1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
From Coq Require Import BinInt Zify.
From mathcomp Require Import all_ssreflect zify ssrZ.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* FIXME: dual instances are not exported *)
Import Order.Theory.
Local Delimit Scope Z_scope with Z.
Implicit Types (b : bool) (n m : nat).
(******************************************************************************)
(* ssrbool *)
(******************************************************************************)
Fact test_andb b1 b2 : b1 (+) b2 = Bool.eqb b1 (~~ b2).
Proof. zify_op; reflexivity. Qed.
Fact test_eqb b1 b2 : eqb b1 b2 = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_bool b1 b2 : (b1 == b2) = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_le_bool b1 b2 : (b1 <= b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_ge_bool b1 b2 : (b1 >= b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_bool (b1 b2 : bool^d) : (b1 <=^d b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_ge_bool (b1 b2 : bool^d) : (b1 >=^d b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_bool b1 b2 : (b1 < b2)%O = ~~ b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_gt_bool b1 b2 : (b1 > b2)%O = ~~ b2 && b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_bool (b1 b2 : bool^d) : (b1 <^d b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_gt_bool (b1 b2 : bool^d) : (b1 >^d b2)%O = b2 && ~~ b1.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_min_bool b1 b2 : Order.min b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_max_bool b1 b2 : Order.max b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_min_bool (b1 b2 : bool^d) : Order.dual_min b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_max_bool (b1 b2 : bool^d) : Order.dual_max b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.
(* FIXME: meet and join below are broken but the tests pass because they are *)
(* convertible anyway. *)
Fact test_meet_bool b1 b2 : (b1 `&` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_join_bool b1 b2 : (b1 `|` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_bool (b1 b2 : bool^d) : (b1 `&^d` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_bool (b1 b2 : bool^d) : (b1 `|^d` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_bool : \bot%O = false :> bool.
Proof. zify_op; reflexivity. Qed.
Fact test_top_bool : \top%O = true :> bool.
Proof. zify_op; reflexivity. Qed.
(* FIXME: Notations 0^d and 1^d are broken. *)
Fact test_dual_bottom_bool : \bot%O = true :> bool^d.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_top_bool : \top%O = false :> bool^d.
Proof. zify_op; reflexivity. Qed.
Fact test_sub_bool b1 b2 : (b1 `\` b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.
Fact test_compl_bool b : (~` b)%O = ~~ b.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* ssrnat *)
(******************************************************************************)
Fact test_eqn n m : eqn n m = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_nat n m : (n == m) = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_addn_rec n m : Z.of_nat (n + m)%Nrec = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_addn n m : Z.of_nat (n + m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_addn_trec n m :
Z.of_nat (NatTrec.add n m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_subn_rec n m :
Z.of_nat (n - m)%Nrec = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_subn n m :
Z.of_nat (n - m) = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_muln_rec n m : Z.of_nat (n * m)%Nrec = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_muln n m : Z.of_nat (n * m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_muln_trec n m :
Z.of_nat (NatTrec.mul n m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_leq n m : (n <= m) = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: geq, ltn, gtn *)
Fact test_minn n m : Z.of_nat (minn n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_maxn n m : Z.of_nat (maxn n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_bool b : Z.of_nat (nat_of_bool b) = Z.b2z b.
Proof. zify_op; reflexivity. Qed.
Fact test_double n : Z.of_nat n.*2 = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_double_trec n : Z.of_nat (NatTrec.double n) = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_expn n m : Z.of_nat (n ^ m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_expn_trec n m :
Z.of_nat (NatTrec.exp n m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_N (n m : N) : (n == m) = (Z.of_N n =? Z.of_N m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_pos p : Z.of_nat (nat_of_pos p) = Z.pos p.
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_bin (n : N) : Z.of_nat (nat_of_bin n) = Z.of_N n.
Proof. zify_op; reflexivity. Qed.
Fact test_pos_of_nat n m :
Z.pos (pos_of_nat n m) = Z.max 1 (Z.of_nat n * 2 - Z.of_nat m + 1).
Proof. zify_op; reflexivity. Qed.
Fact test_bin_of_nat n : Z.of_N (bin_of_nat n) = Z.of_nat n.
Proof. zify_op; reflexivity. Qed.
Fact test_le_nat n m : (n <= m)%O = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_ge_nat n m : (n >= m)%O = (Z.of_nat m <=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_nat (n m : nat^d) :
(n <=^d m)%O = (Z.of_nat n >=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_ge_nat (n m : nat^d) :
(n >=^d m)%O = (Z.of_nat m >=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_nat n m : (n < m)%O = (Z.of_nat n <? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_gt_nat n m : (n > m)%O = (Z.of_nat m <? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_nat (n m : nat^d) :
(n <^d m)%O = (Z.of_nat n >? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_gt_nat (n m : nat^d) :
(n >^d m)%O = (Z.of_nat m >? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_min_nat n m :
Z.of_nat (Order.min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_max_nat n m :
Z.of_nat (Order.max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_min_nat (n m : nat^d) :
Z.of_nat (Order.dual_min n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_max_nat (n m : nat^d) :
Z.of_nat (Order.dual_max n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_meet_nat n m : Z.of_nat (n `&` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_join_nat n m : Z.of_nat (n `|` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_nat (n m : nat^d) :
Z.of_nat (n `&^d` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_nat (n m : nat^d) :
Z.of_nat (n `|^d` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_nat : Z.of_nat \bot%O = 0%Z.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* div (divn, modn, dvdn, gcdn, lcmn, and coprime) *)
(******************************************************************************)
Notation divZ := zify_ssreflect.SsreflectZifyInstances.divZ.
Notation modZ := zify_ssreflect.SsreflectZifyInstances.modZ.
Fact test_divn n m : Z.of_nat (divn n m) = divZ (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_modn n m : Z.of_nat (modn n m) = modZ (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dvdn n m : dvdn n m = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_odd n : odd n = (modZ (Z.of_nat n) 2 =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_odd_trec n : NatTrec.odd n = (modZ (Z.of_nat n) 2 =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_half n : Z.of_nat (half n) = divZ (Z.of_nat n) 2.
Proof. zify_op; reflexivity. Qed.
Fact test_uphalf n : Z.of_nat (uphalf n) = divZ (Z.of_nat n + 1) 2.
Proof. zify_op; reflexivity. Qed.
Fact test_gcdn n m : Z.of_nat (gcdn n m) = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_lcmn n m : Z.of_nat (lcmn n m) = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_coprime n m : coprime n m = (Z.gcd (Z.of_nat n) (Z.of_nat m) =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* natdvd in order.v *)
(******************************************************************************)
Fact test_le_natdvd (n m : natdvd) :
(n <= m)%O = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_natdvd (n m : natdvd) :
(n < m)%O =
~~ (Z.of_nat m =? Z.of_nat n)%Z && (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_natdvd (n m : natdvd^d) :
(m <= n)%O = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_natdvd (n m : natdvd^d) :
(m < n)%O =
~~ (Z.of_nat m =? Z.of_nat n)%Z && (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_meet_natdvd (n m : natdvd) :
Z.of_nat (n `&` m)%O = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_join_natdvd (n m : natdvd) :
Z.of_nat (n `|` m)%O = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_natdvd (n m : natdvd^d) :
Z.of_nat (n `&` m)%O = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_natdvd (n m : natdvd^d) :
Z.of_nat (n `|` m)%O = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_natdvd : Z.of_nat (\bot%O : natdvd) = 1%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_top_natdvd : Z.of_nat (\top%O : natdvd) = 0%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_bottom_natdvd : Z.of_nat (\bot^d%O : natdvd^d) = 0%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_top_natdvd : Z.of_nat (\top^d%O : natdvd^d) = 1%Z.
Proof. zify_op; reflexivity. Qed.
|