File: realalg.v

package info (click to toggle)
mathcomp-real-closed 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 800 kB
  • sloc: makefile: 28
file content (1420 lines) | stat: -rw-r--r-- 53,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra all_field bigenough.
From mathcomp Require Import polyorder cauchyreals.

(*************************************************************************)
(* This files constructs the real closure of an archimedian field in the *)
(* way described in Cyril Cohen. Construction of real algebraic numbers  *)
(* in Coq. In Lennart Beringer and Amy Felty, editors, ITP - 3rd         *)
(* International Conference on Interactive Theorem Proving - 2012,       *)
(* Princeton, United States, August 2012. Springer                       *)
(*                                                                       *)
(* The only definition one may want to use in this file is the operator  *)
(* {realclosure R} which constructs the real closure of the archimedian  *)
(* field R (for which rat is a prefect candidate)                        *)
(*************************************************************************)

Import Order.TTheory GRing.Theory Num.Theory BigEnough.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Reserved Notation "{ 'realclosure' T }"
  (at level 0, format "{ 'realclosure'  T }").
Reserved Notation "{ 'alg' T }" (at level 0, format "{ 'alg'  T }").

Section extras.

Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.

Lemma map_comp_poly (aR : fieldType) (rR : idomainType)
   (f : {rmorphism aR -> rR})
   (p q : {poly aR}) : (p \Po q) ^ f = (p ^ f) \Po (q ^ f).
Proof.
rewrite !comp_polyE size_map_poly; apply: (big_ind2 (fun x y => x ^ f = y)).
+ by rewrite rmorph0.
+ by move=> u u' v v' /=; rewrite rmorphD /= => -> ->.
move=> /= i _; rewrite -mul_polyC rmorphM /= map_polyC mul_polyC.
by rewrite coef_map rmorphXn.
Qed.

End extras.

Module RealAlg.

Local Open Scope ring_scope.
Local Notation eval := horner_eval.

Section RealAlg.

Variable F : archiFieldType.
Local Notation m0 := (fun _ => 0%N).

(*********************************************************************)
(* Construction of algebraic Cauchy reals : Cauchy real + polynomial *)
(*********************************************************************)

Record algcreal := AlgCReal {
  creal_of_alg :> creal F;
  annul_creal : {poly F};
  _ : annul_creal \is monic;
  _ : (annul_creal.[creal_of_alg] == 0)%CR
}.

Lemma monic_annul_creal x : annul_creal x \is monic.
Proof. by case: x. Qed.
Hint Resolve monic_annul_creal : core.

Lemma annul_creal_eq0 x : (annul_creal x == 0) = false.
Proof. by rewrite (negPf (monic_neq0 _)). Qed.

Lemma root_annul_creal x : ((annul_creal x).[x] == 0)%CR.
Proof. by case: x. Qed.
Hint Resolve root_annul_creal : core.

Definition cst_algcreal (x : F) :=
  AlgCReal (monicXsubC _) (@root_cst_creal _ x).

Local Notation zero_algcreal := (cst_algcreal 0).
Local Notation one_algcreal := (cst_algcreal 1).

Lemma size_annul_creal_gt1 (x : algcreal) :
  (1 < size (annul_creal x))%N.
Proof.
apply: (@has_root_creal_size_gt1 _ x).
  by rewrite monic_neq0 // monic_annul_creal.
exact: root_annul_creal.
Qed.

Lemma is_root_annul_creal (x : algcreal) (y : creal F) :
  (x == y)%CR -> ((annul_creal x).[y] == 0)%CR.
Proof. by move <-. Qed.

Definition AlgCRealOf (p : {poly F}) (x : creal F)
  (p_neq0 : p != 0) (px_eq0 : (p.[x] == 0)%CR) :=
  AlgCReal (monic_monic_from_neq0 p_neq0) (root_monic_from_neq0 px_eq0).

Lemma sub_annihilant_algcreal_neq0 (x y : algcreal) :
  sub_annihilant (annul_creal x) (annul_creal y) != 0.
Proof. by rewrite sub_annihilant_neq0 ?monic_neq0. Qed.

Lemma root_sub_algcreal (x y : algcreal) :
  ((sub_annihilant (annul_creal x) (annul_creal y)).[x - y] == 0)%CR.
Proof. by rewrite root_sub_annihilant_creal ?root_annul_creal ?monic_neq0. Qed.

Definition sub_algcreal (x y : algcreal) : algcreal :=
  AlgCRealOf (sub_annihilant_algcreal_neq0 x y) (@root_sub_algcreal x y).

Lemma root_opp_algcreal (x : algcreal) :
  ((annul_creal (sub_algcreal (cst_algcreal 0) x)).[- x] == 0)%CR.
Proof. by apply: is_root_annul_creal; rewrite /= add_0creal. Qed.

Definition opp_algcreal (x : algcreal) : algcreal :=
  AlgCReal (@monic_annul_creal _) (@root_opp_algcreal x).

Lemma root_add_algcreal (x y : algcreal) :
  ((annul_creal (sub_algcreal x (opp_algcreal y))).[x + y] == 0)%CR.
Proof.
apply: is_root_annul_creal; apply: eq_crealP.
by exists m0=> * /=; rewrite opprK subrr normr0.
Qed.

Definition add_algcreal (x y : algcreal) : algcreal :=
  AlgCReal (@monic_annul_creal _) (@root_add_algcreal x y).

Lemma div_annihilant_algcreal_neq0 (x y : algcreal) :
   (annul_creal y).[0] != 0 ->
   div_annihilant (annul_creal x) (annul_creal y) != 0.
Proof. by move=> ?; rewrite div_annihilant_neq0 ?monic_neq0. Qed.

Hint Resolve eq_creal_refl le_creal_refl : core.

Lemma simplify_algcreal (x : algcreal) (x_neq0 : (x != 0)%CR) :
  {y | ((annul_creal y).[0] != 0) & ((y != 0)%CR * (x == y)%CR)%type}.
Proof.
elim: size {-3}x x_neq0 (leqnn (size (annul_creal x))) =>
  {x} [|n ihn] x x_neq0 hx.
  by move: hx; rewrite leqn0 size_poly_eq0 annul_creal_eq0.
have [dvdX|ndvdX] := boolP ('X %| annul_creal x); last first.
  by exists x=> //; rewrite -rootE -dvdp_XsubCl subr0.
have monic_p: @annul_creal x %/ 'X \is monic.
  by rewrite -(monicMr _ (@monicX _)) divpK //.
have root_p: ((@annul_creal x %/ 'X).[x] == 0)%CR.
  have := @eq_creal_refl _ ((annul_creal x).[x])%CR.
  rewrite -{1}(divpK dvdX) horner_crealM // root_annul_creal.
  by case/poly_mul_creal_eq0=> //; rewrite horner_crealX.
have [//|/=|y *] := ihn (AlgCReal monic_p root_p); last by exists y.
by rewrite size_divp ?size_polyX ?polyX_eq0 ?leq_subLR ?add1n.
Qed.

(* Decidability of equality to 0 *)
Lemma algcreal_eq0_dec (x : algcreal) : {(x == 0)%CR} + {(x != 0)%CR}.
Proof.
pose p := annul_creal x; move: {2}(size _)%N (leqnn (size p))=> n.
elim: n x @p => [x p|n ihn x p le_sp_Sn].
  by rewrite leqn0 size_poly_eq0 /p  annul_creal_eq0.
move: le_sp_Sn; rewrite leq_eqVlt; have [|//|eq_sp_Sn _] := ltngtP.
  by rewrite ltnS=> /ihn ihnp _; apply: ihnp.
have px0 : (p.[x] == 0)%CR by apply: root_annul_creal.
have [cpX|ncpX] := boolP (coprimep p 'X).
  by right; move: (cpX)=> /coprimep_root /(_ px0); rewrite horner_crealX.
have [eq_pX|] := altP (p =P 'X).
  by left; move: px0; rewrite eq_pX horner_crealX.
rewrite -eqp_monic /p ?monicX // negb_and orbC.
have:= ncpX; rewrite coprimepX -dvdp_XsubCl subr0 => /negPf-> /= ndiv_pX.
have [r] := smaller_factor (monic_annul_creal _) px0 ndiv_pX ncpX.
rewrite eq_sp_Sn ltnS => /andP[le_r_n monic_r] rx_eq0.
exact: (ihn (AlgCReal monic_r rx_eq0)).
Qed.

Lemma eq_algcreal_dec (x y : algcreal) : {(x == y)%CR} + {(x != y)%CR}.
Proof.
have /= [d_eq0|d_neq0] := algcreal_eq0_dec (sub_algcreal x y); [left|right].
  apply: eq_crealP; exists_big_modulus m F.
    by move=> e i e_gt0 hi; rewrite (@eq0_modP _ _ d_eq0).
  by close.
pose_big_enough i.
  apply: (@neq_crealP _ (lbound d_neq0) i i); do ?by rewrite ?lbound_gt0.
  by rewrite (@lbound0P _ _ d_neq0).
by close.
Qed.

Definition eq_algcreal : rel algcreal := eq_algcreal_dec.

Lemma eq_algcrealP (x y : algcreal) : reflect (x == y)%CR (eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
Arguments eq_algcrealP {x y}.

Lemma neq_algcrealP (x y : algcreal) : reflect (x != y)%CR (~~ eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
Arguments neq_algcrealP {x y}.
Prenex Implicits eq_algcrealP neq_algcrealP.

Fact eq_algcreal_is_equiv : equiv_class_of eq_algcreal.
Proof.
split=> [x|x y|y x z]; first by apply/eq_algcrealP.
  by apply/eq_algcrealP/eq_algcrealP; symmetry.
by move=> /eq_algcrealP /eq_creal_trans h /eq_algcrealP /h /eq_algcrealP.
Qed.

Canonical eq_algcreal_rel := EquivRelPack eq_algcreal_is_equiv.

Lemma root_div_algcreal (x y : algcreal) (y_neq0 : (y != 0)%CR) :
  (annul_creal y).[0] != 0 ->
  ((div_annihilant (annul_creal x) (annul_creal y)).[x / y_neq0] == 0)%CR.
Proof. by move=> hx; rewrite root_div_annihilant_creal ?monic_neq0. Qed.

Definition div_algcreal (x y : algcreal) :=
  match eq_algcreal_dec y (cst_algcreal 0) with
    | left y_eq0 => cst_algcreal 0
    | right y_neq0 =>
      let: exist2 y' py'0_neq0 (y'_neq0, _) := simplify_algcreal y_neq0 in
      AlgCRealOf (div_annihilant_algcreal_neq0 x py'0_neq0)
                 (@root_div_algcreal x y' y'_neq0 py'0_neq0)
  end.

Lemma root_inv_algcreal (x : algcreal) (x_neq0 : (x != 0)%CR) :
  ((annul_creal (div_algcreal (cst_algcreal 1) x)).[x_neq0^-1] == 0)%CR.
Proof.
rewrite /div_algcreal; case: eq_algcreal_dec=> [/(_ x_neq0)|x_neq0'] //=.
case: simplify_algcreal=> x' px'0_neq0 [x'_neq0 eq_xx'].
apply: is_root_annul_creal; rewrite /= -(@eq_creal_inv _ _ _ x_neq0) //.
by apply: eq_crealP; exists m0=> * /=; rewrite div1r subrr normr0.
Qed.

Definition inv_algcreal (x : algcreal) :=
  match eq_algcreal_dec x (cst_algcreal 0) with
    | left x_eq0 => cst_algcreal 0
    | right x_neq0 =>
      AlgCReal (@monic_annul_creal _) (@root_inv_algcreal _ x_neq0)
  end.

Lemma div_creal_creal (y : creal F) (y_neq0 : (y != 0)%CR) :
  (y / y_neq0 == 1%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m F.
  move=> e i e_gt0 hi; rewrite /= divff ?subrr ?normr0 //.
  by rewrite (@creal_neq_always _ _ 0%CR).
by close.
Qed.

Lemma root_mul_algcreal (x y : algcreal) :
  ((annul_creal (div_algcreal x (inv_algcreal y))).[x * y] == 0)%CR.
Proof.
rewrite /div_algcreal /inv_algcreal.
case: (eq_algcreal_dec y)=> [->|y_neq0]; apply: is_root_annul_creal.
  rewrite mul_creal0; case: eq_algcreal_dec=> // neq_00.
  by move: (eq_creal_refl neq_00).
case: eq_algcreal_dec=> /= [yV_eq0|yV_neq0].
  have: (y * y_neq0^-1 == 0)%CR by rewrite yV_eq0 mul_creal0.
  by rewrite div_creal_creal=> /eq_creal_cst; rewrite oner_eq0.
case: simplify_algcreal=> y' py'0_neq0 [y'_neq0 /= eq_yy'].
rewrite -(@eq_creal_inv _ _ _ yV_neq0) //.
by apply: eq_crealP; exists m0=> * /=; rewrite invrK subrr normr0.
Qed.

Definition mul_algcreal (x y : algcreal) :=
  AlgCReal (@monic_annul_creal _) (@root_mul_algcreal x y).

Lemma le_creal_neqVlt (x y : algcreal) : (x <= y)%CR -> {(x == y)%CR} + {(x < y)%CR}.
Proof.
case: (eq_algcreal_dec x y); first by left.
by move=> /neq_creal_ltVgt [|h /(_ h) //]; right.
Qed.

Lemma ltVge_algcreal_dec (x y : algcreal) : {(x < y)%CR} + {(y <= x)%CR}.
Proof.
have [eq_xy|/neq_creal_ltVgt [lt_xy|lt_yx]] := eq_algcreal_dec x y;
by [right; rewrite eq_xy | left | right; apply: lt_crealW].
Qed.

Definition lt_algcreal : rel algcreal := ltVge_algcreal_dec.
Definition le_algcreal : rel algcreal := fun x y => ~~ ltVge_algcreal_dec y x.

Lemma lt_algcrealP (x y : algcreal) : reflect (x < y)%CR (lt_algcreal x y).
Proof. by rewrite /lt_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
Arguments lt_algcrealP {x y}.

Lemma le_algcrealP (x y : algcreal) : reflect (x <= y)%CR (le_algcreal x y).
Proof. by rewrite /le_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
Arguments le_algcrealP {x y}.
Prenex Implicits lt_algcrealP le_algcrealP.

Definition exp_algcreal x n := iterop n mul_algcreal x one_algcreal.

Lemma exp_algcrealE x n : (exp_algcreal x n == x ^+ n)%CR.
Proof.
case: n=> // n; rewrite /exp_algcreal /exp_creal !iteropS.
by elim: n=> //= n ->.
Qed.

Definition horner_algcreal (p : {poly F}) x : algcreal :=
  \big[add_algcreal/zero_algcreal]_(i < size p)
   mul_algcreal (cst_algcreal p`_i) (exp_algcreal x i).

Lemma horner_algcrealE p x : (horner_algcreal p x == p.[x])%CR.
Proof.
rewrite horner_coef_creal.
apply: (big_ind2 (fun (u : algcreal) v => u == v)%CR)=> //.
  by move=> u u' v v' /= -> ->.
by move=> i _ /=; rewrite exp_algcrealE.
Qed.

Definition norm_algcreal (x : algcreal) :=
  if le_algcreal zero_algcreal x then x else opp_algcreal x.

Lemma norm_algcrealE (x : algcreal) : (norm_algcreal x == `| x |)%CR.
Proof.
rewrite /norm_algcreal /le_algcreal; case: ltVge_algcreal_dec => /=.
  move=> x_lt0; apply: eq_crealP; exists_big_modulus m F.
    move=> e i e_gt0 hi /=; rewrite [`|x i|]ler0_norm ?subrr ?normr0 //.
    by rewrite ltW // [_ < 0%CR i]creal_lt_always.
  by close.
move=> /(@le_creal_neqVlt zero_algcreal) /= [].
  by move<-; apply: eq_crealP; exists m0=> * /=; rewrite !(normr0, subrr).
move=> x_gt0; apply: eq_crealP; exists_big_modulus m F.
  move=> e i e_gt0 hi /=; rewrite [`|x i|]ger0_norm ?subrr ?normr0 //.
  by rewrite ltW // creal_gt0_always.
by close.
Qed.

(**********************************************************************)
(* Theory of the "domain" of algebraic numbers: polynomial + interval *)
(**********************************************************************)
Record algdom := AlgDom {
  annul_algdom : {poly F};
  center_alg : F;
  radius_alg : F;
  _ : annul_algdom \is monic;
  _ : radius_alg >= 0;
  _ : annul_algdom.[center_alg - radius_alg]
      * annul_algdom.[center_alg + radius_alg] <= 0
}.

Lemma radius_alg_ge0 x : 0 <= radius_alg x. Proof. by case: x. Qed.

Lemma monic_annul_algdom x : annul_algdom x \is monic. Proof. by case: x. Qed.
Hint Resolve monic_annul_algdom : core.

Lemma annul_algdom_eq0 x : (annul_algdom x == 0) = false.
Proof. by rewrite (negPf (monic_neq0 _)). Qed.

Lemma algdomP x : (annul_algdom x).[center_alg x - radius_alg x]
  * (annul_algdom x).[center_alg x + radius_alg x] <= 0.
Proof. by case: x. Qed.

Definition algdom' := seq F.

Definition encode_algdom (x : algdom) : algdom' :=
  [:: center_alg x, radius_alg x & (annul_algdom x)].

Definition decode_algdom  (x : algdom') : option algdom :=
  if x is [::c, r & p']
  then let p := Poly p' in
    if ((p \is monic) =P true, (r >= 0) =P true,
       (p.[c - r] * p.[c + r] <= 0) =P true)
    is (ReflectT monic_p, ReflectT r_gt0, ReflectT hp)
      then Some (AlgDom monic_p r_gt0 hp)
      else None
  else None.

Lemma encode_algdomK : pcancel encode_algdom decode_algdom.
Proof.
case=> p c r monic_p r_ge0 hp /=; rewrite polyseqK.
do 3?[case: eqP; rewrite ?monic_p ?r_ge0 ?monic_p //] => monic_p' r_ge0' hp'.
by congr (Some (AlgDom _ _ _)); apply: bool_irrelevance.
Qed.

HB.instance Definition _ := Choice.copy algdom (pcan_type encode_algdomK).

Fixpoint to_algcreal_of (p : {poly F}) (c r : F) (i : nat) : F :=
  match i with
    | 0 => c
    | i.+1 =>
      let c' := to_algcreal_of p c r i in
        if p.[c' - r / 2%:R ^+ i] * p.[c'] <= 0
          then c' - r / 2%:R ^+ i.+1
          else c' + r / 2%:R ^+ i.+1
  end.


Lemma to_algcreal_of_recP p c r i : 0 <= r ->
  `|to_algcreal_of p c r i.+1 - to_algcreal_of p c r i| <= r * 2%:R ^- i.+1.
Proof.
move=> r_ge0 /=; case: ifP=> _; rewrite addrAC subrr add0r ?normrN ger0_norm //;
by rewrite mulr_ge0 ?invr_ge0 ?exprn_ge0 ?ler0n.
Qed.

Lemma to_algcreal_ofP p c r i j : 0 <= r -> (i <= j)%N ->
  `|to_algcreal_of p c r j - to_algcreal_of p c r i| <= r * 2%:R ^- i.
Proof.
move=> r_ge0 leij; pose r' := r * 2%:R ^- j * (2%:R ^+ (j - i) - 1).
apply: le_trans (_ : r' <= _); last first.
  rewrite /r' -mulrA ler_wpM2l // ler_pdivrMl ?exprn_gt0 ?ltr0n //.
  rewrite -{2}(subnK leij) exprD mulfK ?gt_eqF ?exprn_gt0 ?ltr0n //.
  by rewrite gerDl lerN10.
rewrite /r' subrX1 addrK mul1r -{1 2}(subnK leij); set f := _  c r.
elim: (_ - _)%N=> [|k ihk]; first by rewrite subrr normr0 big_ord0 mulr0 lexx.
rewrite addSn big_ord_recl /= mulrDr.
rewrite (le_trans (ler_distD (f (k + i)%N) _ _)) //.
rewrite lerD ?expr0 ?mulr1 ?to_algcreal_of_recP // (le_trans ihk) //.
rewrite exprSr invfM -!mulrA !ler_wpM2l ?invr_ge0 ?exprn_ge0 ?ler0n //.
by rewrite mulr_sumr ler_sum // => l _ /=; rewrite exprS mulKf ?pnatr_eq0.
Qed.

Lemma alg_to_crealP (x : algdom) :
  creal_axiom (to_algcreal_of (annul_algdom x) (center_alg x) (radius_alg x)).
Proof.
pose_big_modulus m F.
  exists m=> e i j e_gt0 hi hj.
  wlog leij : i j {hi} hj / (j <= i)%N.
    move=> hwlog; case/orP: (leq_total i j)=> /hwlog; last exact.
    by rewrite distrC; apply.
  rewrite (le_lt_trans (to_algcreal_ofP _ _ _ _)) ?radius_alg_ge0 //.
  rewrite ltr_pdivrMr ?gtr0E // -ltr_pdivrMl //.
  by rewrite upper_nthrootP.
by close.
Qed.

Definition alg_to_creal x := CReal (alg_to_crealP x).

Lemma exp2k_crealP : @creal_axiom F (fun i => 2%:R ^- i).
Proof.
pose_big_modulus m F.
  exists m=> e i j e_gt0 hi hj.
  wlog leij : i j {hj} hi / (i <= j)%N.
    move=> hwlog; case/orP: (leq_total i j)=> /hwlog; first exact.
    by rewrite distrC; apply.
  rewrite ger0_norm ?subr_ge0; last first.
    by rewrite ?lef_pV2 -?topredE /= ?gtr0E // ler_eXn2l ?ltr1n.
  rewrite -(@ltr_pM2l _ (2%:R ^+ i )) ?gtr0E //.
  rewrite mulrBr mulfV ?gt_eqF ?gtr0E //.
  rewrite (le_lt_trans (_ : _ <= 1)) // ?gerDl ?oppr_le0 ?mulr_ge0 ?ger0E //.
  by rewrite -ltr_pdivrMr // mul1r upper_nthrootP.
by close.
Qed.
Definition exp2k_creal := CReal exp2k_crealP.

Lemma exp2k_creal_eq0 : (exp2k_creal == 0)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m F.
  move=> e i e_gt0 hi /=.
  rewrite subr0 gtr0_norm ?gtr0E // -ltf_pV2 -?topredE /= ?gtr0E //.
  by rewrite invrK upper_nthrootP.
by close.
Qed.

Notation lbound0_of p := (@lbound0P _ _ p _ _ _).

Lemma to_algcrealP (x : algdom) : ((annul_algdom x).[alg_to_creal x] == 0)%CR.
Proof.
set u := alg_to_creal _; set p := annul_algdom _.
pose r := radius_alg x; pose cr := cst_creal r.
have: ((p).[u - cr * exp2k_creal] *  (p).[u + cr * exp2k_creal] <= 0)%CR.
  apply: (@le_crealP _ 0%N)=> i _ /=.
  rewrite -/p -/r; set c := center_alg _.
  elim: i=> /= [|i].
    by rewrite !expr0 divr1 algdomP.
  set c' := to_algcreal_of _ _ _=> ihi.
  have [] := lerP (_ * p.[c' i]).
    rewrite addrNK -addrA -opprD -mulr2n -[_ / _ *+ _]mulr_natr.
    by rewrite -mulrA exprSr invfM mulfVK ?pnatr_eq0.
  rewrite addrK -addrA -mulr2n -[_ / _ *+ _]mulr_natr.
  rewrite -mulrA exprSr invfM mulfVK ?pnatr_eq0 // => /ler_pM2l<-.
  rewrite mulr0 mulrCA !mulrA [X in X * _]mulrAC -mulrA.
  by rewrite mulr_ge0_le0 // -expr2 exprn_even_ge0.
rewrite exp2k_creal_eq0 mul_creal0 opp_creal0 add_creal0.
move=> hu pu0; apply: hu; pose e := (lbound pu0).
pose_big_enough i.
  apply: (@lt_crealP _ (e * e) i i) => //.
    by rewrite !pmulr_rgt0 ?invr_gt0 ?ltr0n ?lbound_gt0.
  rewrite add0r [u]lock /= -!expr2.
  rewrite -[_.[_] ^+ _]ger0_norm ?exprn_even_ge0 // normrX.
  rewrite ler_pXn2r -?topredE /= ?lbound_ge0 ?normr_ge0 //.
  by rewrite -lock (le_trans _ (lbound0_of pu0)).
by close.
Qed.

Definition to_algcreal_rec (x : algdom) :=
  AlgCReal (monic_annul_algdom x) (@to_algcrealP x).
(* "Encoding" function from algdom to algcreal *)
Definition to_algcreal := locked to_algcreal_rec.

(* "Decoding" function, constructed interactively *)
Lemma to_algdom_exists (x : algcreal) :
  { y : algdom | (to_algcreal y == x)%CR }.
Proof.
pose p := annul_creal x.
move: {2}(size p) (leqnn (size p))=> n.
elim: n x @p=> [x p|n ihn x p le_sp_Sn].
  by rewrite leqn0 size_poly_eq0 /p annul_creal_eq0.
move: le_sp_Sn; rewrite leq_eqVlt.
have [|//|eq_sp_Sn _] := ltngtP.
  by rewrite ltnS=> /ihn ihnp _; apply: ihnp.
have px0 := @root_annul_creal x; rewrite -/p -/root in px0.
have [|ncop] := boolP (coprimep p p^`()).
  move/coprimep_root => /(_ _ px0) /deriv_neq0_mono [r r_gt0 [i ir sm]].
  have p_chg_sign : p.[x i - r] * p.[x i + r] <= 0.
    have [/accr_pos_incr hp|/accr_neg_decr hp] := sm.
      have hpxj : forall j, (i <= j)%N ->
        (p.[x i - r] <= p.[x j]) * (p.[x j] <= p.[x i + r]).
        move=> j hj.
          suff:  p.[x i - r] <= p.[x j] <= p.[x i + r] by case/andP=> -> ->.
        rewrite !hp 1?addrAC ?subrr ?add0r ?normrN;
        rewrite ?(gtr0_norm r_gt0) //;
          do ?by rewrite ltW ?cauchymodP ?(leq_trans _ hj).
        by rewrite -ler_distl ltW ?cauchymodP ?(leq_trans _ hj).
      rewrite mulr_le0_ge0 //; apply/le_creal_cst; rewrite -px0;
      by apply: (@le_crealP _ i)=> h hj /=; rewrite hpxj.
    have hpxj : forall j, (i <= j)%N ->
      (p.[x i + r] <= p.[x j]) * (p.[x j] <= p.[x i - r]).
      move=> j hj.
        suff:  p.[x i + r] <= p.[x j] <= p.[x i - r] by case/andP=> -> ->.
      rewrite !hp 1?addrAC ?subrr ?add0r ?normrN;
      rewrite ?(gtr0_norm r_gt0) //;
        do ?by rewrite ltW ?cauchymodP ?(leq_trans _ hj).
      by rewrite andbC -ler_distl ltW ?cauchymodP ?(leq_trans _ hj).
    rewrite mulr_ge0_le0 //; apply/le_creal_cst; rewrite -px0;
    by apply: (@le_crealP _ i)=> h hj /=; rewrite hpxj.
  pose y := (AlgDom (monic_annul_creal x) (ltW r_gt0) p_chg_sign).
  have eq_py_px: (p.[to_algcreal y] == p.[x])%CR.
    rewrite /to_algcreal -lock.
    by have := @to_algcrealP y; rewrite /= -/p=> ->; apply: eq_creal_sym.
  exists y.
  move: sm=> /strong_mono_bound [k k_gt0 hk].
  rewrite -/p; apply: eq_crealP.
  exists_big_modulus m F.
    move=> e j e_gt0 hj; rewrite (le_lt_trans (hk _ _ _ _)) //.
    + rewrite /to_algcreal -lock.
      rewrite (le_trans (to_algcreal_ofP _ _ _ (leq0n _))) ?(ltW r_gt0) //.
      by rewrite expr0 divr1.
    + by rewrite ltW // cauchymodP.
    rewrite -ltr_pdivlMl //.
    by rewrite (@eq_modP _ _ _ eq_py_px) // ?pmulr_rgt0 ?invr_gt0.
  by close.
case: (@smaller_factor _ p p^`() x); rewrite ?monic_annul_creal //.
  rewrite gtNdvdp // -?size_poly_eq0 size_deriv eq_sp_Sn //=.
  apply: contra ncop=> /eqP n_eq0; move: eq_sp_Sn; rewrite n_eq0.
  by move=> /eqP /size_poly1P [c c_neq0 ->]; rewrite derivC coprimep0 polyC_eqp1.
move=> r /andP [hsr monic_r rx_eq0].
apply: (ihn (AlgCReal monic_r rx_eq0))=> /=.
by rewrite -ltnS -eq_sp_Sn.
Qed.

Definition to_algdom x := projT1 (to_algdom_exists x).

Lemma to_algdomK x : (to_algcreal (to_algdom x) == x)%CR.
Proof. by rewrite /to_algdom; case: to_algdom_exists. Qed.

Lemma eq_algcreal_to_algdom x : eq_algcreal (to_algcreal (to_algdom x)) x.
Proof. by apply/eq_algcrealP; apply: to_algdomK. Qed.

(* Explicit encoding to a choice type *)
Canonical eq_algcreal_encModRel := EncModRel eq_algcreal eq_algcreal_to_algdom.

Local Open Scope quotient_scope.
Local Notation "\pi ( x )" := (\pi x) : quotient_scope.

(***************************************************************************)
(* Algebraic numbers are the quotient of algcreal by their setoid equality *)
(***************************************************************************)
Definition alg := {eq_quot eq_algcreal}.

HB.instance Definition _ := Choice.on alg.
HB.instance Definition _ := EqQuotient.on alg.

Definition to_alg_def (phF : phant F) : F -> alg :=
  lift_embed alg cst_algcreal.
Notation to_alg := (@to_alg_def (Phant F)).
Notation "x %:RA" := (to_alg x)
  (at level 2, left associativity, format "x %:RA").
Local Notation "p ^ f" := (map_poly f p) : ring_scope.

Canonical to_alg_pi_morph := PiEmbed to_alg.

Local Notation zero_alg := 0%:RA.
Local Notation one_alg := 1%:RA.

Lemma equiv_alg (x y : algcreal) : (x == y)%CR <-> (x = y %[mod alg]).
Proof.
split; first by move=> /eq_algcrealP /eqquotP ->.
by move=> /eqquotP /eq_algcrealP.
Qed.

Lemma nequiv_alg (x y : algcreal) : reflect (x != y)%CR (x != y %[mod alg]).
Proof. by rewrite eqquotE; apply: neq_algcrealP. Qed.
Arguments nequiv_alg {x y}.
Prenex Implicits nequiv_alg.

Lemma pi_algK (x : algcreal) : (repr (\pi_alg x) == x)%CR.
Proof. by apply/equiv_alg; rewrite reprK. Qed.

Definition add_alg := lift_op2 alg add_algcreal.

Lemma pi_add : {morph \pi_alg : x y / add_algcreal x y >-> add_alg x y}.
Proof. by unlock add_alg=> x y; rewrite -equiv_alg /= !pi_algK. Qed.

Canonical add_pi_morph := PiMorph2 pi_add.

Definition opp_alg := lift_op1 alg opp_algcreal.

Lemma pi_opp : {morph \pi_alg : x / opp_algcreal x >-> opp_alg x}.
Proof. by unlock opp_alg=> x; rewrite -equiv_alg /= !pi_algK. Qed.

Canonical opp_pi_morph := PiMorph1 pi_opp.

Definition mul_alg := lift_op2 alg mul_algcreal.

Lemma pi_mul : {morph \pi_alg : x y / mul_algcreal x y >-> mul_alg x y}.
Proof. by unlock mul_alg=> x y; rewrite -equiv_alg /= !pi_algK. Qed.

Canonical mul_pi_morph := PiMorph2 pi_mul.

Definition inv_alg := lift_op1 alg inv_algcreal.

Lemma pi_inv : {morph \pi_alg : x / inv_algcreal x >-> inv_alg x}.
Proof.
unlock inv_alg=> x; symmetry; rewrite -equiv_alg /= /inv_algcreal.
case: eq_algcreal_dec=> /= [|x'_neq0].
  by rewrite pi_algK; case: eq_algcreal_dec.
move: x'_neq0 (x'_neq0); rewrite {1}pi_algK.
case: eq_algcreal_dec=> // x'_neq0' x_neq0 x'_neq0 /=.
by apply: eq_creal_inv; rewrite pi_algK.
Qed.

Canonical inv_pi_morph := PiMorph1 pi_inv.

Lemma add_algA : associative add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg.
by apply: eq_crealP; exists m0=> * /=; rewrite addrA subrr normr0.
Qed.

Lemma add_algC : commutative add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite [X in _ - X]addrC subrr normr0.
Qed.

Lemma add_0alg : left_id zero_alg add_alg.
Proof. by elim/quotW=> x; rewrite !piE -equiv_alg /= add_0creal. Qed.

Lemma add_Nalg : left_inverse zero_alg opp_alg add_alg.
Proof.
elim/quotW=> x; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> *; rewrite /= addNr subr0 normr0.
Qed.

HB.instance Definition _ := GRing.isZmodule.Build alg
  add_algA add_algC add_0alg add_Nalg.

Lemma add_pi x y : \pi_alg x + \pi_alg y
  = \pi_alg (add_algcreal x y).
Proof. by rewrite [_ + _]piE. Qed.

Lemma opp_pi x : - \pi_alg x  = \pi_alg (opp_algcreal x).
Proof. by rewrite [- _]piE. Qed.

Lemma zeroE : 0 = \pi_alg zero_algcreal.
Proof. by rewrite [0]piE. Qed.

Lemma sub_pi x y : \pi_alg x - \pi_alg y
  = \pi_alg (add_algcreal x (opp_algcreal y)).
Proof. by rewrite [_ - _]piE. Qed.

Lemma mul_algC : commutative mul_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrC subrr normr0.
Qed.

Lemma mul_algA : associative mul_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrA subrr normr0.
Qed.

Lemma mul_1alg : left_id one_alg mul_alg.
Proof. by elim/quotW=> x; rewrite piE -equiv_alg /= mul_1creal. Qed.

Lemma mul_alg_addl : left_distributive mul_alg add_alg.
Proof.
elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrDl subrr normr0.
Qed.

Arguments neq_creal_cst {F x y}.
Prenex Implicits neq_creal_cst.

Lemma nonzero1_alg : one_alg != zero_alg.
Proof. by rewrite piE -(rwP neq_algcrealP) (rwP neq_creal_cst) oner_eq0. Qed.

HB.instance Definition _ := GRing.Zmodule_isComRing.Build alg
  mul_algA mul_algC mul_1alg mul_alg_addl nonzero1_alg.
HB.instance Definition _ := GRing.ComRing.on alg.

Lemma mul_pi x y : \pi_alg x * \pi_alg y
  = \pi_alg (mul_algcreal x y).
Proof. by rewrite [_ * _]piE. Qed.

Lemma oneE : 1 = \pi_alg one_algcreal.
Proof. by rewrite [1]piE. Qed.

Lemma mul_Valg (x : alg) : x != zero_alg -> mul_alg (inv_alg x) x = one_alg.
Proof.
elim/quotW: x=> x; rewrite piE -(rwP neq_algcrealP) /= => x_neq0.
apply/eqP; rewrite piE; apply/eq_algcrealP; rewrite /= /inv_algcreal.
case: eq_algcreal_dec=> [/(_ x_neq0) //|/= x_neq0'].
apply: eq_crealP; exists_big_modulus m F.
  by move=> * /=; rewrite mulVf ?subrr ?normr0 ?creal_neq0_always.
by close.
Qed.

Lemma inv_alg0 : inv_alg zero_alg = zero_alg.
Proof.
rewrite !piE -equiv_alg /= /inv_algcreal.
by case: eq_algcreal_dec=> //= zero_neq0; move: (eq_creal_refl zero_neq0).
Qed.

Lemma to_alg_additive : additive to_alg.
Proof.
move=> x y /=; rewrite !piE/= -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0.
Qed.

HB.instance Definition _ :=
  GRing.isAdditive.Build F alg to_alg to_alg_additive.

Lemma to_alg_multiplicative : multiplicative to_alg.
Proof.
split=> [x y |] //; rewrite !piE -equiv_alg.
by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0.
Qed.

HB.instance Definition _ :=
  GRing.isMultiplicative.Build F alg to_alg to_alg_multiplicative.

Lemma expn_pi (x : algcreal) (n : nat) :
  (\pi_alg x) ^+ n = \pi_alg (exp_algcreal x n).
Proof.
rewrite /exp_algcreal; case: n=> [|n]; first by rewrite expr0 oneE.
rewrite exprS iteropS; elim: n=> /= [|n ihn]; rewrite ?expr0 ?mulr1 //.
by rewrite exprS ihn mul_pi.
Qed.

Lemma horner_pi (p : {poly F}) (x : algcreal) :
  (p ^ to_alg).[\pi_alg x] = \pi_alg (horner_algcreal p x).
Proof.
rewrite horner_coef /horner_algcreal size_map_poly.
apply: (big_ind2 (fun x y => x = \pi_alg y)).
+ by rewrite zeroE.
+ by move=> u u' v v' -> ->; rewrite [_ + _]piE.
by move=> i /= _; rewrite expn_pi coef_map /= [_ * _]piE.
Qed.

(* Defining annihilating polynomials for algebraics *)
Definition annul_alg : alg -> {poly F} := locked (annul_creal \o repr).

Lemma root_annul_algcreal (x : algcreal) : ((annul_alg (\pi x)).[x] == 0)%CR.
Proof. by unlock annul_alg; rewrite /= -pi_algK root_annul_creal. Qed.

Lemma root_annul_alg (x : alg) : root ((annul_alg x) ^ to_alg) x.
Proof.
apply/rootP; rewrite -[x]reprK horner_pi /= zeroE -equiv_alg.
by rewrite horner_algcrealE root_annul_algcreal.
Qed.

Lemma monic_annul_alg (x : alg) : annul_alg x \is monic.
Proof. by unlock annul_alg; rewrite monic_annul_creal. Qed.

Lemma annul_alg_neq0 (x : alg) : annul_alg x != 0.
Proof. by rewrite monic_neq0 ?monic_annul_alg. Qed.

HB.instance Definition _ := GRing.ComRing_isField.Build alg mul_Valg inv_alg0.

Lemma inv_pi x : (\pi_alg x)^-1  = \pi_alg (inv_algcreal x).
Proof. by rewrite [_^-1]piE. Qed.

Lemma div_pi x y : \pi_alg x / \pi_alg y
  = \pi_alg (mul_algcreal x (inv_algcreal y)).
Proof. by rewrite [_ / _]piE. Qed.

Definition lt_alg := lift_fun2 alg lt_algcreal.
Definition le_alg := lift_fun2 alg le_algcreal.

Lemma lt_alg_pi : {mono \pi_alg : x y / lt_algcreal x y >-> lt_alg x y}.
Proof.
move=> x y; unlock lt_alg; rewrite /lt_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !pi_algK.
Qed.

Canonical lt_alg_pi_mono := PiMono2 lt_alg_pi.

Lemma le_alg_pi : {mono \pi_alg : x y / le_algcreal x y >-> le_alg x y}.
Proof.
move=> x y; unlock le_alg; rewrite /le_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !pi_algK.
Qed.

Canonical le_alg_pi_mono := PiMono2 le_alg_pi.

Definition norm_alg := lift_op1 alg norm_algcreal.

Lemma norm_alg_pi : {morph \pi_alg : x / norm_algcreal x >-> norm_alg x}.
Proof.
move=> x; unlock norm_alg; rewrite /norm_algcreal /le_algcreal.
by do 2!case: ltVge_algcreal_dec=> //=; rewrite !(pi_opp, pi_algK, reprK).
Qed.

Canonical norm_alg_pi_morph := PiMorph1 norm_alg_pi.

Lemma add_alg_gt0 x y : lt_alg zero_alg x -> lt_alg zero_alg y ->
  lt_alg zero_alg (x + y).
Proof.
rewrite -[x]reprK -[y]reprK !piE -!(rwP lt_algcrealP).
move=> x_gt0 y_gt0; pose_big_enough i.
  apply: (@lt_crealP _ (diff x_gt0 + diff y_gt0) i i) => //.
    by rewrite addr_gt0 ?diff_gt0.
  by rewrite /= add0r lerD // ?diff0P.
by close.
Qed.

Lemma mul_alg_gt0 x y : lt_alg zero_alg x -> lt_alg zero_alg y ->
  lt_alg zero_alg (x * y).
Proof.
rewrite -[x]reprK -[y]reprK !piE -!(rwP lt_algcrealP).
move=> x_gt0 y_gt0; pose_big_enough i.
  apply: (@lt_crealP _ (diff x_gt0 * diff y_gt0) i i) => //.
    by rewrite pmulr_rgt0 ?diff_gt0.
  rewrite /= add0r (le_trans (_ : _ <= diff x_gt0 * (repr y) i)) //.
    by rewrite ler_wpM2l ?(ltW (diff_gt0 _)) // diff0P.
  by rewrite ler_wpM2r ?diff0P ?ltW ?creal_gt0_always.
by close.
Qed.

Lemma gt0_alg_nlt0 x : lt_alg zero_alg x -> ~~ lt_alg x zero_alg.
Proof.
rewrite -[x]reprK !piE -!(rwP lt_algcrealP, rwP le_algcrealP).
move=> hx; pose_big_enough i.
  apply: (@le_crealP _ i)=> j /= hj.
  by rewrite ltW // creal_gt0_always.
by close.
Qed.

Lemma sub_alg_gt0 x y : lt_alg zero_alg (y - x) = lt_alg x y.
Proof.
rewrite -[x]reprK -[y]reprK !piE; apply/lt_algcrealP/lt_algcrealP=> /= hxy.
  pose_big_enough i.
    apply: (@lt_crealP _ (diff hxy) i i); rewrite ?diff_gt0 //.
    by rewrite (monoLR (addNKr _) (lerD2l _)) addrC diff0P.
  by close.
pose_big_enough i.
  apply: (@lt_crealP _ (diff hxy) i i); rewrite ?diff_gt0 //.
  by rewrite (monoRL (addrK _) (lerD2r _)) add0r addrC diffP.
by close.
Qed.

Lemma lt0_alg_total (x : alg) : x != zero_alg ->
  lt_alg zero_alg x || lt_alg x zero_alg.
Proof.
rewrite -[x]reprK !piE => /neq_algcrealP /= x_neq0.
apply/orP; rewrite -!(rwP lt_algcrealP).
case/neq_creal_ltVgt: x_neq0=> /= [lt_x0|lt_0x]; [right|by left].
pose_big_enough i.
  by apply: (@lt_crealP _ (diff lt_x0) i i); rewrite ?diff_gt0 ?diffP.
by close.
Qed.

Lemma norm_algN x :  norm_alg (- x) = norm_alg x.
Proof.
rewrite -[x]reprK !piE /= -equiv_alg !norm_algcrealE; apply: eq_crealP.
exists_big_modulus m F=> [e i e_gt0 hi /=|].
  by rewrite normrN subrr normr0.
by close.
Qed.

Lemma ge0_norm_alg x : le_alg 0 x -> norm_alg x = x.
Proof. by rewrite -[x]reprK !piE /= /norm_algcreal => ->. Qed.

Lemma lt_alg0N (x : alg) : lt_alg 0 (- x) = lt_alg x 0.
Proof. by rewrite -sub0r sub_alg_gt0. Qed.

Lemma lt_alg00 : lt_alg zero_alg zero_alg = false.
Proof. by have /implyP := @gt0_alg_nlt0 0; case: lt_alg. Qed.

Lemma le_alg_def x y : le_alg x y = (x == y) || lt_alg x y.
Proof.
rewrite -[x]reprK -[y]reprK piE [lt_alg _ _]piE; apply/le_algcrealP/orP.
  move=> /le_creal_neqVlt [/eq_algcrealP/eqquotP/eqP-> //|lt_xy]; first by left.
  by right; apply/lt_algcrealP.
by move=> [/eqP/eqquotP/eq_algcrealP-> //| /lt_algcrealP /lt_crealW].
Qed.

HB.instance Definition _ := Num.IntegralDomain_isLtReal.Build alg
  add_alg_gt0 mul_alg_gt0 gt0_alg_nlt0 sub_alg_gt0 lt0_alg_total norm_algN
  ge0_norm_alg le_alg_def.

Lemma lt_pi x y : \pi_alg x < \pi y = lt_algcreal x y.
Proof. by rewrite [_ < _]lt_alg_pi. Qed.

Lemma le_pi x y : \pi_alg x <= \pi y = le_algcreal x y.
Proof. by rewrite [_ <= _]le_alg_pi. Qed.

Lemma norm_pi (x : algcreal) : `|\pi_alg x| = \pi (norm_algcreal x).
Proof. by rewrite [`|_|]piE. Qed.

Lemma lt_algP (x y : algcreal) : reflect (x < y)%CR (\pi_alg x < \pi y).
Proof. by rewrite lt_pi; apply: lt_algcrealP. Qed.
Arguments lt_algP {x y}.

Lemma le_algP (x y : algcreal) : reflect (x <= y)%CR (\pi_alg x <= \pi y).
Proof. by rewrite le_pi; apply: le_algcrealP. Qed.
Arguments le_algP {x y}.
Prenex Implicits lt_algP le_algP.

Lemma ler_to_alg : {mono to_alg : x y / x <= y}.
Proof.
apply: le_mono=> x y lt_xy; rewrite !piE -(rwP lt_algP).
by apply/lt_creal_cst; rewrite lt_xy.
Qed.

Lemma ltr_to_alg : {mono to_alg : x y / x < y}.
Proof. by apply: leW_mono; apply: ler_to_alg. Qed.

Lemma normr_to_alg : { morph to_alg : x / `|x| }.
Proof.
move=> x /=; have [] := ger0P; have [] := ger0P x%:RA;
  rewrite ?rmorph0 ?rmorphN ?oppr0 //=.
  by rewrite ltr_to_alg leNgt => ->.
by rewrite ler_to_alg ltNge => ->.
Qed.

Lemma inf_alg_proof x : {d | 0 < d & 0 < x -> (d%:RA < x)}.
Proof.
have [|] := lerP; first by exists 1.
elim/quotW: x=> x; rewrite zeroE=> /lt_algP /= x_gt0.
exists (diff x_gt0 / 2%:R); first by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
rewrite piE -(rwP lt_algP) /= => _; pose_big_enough i.
  apply: (@lt_crealP _ (diff x_gt0 / 2%:R) i i) => //.
    by rewrite pmulr_rgt0 ?gtr0E ?diff_gt0.
  by rewrite -[_ + _](splitf 2) diff0P.
by close.
Qed.

Definition inf_alg (x : alg) : F :=
  let: exist2 d _ _ := inf_alg_proof x in d.

Lemma inf_alg_gt0 x : 0 < inf_alg x.
Proof. by rewrite /inf_alg; case: inf_alg_proof. Qed.

Lemma inf_lt_alg x : 0 < x -> (inf_alg x)%:RA < x.
Proof. by rewrite /inf_alg=> x_gt0; case: inf_alg_proof=> d _ /(_ x_gt0). Qed.

Lemma approx_proof x e : {y | 0 < e -> `|x - y%:RA| < e}.
Proof.
elim/quotW:x => x; pose_big_enough i.
  exists (x i)=> e_gt0; rewrite (lt_trans _ (inf_lt_alg _)) //.
  rewrite !piE norm_pi -(rwP lt_algP) /= norm_algcrealE /=.
  pose_big_enough j.
    apply: (@lt_crealP  _ (inf_alg e / 2%:R) j j) => //.
      by rewrite pmulr_rgt0 ?gtr0E ?inf_alg_gt0.
    rewrite /= {2}[inf_alg e](splitf 2) /= lerD2r.
    by rewrite ltW // cauchymodP ?pmulr_rgt0 ?gtr0E ?inf_alg_gt0.
  by close.
by close.
Qed.

Definition approx := locked
  (fun (x : alg) (e : alg) => projT1 (approx_proof x e) : F).

Lemma approxP (x e e': alg) : 0 < e -> e <= e' -> `|x - (approx x e)%:RA| < e'.
Proof.
by unlock approx; case: approx_proof=> /= y hy /hy /lt_le_trans hy' /hy'.
Qed.

Lemma alg_archi : Num.archimedean_axiom alg.
Proof.
move=> x; move: {x}`|x| (normr_ge0 x) => x x_ge0.
pose a := approx x 1%:RA; exists (Num.bound (a + 1)).
have := @archi_boundP _ (a + 1); rewrite -ltr_to_alg rmorph_nat.
have := @approxP x _ _ ltr01 (lexx _); rewrite ltr_distl -/a => /andP [_ hxa].
rewrite -ler_to_alg rmorphD /= (le_trans _ (ltW hxa)) //.
by move=> /(_ isT) /(lt_trans _)->.
Qed.

HB.instance Definition _ := Num.NumDomain_bounded_isArchimedean.Build alg alg_archi.

(**************************************************************************)
(* At this stage, algebraics form an archimedian field.  We now build the *)
(* material to prove the intermediate value theorem.  We first prove a    *)
(* "weak version", which expresses that the extension {alg F} indeed      *)
(* contains solutions of the intermediate value probelem in F             *)
(**************************************************************************)

Notation "'Y" := 'X%:P.

Lemma weak_ivt (p : {poly F}) (a b : F) : a <= b -> p.[a] <= 0 <= p.[b] ->
  { x : alg | a%:RA <= x <= b%:RA & root (p ^ to_alg) x }.
Proof.
move=> le_ab; have [->  _|p_neq0] := eqVneq p 0.
  by exists a%:RA; rewrite ?lexx ?ler_to_alg // rmorph0 root0.
move=> /andP[pa_le0 pb_ge0]; apply/sig2W.
have hpab: p.[a] * p.[b] <= 0 by rewrite mulr_le0_ge0.
move=> {pa_le0 pb_ge0}; wlog monic_p : p hpab p_neq0 / p \is monic.
  set q := (lead_coef p) ^-1 *: p => /(_ q).
  rewrite !hornerZ mulrCA !mulrA -mulrA mulr_ge0_le0 //; last first.
    by rewrite (@exprn_even_ge0 _ 2).
  have mq: q \is monic by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
  rewrite monic_neq0 ?mq=> // [] [] // x hx hqx; exists x=> //.
  move: hqx; rewrite /q -mul_polyC rmorphM /= rootM map_polyC rootC.
  by rewrite fmorph_eq0 invr_eq0 lead_coef_eq0 (negPf p_neq0).
pose c := (a + b) / 2%:R; pose r := (b - a) / 2%:R.
have r_ge0 : 0 <= r by rewrite mulr_ge0 ?ger0E // subr_ge0.
have hab: ((c - r = a)%R * (c + r = b)%R)%type.
  rewrite -mulrDl -mulrBl opprD addrA addrK opprK.
  rewrite addrAC addrA [a + _ + _]addrAC subrr add0r.
  by rewrite !mulrDl -![_ + _](splitf 2).
have hp: p.[c - r] * p.[c + r] <= 0 by rewrite !hab.
pose x := AlgDom monic_p r_ge0 hp; exists (\pi_alg (to_algcreal x)).
  rewrite !piE; apply/andP; rewrite -!(rwP le_algP) /=.
  split;
  by do [ unlock to_algcreal=> /=; apply: (@le_crealP _ 0%N)=> /= j _;
          have := @to_algcreal_ofP p c r 0%N j r_ge0 isT;
          rewrite ler_distl /= expr0 divr1 !hab=> /andP []].
apply/rootP; rewrite horner_pi zeroE -equiv_alg horner_algcrealE /=.
by rewrite -(@to_algcrealP x); unlock to_algcreal.
Qed.

(* any sequence of algebraic can be expressed as a sequence of
polynomials in a unique algebraic *)
Lemma pet_alg_proof (s : seq alg) :
  { ap : alg * seq {poly F} |
    [forall i : 'I_(size s), (ap.2`_i ^ to_alg).[ap.1] == s`_i]
    &  size ap.2 = size s }.
Proof.
apply: sig2_eqW; elim: s; first by exists (0,[::])=> //; apply/forallP=> [] [].
move=> x s [[a sp] /forallP /= hs hsize].
have:= char0_PET _ (root_annul_alg a) _ (root_annul_alg x).
rewrite !annul_alg_neq0 => /(_ isT isT (char_num _)) /= [n [[p hp] [q hq]]].
exists (x *+ n - a, q :: [seq r \Po p | r <- sp]); last first.
  by rewrite /= size_map hsize.
apply/forallP=> /=; rewrite -add1n=> i; apply/eqP.
have [k->|l->] := splitP i; first by rewrite !ord1.
rewrite add1n /= (nth_map 0) ?hsize // map_comp_poly /=.
by rewrite horner_comp hp; apply/eqP.
Qed.

(****************************************************************************)
(* Given a sequence s of algebraics (seq {alg F})                           *)
(*        pet_alg == primitive algebraic                                    *)
(*   pet_alg_poly == sequence of polynomials such that when instanciated in *)
(*                   pet_alg gives back the sequence s (cf. pet_algK)       *)
(*                                                                          *)
(* Given a polynomial p on algebraic {poly {alg F}}                         *)
(*     pet_ground == bivariate polynomial such that when the inner          *)
(*                   variable ('Y) is instanciated in pet_alg gives back    *)
(*                   the polynomial p.                                      *)
(****************************************************************************)

Definition pet_alg s : alg :=
  let: exist2 (a, _) _ _ := pet_alg_proof s in a.
Definition pet_alg_poly s : seq {poly F}:=
  let: exist2 (_, sp) _ _ := pet_alg_proof s in sp.

Lemma size_pet_alg_poly s : size (pet_alg_poly s) = size s.
Proof. by unlock pet_alg_poly; case: pet_alg_proof. Qed.

Lemma pet_algK s i :
   ((pet_alg_poly s)`_i ^ to_alg).[pet_alg s] = s`_i.
Proof.
rewrite /pet_alg /pet_alg_poly; case: pet_alg_proof.
move=> [a sp] /= /forallP hs hsize; have [lt_is|le_si] := ltnP i (size s).
  by rewrite -[i]/(val (Ordinal lt_is)); apply/eqP; apply: hs.
by rewrite !nth_default ?hsize // rmorph0 horner0.
Qed.

Definition poly_ground := locked (fun (p : {poly alg}) =>
  swapXY (Poly (pet_alg_poly p)) : {poly {poly F}}).

Lemma sizeY_poly_ground p : sizeY (poly_ground p) = size p.
Proof.
unlock poly_ground; rewrite sizeYE swapXYK; have [->|p_neq0] := eqVneq p 0.
  apply/eqP; rewrite size_poly0 eqn_leq leq0n (leq_trans (size_Poly _)) //.
  by rewrite size_pet_alg_poly size_poly0.
rewrite (@PolyK _ 0) -?nth_last ?size_pet_alg_poly //.
have /eqP := (pet_algK p (size p).-1); apply: contraL=> /eqP->.
by rewrite rmorph0 horner0 -lead_coefE eq_sym lead_coef_eq0.
Qed.

Lemma poly_ground_eq0 p : (poly_ground p == 0) = (p == 0).
Proof. by rewrite -sizeY_eq0 sizeY_poly_ground size_poly_eq0. Qed.

Lemma poly_ground0 : poly_ground 0 = 0.
Proof. by apply/eqP; rewrite poly_ground_eq0. Qed.

Lemma poly_groundK p :
  ((poly_ground p) ^ (map_poly to_alg)).[(pet_alg p)%:P] = p.
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite poly_ground0 rmorph0 horner0.
unlock poly_ground; rewrite horner_polyC /eval /= swapXY_map swapXYK.
apply/polyP=> i /=; rewrite coef_map_id0 ?horner0 // coef_map /=.
by rewrite coef_Poly pet_algK.
Qed.

Lemma annul_from_alg_proof (p : {poly alg}) (q : {poly F}) :
  p != 0 -> q != 0 -> root (q ^ to_alg) (pet_alg p)
  -> {r | resultant (poly_ground p) (r ^ polyC) != 0
        & (r != 0) && (root (r ^ to_alg) (pet_alg p))}.
Proof.
move=> p_neq0; elim: (size q) {-2}q (leqnn (size q))=> {q} [|n ihn] q.
  by rewrite size_poly_leq0=> ->.
move=> size_q q_neq0 hq; apply/sig2_eqW.
have [|apq_neq0] :=
  eqVneq (resultant (poly_ground p) (q ^ polyC)) 0; last first.
  by exists q=> //; rewrite q_neq0.
move/eqP; rewrite resultant_eq0 ltn_neqAle eq_sym -coprimep_def.
move=> /andP[] /(Bezout_coprimepPn _ _) [].
+ by rewrite poly_ground_eq0.
+ by rewrite map_polyC_eq0.
move=> [u v] /and3P [] /andP [u_neq0 ltn_uq] v_neq0 ltn_vp hpq.
rewrite ?size_map_polyC in ltn_uq ltn_vp.
rewrite ?size_poly_gt0 in u_neq0 v_neq0.
pose a := pet_alg p.
have := erefl (size ((u * poly_ground p) ^ (map_poly to_alg)).[a%:P]).
rewrite {2}hpq !{1}rmorphM /= !{1}hornerM poly_groundK -map_poly_comp /=.
have /eq_map_poly-> : (map_poly to_alg) \o polyC =1 polyC \o to_alg.
  by move=> r /=; rewrite map_polyC.
rewrite map_poly_comp horner_map (rootP hq) mulr0 size_poly0.
move/eqP; rewrite size_poly_eq0 mulf_eq0 (negPf p_neq0) orbF.
pose u' : {poly F} := lead_coef (swapXY u).
have [/rootP u'a_eq0|u'a_neq0] := eqVneq (u' ^ to_alg).[a] 0; last first.
  rewrite horner_polyC -lead_coef_eq0 lead_coef_map_eq /=;
  by do ?rewrite swapXY_map /= lead_coef_map_eq /=
        ?map_poly_eq0 ?lead_coef_eq0 ?swapXY_eq0 ?(negPf u'a_neq0).
have u'_neq0 : u' != 0 by rewrite lead_coef_eq0 swapXY_eq0.
have size_u' : (size u' < size q)%N.
  by rewrite /u' (leq_ltn_trans (max_size_lead_coefXY _)) // sizeYE swapXYK.
move: u'a_eq0=> /ihn [] //; first by rewrite -ltnS (leq_trans size_u').
by move=> r; exists r.
Qed.

Definition annul_pet_alg (p : {poly alg}) : {poly F} :=
    if (p != 0) =P true is ReflectT p_neq0 then
      let: exist2 r _ _ :=
        annul_from_alg_proof p_neq0 (annul_alg_neq0 _) (root_annul_alg _) in r
      else 0.

Lemma root_annul_pet_alg p : root (annul_pet_alg p ^ to_alg) (pet_alg p).
Proof.
rewrite /annul_pet_alg; case: eqP=> /=; last by rewrite ?rmorph0 ?root0.
by move=> p_neq0; case: annul_from_alg_proof=> ? ? /andP[].
Qed.

Definition annul_from_alg p :=
  if (size (poly_ground p) == 1)%N then lead_coef (poly_ground p)
    else resultant (poly_ground p) (annul_pet_alg p ^ polyC).

Lemma annul_from_alg_neq0 p : p != 0 -> annul_from_alg p != 0.
Proof.
move=> p_neq0; rewrite /annul_from_alg.
case: ifP; first by rewrite lead_coef_eq0 poly_ground_eq0.
rewrite /annul_pet_alg; case: eqP p_neq0=> //= p_neq0 _.
by case: annul_from_alg_proof.
Qed.

Lemma annul_pet_alg_neq0 p : p != 0 -> annul_pet_alg p != 0.
Proof.
rewrite /annul_pet_alg; case: eqP=> /=; last by rewrite ?rmorph0 ?root0.
by move=> p_neq0; case: annul_from_alg_proof=> ? ? /andP[].
Qed.

End RealAlg.

Notation to_alg F := (@to_alg_def _ (Phant F)).
Notation "x %:RA" := (to_alg _ x)
  (at level 2, left associativity, format "x %:RA").

Lemma upper_nthrootVP (F : archiFieldType) (x : F) (i : nat) :
   0 < x -> (Num.bound (x ^-1) <= i)%N -> 2%:R ^- i < x.
Proof.
move=> x_gt0 hx; rewrite -ltf_pV2 -?topredE //= ?gtr0E //.
by rewrite invrK upper_nthrootP.
Qed.

Notation "{ 'alg'  F }" := (alg F).

Section AlgAlg.

Variable F : archiFieldType.

Local Open Scope ring_scope.

Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Local Notation "'Y" := 'X%:P.
Local Notation m0 := (fun _ => 0%N).

Definition approx2 (x : {alg {alg F}}) i :=
  approx (approx x (2%:R ^- i)) (2%:R ^- i).

Lemma asympt_approx2 x : { asympt e : i / `|(approx2 x i)%:RA%:RA - x| < e }.
Proof.
exists_big_modulus m {alg {alg F}}.
  move=> e i e_gt0 hi; rewrite distrC /approx2.
  rewrite (@split_dist_add _ (approx x (2%:R ^- i))%:RA) //.
    rewrite approxP ?gtr0E // ltW //.
    by rewrite upper_nthrootVP ?divrn_gt0 ?ltr_to_alg.
  rewrite (lt_trans _ (inf_lt_alg _)) ?divrn_gt0 //.
  rewrite -rmorphB -normr_to_alg ltr_to_alg approxP ?gtr0E // ltW //.
  by rewrite upper_nthrootVP ?divrn_gt0 ?inf_alg_gt0 ?ltr_to_alg.
by close.
Qed.

Lemma from_alg_crealP (x : {alg {alg F}}) : creal_axiom (approx2 x).
Proof.
exists_big_modulus m F.
  move=> e i j e_gt0 hi hj; rewrite -2!ltr_to_alg !normr_to_alg !rmorphB /=.
  rewrite (@split_dist_add _ x) // ?[`|_ - _%:RA|]distrC;
  by rewrite (@asympt1modP _ _ (asympt_approx2 x)) ?divrn_gt0 ?ltr_to_alg.
by close.
Qed.

Definition from_alg_creal := locked (fun x => CReal (from_alg_crealP x)).

Lemma to_alg_crealP (x : creal F) :  creal_axiom (fun i => to_alg F (x i)).
Proof.
exists_big_modulus m (alg F).
  move=> e i j e_gt0 hi hj.
  rewrite -rmorphB -normr_to_alg (lt_trans _ (inf_lt_alg _)) //.
  by rewrite ltr_to_alg cauchymodP ?inf_alg_gt0.
by close.
Qed.
Definition to_alg_creal x := CReal (to_alg_crealP x).

Lemma horner_to_alg_creal p x :
  ((p ^ to_alg F).[to_alg_creal x] == to_alg_creal p.[x])%CR.
Proof.
by apply: eq_crealP; exists m0=> * /=; rewrite horner_map subrr normr0.
Qed.

Lemma neq_to_alg_creal x y :
  (to_alg_creal x != to_alg_creal y)%CR <-> (x != y)%CR.
Proof.
split=> neq_xy.
  pose_big_enough i.
    apply: (@neq_crealP _ (inf_alg (lbound neq_xy)) i i) => //.
      by rewrite inf_alg_gt0.
    rewrite -ler_to_alg normr_to_alg rmorphB /= ltW //.
    by rewrite (lt_le_trans (inf_lt_alg _)) ?lbound_gt0 ?lboundP.
  by close.
pose_big_enough i.
  apply: (@neq_crealP _ (lbound neq_xy)%:RA i i) => //.
    by rewrite ltr_to_alg lbound_gt0.
  by rewrite -rmorphB -normr_to_alg ler_to_alg lboundP.
by close.
Qed.

Lemma eq_to_alg_creal x y :
  (to_alg_creal x == to_alg_creal y)%CR -> (x == y)%CR.
Proof. by move=> hxy /neq_to_alg_creal. Qed.

Lemma to_alg_creal0 : (to_alg_creal 0 == 0)%CR.
Proof. by apply: eq_crealP; exists m0=> * /=; rewrite subrr normr0. Qed.

Import Setoid.

Add Morphism to_alg_creal
 with signature (@eq_creal _) ==> (@eq_creal _) as to_alg_creal_morph.
Proof. by move=> x y hxy /neq_to_alg_creal. Qed.
Global Existing Instance to_alg_creal_morph_Proper.

Lemma to_alg_creal_repr (x : {alg F}) : (to_alg_creal (repr x) == x%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg F}.
  move=> e i e_gt0 hi /=; rewrite (le_lt_trans _ (inf_lt_alg _)) //.
  rewrite -{2}[x]reprK !piE norm_pi.
  rewrite -(rwP (le_algP _ _)) norm_algcrealE /=; pose_big_enough j.
    apply: (@le_crealP _ j)=> k hk /=.
    by rewrite ltW // cauchymodP ?inf_alg_gt0.
  by close.
by close.
Qed.

Local Open Scope quotient_scope.

Lemma cst_pi (x : algcreal F) : ((\pi_{alg F} x)%:CR == to_alg_creal x)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg F}.
  move=> e i e_gt0 hi /=; rewrite (lt_trans _ (inf_lt_alg _)) //.
  rewrite !piE norm_pi /= -(rwP (lt_algP _ _)) norm_algcrealE /=.
  pose_big_enough j.
    apply: (@lt_crealP _ (inf_alg e / 2%:R) j j) => //.
      by rewrite ?divrn_gt0 ?inf_alg_gt0.
    rewrite /= {2}[inf_alg _](splitf 2) lerD2r ltW // distrC.
    by rewrite cauchymodP ?divrn_gt0 ?inf_alg_gt0.
  by close.
by close.
Qed.

End AlgAlg.

Section AlgAlgAlg.

Variable F : archiFieldType.

Local Open Scope ring_scope.

Local Notation "p ^ f" := (map_poly f p) : ring_scope.
Local Notation "'Y" := 'X%:P.

Lemma from_alg_crealK (x : {alg {alg F}}) :
  (to_alg_creal (to_alg_creal (from_alg_creal x)) == x%:CR)%CR.
Proof.
apply: eq_crealP; exists_big_modulus m {alg {alg F}}.
  move=> e i e_gt0 hi; unlock from_alg_creal=> /=.
  by rewrite (@asympt1modP _ _ (asympt_approx2 x)).
by close.
Qed.

Lemma root_annul_from_alg_creal (x : {alg {alg F}}) :
  ((annul_from_alg (annul_alg x)).[from_alg_creal x] == 0)%CR.
Proof.
do 2!apply: eq_to_alg_creal.
rewrite -!horner_to_alg_creal from_alg_crealK !to_alg_creal0.
rewrite horner_creal_cst; apply/eq_creal_cst; rewrite -rootE.
rewrite /annul_from_alg; have [/size_poly1P [c c_neq0 hc]|sp_neq1] := boolP (_ == _).
  set p := _ ^ _; suff ->: p = (annul_alg x) ^ to_alg _ by apply: root_annul_alg.
  congr (_ ^ _); rewrite -{2}[annul_alg x]poly_groundK /=.
  by rewrite !hc lead_coefC map_polyC /= hornerC.
have [||[u v] /= [hu hv] hpq] := @resultant_in_ideal _
  (poly_ground (annul_alg x)) (annul_pet_alg (annul_alg x) ^ polyC).
+ rewrite ltn_neqAle eq_sym sp_neq1 //= lt0n size_poly_eq0.
  by rewrite poly_ground_eq0 annul_alg_neq0.
+ rewrite size_map_polyC -(size_map_poly (to_alg _)) /=.
  rewrite (root_size_gt1 _ (root_annul_pet_alg _)) //.
  by rewrite map_poly_eq0 annul_pet_alg_neq0 ?annul_alg_neq0.
move: hpq=> /(f_equal (map_poly (map_poly (to_alg _)))).
rewrite map_polyC /= => /(f_equal (eval (pet_alg (annul_alg x))%:P)).
rewrite {1}/eval hornerC !rmorphD !{1}rmorphM /= /eval /= => ->.
rewrite -map_poly_comp /=.
have /eq_map_poly->: (map_poly (@to_alg F)) \o polyC =1 polyC \o (@to_alg F).
  by move=> r /=; rewrite map_polyC.
rewrite map_poly_comp horner_map /= (rootP (root_annul_pet_alg _)) mulr0 addr0.
by rewrite rmorphM /= rootM orbC poly_groundK root_annul_alg.
Qed.

Lemma annul_alg_from_alg_creal_neq0 (x : {alg {alg F}}) :
  annul_from_alg (annul_alg x) != 0.
Proof. by rewrite annul_from_alg_neq0 ?annul_alg_neq0. Qed.

Definition from_alg_algcreal x :=
  AlgCRealOf (@annul_alg_from_alg_creal_neq0 x) (@root_annul_from_alg_creal x).

Definition from_alg : {alg {alg F}} -> {alg F} :=
  locked (\pi%qT \o from_alg_algcreal).

Lemma from_algK : cancel from_alg (to_alg _).
Proof.
move=> x; unlock from_alg; rewrite -{2}[x]reprK piE -equiv_alg /= cst_pi.
by apply: eq_to_alg_creal; rewrite from_alg_crealK to_alg_creal_repr.
Qed.

Lemma ivt (p : {poly (alg F)}) (a b : alg F) : a <= b ->
  p.[a] <= 0 <= p.[b] -> exists2 x : alg F, a <= x <= b & root p x.
Proof.
move=> le_ab hp; have [x /andP [hax hxb]] := @weak_ivt _ _ _ _ le_ab hp.
rewrite -[x]from_algK fmorph_root=> rpx; exists (from_alg x)=> //.
by rewrite -ler_to_alg from_algK hax -ler_to_alg from_algK.
Qed.

HB.instance Definition _ := Num.RealField_isClosed.Build (alg F) ivt.

End AlgAlgAlg.
End RealAlg.
HB.export RealAlg.

Notation "{ 'realclosure'  F }" := (RealAlg.alg F).

Notation annul_realalg := RealAlg.annul_alg.
Notation realalg_of F := (@RealAlg.to_alg_def _ (Phant F)).
Notation "x %:RA" := (realalg_of x)
  (at level 2, left associativity, format "x %:RA").

HB.instance Definition _ (F : archiFieldType) := GRing.RMorphism.on (to_alg F).

Section RealClosureTheory.

Variable F : archiFieldType.
Notation R := {realclosure F}.

Local Notation "p ^ f" := (map_poly f p) : ring_scope.

Lemma root_annul_realalg (x : R) : root ((annul_realalg x) ^ realalg_of _) x.
Proof. exact: RealAlg.root_annul_alg. Qed.
Hint Resolve root_annul_realalg : core.

Lemma monic_annul_realalg (x : R) : annul_realalg x \is monic.
Proof. exact: RealAlg.monic_annul_alg. Qed.
Hint Resolve monic_annul_realalg : core.

Lemma annul_realalg_neq0 (x : R) : annul_realalg x != 0%R.
Proof. exact: RealAlg.annul_alg_neq0. Qed.
Hint Resolve annul_realalg_neq0 : core.

Lemma realalg_algebraic : integralRange (realalg_of F).
Proof. by move=> x; exists (annul_realalg x). Qed.

End RealClosureTheory.

Definition realalg := {realclosure rat}.
HB.instance Definition _ := Num.RealClosedField.on realalg.

Module RatRealAlg.
HB.instance Definition _ := Countable.copy (RealAlg.algdom rat)
  (pcan_type (@RealAlg.encode_algdomK rat)).
#[export] HB.instance Definition _ := Countable.on realalg.
End RatRealAlg.
HB.export RatRealAlg.