrite size_poly_eq0 (negPf p0).
rewrite esp /=; case px0: root=> //=; rewrite ?sgr_cp0 ?px0//.
have hsp: sp = size p^`() by rewrite size_deriv esp.
rewrite hsp ihsp // -size_poly_eq0 -hsp.
move: px0; rewrite root_factor_theorem => /rdvdp_leq /(_ p0).
by rewrite size_XsubC esp ltnS; case: posnP.
Qed.
(* :TODO: backport to polydiv *)
Lemma lc_expn_rscalp_neq0 (p q : {poly R}): lead_coef q ^+ rscalp p q != 0.
Proof.
have [->|nzq] := eqVneq q 0; last by rewrite expf_neq0 ?lead_coef_eq0.
by rewrite /rscalp unlock /= eqxx /= expr0 oner_neq0.
Qed.
Notation lcn_neq0 := lc_expn_rscalp_neq0.
Lemma sgp_right_mod p q x : (\mu_x p < \mu_x q)%N ->
sgp_right (rmodp p q) x = (sgr (lead_coef q)) ^+ (rscalp p q) * sgp_right p x.
Proof.
case: (eqVneq p 0) => [-> _|p0 mupq]; first by rewrite rmod0p !sgp_right0 mulr0.
have qn0 : q != 0 by apply: contraTneq mupq => ->; rewrite -leqNgt mu0.
move/(canLR (addKr _)): (rdivp_eq q p) => <-.
have [->|qpq0] := eqVneq (rdivp p q) 0.
by rewrite mul0r oppr0 add0r sgp_right_scale // sgrX.
rewrite sgp_right_addp0 ?sgp_right_scale ?sgrX //.
by rewrite scaler_eq0 negb_or p0 lcn_neq0.
by rewrite mu_mulC ?lcn_neq0 // mu_opp mu_mul ?mulf_neq0 ?qpq0 // ltn_addl.
Qed.
Lemma rootsC (a b c : R) : roots c%:P a b = [::].
Proof.
have [->|hc] := eqVneq c 0; first by rewrite roots0.
by apply: no_root_roots=> x hx; rewrite rootC.
Qed.
Lemma rootsZ a b c p : c != 0 -> roots (c *: p) a b = roots p a b.
Proof.
case: (eqVneq p 0) => [->|p_neq0 c_neq0]; first by rewrite scaler0.
by apply/roots_eq => [||x axb]; rewrite ?scaler_eq0 ?(negPf c_neq0) ?rootZ.
Qed.
Lemma root_bigrgcd (x : R) (ps : seq {poly R}) :
root (\big[(@rgcdp _)/0]_(p <- ps) p) x = all (root^~ x) ps.
Proof.
elim: ps; first by rewrite big_nil root0.
move=> p ps ihp; rewrite big_cons /=.
by rewrite (eqp_root (eqp_rgcd_gcd _ _)) root_gcd ihp.
Qed.
Definition rootsR p := roots p (- cauchy_bound p) (cauchy_bound p).
Lemma roots_on_rootsR p : p != 0 -> roots_on p `]-oo, +oo[ (rootsR p).
Proof.
rewrite /rootsR => p_neq0 x /=; rewrite -roots_on_roots // andbC.
by have [/(cauchy_boundP p_neq0) /=|//] := rootP; rewrite ltr_norml.
Qed.
Lemma rootsR0 : rootsR 0 = [::]. Proof. exact: roots0. Qed.
Lemma rootsRC c : rootsR c%:P = [::]. Proof. exact: rootsC. Qed.
Lemma rootsRP p a b :
{in `]-oo, a], noroot p} -> {in `[b , +oo[, noroot p} ->
roots p a b = rootsR p.
Proof.
move=> rpa rpb.
have [->|p_neq0] := eqVneq p 0; first by rewrite rootsR0 roots0.
apply: (irr_sorted_eq lt_trans); rewrite ?sorted_roots // => x.
rewrite -roots_on_rootsR -?roots_on_roots //=.
case: (boolP (root _ _)); rewrite ?(andbT, andbF) //.
apply: contraLR; rewrite in_itv negb_and -!leNgt.
by move=> /orP[/rpa //|xb]; rewrite rpb // in_itv andbT.
Qed.
Lemma sgp_pinftyP x (p : {poly R}) :
{in `[x , +oo[, noroot p} ->
{in `[x, +oo[, forall y, sgr p.[y] = sgp_pinfty p}.
Proof.
rewrite /sgp_pinfty; wlog lp_gt0 : x p / lead_coef p > 0 => [hwlog|rpx y Hy].
have [|/(hwlog x p) //|/eqP] := ltrgtP (lead_coef p) 0; last first.
by rewrite lead_coef_eq0 => /eqP -> ? ? ?; rewrite lead_coef0 horner0.
rewrite -[p]opprK lead_coefN oppr_cp0 => /(hwlog x _) Hp HNp y Hy.
by rewrite hornerN !sgrN Hp => // z /HNp; rewrite rootN.
have [z Hz] := poly_pinfty_gt_lc lp_gt0.
have {}Hz u : u \in `[z, +oo[ -> Num.sg p.[u] = 1.
rewrite in_itv andbT => /Hz pu_ge1.
by rewrite gtr0_sg // (lt_le_trans lp_gt0).
rewrite (@polyrN0_itv _ _ rpx (maxr y z)) ?in_itv /= ?le_max ?(itvP Hy) //.
by rewrite Hz ?gtr0_sg // in_itv /= le_max lexx orbT.
Qed.
Lemma sgp_minftyP x (p : {poly R}) :
{in `]-oo, x], noroot p} ->
{in `]-oo, x], forall y, sgr p.[y] = sgp_minfty p}.
Proof.
move=> rpx y Hy; rewrite -sgp_pinfty_sym.
have ->: p.[y] = (p \Po -'X).[-y] by rewrite horner_comp !hornerE opprK.
apply: (@sgp_pinftyP (- x)) => /= [z Hz|].
by rewrite root_comp !hornerE rpx // in_itv /= lerNl (itvP Hz).
by rewrite in_itv /= lerN2 (itvP Hy).
Qed.
Lemma odd_poly_root (p : {poly R}) : ~~ odd (size p) -> {x | root p x}.
Proof.
move=> size_p_even.
have [->|p_neq0] := eqVneq p 0; first by exists 0; rewrite root0.
pose b := cauchy_bound p.
have [] := @poly_ivtoo p (-b) b; last by move=> x _; exists x.
by rewrite ge0_cp // ?cauchy_bound_ge0.
rewrite -sgr_cp0 sgrM.
rewrite (sgp_minftyP (le_cauchy_bound p_neq0)) ?bound_in_itv //.
rewrite (sgp_pinftyP (ge_cauchy_bound p_neq0)) ?bound_in_itv //.
move: size_p_even; rewrite polySpred //= negbK /sgp_minfty -signr_odd => ->.
by rewrite expr1 mulN1r sgrN mulNr -expr2 sqr_sg lead_coef_eq0 p_neq0.
Qed.
End PolyRCFPdiv.
End PolyRCF.
#[deprecated(since="mathcomp-real-closed 2.1.0",
note="Use `poly_rolle` instead")]
Notation rolle := poly_rolle.
#[deprecated(since="mathcomp-real-closed 2.1.0",
note="Use `poly_mvt` instead")]
Notation mvt := poly_mvt.
#[deprecated(since="mathcomp-real-closed 1.1.0",
note="Use `poly_ivtoo` instead.")]
Notation ivt_sign := ivt_sign_deprecated.
|