File: mgl_pde.cpp

package info (click to toggle)
mathgl 1.9-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 17,496 kB
  • ctags: 3,647
  • sloc: cpp: 36,386; sh: 10,198; ansic: 1,093; makefile: 325; pascal: 52; python: 35
file content (525 lines) | stat: -rw-r--r-- 23,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/***************************************************************************
 * mgl_pde.cpp is part of Math Graphic Library
 * Copyright (C) 2007 Alexey Balakin <balakin@appl.sci-nnov.ru>            *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "mgl/mgl_eval.h"
#include "mgl/mgl_data.h"
#include "mgl/mgl.h"
#include "mgl/mgl_c.h"
#include "mgl/mgl_f.h"
#include <complex>
#define dual	std::complex<double>
#define GAMMA	0.1
#ifndef NO_GSL
#include <gsl/gsl_fft_complex.h>
#endif
//-----------------------------------------------------------------------------
// Solving equation du/dz = ham(p,q,x,y,z,|u|)[u] where p=d/dx, q=d/dy. At this moment simplified form of ham is supported: ham = f(p,q,z) + g(x,y,z,'u'), where variable 'u'=|u| (for allowing solve nonlinear problems). You may specify imaginary part like ham = p^2 + i*x*(x>0) but only if dependence on variable 'i' is linear (i.e. ham = hre+i*him).
mglData mglPDE(const char *ham, const mglData &ini_re, const mglData &ini_im, mglPoint Min, mglPoint Max, mreal dz, mreal k0)
{
	mglData res;
	int nx=ini_re.nx, ny=ini_re.ny;
	int nz = int((Max.z-Min.z)/dz)+1;
	if(nx<2 || nz<2 || Max.x==Min.x)	return res;	// Too small data
	if(ini_im.nx*ini_im.ny != nx*ny)	return res;	// Wrong dimensions
	res.Create(nz, nx, ny);
#ifndef NO_GSL
	mglFormula eqs(ham);
	dual *a = new dual[4*nx*ny], h, h0, h1, h2;	// Add "damping" area
	memset(a,0,4*nx*ny*sizeof(dual));
	register int i,j,k,i0;
	for(j=0;j<ny;j++)	for(i=0;i<nx;i++)	// Initial conditions
	{
		i0 = i+nx/2+2*ny*(j+ny/2);
		a[i0] = dual(ini_re.a[i+nx*j], ini_im.a[i+nx*j]);
		res.a[nz*(i+nx*j)] = abs(a[i0]);
	}
	mreal dx = (Max.x-Min.x)/(nx-1), dy = ny>1?(Max.y-Min.y)/(ny-1):0;
	mreal dp = M_PI/(Max.x-Min.x)/k0, dq = M_PI/(Max.y-Min.y)/k0;
	mreal var[MGL_VS], xs=(Min.x+Max.x)/2, ys=(Min.y+Max.y)/2, tmp;
	double xx = Min.x - dx*nx/2, yy = Min.x - dy*ny/2;
	double ff = ny>1?4*nx*ny:2*nx, dd = k0*dz;
	memset(var,0,MGL_VS*sizeof(mreal));
	// prepare fft. NOTE: slow procedures due to unknown nx, ny.
	gsl_fft_complex_wavetable *wtx = gsl_fft_complex_wavetable_alloc(2*nx);
	gsl_fft_complex_workspace *wsx = gsl_fft_complex_workspace_alloc(2*nx);
	gsl_fft_complex_wavetable *wty = gsl_fft_complex_wavetable_alloc(2*ny);
	gsl_fft_complex_workspace *wsy = gsl_fft_complex_workspace_alloc(2*ny);
	for(k=1;k<nz;k++)
	{
		var['z'-'a'] = Min.z+dz*k;
		for(j=0;j<2*ny;j++)	for(i=0;i<2*nx;i++)	// step 1
		{
			i0 = i+2*nx*j;
			var['x'-'a'] = xx+dx*i;		var['p'-'a'] = 0;
			var['y'-'a'] = yy+dy*j;		var['q'-'a'] = 0;
			var['u'-'a'] = abs(a[i0]);
			h = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			tmp = 0;
			if(i<nx/2)		tmp += GAMMA*mgl_ipow((nx/2-i)/(nx/2.),2);
			if(i>3*nx/2)	tmp += GAMMA*mgl_ipow((i-3*nx/2-1)/(nx/2.),2);
			if(j<ny/2)		tmp += GAMMA*mgl_ipow((ny/2-j)/(ny/2.),2);
			if(j>3*ny/2)	tmp += GAMMA*mgl_ipow((j-3*ny/2-1)/(ny/2.),2);
			a[i0] *= exp(h)*exp(-double(tmp*dz));
		}
		// "central" point
		var['x'-'a'] = xs;	var['y'-'a'] = ys;
		var['u'-'a'] = var['p'-'a'] = var['q'-'a'] = 0;
		h0 = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
		// do fft
		for(i=0;i<ny;i++)
			gsl_fft_complex_transform((double *)(a+i*2*nx), 1, 2*nx, wtx, wsx, forward);
		if(ny>1) for(j=0;j<2*ny;j++)	for(i=0;i<2*nx;i++)	// step 3/2
		{
			i0 = i+2*nx*j;
			var['x'-'a'] = xs;			var['p'-'a'] = 0;
			var['y'-'a'] = yy+dy*j;		var['q'-'a'] = 0;
			h1 = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			var['x'-'a'] = xs;			var['p'-'a'] = dp*(i<nx ? i:2*nx-i);
			var['y'-'a'] = ys;			var['q'-'a'] = 0;
			h2 = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			var['x'-'a'] = xs;			var['p'-'a'] = dp*(i<nx ? i:2*nx-i);
			var['y'-'a'] = yy+dy*j;		var['q'-'a'] = 0;
			h = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			a[i0] *= exp(h-h1-h2+h0);
		}
		if(ny>1) for(i=0;i<nx;i++)
			gsl_fft_complex_transform((double *)(a+i), 2*nx, 2*ny, wty, wsy, forward);
		for(j=0;j<2*ny;j++)	for(i=0;i<2*nx;i++)	// step 2
		{
			i0 = i+2*nx*j;
			var['x'-'a'] = xs;			var['p'-'a'] = dp*(i<nx ? i:2*nx-i);
			var['y'-'a'] = ys;			var['q'-'a'] = dq*(j<ny ? j:2*ny-j);
			h = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			a[i0] *= exp(h-h0)/ff;
		}
		// do ifft
		if(ny>1) for(i=0;i<nx;i++)
			gsl_fft_complex_transform((double *)(a+i), 2*nx, 2*ny, wty, wsy, backward);
		if(ny>1) for(j=0;j<2*ny;j++)	for(i=0;i<2*nx;i++)	// step 3/2
		{
			i0 = i+2*nx*j;
			var['x'-'a'] = xx+dx*i;		var['p'-'a'] = 0;
			var['y'-'a'] = ys;			var['q'-'a'] = 0;
			h1 = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			var['x'-'a'] = xs;			var['p'-'a'] = 0;
			var['y'-'a'] = ys;			var['q'-'a'] = dq*(j<ny ? j:2*ny-j);
			h2 = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			var['x'-'a'] = xx+dx*i;		var['p'-'a'] = 0;
			var['y'-'a'] = ys;			var['q'-'a'] = dq*(j<ny ? j:2*ny-j);
			h = dual(-eqs.CalcD(var,'i'), eqs.Calc(var))*dd;
			a[i0] *= exp(h-h1-h2+h0);
		}
		for(i=0;i<ny;i++)
			gsl_fft_complex_transform((double *)(a+2*i*nx), 1, 2*nx, wtx, wsx, backward);
		// save result
		for(i=0;i<nx;i++)	for(j=0;j<ny;j++)
			res.a[k+nz*(i+nx*j)] = abs(a[i+nx/2+2*ny*(j+ny/2)]);
	}
	gsl_fft_complex_workspace_free(wsx);
	gsl_fft_complex_wavetable_free(wtx);
	gsl_fft_complex_workspace_free(wsy);
	gsl_fft_complex_wavetable_free(wty);
	delete []a;
#endif
	return res;
}
//-----------------------------------------------------------------------------
// Solve GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr where ham = ham(x,y,z,p,q,v,t) and px=p, py=q, pz=v. The starting point (at t=0) is r0, p0. Result is array of {x,y,z,p,q,v,t}
mglData mglRay(const char *ham, mglPoint r0, mglPoint p0, mreal dt, mreal tmax)
{
	mglData res;
	if(tmax<dt)	return res;	// nothing to do
	int nt = int(tmax/dt)+1;
	mreal x[6], k1[6], k2[6], k3[6], hh=dt/2;
	res.Create(7,nt);	res.SetColumnId("xyzpqvt");
#ifndef NO_GSL
	mglFormula eqs(ham);
	// initial conditions
	x[0] = res.a[0] = r0.x;	x[1] = res.a[1] = r0.y;	x[2] = res.a[2] = r0.z;
	x[3] = res.a[3] = p0.x;	x[4] = res.a[4] = p0.y;	x[5] = res.a[5] = p0.z;
	res.a[6] = 0;
	// Runge Kutta scheme of 4th order
	char v[7]="xyzpqv";
	mreal var[MGL_VS];	memset(var,0,MGL_VS*sizeof(mreal));
	register int i,k;
	for(k=1;k<nt;k++)
	{
		// 		md->H(cy,k1);
		var['t'-'a']=k*dt;		for(i=0;i<6;i++)	var[v[i]-'a'] = x[i];
		k1[0] = eqs.CalcD(var,'p');	k1[3] = -eqs.CalcD(var,'x');
		k1[1] = eqs.CalcD(var,'q');	k1[4] = -eqs.CalcD(var,'y');
		k1[2] = eqs.CalcD(var,'v');	k1[5] = -eqs.CalcD(var,'z');
		// 		ty = cy/(k1*hh);	md->H(ty,k2);
		var['t'-'a']=k*dt+hh;	for(i=0;i<6;i++)	var[v[i]-'a'] = x[i]+k1[i]*hh;
		k2[0] = eqs.CalcD(var,'p');	k2[3] = -eqs.CalcD(var,'x');
		k2[1] = eqs.CalcD(var,'q');	k2[4] = -eqs.CalcD(var,'y');
		k2[2] = eqs.CalcD(var,'v');	k2[5] = -eqs.CalcD(var,'z');
		//		ty = cy/(k2*hh);	md->H(ty,k3);
		var['t'-'a']=k*dt+hh;	for(i=0;i<6;i++)	var[v[i]-'a'] = x[i]+k2[i]*hh;
		k3[0] = eqs.CalcD(var,'p');	k3[3] = -eqs.CalcD(var,'x');
		k3[1] = eqs.CalcD(var,'q');	k3[4] = -eqs.CalcD(var,'y');
		k3[2] = eqs.CalcD(var,'v');	k3[5] = -eqs.CalcD(var,'z');
		//		ty = cy/(k2*h);	k3+=k2;	md->H(ty,k2);
		var['t'-'a']=k*dt+dt;	for(i=0;i<6;i++)
		{	var[v[i]-'a'] = x[i]+k2[i]*dt;	k3[i] += k2[i];	}
		k2[0] = eqs.CalcD(var,'p');	k2[3] = -eqs.CalcD(var,'x');
		k2[1] = eqs.CalcD(var,'q');	k2[4] = -eqs.CalcD(var,'y');
		k2[2] = eqs.CalcD(var,'v');	k2[5] = -eqs.CalcD(var,'z');
		//		cy /= (k1+k2+k3*2.)*(h/6);
		for(i=0;i<6;i++)
			res.a[i+7*k] = x[i] += (k1[i]+k2[i]+2*k3[i])*dt/6;
		res.a[6+7*k] = dt*k;
	}
#endif
	return res;
}
//-----------------------------------------------------------------------------
struct mgl_ap
{
	double x0,y0,x1,y1;	// vectors {l, g1, g2}
	double t1,ch,q1,pt,dt,d1;	// theta_{1,2}, chi, q_{1,2}, p_t, dtau, dq_{1,2}
	mgl_ap()	{	memset(this,0,sizeof(mgl_ap));	};
};
//-----------------------------------------------------------------------------
void mgl_init_ra(int n, const mreal *r, mgl_ap *ra)	// prepare some intermediate data for mglPDE2d
{
	register double tt;
	tt = hypot(r[7]-r[0], r[8]-r[1]);
	ra[0].x1 = (r[8]-r[1])/tt;
	ra[0].y1 = (r[0]-r[7])/tt;
	register long i;
	for(i=1;i<n;i++)
	{
		ra[i].dt = r[6+7*i] - r[7*i-1];
		ra[i].x0 = r[7*i] - r[7*i-7];	// NOTE: very rough formulas
		ra[i].y0 = r[7*i+1] - r[7*i-6];	// for corresponding with dt one
		tt = sqrt(ra[i].x0*ra[i].x0 + ra[i].y0*ra[i].y0);
		ra[i].x0 /= tt;	ra[i].y0 /= tt;
		ra[i].ch = tt/ra[i].dt;
		tt = ra[i].x0*ra[i-1].x1 + ra[i].y0*ra[i-1].y1;
		ra[i].x1 = ra[i-1].x1 - tt*ra[i].x0;	// vector g_1
		ra[i].y1 = ra[i-1].y1 - tt*ra[i].y0;
		ra[i].t1 = tt/(ra[i].dt*ra[i].ch);
		tt = sqrt(ra[i].x1*ra[i].x1 + ra[i].y1*ra[i].y1);
		ra[i].x1 /= tt;	ra[i].y1 /= tt;
		// other parameters
		ra[i].pt = r[7*i+3]*ra[i].x0 + r[7*i+4]*ra[i].y0;
		ra[i].q1 = r[7*i+3]*ra[i].x1 + r[7*i+4]*ra[i].y1;
		ra[i].d1 = (ra[i].q1-ra[i-1].q1)/(ra[i].dt*ra[i].ch);
	}
	memcpy(ra,ra+1,sizeof(mgl_ap));	// setup zero point
	ra[0].pt = r[3]*ra[0].x0 + r[4]*ra[0].y0;
	ra[0].q1 = r[3]*ra[0].x1 + r[4]*ra[0].y1;
}
//-----------------------------------------------------------------------------
mglData mglQO2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r, mreal k0, mglData *xx, mglData *yy, bool UseR)
{
	mglData res;
	int nx=ini_re.nx, nt=ray.ny;
	if(nx<2 || ini_im.nx!=nx || nt<2)	return res;
	res.Create(nx,nt);
#ifndef NO_GSL
	dual *a=new dual[2*nx], *hu=new dual[2*nx],  *hx=new dual[2*nx], h0;
	double *ru=new double[2*nx],  *rx=new double[2*nx],
			*pu=new double[2*nx],  *px=new double[2*nx];
	mgl_ap *ra = new mgl_ap[nt];	mgl_init_ra(ray.ny, ray.a, ra);	// ray
	register int i;
	for(i=0;i<nx;i++)	a[i+nx/2] = dual(ini_re.a[i],ini_im.a[i]);	// ini
	for(i=0;i<2*nx;i++)	{	rx[i] = ru[i] = 1;	}
	mglFormula h(ham);
	mreal var[MGL_VS], dr = r/nx, dk = M_PI/(k0*r), tt, x1, hh, B1, pt0;
	memset(var,0,MGL_VS*sizeof(mreal));
	gsl_fft_complex_wavetable *wtx = gsl_fft_complex_wavetable_alloc(2*nx);
	gsl_fft_complex_workspace *wsx = gsl_fft_complex_workspace_alloc(2*nx);
	if(xx && yy)	{	xx->Create(nx,nt);	yy->Create(nx,nt);	}
	// start calculation
	for(int k=0;k<nt;k++)
	{
		for(i=0;i<nx;i++)	// "save"
			res.a[i+k*nx]=abs(a[i+nx/2])*sqrt(ra[0].ch/ra[k].ch);
		if(xx && yy)	for(i=0;i<nx;i++)	// prepare xx, yy
		{
			x1 = (2*i-nx)*dr;
			xx->a[i+k*nx] = ray.a[7*k] + ra[k].x1*x1;	// new coordiantes
			yy->a[i+k*nx] = ray.a[7*k+1] + ra[k].y1*x1;
		}
		memcpy(px,rx,2*nx*sizeof(double));
		memcpy(pu,ru,2*nx*sizeof(double));
		hh = ra[k].pt*(1/sqrt(sqrt(1.041))-1);
		var['x'-'a'] = ray.a[7*k];	var['y'-'a'] = ray.a[7*k+1];
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*hh;
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*hh;	var['u'-'a'] = 0;
		pt0 = (h.CalcD(var,'p')*ra[k].x0 + h.CalcD(var,'q')*ra[k].y0)/ra[k].ch;
		for(i=0;i<2*nx;i++)	// prepare hamiltonian
		{
			hh = ra[k].pt*(1/sqrt(sqrt(1.041))-1);
			var['x'-'a'] = ray.a[7*k];	var['y'-'a'] = ray.a[7*k+1];
			var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*hh;
			var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*hh;	var['u'-'a'] = 0;
			h0 = dual(h.Calc(var), -h.CalcD(var,'i'));
			// x terms
			x1 = 2*(i-nx)*dr;
			var['x'-'a'] = ray.a[7*k] + ra[k].x1*x1;	// new coordiantes
			var['y'-'a'] = ray.a[7*k+1] + ra[k].y1*x1;
			hh = 1 - ra[k].t1*x1;	hh = sqrt(sqrt(0.041+hh*hh*hh*hh));
			tt = (ra[k].pt + ra[k].d1*x1)/hh - ra[k].pt;
			var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*tt;	// new momentums
			var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*tt;	var['u'-'a'] = abs(a[i]);
			rx[i] = (h.CalcD(var,'p')*ra[k].x0 + h.CalcD(var,'q')*ra[k].y0)/ra[k].ch;
			rx[i] = rx[i]>0.3*pt0 ? rx[i] : 0.3*pt0;
			hx[i] = (dual(h.Calc(var), -h.CalcD(var,'i'))-h0/2.)/rx[i];
			if(imag(hx[i])>0)	hx[i] = hx[i].real();
			// u-y terms
			x1 = dk/2*(i<nx ? i:i-2*nx);
			var['x'-'a'] = ray.a[7*k];	var['y'-'a'] = ray.a[7*k+1];
			var['p'-'a'] = ray.a[7*k+3] + ra[k].x1*x1;	// new momentums
			var['q'-'a'] = ray.a[7*k+4] + ra[k].y1*x1;	var['u'-'a'] = 0;
			ru[i] = (h.CalcD(var,'p')*ra[k].x0 + h.CalcD(var,'q')*ra[k].y0)/ra[k].ch;
			ru[i] = ru[i]>0.3*pt0 ? ru[i] : 0.3*pt0;
			hu[i] = (dual(h.Calc(var), -h.CalcD(var,'i'))-h0/2.)/ru[i];
			if(imag(hu[i])>0)	hu[i] = hu[i].real();
			// add boundary conditions for x-direction
			if(i<nx/2)
			{
				x1 = (nx/2-i)/(nx/2.);
				hx[i] -= dual(0,30*GAMMA*x1*x1/k0);
			}
			if(i>=3*nx/2)
			{
				x1 = (i-3*nx/2-1)/(nx/2.);
				hx[i] -= dual(0,30*GAMMA*x1*x1/k0);
			}
		}
		// Calculate B1
		hh = ra[k].pt*(1/sqrt(sqrt(1.041))-1);
		var['x'-'a'] = ray.a[7*k];	// new coordiantes
		var['y'-'a'] = ray.a[7*k+1];
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*hh;	// new momentums
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*hh;
		tt = h.CalcD(var,'p')*ra[k].x1 + h.CalcD(var,'q')*ra[k].y1;
		var['x'-'a'] = ray.a[7*k] + ra[k].x1*dr;	// new coordiantes
		var['y'-'a'] = ray.a[7*k+1] + ra[k].y1*dr;
		hh = 1 - ra[k].t1*dr;	hh = sqrt(sqrt(0.041+hh*hh*hh*hh));
		hh = (ra[k].ch*ra[k].pt + ra[k].d1*dr)/(hh*ra[k].ch) - ra[k].pt;
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*hh;	// new momentums
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*hh;
		B1 = h.CalcD(var,'p')*ra[k].x1 + h.CalcD(var,'q')*ra[k].y1;
		B1 = (B1-tt)/dr;
		// Step for field
		dual dt = dual(0, -ra[k].dt*k0);
		for(i=0;i<2*nx;i++)
			a[i] *= exp(hx[i]*dt)*((UseR && k>0)?sqrt(px[i]/rx[i]):1.);
		gsl_fft_complex_transform((double *)a, 1, 2*nx, wtx, wsx, forward);
		for(i=0;i<2*nx;i++)
			a[i] *= exp(hu[i]*dt)*((UseR && k>0)?sqrt(pu[i]/ru[i]):1.)/(2.*nx);
		gsl_fft_complex_transform((double *)a, 1, 2*nx, wtx, wsx, backward);
		double a1=0, a2=0;
		for(i=0;i<2*nx;i++)	a1 += norm(a[i]);
		hx[0] = hx[2*nx-1] = 0.;
		for(i=1;i<2*nx-1;i++)	hx[i] = (B1*ra[k].dt*(i-nx))*(a[i+1]-a[i-1]);
		for(i=0;i<2*nx;i++)	{	a[i] += hx[i];	a2 += norm(a[i]);	}
		a1 = sqrt(a1/a2);
		for(i=0;i<2*nx;i++)	a[i] *= a1;
	}
	gsl_fft_complex_workspace_free(wsx);
	gsl_fft_complex_wavetable_free(wtx);
	delete []a;		delete []hu;	delete []hx;	delete []ra;
	delete []rx;	delete []ru;	delete []px;	delete []pu;
#endif
	return res;
}
//-----------------------------------------------------------------------------
mglData mglAF2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r, mreal k0, mglData *xx, mglData *yy, bool UseR)
{
	mglData res;
	int nx=ini_re.nx, nt=ray.ny;
	if(nx<2 || ini_im.nx!=nx || nt<2)	return res;
	res.Create(nx,nt);
#ifndef NO_GSL
	dual *a=new dual[2*nx], *hu=new dual[2*nx],  *hx=new dual[2*nx];
	mgl_ap *ra = new mgl_ap[nt];	mgl_init_ra(ray.ny, ray.a, ra);	// ray
	register int i;
	for(i=0;i<nx;i++)	a[i+nx/2] = dual(ini_re.a[i],ini_im.a[i]);	// ini
	mglFormula h(ham);
	mreal var[MGL_VS], dr = r/nx, dk = M_PI/(k0*r), tt, x1, hh, B1;
	memset(var,0,MGL_VS*sizeof(mreal));
	gsl_fft_complex_wavetable *wtx = gsl_fft_complex_wavetable_alloc(2*nx);
	gsl_fft_complex_workspace *wsx = gsl_fft_complex_workspace_alloc(2*nx);
	if(xx && yy)	{	xx->Create(nx,nt);	yy->Create(nx,nt);	}
	// start calculation
	for(int k=0;k<nt;k++)
	{
		for(i=0;i<nx;i++)	// "save"
			res.a[i+k*nx]=abs(a[i+nx/2])*sqrt(ra[0].ch/ra[k].ch);
		if(xx && yy)	for(i=0;i<nx;i++)	// prepare xx, yy
		{
			x1 = (2*i-nx)*dr;
			xx->a[i+k*nx] = ray.a[7*k] + ra[k].x1*x1;	// new coordiantes
			yy->a[i+k*nx] = ray.a[7*k+1] + ra[k].y1*x1;
		}
		var['x'-'a'] = ray.a[7*k];	var['y'-'a'] = ray.a[7*k+1];
		var['p'-'a'] = ray.a[7*k+3];var['q'-'a'] = ray.a[7*k+4];
		var['u'-'a'] = 0;
		double p01 = h.CalcD(var,'p'), p02 = h.CalcD(var,'q'),
				h0 = h.Calc(var), g0 = h.CalcD(var,'i'), hpp, hxx;
		// derivative along momentum
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x1*dk;	// new momentums
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y1*dk;
		hpp = ((h.CalcD(var,'p')-p01)*ra[k].x1 + (h.CalcD(var,'q')-p02)*ra[k].y1)/dk;
		// derivative along coordinates
		var['x'-'a'] = ray.a[7*k] + ra[k].x1*dr;	// new coordiantes
		var['y'-'a'] = ray.a[7*k+1] + ra[k].y1*dr;
		hh = 1 - ra[k].t1*dr;	tt = (ra[k].pt + ra[k].d1*dr)/hh - ra[k].pt;
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*tt;	// new momentums
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*tt;
		B1 = ((h.CalcD(var,'p')-p01)*ra[k].x1 + (h.CalcD(var,'q')-p02)*ra[k].y1)/dr;
		hxx = h.Calc(var)*hh;
		var['x'-'a'] = ray.a[7*k] - ra[k].x1*dr;	// new coordiantes
		var['y'-'a'] = ray.a[7*k+1] - ra[k].y1*dr;
		hh = 1 + ra[k].t1*dr;	tt = (ra[k].pt - ra[k].d1*dr)/hh - ra[k].pt;
		var['p'-'a'] = ray.a[7*k+3] + ra[k].x0*tt;	// new momentums
		var['q'-'a'] = ray.a[7*k+4] + ra[k].y0*tt;
		hxx = (hxx+h.Calc(var)*hh-2*h0)/(dr*dr);

		for(i=0;i<2*nx;i++)	// prepare hamiltonian
		{
			// x terms
			x1 = 2*(i-nx)*dr;	hx[i] = dual(hxx*x1*x1/2, -g0);
			// u-y terms
			x1 = dk/2*(i<nx ? i:i-2*nx);	hu[i] = hpp*x1*x1/2;
			// add boundary conditions for x-direction
			if(i<nx/2)
			{
				x1 = (nx/2-i)/(nx/2.);
				hx[i] -= dual(0,30*GAMMA*x1*x1/k0);
			}
			if(i>=3*nx/2)
			{
				x1 = (i-3*nx/2-1)/(nx/2.);
				hx[i] -= dual(0,30*GAMMA*x1*x1/k0);
			}
		}
		// Step for field
		dual dt = dual(0, -ra[k].dt*k0);
		for(i=0;i<2*nx;i++)
			a[i] *= exp(hx[i]*dt)/(2.*nx);
		gsl_fft_complex_transform((double *)a, 1, 2*nx, wtx, wsx, forward);
		for(i=0;i<2*nx;i++)
			a[i] *= exp((hu[i]-hu[0])*dt);
		gsl_fft_complex_transform((double *)a, 1, 2*nx, wtx, wsx, backward);
		double a1=0, a2=0;
		for(i=0;i<2*nx;i++)	a1 += norm(a[i]);
		hx[0] = hx[2*nx-1] = 0.;
		for(i=1;i<2*nx-1;i++)	hx[i] = (B1*ra[k].dt*(i-nx))*(a[i+1]-a[i-1]);
		for(i=0;i<2*nx;i++)	{	a[i] += hx[i];	a2 += norm(a[i]);	}
		a1 = sqrt(a1/a2);
		for(i=0;i<2*nx;i++)	a[i] *= a1;
	}
	gsl_fft_complex_workspace_free(wsx);
	gsl_fft_complex_wavetable_free(wtx);
	delete []a;		delete []hu;	delete []hx;	delete []ra;
#endif
	return res;
}
//-----------------------------------------------------------------------------
mglData mglJacobian(const mglData &x, const mglData &y)
{
	int nx = x.nx, ny=x.ny;
	mglData r;
	if(nx!=y.nx || ny!=y.ny || nx<2 || ny<2)	return	r;
	r.Create(nx,ny);
	register int i,j,i0,ip,im,jp,jm;
	for(i=0;i<nx;i++)	for(j=0;j<ny;j++)
	{
		i0 = i+nx*j;
		ip = i<nx-1 ? 1:0;	jp = j<ny-1 ? nx:0;
		im = i>0 ? -1:0;	jm = j>0 ? -nx:0;
		r.a[i0] = (x.a[i0+ip]-x.a[i0+im])*(y.a[i0+jp]-y.a[i0+jm]) -
				(y.a[i0+ip]-y.a[i0+im])*(x.a[i0+jp]-x.a[i0+jm]);
		r.a[i0] *= mreal((nx-1)*(ny-1)*nx) / ((ip-im)*(jp-jm));
	}
	return r;
}
//-----------------------------------------------------------------------------
mglData mglJacobian(const mglData &x, const mglData &y, const mglData &z)
{
	int nx = x.nx, ny=x.ny, nz=x.nz;
	mglData r;
	if(nx*ny*nz!=y.nx*y.ny*y.nz || nx*ny*nz!=z.nx*z.ny*z.nz)	return r;
	if(nx<2 || ny<2 || nz<2)	return	r;
	r.Create(nx,ny,nz);
	register int i,j,k,i0,ip,im,jp,jm,kp,km;
	for(i=0;i<nx;i++)	for(j=0;j<ny;j++)	for(k=0;k<nz;k++)
	{
		i0 = i+nx*(j+ny*k);
		ip = i<nx-1 ? 1:0;	jp = j<ny-1 ? nx:0;	kp = k<nz-1 ? nx*ny:0;
		im = i>0 ? -1:0;	jm = j>0 ? -nx:0;	km = k>0 ? -nx*ny:0;
		r.a[i0] = (x.a[i0+ip]-x.a[i0+im])*(y.a[i0+jp]-y.a[i0+jm])*(z.a[i0+kp]-z.a[i0+km]) -
				(x.a[i0+ip]-x.a[i0+im])*(y.a[i0+kp]-y.a[i0+km])*(z.a[i0+jp]-z.a[i0+jm]) -
				(x.a[i0+jp]-x.a[i0+jm])*(y.a[i0+ip]-y.a[i0+im])*(z.a[i0+kp]-z.a[i0+km]) +
				(x.a[i0+jp]-x.a[i0+jm])*(y.a[i0+kp]-y.a[i0+km])*(z.a[i0+ip]-z.a[i0+im]) +
				(x.a[i0+kp]-x.a[i0+km])*(y.a[i0+ip]-y.a[i0+im])*(z.a[i0+jp]-z.a[i0+jm]) -
				(x.a[i0+kp]-x.a[i0+km])*(y.a[i0+jp]-y.a[i0+jm])*(z.a[i0+ip]-z.a[i0+im]);
		r.a[i0] *= mreal((nx-1)*(ny-1)*(nz-1))*mreal(nx*nx*ny) / ((ip-im)*(jp-jm)*(kp-km));
	}
	return r;
}
//-----------------------------------------------------------------------------
HMDT mgl_pde_solve(HMGL gr, const char *ham, const HMDT ini_re, const HMDT ini_im, mreal dz, mreal k0)
{	return new mglData(mglPDE(ham, *ini_re, *ini_im, gr->Min, gr->Max, dz,k0));	}
HMDT mgl_ray_trace(const char *ham, mreal x0, mreal y0, mreal z0, mreal px, mreal py, mreal pz, mreal dt, mreal tmax)
{	return new mglData(mglRay(ham, mglPoint(x0,y0,z0), mglPoint(px,py,pz), dt,tmax));	}
HMDT mgl_qo2d_solve(const char *ham, const HMDT ini_re, const HMDT ini_im, const HMDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)
{	return new mglData(mglQO2d(ham, *ini_re, *ini_im, *ray, r, k0, xx, yy));	}
HMDT mgl_af2d_solve(const char *ham, const HMDT ini_re, const HMDT ini_im, const HMDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)
{	return new mglData(mglAF2d(ham, *ini_re, *ini_im, *ray, r, k0, xx, yy));	}
HMDT mgl_jacobian_2d(const HMDT x, const HMDT y)
{	return new mglData(mglJacobian(*x, *y));	}
HMDT mgl_jacobian_3d(const HMDT x, const HMDT y, const HMDT z)
{	return new mglData(mglJacobian(*x, *y, *z));	}
//-----------------------------------------------------------------------------
uintptr_t mgl_pde_solve_(uintptr_t* gr, const char *ham, uintptr_t* ini_re, uintptr_t* ini_im, mreal *dz, mreal *k0, int l)
{
	char *s=new char[l+1];	memcpy(s,ham,l);	s[l]=0;
	uintptr_t res = uintptr_t(new mglData(mglPDE(s, _D_(ini_re), _D_(ini_im), _GR_->Min, _GR_->Max, *dz, *k0)));
	delete []s;	return res;
}
uintptr_t mgl_ray_trace_(const char *ham, mreal *x0, mreal *y0, mreal *z0, mreal *px, mreal *py, mreal *pz, mreal *dt, mreal *tmax,int l)
{
	char *s=new char[l+1];	memcpy(s,ham,l);	s[l]=0;
	uintptr_t res = uintptr_t(new mglData(mglRay(s, mglPoint(*x0,*y0,*z0), mglPoint(*px,*py,*pz), *dt,*tmax)));
	delete []s;	return res;
}
uintptr_t mgl_qo2d_solve_(const char *ham, uintptr_t* ini_re, uintptr_t* ini_im, uintptr_t* ray, mreal *r, mreal *k0, uintptr_t* xx, uintptr_t* yy, int l)
{
	char *s=new char[l+1];	memcpy(s,ham,l);	s[l]=0;
	uintptr_t res = uintptr_t(new mglData(mglQO2d(s, _D_(ini_re), _D_(ini_im), _D_(ray), *r, *k0, ((mglData *)*xx), ((mglData *)*yy))));
	delete []s;	return res;
}
uintptr_t mgl_af2d_solve_(const char *ham, uintptr_t* ini_re, uintptr_t* ini_im, uintptr_t* ray, mreal *r, mreal *k0, uintptr_t* xx, uintptr_t* yy, int l)
{
	char *s=new char[l+1];	memcpy(s,ham,l);	s[l]=0;
	uintptr_t res = uintptr_t(new mglData(mglAF2d(s, _D_(ini_re), _D_(ini_im), _D_(ray), *r, *k0, ((mglData *)*xx), ((mglData *)*yy))));
	delete []s;	return res;
}
uintptr_t mgl_jacobian_2d_(uintptr_t* x, uintptr_t* y)
{	return uintptr_t(new mglData(mglJacobian(_D_(x), _D_(y))));	}
uintptr_t mgl_jacobian_3d_(uintptr_t* x, uintptr_t* y, uintptr_t* z)
{	return uintptr_t(new mglData(mglJacobian(_D_(x), _D_(y), _D_(z))));	}
//-----------------------------------------------------------------------------