1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra all_field bigenough.
From mathcomp Require Import polyorder cauchyreals.
(*************************************************************************)
(* This files constructs the real closure of an archimedian field in the *)
(* way described in Cyril Cohen. Construction of real algebraic numbers *)
(* in Coq. In Lennart Beringer and Amy Felty, editors, ITP - 3rd *)
(* International Conference on Interactive Theorem Proving - 2012, *)
(* Princeton, United States, August 2012. Springer *)
(* *)
(* The only definition one may want to use in this file is the operator *)
(* {realclosure R} which constructs the real closure of the archimedian *)
(* field R (for which rat is a prefect candidate) *)
(*************************************************************************)
Import Order.TTheory GRing.Theory Num.Theory BigEnough.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "{ 'realclosure' T }"
(at level 0, format "{ 'realclosure' T }").
Reserved Notation "{ 'alg' T }" (at level 0, format "{ 'alg' T }").
Section extras.
Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Lemma map_comp_poly (aR : fieldType) (rR : idomainType)
(f : {rmorphism aR -> rR})
(p q : {poly aR}) : (p \Po q) ^ f = (p ^ f) \Po (q ^ f).
Proof.
rewrite !comp_polyE size_map_poly; apply: (big_ind2 (fun x y => x ^ f = y)).
+ by rewrite rmorph0.
+ by move=> u u' v v' /=; rewrite rmorphD /= => -> ->.
move=> /= i _; rewrite -mul_polyC rmorphM /= map_polyC mul_polyC.
by rewrite coef_map rmorphXn.
Qed.
End extras.
Module RealAlg.
Local Open Scope ring_scope.
Local Notation eval := horner_eval.
Section RealAlg.
Variable F : archiFieldType.
Local Notation m0 := (fun _ => 0%N).
(*********************************************************************)
(* Construction of algebraic Cauchy reals : Cauchy real + polynomial *)
(*********************************************************************)
Record algcreal := AlgCReal {
creal_of_alg :> creal F;
annul_creal : {poly F};
_ : annul_creal \is monic;
_ : (annul_creal.[creal_of_alg] == 0)%CR
}.
Lemma monic_annul_creal x : annul_creal x \is monic.
Proof. by case: x. Qed.
Hint Resolve monic_annul_creal : core.
Lemma annul_creal_eq0 x : (annul_creal x == 0) = false.
Proof. by rewrite (negPf (monic_neq0 _)). Qed.
Lemma root_annul_creal x : ((annul_creal x).[x] == 0)%CR.
Proof. by case: x. Qed.
Hint Resolve root_annul_creal : core.
Definition cst_algcreal (x : F) :=
AlgCReal (monicXsubC _) (@root_cst_creal _ x).
Local Notation zero_algcreal := (cst_algcreal 0).
Local Notation one_algcreal := (cst_algcreal 1).
Lemma size_annul_creal_gt1 (x : algcreal) :
(1 < size (annul_creal x))%N.
Proof.
apply: (@has_root_creal_size_gt1 _ x).
by rewrite monic_neq0 // monic_annul_creal.
exact: root_annul_creal.
Qed.
Lemma is_root_annul_creal (x : algcreal) (y : creal F) :
(x == y)%CR -> ((annul_creal x).[y] == 0)%CR.
Proof. by move <-. Qed.
Definition AlgCRealOf (p : {poly F}) (x : creal F)
(p_neq0 : p != 0) (px_eq0 : (p.[x] == 0)%CR) :=
AlgCReal (monic_monic_from_neq0 p_neq0) (root_monic_from_neq0 px_eq0).
Lemma sub_annihilant_algcreal_neq0 (x y : algcreal) :
sub_annihilant (annul_creal x) (annul_creal y) != 0.
Proof. by rewrite sub_annihilant_neq0 ?monic_neq0. Qed.
Lemma root_sub_algcreal (x y : algcreal) :
((sub_annihilant (annul_creal x) (annul_creal y)).[x - y] == 0)%CR.
Proof. by rewrite root_sub_annihilant_creal ?root_annul_creal ?monic_neq0. Qed.
Definition sub_algcreal (x y : algcreal) : algcreal :=
AlgCRealOf (sub_annihilant_algcreal_neq0 x y) (@root_sub_algcreal x y).
Lemma root_opp_algcreal (x : algcreal) :
((annul_creal (sub_algcreal (cst_algcreal 0) x)).[- x] == 0)%CR.
Proof. by apply: is_root_annul_creal; rewrite /= add_0creal. Qed.
Definition opp_algcreal (x : algcreal) : algcreal :=
AlgCReal (@monic_annul_creal _) (@root_opp_algcreal x).
Lemma root_add_algcreal (x y : algcreal) :
((annul_creal (sub_algcreal x (opp_algcreal y))).[x + y] == 0)%CR.
Proof.
apply: is_root_annul_creal; apply: eq_crealP.
by exists m0=> * /=; rewrite opprK subrr normr0.
Qed.
Definition add_algcreal (x y : algcreal) : algcreal :=
AlgCReal (@monic_annul_creal _) (@root_add_algcreal x y).
Lemma div_annihilant_algcreal_neq0 (x y : algcreal) :
(annul_creal y).[0] != 0 ->
div_annihilant (annul_creal x) (annul_creal y) != 0.
Proof. by move=> ?; rewrite div_annihilant_neq0 ?monic_neq0. Qed.
Hint Resolve eq_creal_refl le_creal_refl : core.
Lemma simplify_algcreal (x : algcreal) (x_neq0 : (x != 0)%CR) :
{y | ((annul_creal y).[0] != 0) & ((y != 0)%CR * (x == y)%CR)%type}.
Proof.
elim: size {-3}x x_neq0 (leqnn (size (annul_creal x))) =>
{x} [|n ihn] x x_neq0 hx.
by move: hx; rewrite leqn0 size_poly_eq0 annul_creal_eq0.
have [dvdX|ndvdX] := boolP ('X %| annul_creal x); last first.
by exists x=> //; rewrite -rootE -dvdp_XsubCl subr0.
have monic_p: @annul_creal x %/ 'X \is monic.
by rewrite -(monicMr _ (@monicX _)) divpK //.
have root_p: ((@annul_creal x %/ 'X).[x] == 0)%CR.
have := @eq_creal_refl _ ((annul_creal x).[x])%CR.
rewrite -{1}(divpK dvdX) horner_crealM // root_annul_creal.
by case/poly_mul_creal_eq0=> //; rewrite horner_crealX.
have [//|/=|y *] := ihn (AlgCReal monic_p root_p); last by exists y.
by rewrite size_divp ?size_polyX ?polyX_eq0 ?leq_subLR ?add1n.
Qed.
(* Decidability of equality to 0 *)
Lemma algcreal_eq0_dec (x : algcreal) : {(x == 0)%CR} + {(x != 0)%CR}.
Proof.
pose p := annul_creal x; move: {2}(size _)%N (leqnn (size p))=> n.
elim: n x @p => [x p|n ihn x p le_sp_Sn].
by rewrite leqn0 size_poly_eq0 /p annul_creal_eq0.
move: le_sp_Sn; rewrite leq_eqVlt; have [|//|eq_sp_Sn _] := ltngtP.
by rewrite ltnS=> /ihn ihnp _; apply: ihnp.
have px0 : (p.[x] == 0)%CR by apply: root_annul_creal.
have [cpX|ncpX] := boolP (coprimep p 'X).
by right; move: (cpX)=> /coprimep_root /(_ px0); rewrite horner_crealX.
have [eq_pX|] := altP (p =P 'X).
by left; move: px0; rewrite eq_pX horner_crealX.
rewrite -eqp_monic /p ?monicX // negb_and orbC.
have:= ncpX; rewrite coprimepX -dvdp_XsubCl subr0 => /negPf-> /= ndiv_pX.
have [r] := smaller_factor (monic_annul_creal _) px0 ndiv_pX ncpX.
rewrite eq_sp_Sn ltnS => /andP[le_r_n monic_r] rx_eq0.
exact: (ihn (AlgCReal monic_r rx_eq0)).
Qed.
Lemma eq_algcreal_dec (x y : algcreal) : {(x == y)%CR} + {(x != y)%CR}.
Proof.
have /= [d_eq0|d_neq0] := algcreal_eq0_dec (sub_algcreal x y); [left|right].
apply: eq_crealP; exists_big_modulus m F.
by move=> e i e_gt0 hi; rewrite (@eq0_modP _ _ d_eq0).
by close.
pose_big_enough i.
apply: (@neq_crealP _ (lbound d_neq0) i i); do ?by rewrite ?lbound_gt0.
by rewrite (@lbound0P _ _ d_neq0).
by close.
Qed.
Definition eq_algcreal : rel algcreal := eq_algcreal_dec.
Lemma eq_algcrealP (x y : algcreal) : reflect (x == y)%CR (eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
Arguments eq_algcrealP {x y}.
Lemma neq_algcrealP (x y : algcreal) : reflect (x != y)%CR (~~ eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
Arguments neq_algcrealP {x y}.
Prenex Implicits eq_algcrealP neq_algcrealP.
Fact eq_algcreal_is_equiv : equiv_class_of eq_algcreal.
Proof.
split=> [x|x y|y x z]; first by apply/eq_algcrealP.
by apply/eq_algcrealP/eq_algcrealP; symmetry.
by move=> /eq_algcrealP /eq_creal_trans h /eq_algcrealP /h /eq_algcrealP.
Qed.
Canonical eq_algcreal_rel := EquivRelPack eq_algcreal_is_equiv.
Lemma root_div_algcreal (x y : algcreal) (y_neq0 : (y != 0)%CR) :
(annul_creal y).[0] != 0 ->
((div_annihilant (annul_creal x) (annul_creal y)).[x / y_neq0] == 0)%CR.
Proof. by move=> hx; rewrite root_div_annihilant_creal ?monic_neq0. Qed.
Definition div_algcreal (x y : algcreal) :=
match eq_algcreal_dec y (cst_algcreal 0) with
| left y_eq0 => cst_algcreal 0
| right y_neq0 =>
let: exist2 y' py'0_neq0 (y'_neq0, _) := simplify_algcreal y_neq0 in
AlgCRealOf (div_annihilant_algcreal_neq0 x py'0_neq0)
(@root_div_algcreal x y' y'_neq0 py'0_neq0)
end.
Lemma root_inv_algcreal (x : algcreal) (x_neq0 : (x != 0)%CR) :
((annul_creal (div_algcreal (cst_algcreal 1) x)).[x_neq0^-1] == 0)%CR.
Proof.
rewrite /div_algcreal; case: eq_algcreal_dec=> [/(_ x_neq0)|x_neq0'] //=.
case: simplify_algcreal=> x' px'0_neq0 [x'_neq0 eq_xx'].
apply: is_root_annul_creal; rewrite /= -(@eq_creal_inv _ _ _ x_neq0) //.
by apply: eq_crealP; exists m0=> * /=; rewrite div1r subrr normr0.
Qed.
Definition inv_algcreal (x : algcreal) :=
match eq_algcreal_dec x (cst_algcreal 0) with
| left x_eq0 => cst_algcreal 0
| right x_neq0 =>
AlgCReal (@monic_annul_creal _) (@root_inv_algcreal _ x_neq0)
end.
Lemma div_creal_creal (y : creal F) (y_neq0 : (y != 0)%CR) :
(y / y_neq0 == 1%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi; rewrite /= divff ?subrr ?normr0 //.
by rewrite (@creal_neq_always _ _ 0%CR).
by close.
Qed.
Lemma root_mul_algcreal (x y : algcreal) :
((annul_creal (div_algcreal x (inv_algcreal y))).[x * y] == 0)%CR.
Proof.
rewrite /div_algcreal /inv_algcreal.
case: (eq_algcreal_dec y)=> [->|y_neq0]; apply: is_root_annul_creal.
rewrite mul_creal0; case: eq_algcreal_dec=> // neq_00.
by move: (eq_creal_refl neq_00).
case: eq_algcreal_dec=> /= [yV_eq0|yV_neq0].
have: (y * y_neq0^-1 == 0)%CR by rewrite yV_eq0 mul_creal0.
by rewrite div_creal_creal=> /eq_creal_cst; rewrite oner_eq0.
case: simplify_algcreal=> y' py'0_neq0 [y'_neq0 /= eq_yy'].
rewrite -(@eq_creal_inv _ _ _ yV_neq0) //.
by apply: eq_crealP; exists m0=> * /=; rewrite invrK subrr normr0.
Qed.
Definition mul_algcreal (x y : algcreal) :=
AlgCReal (@monic_annul_creal _) (@root_mul_algcreal x y).
Lemma le_creal_neqVlt (x y : algcreal) : (x <= y)%CR -> {(x == y)%CR} + {(x < y)%CR}.
Proof.
case: (eq_algcreal_dec x y); first by left.
by move=> /neq_creal_ltVgt [|h /(_ h) //]; right.
Qed.
Lemma ltVge_algcreal_dec (x y : algcreal) : {(x < y)%CR} + {(y <= x)%CR}.
Proof.
have [eq_xy|/neq_creal_ltVgt [lt_xy|lt_yx]] := eq_algcreal_dec x y;
by [right; rewrite eq_xy | left | right; apply: lt_crealW].
Qed.
Definition lt_algcreal : rel algcreal := ltVge_algcreal_dec.
Definition le_algcreal : rel algcreal := fun x y => ~~ ltVge_algcreal_dec y x.
Lemma lt_algcrealP (x y : algcreal) : reflect (x < y)%CR (lt_algcreal x y).
Proof. by rewrite /lt_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
Arguments lt_algcrealP {x y}.
Lemma le_algcrealP (x y : algcreal) : reflect (x <= y)%CR (le_algcreal x y).
Proof. by rewrite /le_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
Arguments le_algcrealP {x y}.
Prenex Implicits lt_algcrealP le_algcrealP.
Definition exp_algcreal x n := iterop n mul_algcreal x one_algcreal.
Lemma exp_algcrealE x n : (exp_algcreal x n == x ^+ n)%CR.
Proof.
case: n=> // n; rewrite /exp_algcreal /exp_creal !iteropS.
by elim: n=> //= n ->.
Qed.
Definition horner_algcreal (p : {poly F}) x : algcreal :=
\big[add_algcreal/zero_algcreal]_(i < size p)
mul_algcreal (cst_algcreal p`_i) (exp_algcreal x i).
Lemma horner_algcrealE p x : (horner_algcreal p x == p.[x])%CR.
Proof.
rewrite horner_coef_creal.
apply: (big_ind2 (fun (u : algcreal) v => u == v)%CR)=> //.
by move=> u u' v v' /= -> ->.
by move=> i _ /=; rewrite exp_algcrealE.
Qed.
Definition norm_algcreal (x : algcreal) :=
if le_algcreal zero_algcreal x then x else opp_algcreal x.
Lemma norm_algcrealE (x : algcreal) : (norm_algcreal x == `| x |)%CR.
Proof.
rewrite /norm_algcreal /le_algcreal; case: ltVge_algcreal_dec => /=.
move=> x_lt0; apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=; rewrite [`|x i|]ler0_norm ?subrr ?normr0 //.
by rewrite ltW // [_ < 0%CR i]creal_lt_always.
by close.
move=> /(@le_creal_neqVlt zero_algcreal) /= [].
by move<-; apply: eq_crealP; exists m0=> * /=; rewrite !(normr0, subrr).
move=> x_gt0; apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=; rewrite [`|x i|]ger0_norm ?subrr ?normr0 //.
by rewrite ltW // creal_gt0_always.
by close.
Qed.
(**********************************************************************)
(* Theory of the "domain" of algebraic numbers: polynomial + interval *)
(**********************************************************************)
Record algdom := AlgDom {
annul_algdom : {poly F};
center_alg : F;
radius_alg : F;
_ : annul_algdom \is monic;
_ : radius_alg >= 0;
_ : annul_algdom.[center_alg - radius_alg]
* annul_algdom.[center_alg + radius_alg] <= 0
}.
Lemma radius_alg_ge0 x : 0 <= radius_alg x. Proof. by case: x. Qed.
Lemma monic_annul_algdom x : annul_algdom x \is monic. Proof. by case: x. Qed.
Hint Resolve monic_annul_algdom : core.
Lemma annul_algdom_eq0 x : (annul_algdom x == 0) = false.
Proof. by rewrite (negPf (monic_neq0 _)). Qed.
Lemma algdomP x : (annul_algdom x).[center_alg x - radius_alg x]
* (annul_algdom x).[center_alg x + radius_alg x] <= 0.
Proof. by case: x. Qed.
Definition algdom' := seq F.
Definition encode_algdom (x : algdom) : algdom' :=
[:: center_alg x, radius_alg x & (annul_algdom x)].
Definition decode_algdom (x : algdom') : option algdom :=
if x is [::c, r & p']
then let p := Poly p' in
if ((p \is monic) =P true, (r >= 0) =P true,
(p.[c - r] * p.[c + r] <= 0) =P true)
is (ReflectT monic_p, ReflectT r_gt0, ReflectT hp)
then Some (AlgDom monic_p r_gt0 hp)
else None
else None.
Lemma encode_algdomK : pcancel encode_algdom decode_algdom.
Proof.
case=> p c r monic_p r_ge0 hp /=; rewrite polyseqK.
do 3?[case: eqP; rewrite ?monic_p ?r_ge0 ?monic_p //] => monic_p' r_ge0' hp'.
by congr (Some (AlgDom _ _ _)); apply: bool_irrelevance.
Qed.
HB.instance Definition _ := Choice.copy algdom (pcan_type encode_algdomK).
Fixpoint to_algcreal_of (p : {poly F}) (c r : F) (i : nat) : F :=
match i with
| 0 => c
| i.+1 =>
let c' := to_algcreal_of p c r i in
if p.[c' - r / 2%:R ^+ i] * p.[c'] <= 0
then c' - r / 2%:R ^+ i.+1
else c' + r / 2%:R ^+ i.+1
end.
Lemma to_algcreal_of_recP p c r i : 0 <= r ->
`|to_algcreal_of p c r i.+1 - to_algcreal_of p c r i| <= r * 2%:R ^- i.+1.
Proof.
move=> r_ge0 /=; case: ifP=> _; rewrite addrAC subrr add0r ?normrN ger0_norm //;
by rewrite mulr_ge0 ?invr_ge0 ?exprn_ge0 ?ler0n.
Qed.
Lemma to_algcreal_ofP p c r i j : 0 <= r -> (i <= j)%N ->
`|to_algcreal_of p c r j - to_algcreal_of p c r i| <= r * 2%:R ^- i.
Proof.
move=> r_ge0 leij; pose r' := r * 2%:R ^- j * (2%:R ^+ (j - i) - 1).
apply: le_trans (_ : r' <= _); last first.
rewrite /r' -mulrA ler_wpM2l // ler_pdivrMl ?exprn_gt0 ?ltr0n //.
rewrite -{2}(subnK leij) exprD mulfK ?gt_eqF ?exprn_gt0 ?ltr0n //.
by rewrite gerDl lerN10.
rewrite /r' subrX1 addrK mul1r -{1 2}(subnK leij); set f := _ c r.
elim: (_ - _)%N=> [|k ihk]; first by rewrite subrr normr0 big_ord0 mulr0 lexx.
rewrite addSn big_ord_recl /= mulrDr.
rewrite (le_trans (ler_distD (f (k + i)%N) _ _)) //.
rewrite lerD ?expr0 ?mulr1 ?to_algcreal_of_recP // (le_trans ihk) //.
rewrite exprSr invfM -!mulrA !ler_wpM2l ?invr_ge0 ?exprn_ge0 ?ler0n //.
by rewrite mulr_sumr ler_sum // => l _ /=; rewrite exprS mulKf ?pnatr_eq0.
Qed.
Lemma alg_to_crealP (x : algdom) :
creal_axiom (to_algcreal_of (annul_algdom x) (center_alg x) (radius_alg x)).
Proof.
pose_big_modulus m F.
exists m=> e i j e_gt0 hi hj.
wlog leij : i j {hi} hj / (j <= i)%N.
move=> hwlog; case/orP: (leq_total i j)=> /hwlog; last exact.
by rewrite distrC; apply.
rewrite (le_lt_trans (to_algcreal_ofP _ _ _ _)) ?radius_alg_ge0 //.
rewrite ltr_pdivrMr ?gtr0E // -ltr_pdivrMl //.
by rewrite upper_nthrootP.
by close.
Qed.
Definition alg_to_creal x := CReal (alg_to_crealP x).
Lemma exp2k_crealP : @creal_axiom F (fun i => 2%:R ^- i).
Proof.
pose_big_modulus m F.
exists m=> e i j e_gt0 hi hj.
wlog leij : i j {hj} hi / (i <= j)%N.
move=> hwlog; case/orP: (leq_total i j)=> /hwlog; first exact.
by rewrite distrC; apply.
rewrite ger0_norm ?subr_ge0; last first.
by rewrite ?lef_pV2 -?topredE /= ?gtr0E // ler_eXn2l ?ltr1n.
rewrite -(@ltr_pM2l _ (2%:R ^+ i )) ?gtr0E //.
rewrite mulrBr mulfV ?gt_eqF ?gtr0E //.
rewrite (le_lt_trans (_ : _ <= 1)) // ?gerDl ?oppr_le0 ?mulr_ge0 ?ger0E //.
by rewrite -ltr_pdivrMr // mul1r upper_nthrootP.
by close.
Qed.
Definition exp2k_creal := CReal exp2k_crealP.
Lemma exp2k_creal_eq0 : (exp2k_creal == 0)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m F.
move=> e i e_gt0 hi /=.
rewrite subr0 gtr0_norm ?gtr0E // -ltf_pV2 -?topredE /= ?gtr0E //.
by rewrite invrK upper_nthrootP.
by close.
Qed.
Notation lbound0_of p := (@lbound0P _ _ p _ _ _).
Lemma to_algcrealP (x : algdom) : ((annul_algdom x).[alg_to_creal x] == 0)%CR.
Proof.
set u := alg_to_creal _; set p := annul_algdom _.
pose r := radius_alg x; pose cr := cst_creal r.
have: ((p).[u - cr * exp2k_creal] * (p).[u + cr * exp2k_creal] <= 0)%CR.
apply: (@le_crealP _ 0%N)=> i _ /=.
rewrite -/p -/r; set c := center_alg _.
elim: i=> /= [|i].
by rewrite !expr0 divr1 algdomP.
set c' := to_algcreal_of _ _ _=> ihi.
have [] := lerP (_ * p.[c' i]).
rewrite addrNK -addrA -opprD -mulr2n -[_ / _ *+ _]mulr_natr.
by rewrite -mulrA exprSr invfM mulfVK ?pnatr_eq0.
rewrite addrK -addrA -mulr2n -[_ / _ *+ _]mulr_natr.
rewrite -mulrA exprSr invfM mulfVK ?pnatr_eq0 // => /ler_pM2l<-.
rewrite mulr0 mulrCA !mulrA [X in X * _]mulrAC -mulrA.
by rewrite mulr_ge0_le0 // -expr2 exprn_even_ge0.
rewrite exp2k_creal_eq0 mul_creal0 opp_creal0 add_creal0.
move=> hu pu0; apply: hu; pose e := (lbound pu0).
pose_big_enough i.
apply: (@lt_crealP _ (e * e) i i) => //.
by rewrite !pmulr_rgt0 ?invr_gt0 ?ltr0n ?lbound_gt0.
rewrite add0r [u]lock /= -!expr2.
rewrite -[_.[_] ^+ _]ger0_norm ?exprn_even_ge0 // normrX.
rewrite ler_pXn2r -?topredE /= ?lbound_ge0 ?normr_ge0 //.
by rewrite -lock (le_trans _ (lbound0_of pu0)).
by close.
Qed.
Definition to_algcreal_rec (x : algdom) :=
AlgCReal (monic_annul_algdom x) (@to_algcrealP x).
(* "Encoding" function from algdom to algcreal *)
Definition to_algcreal := locked to_algcreal_rec.
(* "Decoding" function, constructed interactively *)
Lemma to_algdom_exists (x : algcreal) :
{ y : algdom | (to_algcreal y == x)%CR }.
Proof.
pose p := annul_creal x.
move: {2}(size p) (leqnn (size p))=> n.
elim: n x @p=> [x p|n ihn x p le_sp_Sn].
by rewrite leqn0 size_poly_eq0 /p annul_creal_eq0.
move: le_sp_Sn; rewrite leq_eqVlt.
have [|//|eq_sp_Sn _] := ltngtP.
by rewrite ltnS=> /ihn ihnp _; apply: ihnp.
have px0 := @root_annul_creal x; rewrite -/p -/root in px0.
have [|ncop] := boolP (coprimep p p^`()).
move/coprimep_root => /(_ _ px0) /deriv_neq0_mono [r r_gt0 [i ir sm]].
have p_chg_sign : p.[x i - r] * p.[x i + r] <= 0.
have [/accr_pos_incr hp|/accr_neg_decr hp] := sm.
have hpxj : forall j, (i <= j)%N ->
(p.[x i - r] <= p.[x j]) * (p.[x j] <= p.[x i + r]).
move=> j hj.
suff: p.[x i - r] <= p.[x j] <= p.[x i + r] by case/andP=> -> ->.
rewrite !hp 1?addrAC ?subrr ?add0r ?normrN;
rewrite ?(gtr0_norm r_gt0) //;
do ?by rewrite ltW ?cauchymodP ?(leq_trans _ hj).
by rewrite -ler_distl ltW ?cauchymodP ?(leq_trans _ hj).
rewrite mulr_le0_ge0 //; apply/le_creal_cst; rewrite -px0;
by apply: (@le_crealP _ i)=> h hj /=; rewrite hpxj.
have hpxj : forall j, (i <= j)%N ->
(p.[x i + r] <= p.[x j]) * (p.[x j] <= p.[x i - r]).
move=> j hj.
suff: p.[x i + r] <= p.[x j] <= p.[x i - r] by case/andP=> -> ->.
rewrite !hp 1?addrAC ?subrr ?add0r ?normrN;
rewrite ?(gtr0_norm r_gt0) //;
do ?by rewrite ltW ?cauchymodP ?(leq_trans _ hj).
by rewrite andbC -ler_distl ltW ?cauchymodP ?(leq_trans _ hj).
rewrite mulr_ge0_le0 //; apply/le_creal_cst; rewrite -px0;
by apply: (@le_crealP _ i)=> h hj /=; rewrite hpxj.
pose y := (AlgDom (monic_annul_creal x) (ltW r_gt0) p_chg_sign).
have eq_py_px: (p.[to_algcreal y] == p.[x])%CR.
rewrite /to_algcreal -lock.
by have := @to_algcrealP y; rewrite /= -/p=> ->; apply: eq_creal_sym.
exists y.
move: sm=> /strong_mono_bound [k k_gt0 hk].
rewrite -/p; apply: eq_crealP.
exists_big_modulus m F.
move=> e j e_gt0 hj; rewrite (le_lt_trans (hk _ _ _ _)) //.
+ rewrite /to_algcreal -lock.
rewrite (le_trans (to_algcreal_ofP _ _ _ (leq0n _))) ?(ltW r_gt0) //.
by rewrite expr0 divr1.
+ by rewrite ltW // cauchymodP.
rewrite -ltr_pdivlMl //.
by rewrite (@eq_modP _ _ _ eq_py_px) // ?pmulr_rgt0 ?invr_gt0.
by close.
case: (@smaller_factor _ p p^`() x); rewrite ?monic_annul_creal //.
rewrite gtNdvdp // -?size_poly_eq0 size_deriv eq_sp_Sn //=.
apply: contra ncop=> /eqP n_eq0; move: eq_sp_Sn; rewrite n_eq0.
by move=> /eqP /size_poly1P [c c_neq0 ->]; rewrite derivC coprimep0 polyC_eqp1.
move=> r /andP [hsr monic_r rx_eq0].
apply: (ihn (AlgCReal monic_r rx_eq0))=> /=.
by rewrite -ltnS -eq_sp_Sn.
Qed.
Definition to_algdom x := projT1 (to_algdom_exists x).
Lemma to_algdomK x : (to_algcreal (to_algdom x) == x)%CR.
Proof. by rewrite /to_algdom; case: to_algdom_exists. Qed.
Lemma eq_algcreal_to_algdom x : eq_algcreal (to_algcreal (to_algdom x)) x.
Proof. by apply/eq_algcrealP; apply: to_algdomK. Qed.
(* Explicit encoding to a choice type *)
Canonical eq_algcreal_encModRel := EncModRel eq_algcreal eq_algcreal_to_algdom.
Local Open Scope quotient_scope.
Local Notation "\pi ( x )" := (\pi x) : quotient_scope.
(***************************************************************************)
(* Algebraic numbers are the quotient of algcreal by their setoid equality *)
(***************************************************************************)
Definition alg := {eq_quot eq_algcreal}.
HB.instance Definition _ := Choice.on alg.
HB.instance Definition _ := EqQuotient.on alg.
Definition to_alg_def (phF : phant F) : F -> alg :=
lift_embed alg cst_algcreal.
Notation to_alg := (@to_alg_def (Phant F)).
Notation "x %:RA" := (to_alg x)
(at level 2, left associativity, format "x %:RA").
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Canonical to_alg_pi_morph := PiEmbed to_alg.
Local Notation zero_alg := 0%:RA.
Local Notation one_alg := 1%:RA.
Lemma equiv_alg (x y : algcreal) : (x == y)%CR <-> (x = y %[mod alg]).
Proof.
split; first by move=> /eq_algcrealP /eqquotP ->.
by move=> /eqquotP /eq_algcrealP.
Qed.
Lemma nequiv_alg (x y : algcreal) : reflect (x != y)%CR (x != y %[mod alg]).
Proof. by rewrite eqquotE; apply: neq_algcrealP. Qed.
Arguments nequiv_alg {x y}.
Prenex Implicits nequiv_alg.
Lemma pi_algK (x : algcreal) : (repr (\pi_alg x) == x)%CR.
Proof. by apply/equiv_alg; rewrite reprK. Qed.
Definition add_alg := lift_op2 alg add_algcreal.
Lemma pi_add : {morph \pi_alg : x y / add_algcreal x y >-> add_alg x y}.
Proof. by unlock add_alg=> x y; rewrite -equiv_alg /= !pi_algK. Qed.
Canonical add_pi_morph := PiMorph2 pi_add.
Definition opp_alg := lift_op1 alg opp_algcreal.
Lemma pi_opp : {morph \pi_alg : x / opp_algcreal x >-> opp_alg x}.
Proof. by unlock opp_alg=> x; rewrite -equiv_alg /= !pi_algK. Qed.
Canonical opp_pi_morph := PiMorph1 pi_opp.
Definition mul_alg := lift_op2 alg mul_algcreal.
Lemma pi_mul : {morph \pi_alg : x y / mul_algcreal x y >-> mul_alg x y}.
Proof. by unlock mul_alg=> x y; rewrite -equiv_alg /= !pi_algK. Qed.
Canonical mul_pi_morph := PiMorph2 pi_mul.
Definition inv_alg := lift_op1 alg inv_algcreal.
Lemma pi_inv : {morph \pi_alg : x / inv_algcreal x >-> inv_alg x}.
Proof.
unlock inv_alg=> x; symmetry; rewrite -equiv_alg /= /inv_algcreal.
case: eq_algcreal_dec=> /= [|x'_neq0].
by rewrite pi_algK; case: eq_algcreal_dec.
move: x'_neq0 (x'_neq0); rewrite {1}pi_algK.
case: eq_algcreal_dec=> // x'_neq0' x_neq0 x'_neq0 /=.
by apply: eq_creal_inv; rewrite pi_algK.
Qed.
Canonical inv_pi_morph := PiMorph1 pi_inv.
Lemma add_algA : associative add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg.
by apply: eq_crealP; exists m0=> * /=; rewrite addrA subrr normr0.
Qed.
Lemma add_algC : commutative add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite [X in _ - X]addrC subrr normr0.
Qed.
Lemma add_0alg : left_id zero_alg add_alg.
Proof. by elim/quotW=> x; rewrite !piE -equiv_alg /= add_0creal. Qed.
Lemma add_Nalg : left_inverse zero_alg opp_alg add_alg.
Proof.
elim/quotW=> x; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> *; rewrite /= addNr subr0 normr0.
Qed.
HB.instance Definition _ := GRing.isZmodule.Build alg
add_algA add_algC add_0alg add_Nalg.
Lemma add_pi x y : \pi_alg x + \pi_alg y
= \pi_alg (add_algcreal x y).
Proof. by rewrite [_ + _]piE. Qed.
Lemma opp_pi x : - \pi_alg x = \pi_alg (opp_algcreal x).
Proof. by rewrite [- _]piE. Qed.
Lemma zeroE : 0 = \pi_alg zero_algcreal.
Proof. by rewrite [0]piE. Qed.
Lemma sub_pi x y : \pi_alg x - \pi_alg y
= \pi_alg (add_algcreal x (opp_algcreal y)).
Proof. by rewrite [_ - _]piE. Qed.
Lemma mul_algC : commutative mul_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrC subrr normr0.
Qed.
Lemma mul_algA : associative mul_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrA subrr normr0.
Qed.
Lemma mul_1alg : left_id one_alg mul_alg.
Proof. by elim/quotW=> x; rewrite piE -equiv_alg /= mul_1creal. Qed.
Lemma mul_alg_addl : left_distributive mul_alg add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrDl subrr normr0.
Qed.
Arguments neq_creal_cst {F x y}.
Prenex Implicits neq_creal_cst.
Lemma nonzero1_alg : one_alg != zero_alg.
Proof. by rewrite piE -(rwP neq_algcrealP) (rwP neq_creal_cst) oner_eq0. Qed.
HB.instance Definition _ := GRing.Zmodule_isComRing.Build alg
mul_algA mul_algC mul_1alg mul_alg_addl nonzero1_alg.
HB.instance Definition _ := GRing.ComRing.on alg.
Lemma mul_pi x y : \pi_alg x * \pi_alg y
= \pi_alg (mul_algcreal x y).
Proof. by rewrite [_ * _]piE. Qed.
Lemma oneE : 1 = \pi_alg one_algcreal.
Proof. by rewrite [1]piE. Qed.
Lemma mul_Valg (x : alg) : x != zero_alg -> mul_alg (inv_alg x) x = one_alg.
Proof.
elim/quotW: x=> x; rewrite piE -(rwP neq_algcrealP) /= => x_neq0.
apply/eqP; rewrite piE; apply/eq_algcrealP; rewrite /= /inv_algcreal.
case: eq_algcreal_dec=> [/(_ x_neq0) //|/= x_neq0'].
apply: eq_crealP; exists_big_modulus m F.
by move=> * /=; rewrite mulVf ?subrr ?normr0 ?creal_neq0_always.
by close.
Qed.
Lemma inv_alg0 : inv_alg zero_alg = zero_alg.
Proof.
rewrite !piE -equiv_alg /= /inv_algcreal.
by case: eq_algcreal_dec=> //= zero_neq0; move: (eq_creal_refl zero_neq0).
Qed.
Lemma to_alg_additive : additive to_alg.
Proof.
move=> x y /=; rewrite !piE/= -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0.
Qed.
HB.instance Definition _ :=
GRing.isAdditive.Build F alg to_alg to_alg_additive.
Lemma to_alg_multiplicative : multiplicative to_alg.
Proof.
split=> [x y |] //; rewrite !piE -equiv_alg.
by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0.
Qed.
HB.instance Definition _ :=
GRing.isMultiplicative.Build F alg to_alg to_alg_multiplicative.
Lemma expn_pi (x : algcreal) (n : nat) :
(\pi_alg x) ^+ n = \pi_alg (exp_algcreal x n).
Proof.
rewrite /exp_algcreal; case: n=> [|n]; first by rewrite expr0 oneE.
rewrite exprS iteropS; elim: n=> /= [|n ihn]; rewrite ?expr0 ?mulr1 //.
by rewrite exprS ihn mul_pi.
Qed.
Lemma horner_pi (p : {poly F}) (x : algcreal) :
(p ^ to_alg).[\pi_alg x] = \pi_alg (horner_algcreal p x).
Proof.
rewrite horner_coef /horner_algcreal size_map_poly.
apply: (big_ind2 (fun x y => x = \pi_alg y)).
+ by rewrite zeroE.
+ by move=> u u' v v' -> ->; rewrite [_ + _]piE.
by move=> i /= _; rewrite expn_pi coef_map /= [_ * _]piE.
Qed.
(* Defining annihilating polynomials for algebraics *)
Definition annul_alg : alg -> {poly F} := locked (annul_creal \o repr).
Lemma root_annul_algcreal (x : algcreal) : ((annul_alg (\pi x)).[x] == 0)%CR.
Proof. by unlock annul_alg; rewrite /= -pi_algK root_annul_creal. Qed.
Lemma root_annul_alg (x : alg) : root ((annul_alg x) ^ to_alg) x.
Proof.
apply/rootP; rewrite -[x]reprK horner_pi /= zeroE -equiv_alg.
by rewrite horner_algcrealE root_annul_algcreal.
Qed.
Lemma monic_annul_alg (x : alg) : annul_alg x \is monic.
Proof. by unlock annul_alg; rewrite monic_annul_creal. Qed.
Lemma annul_alg_neq0 (x : alg) : annul_alg x != 0.
Proof. by rewrite monic_neq0 ?monic_annul_alg. Qed.
HB.instance Definition _ := GRing.ComRing_isField.Build alg mul_Valg inv_alg0.
Lemma inv_pi x : (\pi_alg x)^-1 = \pi_alg (inv_algcreal x).
Proof. by rewrite [_^-1]piE. Qed.
Lemma div_pi x y : \pi_alg x / \pi_alg y
= \pi_alg (mul_algcreal x (inv_algcreal y)).
Proof. by rewrite [_ / _]piE. Qed.
Definition lt_alg := lift_fun2 alg lt_algcreal.
Definition le_alg := lift_fun2 alg le_algcreal.
Lemma lt_alg_pi : {mono \pi_alg : x y / lt_algcreal x y >-> lt_alg x y}.
Proof.
move=> x y; unlock lt_alg; rewrite /lt_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !pi_algK.
Qed.
Canonical lt_alg_pi_mono := PiMono2 lt_alg_pi.
Lemma le_alg_pi : {mono \pi_alg : x y / le_algcreal x y >-> le_alg x y}.
Proof.
move=> x y; unlock le_alg; rewrite /le_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !pi_algK.
Qed.
Canonical le_alg_pi_mono := PiMono2 le_alg_pi.
Definition norm_alg := lift_op1 alg norm_algcreal.
Lemma norm_alg_pi : {morph \pi_alg : x / norm_algcreal x >-> norm_alg x}.
Proof.
move=> x; unlock norm_alg; rewrite /norm_algcreal /le_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !(pi_opp, pi_algK, reprK).
Qed.
Canonical norm_alg_pi_morph := PiMorph1 norm_alg_pi.
Lemma add_alg_gt0 x y : lt_alg zero_alg x -> lt_alg zero_alg y ->
lt_alg zero_alg (x + y).
Proof.
rewrite -[x]reprK -[y]reprK !piE -!(rwP lt_algcrealP).
move=> x_gt0 y_gt0; pose_big_enough i.
apply: (@lt_crealP _ (diff x_gt0 + diff y_gt0) i i) => //.
by rewrite addr_gt0 ?diff_gt0.
by rewrite /= add0r lerD // ?diff0P.
by close.
Qed.
Lemma mul_alg_gt0 x y : lt_alg zero_alg x -> lt_alg zero_alg y ->
lt_alg zero_alg (x * y).
Proof.
rewrite -[x]reprK -[y]reprK !piE -!(rwP lt_algcrealP).
move=> x_gt0 y_gt0; pose_big_enough i.
apply: (@lt_crealP _ (diff x_gt0 * diff y_gt0) i i) => //.
by rewrite pmulr_rgt0 ?diff_gt0.
rewrite /= add0r (le_trans (_ : _ <= diff x_gt0 * (repr y) i)) //.
by rewrite ler_wpM2l ?(ltW (diff_gt0 _)) // diff0P.
by rewrite ler_wpM2r ?diff0P ?ltW ?creal_gt0_always.
by close.
Qed.
Lemma gt0_alg_nlt0 x : lt_alg zero_alg x -> ~~ lt_alg x zero_alg.
Proof.
rewrite -[x]reprK !piE -!(rwP lt_algcrealP, rwP le_algcrealP).
move=> hx; pose_big_enough i.
apply: (@le_crealP _ i)=> j /= hj.
by rewrite ltW // creal_gt0_always.
by close.
Qed.
Lemma sub_alg_gt0 x y : lt_alg zero_alg (y - x) = lt_alg x y.
Proof.
rewrite -[x]reprK -[y]reprK !piE; apply/lt_algcrealP/lt_algcrealP=> /= hxy.
pose_big_enough i.
apply: (@lt_crealP _ (diff hxy) i i); rewrite ?diff_gt0 //.
by rewrite (monoLR (addNKr _) (lerD2l _)) addrC diff0P.
by close.
pose_big_enough i.
apply: (@lt_crealP _ (diff hxy) i i); rewrite ?diff_gt0 //.
by rewrite (monoRL (addrK _) (lerD2r _)) add0r addrC diffP.
by close.
Qed.
Lemma lt0_alg_total (x : alg) : x != zero_alg ->
lt_alg zero_alg x || lt_alg x zero_alg.
Proof.
rewrite -[x]reprK !piE => /neq_algcrealP /= x_neq0.
apply/orP; rewrite -!(rwP lt_algcrealP).
case/neq_creal_ltVgt: x_neq0=> /= [lt_x0|lt_0x]; [right|by left].
pose_big_enough i.
by apply: (@lt_crealP _ (diff lt_x0) i i); rewrite ?diff_gt0 ?diffP.
by close.
Qed.
Lemma norm_algN x : norm_alg (- x) = norm_alg x.
Proof.
rewrite -[x]reprK !piE /= -equiv_alg !norm_algcrealE; apply: eq_crealP.
exists_big_modulus m F=> [e i e_gt0 hi /=|].
by rewrite normrN subrr normr0.
by close.
Qed.
Lemma ge0_norm_alg x : le_alg 0 x -> norm_alg x = x.
Proof. by rewrite -[x]reprK !piE /= /norm_algcreal => ->. Qed.
Lemma lt_alg0N (x : alg) : lt_alg 0 (- x) = lt_alg x 0.
Proof. by rewrite -sub0r sub_alg_gt0. Qed.
Lemma lt_alg00 : lt_alg zero_alg zero_alg = false.
Proof. by have /implyP := @gt0_alg_nlt0 0; case: lt_alg. Qed.
Lemma le_alg_def x y : le_alg x y = (x == y) || lt_alg x y.
Proof.
rewrite -[x]reprK -[y]reprK piE [lt_alg _ _]piE; apply/le_algcrealP/orP.
move=> /le_creal_neqVlt [/eq_algcrealP/eqquotP/eqP-> //|lt_xy]; first by left.
by right; apply/lt_algcrealP.
by move=> [/eqP/eqquotP/eq_algcrealP-> //| /lt_algcrealP /lt_crealW].
Qed.
HB.instance Definition _ := Num.IntegralDomain_isLtReal.Build alg
add_alg_gt0 mul_alg_gt0 gt0_alg_nlt0 sub_alg_gt0 lt0_alg_total norm_algN
ge0_norm_alg le_alg_def.
Lemma lt_pi x y : \pi_alg x < \pi y = lt_algcreal x y.
Proof. by rewrite [_ < _]lt_alg_pi. Qed.
Lemma le_pi x y : \pi_alg x <= \pi y = le_algcreal x y.
Proof. by rewrite [_ <= _]le_alg_pi. Qed.
Lemma norm_pi (x : algcreal) : `|\pi_alg x| = \pi (norm_algcreal x).
Proof. by rewrite [`|_|]piE. Qed.
Lemma lt_algP (x y : algcreal) : reflect (x < y)%CR (\pi_alg x < \pi y).
Proof. by rewrite lt_pi; apply: lt_algcrealP. Qed.
Arguments lt_algP {x y}.
Lemma le_algP (x y : algcreal) : reflect (x <= y)%CR (\pi_alg x <= \pi y).
Proof. by rewrite le_pi; apply: le_algcrealP. Qed.
Arguments le_algP {x y}.
Prenex Implicits lt_algP le_algP.
Lemma ler_to_alg : {mono to_alg : x y / x <= y}.
Proof.
apply: le_mono=> x y lt_xy; rewrite !piE -(rwP lt_algP).
by apply/lt_creal_cst; rewrite lt_xy.
Qed.
Lemma ltr_to_alg : {mono to_alg : x y / x < y}.
Proof. by apply: leW_mono; apply: ler_to_alg. Qed.
Lemma normr_to_alg : { morph to_alg : x / `|x| }.
Proof.
move=> x /=; have [] := ger0P; have [] := ger0P x%:RA;
rewrite ?rmorph0 ?rmorphN ?oppr0 //=.
by rewrite ltr_to_alg leNgt => ->.
by rewrite ler_to_alg ltNge => ->.
Qed.
Lemma inf_alg_proof x : {d | 0 < d & 0 < x -> (d%:RA < x)}.
Proof.
have [|] := lerP; first by exists 1.
elim/quotW: x=> x; rewrite zeroE=> /lt_algP /= x_gt0.
exists (diff x_gt0 / 2%:R); first by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
rewrite piE -(rwP lt_algP) /= => _; pose_big_enough i.
apply: (@lt_crealP _ (diff x_gt0 / 2%:R) i i) => //.
by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
by rewrite -[_ + _](splitf 2) diff0P.
by close.
Qed.
Definition inf_alg (x : alg) : F :=
let: exist2 d _ _ := inf_alg_proof x in d.
Lemma inf_alg_gt0 x : 0 < inf_alg x.
Proof. by rewrite /inf_alg; case: inf_alg_proof. Qed.
Lemma inf_lt_alg x : 0 < x -> (inf_alg x)%:RA < x.
Proof. by rewrite /inf_alg=> x_gt0; case: inf_alg_proof=> d _ /(_ x_gt0). Qed.
Lemma approx_proof x e : {y | 0 < e -> `|x - y%:RA| < e}.
Proof.
elim/quotW:x => x; pose_big_enough i.
exists (x i)=> e_gt0; rewrite (lt_trans _ (inf_lt_alg _)) //.
rewrite !piE norm_pi -(rwP lt_algP) /= norm_algcrealE /=.
pose_big_enough j.
apply: (@lt_crealP _ (inf_alg e / 2%:R) j j) => //.
by rewrite pmulr_rgt0 ?gtr0E ?inf_alg_gt0.
rewrite /= {2}[inf_alg e](splitf 2) /= lerD2r.
by rewrite ltW // cauchymodP ?pmulr_rgt0 ?gtr0E ?inf_alg_gt0.
by close.
by close.
Qed.
Definition approx := locked
(fun (x : alg) (e : alg) => projT1 (approx_proof x e) : F).
Lemma approxP (x e e': alg) : 0 < e -> e <= e' -> `|x - (approx x e)%:RA| < e'.
Proof.
by unlock approx; case: approx_proof=> /= y hy /hy /lt_le_trans hy' /hy'.
Qed.
Lemma alg_archi : Num.archimedean_axiom alg.
Proof.
move=> x; move: {x}`|x| (normr_ge0 x) => x x_ge0.
pose a := approx x 1%:RA; exists (Num.bound (a + 1)).
have := @archi_boundP _ (a + 1); rewrite -ltr_to_alg rmorph_nat.
have := @approxP x _ _ ltr01 (lexx _); rewrite ltr_distl -/a => /andP [_ hxa].
rewrite -ler_to_alg rmorphD /= (le_trans _ (ltW hxa)) //.
by move=> /(_ isT) /(lt_trans _)->.
Qed.
HB.instance Definition _ := Num.NumDomain_bounded_isArchimedean.Build alg alg_archi.
(**************************************************************************)
(* At this stage, algebraics form an archimedian field. We now build the *)
(* material to prove the intermediate value theorem. We first prove a *)
(* "weak version", which expresses that the extension {alg F} indeed *)
(* contains solutions of the intermediate value probelem in F *)
(**************************************************************************)
Notation "'Y" := 'X%:P.
Lemma weak_ivt (p : {poly F}) (a b : F) : a <= b -> p.[a] <= 0 <= p.[b] ->
{ x : alg | a%:RA <= x <= b%:RA & root (p ^ to_alg) x }.
Proof.
move=> le_ab; have [-> _|p_neq0] := eqVneq p 0.
by exists a%:RA; rewrite ?lexx ?ler_to_alg // rmorph0 root0.
move=> /andP[pa_le0 pb_ge0]; apply/sig2W.
have hpab: p.[a] * p.[b] <= 0 by rewrite mulr_le0_ge0.
move=> {pa_le0 pb_ge0}; wlog monic_p : p hpab p_neq0 / p \is monic.
set q := (lead_coef p) ^-1 *: p => /(_ q).
rewrite !hornerZ mulrCA !mulrA -mulrA mulr_ge0_le0 //; last first.
by rewrite (@exprn_even_ge0 _ 2).
have mq: q \is monic by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
rewrite monic_neq0 ?mq=> // [] [] // x hx hqx; exists x=> //.
move: hqx; rewrite /q -mul_polyC rmorphM /= rootM map_polyC rootC.
by rewrite fmorph_eq0 invr_eq0 lead_coef_eq0 (negPf p_neq0).
pose c := (a + b) / 2%:R; pose r := (b - a) / 2%:R.
have r_ge0 : 0 <= r by rewrite mulr_ge0 ?ger0E // subr_ge0.
have hab: ((c - r = a)%R * (c + r = b)%R)%type.
rewrite -mulrDl -mulrBl opprD addrA addrK opprK.
rewrite addrAC addrA [a + _ + _]addrAC subrr add0r.
by rewrite !mulrDl -.
have hp: p.[c - r] * p.[c + r] <= 0 by rewrite !hab.
pose x := AlgDom monic_p r_ge0 hp; exists (\pi_alg (to_algcreal x)).
rewrite !piE; apply/andP; rewrite -!(rwP le_algP) /=.
split;
by do [ unlock to_algcreal=> /=; apply: (@le_crealP _ 0%N)=> /= j _;
have := @to_algcreal_ofP p c r 0%N j r_ge0 isT;
rewrite ler_distl /= expr0 divr1 !hab=> /andP []].
apply/rootP; rewrite horner_pi zeroE -equiv_alg horner_algcrealE /=.
by rewrite -(@to_algcrealP x); unlock to_algcreal.
Qed.
(* any sequence of algebraic can be expressed as a sequence of
polynomials in a unique algebraic *)
Lemma pet_alg_proof (s : seq alg) :
{ ap : alg * seq {poly F} |
[forall i : 'I_(size s), (ap.2`_i ^ to_alg).[ap.1] == s`_i]
& size ap.2 = size s }.
Proof.
apply: sig2_eqW; elim: s; first by exists (0,[::])=> //; apply/forallP=> [] [].
move=> x s [[a sp] /forallP /= hs hsize].
have:= char0_PET _ (root_annul_alg a) _ (root_annul_alg x).
rewrite !annul_alg_neq0 => /(_ isT isT (char_num _)) /= [n [[p hp] [q hq]]].
exists (x *+ n - a, q :: [seq r \Po p | r <- sp]); last first.
by rewrite /= size_map hsize.
apply/forallP=> /=; rewrite -add1n=> i; apply/eqP.
have [k->|l->] := splitP i; first by rewrite !ord1.
rewrite add1n /= (nth_map 0) ?hsize // map_comp_poly /=.
by rewrite horner_comp hp; apply/eqP.
Qed.
(****************************************************************************)
(* Given a sequence s of algebraics (seq {alg F}) *)
(* pet_alg == primitive algebraic *)
(* pet_alg_poly == sequence of polynomials such that when instanciated in *)
(* pet_alg gives back the sequence s (cf. pet_algK) *)
(* *)
(* Given a polynomial p on algebraic {poly {alg F}} *)
(* pet_ground == bivariate polynomial such that when the inner *)
(* variable ('Y) is instanciated in pet_alg gives back *)
(* the polynomial p. *)
(****************************************************************************)
Definition pet_alg s : alg :=
let: exist2 (a, _) _ _ := pet_alg_proof s in a.
Definition pet_alg_poly s : seq {poly F}:=
let: exist2 (_, sp) _ _ := pet_alg_proof s in sp.
Lemma size_pet_alg_poly s : size (pet_alg_poly s) = size s.
Proof. by unlock pet_alg_poly; case: pet_alg_proof. Qed.
Lemma pet_algK s i :
((pet_alg_poly s)`_i ^ to_alg).[pet_alg s] = s`_i.
Proof.
rewrite /pet_alg /pet_alg_poly; case: pet_alg_proof.
move=> [a sp] /= /forallP hs hsize; have [lt_is|le_si] := ltnP i (size s).
by rewrite -[i]/(val (Ordinal lt_is)); apply/eqP; apply: hs.
by rewrite !nth_default ?hsize // rmorph0 horner0.
Qed.
Definition poly_ground := locked (fun (p : {poly alg}) =>
swapXY (Poly (pet_alg_poly p)) : {poly {poly F}}).
Lemma sizeY_poly_ground p : sizeY (poly_ground p) = size p.
Proof.
unlock poly_ground; rewrite sizeYE swapXYK; have [->|p_neq0] := eqVneq p 0.
apply/eqP; rewrite size_poly0 eqn_leq leq0n (leq_trans (size_Poly _)) //.
by rewrite size_pet_alg_poly size_poly0.
rewrite (@PolyK _ 0) -?nth_last ?size_pet_alg_poly //.
have /eqP := (pet_algK p (size p).-1); apply: contraL=> /eqP->.
by rewrite rmorph0 horner0 -lead_coefE eq_sym lead_coef_eq0.
Qed.
Lemma poly_ground_eq0 p : (poly_ground p == 0) = (p == 0).
Proof. by rewrite -sizeY_eq0 sizeY_poly_ground size_poly_eq0. Qed.
Lemma poly_ground0 : poly_ground 0 = 0.
Proof. by apply/eqP; rewrite poly_ground_eq0. Qed.
Lemma poly_groundK p :
((poly_ground p) ^ (map_poly to_alg)).[(pet_alg p)%:P] = p.
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite poly_ground0 rmorph0 horner0.
unlock poly_ground; rewrite horner_polyC /eval /= swapXY_map swapXYK.
apply/polyP=> i /=; rewrite coef_map_id0 ?horner0 // coef_map /=.
by rewrite coef_Poly pet_algK.
Qed.
Lemma annul_from_alg_proof (p : {poly alg}) (q : {poly F}) :
p != 0 -> q != 0 -> root (q ^ to_alg) (pet_alg p)
-> {r | resultant (poly_ground p) (r ^ polyC) != 0
& (r != 0) && (root (r ^ to_alg) (pet_alg p))}.
Proof.
move=> p_neq0; elim: (size q) {-2}q (leqnn (size q))=> {q} [|n ihn] q.
by rewrite size_poly_leq0=> ->.
move=> size_q q_neq0 hq; apply/sig2_eqW.
have [|apq_neq0] :=
eqVneq (resultant (poly_ground p) (q ^ polyC)) 0; last first.
by exists q=> //; rewrite q_neq0.
move/eqP; rewrite resultant_eq0 ltn_neqAle eq_sym -coprimep_def.
move=> /andP[] /(Bezout_coprimepPn _ _) [].
+ by rewrite poly_ground_eq0.
+ by rewrite map_polyC_eq0.
move=> [u v] /and3P [] /andP [u_neq0 ltn_uq] v_neq0 ltn_vp hpq.
rewrite ?size_map_polyC in ltn_uq ltn_vp.
rewrite ?size_poly_gt0 in u_neq0 v_neq0.
pose a := pet_alg p.
have := erefl (size ((u * poly_ground p) ^ (map_poly to_alg)).[a%:P]).
rewrite {2}hpq !{1}rmorphM /= !{1}hornerM poly_groundK -map_poly_comp /=.
have /eq_map_poly-> : (map_poly to_alg) \o polyC =1 polyC \o to_alg.
by move=> r /=; rewrite map_polyC.
rewrite map_poly_comp horner_map (rootP hq) mulr0 size_poly0.
move/eqP; rewrite size_poly_eq0 mulf_eq0 (negPf p_neq0) orbF.
pose u' : {poly F} := lead_coef (swapXY u).
have [/rootP u'a_eq0|u'a_neq0] := eqVneq (u' ^ to_alg).[a] 0; last first.
rewrite horner_polyC -lead_coef_eq0 lead_coef_map_eq /=;
by do ?rewrite swapXY_map /= lead_coef_map_eq /=
?map_poly_eq0 ?lead_coef_eq0 ?swapXY_eq0 ?(negPf u'a_neq0).
have u'_neq0 : u' != 0 by rewrite lead_coef_eq0 swapXY_eq0.
have size_u' : (size u' < size q)%N.
by rewrite /u' (leq_ltn_trans (max_size_lead_coefXY _)) // sizeYE swapXYK.
move: u'a_eq0=> /ihn [] //; first by rewrite -ltnS (leq_trans size_u').
by move=> r; exists r.
Qed.
Definition annul_pet_alg (p : {poly alg}) : {poly F} :=
if (p != 0) =P true is ReflectT p_neq0 then
let: exist2 r _ _ :=
annul_from_alg_proof p_neq0 (annul_alg_neq0 _) (root_annul_alg _) in r
else 0.
Lemma root_annul_pet_alg p : root (annul_pet_alg p ^ to_alg) (pet_alg p).
Proof.
rewrite /annul_pet_alg; case: eqP=> /=; last by rewrite ?rmorph0 ?root0.
by move=> p_neq0; case: annul_from_alg_proof=> ? ? /andP[].
Qed.
Definition annul_from_alg p :=
if (size (poly_ground p) == 1)%N then lead_coef (poly_ground p)
else resultant (poly_ground p) (annul_pet_alg p ^ polyC).
Lemma annul_from_alg_neq0 p : p != 0 -> annul_from_alg p != 0.
Proof.
move=> p_neq0; rewrite /annul_from_alg.
case: ifP; first by rewrite lead_coef_eq0 poly_ground_eq0.
rewrite /annul_pet_alg; case: eqP p_neq0=> //= p_neq0 _.
by case: annul_from_alg_proof.
Qed.
Lemma annul_pet_alg_neq0 p : p != 0 -> annul_pet_alg p != 0.
Proof.
rewrite /annul_pet_alg; case: eqP=> /=; last by rewrite ?rmorph0 ?root0.
by move=> p_neq0; case: annul_from_alg_proof=> ? ? /andP[].
Qed.
End RealAlg.
Notation to_alg F := (@to_alg_def _ (Phant F)).
Notation "x %:RA" := (to_alg _ x)
(at level 2, left associativity, format "x %:RA").
Lemma upper_nthrootVP (F : archiFieldType) (x : F) (i : nat) :
0 < x -> (Num.bound (x ^-1) <= i)%N -> 2%:R ^- i < x.
Proof.
move=> x_gt0 hx; rewrite -ltf_pV2 -?topredE //= ?gtr0E //.
by rewrite invrK upper_nthrootP.
Qed.
Notation "{ 'alg' F }" := (alg F).
Section AlgAlg.
Variable F : archiFieldType.
Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Local Notation "'Y" := 'X%:P.
Local Notation m0 := (fun _ => 0%N).
Definition approx2 (x : {alg {alg F}}) i :=
approx (approx x (2%:R ^- i)) (2%:R ^- i).
Lemma asympt_approx2 x : { asympt e : i / `|(approx2 x i)%:RA%:RA - x| < e }.
Proof.
exists_big_modulus m {alg {alg F}}.
move=> e i e_gt0 hi; rewrite distrC /approx2.
rewrite (@split_dist_add _ (approx x (2%:R ^- i))%:RA) //.
rewrite approxP ?gtr0E // ltW //.
by rewrite upper_nthrootVP ?divrn_gt0 ?ltr_to_alg.
rewrite (lt_trans _ (inf_lt_alg _)) ?divrn_gt0 //.
rewrite -rmorphB -normr_to_alg ltr_to_alg approxP ?gtr0E // ltW //.
by rewrite upper_nthrootVP ?divrn_gt0 ?inf_alg_gt0 ?ltr_to_alg.
by close.
Qed.
Lemma from_alg_crealP (x : {alg {alg F}}) : creal_axiom (approx2 x).
Proof.
exists_big_modulus m F.
move=> e i j e_gt0 hi hj; rewrite -2!ltr_to_alg !normr_to_alg !rmorphB /=.
rewrite (@split_dist_add _ x) // ?[`|_ - _%:RA|]distrC;
by rewrite (@asympt1modP _ _ (asympt_approx2 x)) ?divrn_gt0 ?ltr_to_alg.
by close.
Qed.
Definition from_alg_creal := locked (fun x => CReal (from_alg_crealP x)).
Lemma to_alg_crealP (x : creal F) : creal_axiom (fun i => to_alg F (x i)).
Proof.
exists_big_modulus m (alg F).
move=> e i j e_gt0 hi hj.
rewrite -rmorphB -normr_to_alg (lt_trans _ (inf_lt_alg _)) //.
by rewrite ltr_to_alg cauchymodP ?inf_alg_gt0.
by close.
Qed.
Definition to_alg_creal x := CReal (to_alg_crealP x).
Lemma horner_to_alg_creal p x :
((p ^ to_alg F).[to_alg_creal x] == to_alg_creal p.[x])%CR.
Proof.
by apply: eq_crealP; exists m0=> * /=; rewrite horner_map subrr normr0.
Qed.
Lemma neq_to_alg_creal x y :
(to_alg_creal x != to_alg_creal y)%CR <-> (x != y)%CR.
Proof.
split=> neq_xy.
pose_big_enough i.
apply: (@neq_crealP _ (inf_alg (lbound neq_xy)) i i) => //.
by rewrite inf_alg_gt0.
rewrite -ler_to_alg normr_to_alg rmorphB /= ltW //.
by rewrite (lt_le_trans (inf_lt_alg _)) ?lbound_gt0 ?lboundP.
by close.
pose_big_enough i.
apply: (@neq_crealP _ (lbound neq_xy)%:RA i i) => //.
by rewrite ltr_to_alg lbound_gt0.
by rewrite -rmorphB -normr_to_alg ler_to_alg lboundP.
by close.
Qed.
Lemma eq_to_alg_creal x y :
(to_alg_creal x == to_alg_creal y)%CR -> (x == y)%CR.
Proof. by move=> hxy /neq_to_alg_creal. Qed.
Lemma to_alg_creal0 : (to_alg_creal 0 == 0)%CR.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0. Qed.
Import Setoid.
Add Morphism to_alg_creal
with signature (@eq_creal _) ==> (@eq_creal _) as to_alg_creal_morph.
Proof. by move=> x y hxy /neq_to_alg_creal. Qed.
Global Existing Instance to_alg_creal_morph_Proper.
Lemma to_alg_creal_repr (x : {alg F}) : (to_alg_creal (repr x) == x%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg F}.
move=> e i e_gt0 hi /=; rewrite (le_lt_trans _ (inf_lt_alg _)) //.
rewrite -{2}[x]reprK !piE norm_pi.
rewrite -(rwP (le_algP _ _)) norm_algcrealE /=; pose_big_enough j.
apply: (@le_crealP _ j)=> k hk /=.
by rewrite ltW // cauchymodP ?inf_alg_gt0.
by close.
by close.
Qed.
Local Open Scope quotient_scope.
Lemma cst_pi (x : algcreal F) : ((\pi_{alg F} x)%:CR == to_alg_creal x)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg F}.
move=> e i e_gt0 hi /=; rewrite (lt_trans _ (inf_lt_alg _)) //.
rewrite !piE norm_pi /= -(rwP (lt_algP _ _)) norm_algcrealE /=.
pose_big_enough j.
apply: (@lt_crealP _ (inf_alg e / 2%:R) j j) => //.
by rewrite ?divrn_gt0 ?inf_alg_gt0.
rewrite /= {2}[inf_alg _](splitf 2) lerD2r ltW // distrC.
by rewrite cauchymodP ?divrn_gt0 ?inf_alg_gt0.
by close.
by close.
Qed.
End AlgAlg.
Section AlgAlgAlg.
Variable F : archiFieldType.
Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Local Notation "'Y" := 'X%:P.
Lemma from_alg_crealK (x : {alg {alg F}}) :
(to_alg_creal (to_alg_creal (from_alg_creal x)) == x%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg {alg F}}.
move=> e i e_gt0 hi; unlock from_alg_creal=> /=.
by rewrite (@asympt1modP _ _ (asympt_approx2 x)).
by close.
Qed.
Lemma root_annul_from_alg_creal (x : {alg {alg F}}) :
((annul_from_alg (annul_alg x)).[from_alg_creal x] == 0)%CR.
Proof.
do 2!apply: eq_to_alg_creal.
rewrite -!horner_to_alg_creal from_alg_crealK !to_alg_creal0.
rewrite horner_creal_cst; apply/eq_creal_cst; rewrite -rootE.
rewrite /annul_from_alg; have [/size_poly1P [c c_neq0 hc]|sp_neq1] := boolP (_ == _).
set p := _ ^ _; suff ->: p = (annul_alg x) ^ to_alg _ by apply: root_annul_alg.
congr (_ ^ _); rewrite -{2}[annul_alg x]poly_groundK /=.
by rewrite !hc lead_coefC map_polyC /= hornerC.
have [||[u v] /= [hu hv] hpq] := @resultant_in_ideal _
(poly_ground (annul_alg x)) (annul_pet_alg (annul_alg x) ^ polyC).
+ rewrite ltn_neqAle eq_sym sp_neq1 //= lt0n size_poly_eq0.
by rewrite poly_ground_eq0 annul_alg_neq0.
+ rewrite size_map_polyC -(size_map_poly (to_alg _)) /=.
rewrite (root_size_gt1 _ (root_annul_pet_alg _)) //.
by rewrite map_poly_eq0 annul_pet_alg_neq0 ?annul_alg_neq0.
move: hpq=> /(f_equal (map_poly (map_poly (to_alg _)))).
rewrite map_polyC /= => /(f_equal (eval (pet_alg (annul_alg x))%:P)).
rewrite {1}/eval hornerC !rmorphD !{1}rmorphM /= /eval /= => ->.
rewrite -map_poly_comp /=.
have /eq_map_poly->: (map_poly (@to_alg F)) \o polyC =1 polyC \o (@to_alg F).
by move=> r /=; rewrite map_polyC.
rewrite map_poly_comp horner_map /= (rootP (root_annul_pet_alg _)) mulr0 addr0.
by rewrite rmorphM /= rootM orbC poly_groundK root_annul_alg.
Qed.
Lemma annul_alg_from_alg_creal_neq0 (x : {alg {alg F}}) :
annul_from_alg (annul_alg x) != 0.
Proof. by rewrite annul_from_alg_neq0 ?annul_alg_neq0. Qed.
Definition from_alg_algcreal x :=
AlgCRealOf (@annul_alg_from_alg_creal_neq0 x) (@root_annul_from_alg_creal x).
Definition from_alg : {alg {alg F}} -> {alg F} :=
locked (\pi%qT \o from_alg_algcreal).
Lemma from_algK : cancel from_alg (to_alg _).
Proof.
move=> x; unlock from_alg; rewrite -{2}[x]reprK piE -equiv_alg /= cst_pi.
by apply: eq_to_alg_creal; rewrite from_alg_crealK to_alg_creal_repr.
Qed.
Lemma ivt (p : {poly (alg F)}) (a b : alg F) : a <= b ->
p.[a] <= 0 <= p.[b] -> exists2 x : alg F, a <= x <= b & root p x.
Proof.
move=> le_ab hp; have [x /andP [hax hxb]] := @weak_ivt _ _ _ _ le_ab hp.
rewrite -[x]from_algK fmorph_root=> rpx; exists (from_alg x)=> //.
by rewrite -ler_to_alg from_algK hax -ler_to_alg from_algK.
Qed.
HB.instance Definition _ := Num.RealField_isClosed.Build (alg F) ivt.
End AlgAlgAlg.
End RealAlg.
HB.export RealAlg.
Notation "{ 'realclosure' F }" := (RealAlg.alg F).
Notation annul_realalg := RealAlg.annul_alg.
Notation realalg_of F := (@RealAlg.to_alg_def _ (Phant F)).
Notation "x %:RA" := (realalg_of x)
(at level 2, left associativity, format "x %:RA").
HB.instance Definition _ (F : archiFieldType) := GRing.RMorphism.on (to_alg F).
Section RealClosureTheory.
Variable F : archiFieldType.
Notation R := {realclosure F}.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Lemma root_annul_realalg (x : R) : root ((annul_realalg x) ^ realalg_of _) x.
Proof. exact: RealAlg.root_annul_alg. Qed.
Hint Resolve root_annul_realalg : core.
Lemma monic_annul_realalg (x : R) : annul_realalg x \is monic.
Proof. exact: RealAlg.monic_annul_alg. Qed.
Hint Resolve monic_annul_realalg : core.
Lemma annul_realalg_neq0 (x : R) : annul_realalg x != 0%R.
Proof. exact: RealAlg.annul_alg_neq0. Qed.
Hint Resolve annul_realalg_neq0 : core.
Lemma realalg_algebraic : integralRange (realalg_of F).
Proof. by move=> x; exists (annul_realalg x). Qed.
End RealClosureTheory.
Definition realalg := {realclosure rat}.
HB.instance Definition _ := Num.RealClosedField.on realalg.
Module RatRealAlg.
HB.instance Definition _ := Countable.copy (RealAlg.algdom rat)
(pcan_type (@RealAlg.encode_algdomK rat)).
#[export] HB.instance Definition _ := Countable.on realalg.
End RatRealAlg.
HB.export RatRealAlg.
|