File: data.h

package info (click to toggle)
mathgl 8.0.3%2Bds.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 248,004 kB
  • sloc: cpp: 87,365; ansic: 3,299; javascript: 3,284; pascal: 1,562; python: 52; sh: 51; makefile: 47; f90: 22
file content (1136 lines) | stat: -rw-r--r-- 60,286 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
/***************************************************************************
 * data.h is part of Math Graphic Library
 * Copyright (C) 2007-2016 Alexey Balakin <mathgl.abalakin@gmail.ru>       *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU Lesser General Public License  as       *
 *   published by the Free Software Foundation; either version 3 of the    *
 *   License, or (at your option) any later version.                       *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU Lesser General Public     *
 *   License along with this program; if not, write to the                 *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifndef _MGL_DATA_H_
#define _MGL_DATA_H_

#include "mgl2/data_cf.h"
#include "mgl2/pde.h"

#if MGL_HAVE_ARMA
#include <armadillo>
#endif
//-----------------------------------------------------------------------------
#include <stdarg.h>
//-----------------------------------------------------------------------------
mreal MGL_EXPORT_PURE mglLinear(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
mreal MGL_EXPORT mglSpline3(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z,mreal *dx=0, mreal *dy=0, mreal *dz=0);
mreal MGL_EXPORT_PURE mglSpline3s(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
//-----------------------------------------------------------------------------
/// Class for working with data array
class MGL_EXPORT mglData : public mglDataA
{
public:
using mglDataA::Momentum;
using mglDataA::Last;
	long nx;		///< number of points in 1st dimensions ('x' dimension)
	long ny;		///< number of points in 2nd dimensions ('y' dimension)
	long nz;		///< number of points in 3d dimensions ('z' dimension)
	mreal *a;		///< data array
	bool link;		///< use external data (i.e. don't free it)

	/// Initiate by other mglData variable
	mglData(const mglData &d)	{	a=0;	mgl_data_set(this,&d);		}	// NOTE: must be constructor for mglData& to exclude copy one
#if MGL_HAVE_RVAL
	mglData(mglData &&d):nx(d.nx),ny(d.ny),nz(d.nz),a(d.a),link(d.link)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	id=d.id;	d.a=0;	d.func=0;	}
#endif
	mglData(const mglDataA *d)
	{	a=0;	if(d)	mgl_data_set(this, d);	else	mgl_data_create(this,1,1,1);		}
	mglData(bool, mglData *d)	// NOTE: Variable d will be deleted!!!
	{	if(d)
		{	nx=d->nx;	ny=d->ny;	nz=d->nz;	a=d->a;	d->a=0;
			temp=d->temp;	func=d->func;	o=d->o;	s=d->s;
			id=d->id;	link=d->link;	delete d;	}
		else	{	a=0;	Create(1);	}	}
	/// Initiate by flat array
	mglData(int size, const float *d)	{	a=0;	Set(d,size);	}
	mglData(int rows, int cols, const float *d)	{	a=0;	Set(d,cols,rows);	}
	mglData(int size, const double *d)	{	a=0;	Set(d,size);	}
	mglData(int rows, int cols, const double *d)	{	a=0;	Set(d,cols,rows);	}
	mglData(const double *d, int size)	{	a=0;	Set(d,size);	}
	mglData(const double *d, int rows, int cols)	{	a=0;	Set(d,cols,rows);	}
	mglData(const float *d, int size)	{	a=0;	Set(d,size);	}
	mglData(const float *d, int rows, int cols)	{	a=0;	Set(d,cols,rows);	}
	/// Allocate memory and copy data from std::vector<T>
	mglData(const std::vector<int> &d)		{	a=0;	Set(d);	}
	mglData(const std::vector<float> &d)	{	a=0;	Set(d);	}
	mglData(const std::vector<double> &d)	{	a=0;	Set(d);	}
	/// Read data from file
	mglData(const char *fname)			{	a=0;	Read(fname);	}
	/// Allocate the memory for data array and initialize it zero
	mglData(long xx=1,long yy=1,long zz=1)	{	a=0;	Create(xx,yy,zz);	}
	/// Delete the array
	virtual ~mglData()	{	if(!link && a)	delete []a;	}

	/// Move all data from variable d, and delete this variable.
	inline void Move(mglData *d)	// NOTE: Variable d will be deleted!!!
	{	if(d && d->GetNN()>1)
		{	bool l=link;	mreal *b=a;
			nx=d->nx;	ny=d->ny;	nz=d->nz;	a=d->a;	d->a=b;
			temp=d->temp;	func=d->func;	o=d->o;	s=d->s;
			id=d->id;	link=d->link;	d->link=l;	delete d;	}
		else if(d)	{	*this = d->a[0];	delete d;	}
	}

	inline mreal GetVal(long i, long j=0, long k=0) const
	{	return mgl_data_get_value(this,i,j,k);}
	inline void SetVal(mreal f, long i, long j=0, long k=0)
	{	mgl_data_set_value(this,f,i,j,k);	}
	/// Get sizes
	long GetNx() const	{	return nx;	}
	long GetNy() const	{	return ny;	}
	long GetNz() const	{	return nz;	}

	/// Link external data array (don't delete it at exit)
	inline void Link(mreal *A, long NX, long NY=1, long NZ=1)
	{	mgl_data_link(this,A,NX,NY,NZ);	}
	inline void Link(mglData &d)	{	Link(d.a,d.nx,d.ny,d.nz);	}
	/// Allocate memory and copy the data from the gsl_vector
	inline void Set(gsl_vector *m)	{	mgl_data_set_vector(this,m);	}
	/// Allocate memory and copy the data from the gsl_matrix
	inline void Set(gsl_matrix *m)	{	mgl_data_set_matrix(this,m);	}

	/// Allocate memory and copy the data from the (float *) array
	inline void Set(const float *A,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_float(this,A,NX,NY,NZ);	}
	/// Allocate memory and copy the data from the (double *) array
	inline void Set(const double *A,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_double(this,A,NX,NY,NZ);	}
	/// Allocate memory and copy the data from the (float **) array
	inline void Set(float const * const *A,long N1,long N2)
	{	mgl_data_set_float2(this,A,N1,N2);	}
	/// Allocate memory and copy the data from the (double **) array
	inline void Set(double const * const *A,long N1,long N2)
	{	mgl_data_set_double2(this,A,N1,N2);	}
	/// Allocate memory and copy the data from the (float ***) array
	inline void Set(float const * const * const *A,long N1,long N2,long N3)
	{	mgl_data_set_float3(this,A,N1,N2,N3);	}
	/// Allocate memory and copy the data from the (double ***) array
	inline void Set(double const * const * const *A,long N1,long N2,long N3)
	{	mgl_data_set_double3(this,A,N1,N2,N3);	}
	/// Allocate memory and scanf the data from the string
	inline void Set(const char *str,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_values(this,str,NX,NY,NZ);	}
	/// Import data from abstract type
	inline void Set(HCDT dat)	{	mgl_data_set(this, dat);	}
	inline void Set(const mglDataA &dat)	{	mgl_data_set(this, &dat);	}
	/// Allocate memory and copy data from std::vector<T>
	inline void Set(const std::vector<int> &d)
	{	if(d.size()>0)	{	Create(d.size());	for(long i=0;i<nx;i++)	a[i] = d[i];	}
		else	Create(1);	}
	inline void Set(const std::vector<float> &d)
	{	if(d.size()>0)	Set(&(d[0]),d.size());	else	Create(1);	}
	inline void Set(const std::vector<double> &d)
	{	if(d.size()>0)	Set(&(d[0]),d.size());	else	Create(1);	}
	/// Allocate memory and set data from variable argument list of double values
	inline void SetList(long n, ...)
	{
		if(n<1)	return;
		mgl_data_create(this,n,1,1);
		va_list vl;	va_start(vl,n);
		for(long i=0;i<n;i++)	a[i] = va_arg(vl,double);
		va_end(vl);
	}

#if MGL_HAVE_ARMA
	inline void Set(const arma::vec &d)
	{	Create(d.n_elem);	for(long i=0;i<nx;i++)	a[i] = d[i];	}
	inline void Set(const arma::mat &d)
	{	Create(d.n_rows,d.n_cols);	for(long i=0;i<nx*ny;i++)	a[i] = d[i];	}
	inline void Set(const arma::cube &d)
	{	Create(d.n_rows,d.n_cols,d.n_slices);	for(long i=0;i<nx*ny*nz;i++)	a[i] = d[i];	}
	inline arma::mat arma_mat(long k=0) const { return arma::mat(a+k*nx*ny,ny,nx);  }
	inline arma::cube arma_cube() const {return arma::cube(a,nx,ny,nz);}
#endif

	/// Create or recreate the array with specified size and fill it by zero
	inline void Create(long mx,long my=1,long mz=1)
	{	mgl_data_create(this,mx,my,mz);	}
	/// Rearange data dimensions
	inline void Rearrange(long mx, long my=0, long mz=0)
	{	mgl_data_rearrange(this,mx,my,mz);	}
	/// Transpose dimensions of the data (generalization of Transpose)
	inline void Transpose(const char *dim="yx")
	{	mgl_data_transpose(this,dim);	}
	/// Extend data dimensions
	inline void Extend(long n1, long n2=0)
	{	mgl_data_extend(this,n1,n2);	}
	/// Reduce size of the data
	inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
	{	mgl_data_squeeze(this,rx,ry,rz,smooth);	}
	/// Crop the data
	inline void Crop(long n1, long n2,char dir='x')
	{	mgl_data_crop(this,n1,n2,dir);	}
	/// Crop the data to be most optimal for FFT (i.e. to closest value of 2^n*3^m*5^l)
	inline void Crop(const char *how="235x")
	{	mgl_data_crop_opt(this, how);	}
	/// Insert data rows/columns/slices
	inline void Insert(char dir, long at=0, long num=1)
	{	mgl_data_insert(this,dir,at,num);	}
	/// Delete data rows/columns/slices
	inline void Delete(char dir, long at=0, long num=1)
	{	mgl_data_delete(this,dir,at,num);	}
	/// Remove rows with duplicate values in column clmn
	inline void Clean(long clmn)
	{	mgl_data_clean(this,clmn);	}
	/// Join with another data array
	inline void Join(const mglDataA &d)
	{	mgl_data_join(this,&d);	}

	/// Modify the data by specified formula
	inline void Modify(const char *eq,long dim=0)
	{	mgl_data_modify(this, eq, dim);	}
	/// Modify the data by specified formula
	inline void Modify(const char *eq,const mglDataA &vdat, const mglDataA &wdat)
	{	mgl_data_modify_vw(this,eq,&vdat,&wdat);	}
	/// Modify the data by specified formula
	inline void Modify(const char *eq,const mglDataA &vdat)
	{	mgl_data_modify_vw(this,eq,&vdat,0);	}
	/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
	inline void Fill(HMGL gr, const char *eq, const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,0,0,opt);	}
	inline void Fill(HMGL gr, const char *eq, const mglDataA &vdat, const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,&vdat,0,opt);	}
	inline void Fill(HMGL gr, const char *eq, const mglDataA &vdat, const mglDataA &wdat,const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,&vdat,&wdat,opt);	}
	/// Equidistantly fill the data to range [x1,x2] in direction dir
	inline void Fill(mreal x1,mreal x2=mglNaN,char dir='x')
	{	mgl_data_fill(this,x1,x2,dir);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
	inline void RefillGS(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
	{	mgl_data_refill_gs(this,&xdat,&vdat,x1,x2,sl);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
	inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
	{	mgl_data_refill_x(this,&xdat,&vdat,x1,x2,sl);	}
	inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
	{	mgl_data_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl);	}
	inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
	{	mgl_data_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl);	}
	inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
	{	mgl_data_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
	inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &vdat, long sl=-1, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt);	}
	inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, long sl=-1, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt);	}
	inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt);	}
	/// Set the data by triangulated surface values assuming x,y,z in axis range of gr
	inline void Grid(HMGL gr, const mglDataA &x, const mglDataA &y, const mglDataA &z, const char *opt="")
	{	mgl_data_grid(gr,this,&x,&y,&z,opt);	}
	/// Set the data by triangulated surface values assuming x,y,z in range [p1, p2]
	inline void Grid(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
	{	mgl_data_grid_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y);	}
	/// Put value to data element(s)
	inline void Put(mreal val, long i=-1, long j=-1, long k=-1)
	{	mgl_data_put_val(this,val,i,j,k);	}
	/// Put array to data element(s)
	inline void Put(const mglDataA &dat, long i=-1, long j=-1, long k=-1)
	{	mgl_data_put_dat(this,&dat,i,j,k);	}

	/// Fills data by integer random numbers of uniform distribution in range [lo,hi]
	inline void RndInteger(long lo, long hi)
	{	mgl_data_rnd_integer(this, lo, hi);	}
	/// Fills data by random numbers of uniform distribution in range [lo,hi]
	inline void RndUniform(mreal lo, mreal hi)
	{	mgl_data_rnd_uniform(this, lo, hi);	}
	/// Fills data by random numbers of Bernoulli distribution
	inline void RndBernoulli(mreal p=0.5)
	{	mgl_data_rnd_bernoulli(this, p);	}
	/// Fills data by random numbers of binomial distribution
	inline void RndBinomial(long trials, mreal p=0.5)
	{	mgl_data_rnd_binomial(this, trials, p);	}
	/// Fills data by random numbers of Gaussian distribution
	inline void RndGaussian(mreal mu=0.0, mreal sigma=1.0)
	{	mgl_data_rnd_gaussian(this, mu, sigma);	}
	/// Fills data by random numbers of exponential distribution
	inline void RndExponential(mreal lambda)
	{	mgl_data_rnd_exponential(this, lambda);	}
	/// Fills data by random numbers of discrete distribution according A
	inline void RndDiscrete(const mglDataA &A)
	{	mgl_data_rnd_discrete(this, &A);	}
	/// Shuffles elements or slices of data array
	inline void RndShuffle(char dir='a')
	{	mgl_shuffle(this, dir);	}
	/// Fills data by fractional brownian motions along x-direction
	inline void RndBrownian(mreal y1, mreal y2, mreal sigma, mreal alpha)
	{	mgl_data_brownian(this, y1, y2, sigma, alpha);	}
	
	/// Read data from tab-separated text file with auto determining size
	inline bool Read(const char *fname)
	{	return mgl_data_read(this,fname); }
	/// Read data from text file with specifeid size
	inline bool Read(const char *fname,long mx,long my=1,long mz=1)
	{	return mgl_data_read_dim(this,fname,mx,my,mz);	}
	/// Import data array from PNG file according color scheme
	inline void Import(const char *fname,const char *scheme,mreal v1=0,mreal v2=1)
	{	mgl_data_import(this,fname,scheme,v1,v2);	}
	/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
	inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
	{	return mgl_data_read_range(this,templ,from,to,step,as_slice);	}
	/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
	inline bool ReadAll(const char *templ, bool as_slice=false)
	{	return mgl_data_read_all(this, templ, as_slice);	}
	/// Read data from text file with size specified at beginning of the file
	inline bool ReadMat(const char *fname, long dim=2)
	{	return mgl_data_read_mat(this,fname,dim);	}
	/// Read data array from HDF file (parse HDF4 and HDF5 files)
	inline int ReadHDF(const char *fname,const char *data)
	{	return mgl_data_read_hdf(this,fname,data);	}
	/// Scan textual file for template and fill data array
	inline int ScanFile(const char *fname, const char *templ)
	{	return mgl_data_scan_file(this,fname, templ);	}
	/// Read data from binary file of type: 0 - double, 1 - float, 2 - long double, 3 - long int, 4 - int, 5 - short int, 6 - char.
	/** NOTE: this function may not correctly read binary files written in different CPU kind! */
	inline bool ReadBin(const char *fname, int type)
	{	return mgl_data_read_bin(this, fname, type);	}


	/// Get column (or slice) of the data filled by formulas of named columns
	inline mglData Column(const char *eq) const
	{	return mglData(true,mgl_data_column(this,eq));	}
	/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
	inline mglData Momentum(char dir, const char *how) const
	{	return mglData(true,mgl_data_momentum(this,dir,how));	}
	/// Get pulse properties: pulse maximum and its position, pulse duration near maximum and by half height, energy in first pulse.
	inline mglData Pulse(char dir) const
	{	return mglData(true,mgl_data_pulse(this,dir));	}
	/// Get sub-array of the data with given fixed indexes
	inline mglData SubData(long xx,long yy=-1,long zz=-1) const
	{	return mglData(true,mgl_data_subdata(this,xx,yy,zz));	}
	inline mglData SubData(const mglDataA &xx, const mglDataA &yy, const mglDataA &zz) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,&zz));	}
	inline mglData SubData(const mglDataA &xx, const mglDataA &yy) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,0));	}
	inline mglData SubData(const mglDataA &xx) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,0,0));	}
	/// Get data from sections ids, separated by value val along specified direction.
	/** If section id is negative then reverse order is used (i.e. -1 give last section). */
	inline mglData Section(const mglDataA &ids, char dir='y', mreal val=NAN) const
	{	return mglData(true,mgl_data_section(this,&ids,dir,val));	}
	inline mglData Section(long id, char dir='y', mreal val=NAN) const
	{	return mglData(true,mgl_data_section_val(this,id,dir,val));	}
	/// Get contour lines for dat[i,j]=val. NAN values separate the the curves.
	inline mglData Conts(mreal val)
	{	return mglData(true,mgl_data_conts(val,this));	}

	/// Get trace of the data array
	inline mglData Trace() const
	{	return mglData(true,mgl_data_trace(this));	}
	/// Create n-th points distribution of this data values in range [v1, v2]
	inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
	{	return mglData(true,mgl_data_hist(this,n,v1,v2,nsub));	}
	/// Create n-th points distribution of this data values in range [v1, v2] with weight w
	inline mglData Hist(const mglDataA &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
	{	return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub));	}
	/// Create n-th points distribution of this data values in range [v1, v2] by using linear interpolation between coordinate.
	inline mglData HistL(long n,mreal v1=0,mreal v2=1) const
	{	return mglData(true,mgl_data_hist_l(this,NULL,n,v1,v2));	}
	/// Create n-th points distribution of this data values in range [v1, v2] with weight w by using linear interpolation between coordinate.
	inline mglData HistL(const mglDataA &w, long n,mreal v1=0,mreal v2=1) const
	{	return mglData(true,mgl_data_hist_l(this,&w,n,v1,v2));	}
	/// Get array which is result of summation in given direction or directions
	inline mglData Sum(const char *dir) const
	{	return mglData(true,mgl_data_sum(this,dir));	}
	/// Get array of positions of first value large val
	inline mglData First(const char *dir, mreal val) const
	{	return mglData(true,mgl_data_first_dir(this,dir,val));	}
	/// Get array of positions of last value large val
	inline mglData Last(const char *dir, mreal val) const
	{	return mglData(true,mgl_data_last_dir(this,dir,val));	}

	/// Get array which is result of maximal values in given direction or directions
	inline mglData Max(const char *dir) const
	{	return mglData(true,mgl_data_max_dir(this,dir));	}
	/// Get array which is result of minimal values in given direction or directions
	inline mglData Min(const char *dir) const
	{	return mglData(true,mgl_data_min_dir(this,dir));	}
	/// Get positions of local maximums and minimums
	inline mglData MinMax() const
	{	return mglData(true,mgl_data_minmax(this));	}
	/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
	inline mglData Combine(const mglDataA &dat) const
	{	return mglData(true,mgl_data_combine(this,&dat));	}
	/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
	inline mglData Resize(long mx,long my=0,long mz=0, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
	{	return mglData(true,mgl_data_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2));	}
	/// Get array which values is result of interpolation this for coordinates from other arrays
	inline mglData Evaluate(const mglData &idat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,0,0,norm));	}
	inline mglData Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,&jdat,0,norm));	}
	inline mglData Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,&jdat,&kdat,norm));	}
	/// Find roots for nonlinear equation defined by textual formula
	inline mglData Roots(const char *eq, char var='x') const
	{	return mglData(true,mgl_data_roots(eq, this, var));	}
	/// Find roots for set of nonlinear equations defined by textual formula
	inline mglData MultiRoots(const char *eq, const char *vars) const
	{	return mglData(true,mgl_find_roots_txt(eq, vars, this));	}
	/// Find correlation with another data arrays
	inline mglData Correl(const mglDataA &dat, const char *dir) const
	{	return mglData(true,mgl_data_correl(this,&dat,dir));	}
	/// Find auto correlation function
	inline mglData AutoCorrel(const char *dir) const
	{	return mglData(true,mgl_data_correl(this,this,dir));	}
	/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
	/** Noises below lvl amplitude are ignored.
	 * Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
	inline mglData Detect(mreal lvl, mreal dj, mreal di=0, mreal min_len=0) const
	{	return mglData(true,mgl_data_detect(this,lvl,dj,di,min_len));	}

	/// Cumulative summation the data in given direction or directions
	inline void CumSum(const char *dir)	{	mgl_data_cumsum(this,dir);	}
	/// Integrate (cumulative summation) the data in given direction or directions
	inline void Integral(const char *dir)	{	mgl_data_integral(this,dir);	}
	/// Differentiate the data in given direction or directions
	inline void Diff(const char *dir)	{	mgl_data_diff(this,dir);	}
	/// Differentiate the parametrically specified data along direction v1
	inline void Diff(const mglDataA &v1)
	{	mgl_data_diff_par(this,&v1,0,0);	}
	/// Differentiate the parametrically specified data along direction v1 with v2=const
	inline void Diff(const mglDataA &v1, const mglDataA &v2)
	{	mgl_data_diff_par(this,&v1,&v2,0);	}
	/// Differentiate the parametrically specified data along direction v1 with v2,v3=const
	inline void Diff(const mglDataA &v1, const mglDataA &v2, const mglDataA &v3)
	{	mgl_data_diff_par(this,&v1,&v2,&v3);	}
	/// Double-differentiate (like Laplace operator) the data in given direction
	inline void Diff2(const char *dir)	{	mgl_data_diff2(this,dir);	}

	/// Swap left and right part of the data in given direction (useful for Fourier spectrum)
	inline void Swap(const char *dir)		{	mgl_data_swap(this,dir);	}
	/// Roll data along direction dir by num slices
	inline void Roll(char dir, long num)	{	mgl_data_roll(this,dir,num);	}
	/// Mirror the data in given direction (useful for Fourier spectrum)
	inline void Mirror(const char *dir)		{	mgl_data_mirror(this,dir);	}
	/// Sort rows (or slices) by values of specified column
	inline void Sort(long idx, long idy=-1)	{	mgl_data_sort(this,idx,idy);	}
	/// Return dilated array of 0 or 1 for data values larger val
	inline void Dilate(mreal val=1, long step=1)
	{	mgl_data_dilate(this, val, step);	}
	/// Return eroded array of 0 or 1 for data values larger val
	inline void Erode(mreal val=1, long step=1)
	{	mgl_data_erode(this, val, step);	}

	/// Set as the data envelop
	inline void Envelop(char dir='x')
	{	mgl_data_envelop(this,dir);	}
	/// Remove phase jump
	inline void Sew(const char *dirs="xyz", mreal da=2*mglPi)
	{	mgl_data_sew(this,dirs,da);	}
	/// Smooth the data on specified direction or directions
	/** String \a dir may contain:
	 *  ‘x’, ‘y’, ‘z’ for 1st, 2nd or 3d dimension;
	 *  ‘dN’ for linear averaging over N points;
	 *  ‘3’ for linear averaging over 3 points;
	 *  ‘5’ for linear averaging over 5 points;
	 *  ‘^’ for finding upper bound;
	 *  ‘_’ for finding lower bound.
	 *  By default quadratic averaging over 5 points is used. */
	inline void Smooth(const char *dirs="xyz",mreal delta=0)
	{	mgl_data_smooth(this,dirs,delta);	}
	/// Normalize the data to range [v1,v2]
	inline void Norm(mreal v1=0,mreal v2=1,bool sym=false,long dim=0)
	{	mgl_data_norm(this,v1,v2,sym,dim);	}
	/// Normalize the data to range [v1,v2] slice by slice
	inline void NormSl(mreal v1=0,mreal v2=1,char dir='z',bool keep_en=true,bool sym=false)
	{	mgl_data_norm_slice(this,v1,v2,dir,keep_en,sym);	}
	/// Limit the data to be inside [-v,v], keeping the original sign
	inline void Limit(mreal v)
	{	mgl_data_limit(this, v);	}
	/// Project the periodical data to range [v1,v2] (like mod() function). Separate branches by NAN if sep=true.
	inline void Coil(mreal v1, mreal v2, bool sep=true)
	{	mgl_data_coil(this, v1, v2, sep);	}
	/// Keep the data sign/value along line i and j in given direction. 
	/** Parameter "how" may contain: 'x','y' or 'z' for direction (default is 'y'); 'a' for keeping amplitude instead of sign.*/
	inline void Keep(const char *how, long i, long j=0)
	{	mgl_data_keep(this, how, i, j);	}

	/// Replace initial mode by found one for equation u_xx+pot*u=0 in waveguide with boundary defined by \a mask.
	/** Parameter \a how may contain (default is "xyz0"):
	* ‘x‘ for 1d case with ny*nz variants,
	* ‘y‘ for 2d case with nz variants,
	* ‘z‘ for 3d case, TODO
	* ‘0‘ for zero boundary: u[n] = 0,
	* ‘1‘ for free boundary du/dx=0: u[n] = u[n-1],
	* ‘2‘ for zero laplace boundary d^2u/dx^2=0: u[n] = 2*u[n-1]-u[n-2],
	* ‘s‘ for 2nd order boundary du/dx=k: u[n] = (4*u[n-1]-u[n-2]-2*kdx)/3,
	* ‘r‘ for radiation boundary du/dx=ku: u[n]=(4*u[n-1]-u[n-2])/(3+2*kdx),
	* ‘c‘ for cyclic boundary ( u[n] = u[0] ignore \a kdx),
	* '+' for focusing nonlinearity,
	* '-' for defocusing nonlinearity.
	* Parameter \a iter set maximal number of iterations (0 is automatic). */
	inline void Mode(const mglDataA &mask, const mglDataA &pot, const char *how, double kdx=0, long iter=0)
	{	mgl_data_mode(this, &mask, &pot, how, kdx, iter);	}
	inline void Mode(const mglDataA &mask, const char *how, double kdx=0, long iter=0)
	{	mgl_data_mode(this, &mask, NULL, how, kdx, iter);	}

	/// Apply Hankel transform
	inline void Hankel(const char *dir)	{	mgl_data_hankel(this,dir);	}
	/// Apply Sin-Fourier transform
	inline void SinFFT(const char *dir)	{	mgl_data_sinfft(this,dir);	}
	/// Apply Cos-Fourier transform
	inline void CosFFT(const char *dir)	{	mgl_data_cosfft(this,dir);	}
	/// Fill data by coordinates/momenta samples for Hankel ('h') or Fourier ('f') transform
	/** Parameter \a how may contain:
	 * ‘x‘,‘y‘,‘z‘ for direction (only one will be used),
	 * ‘k‘ for momenta samples,
	 * ‘h‘ for Hankel samples,
	 * ‘f‘ for Cartesian/Fourier samples (default). */
	inline void FillSample(const char *how)
	{	mgl_data_fill_sample(this,how);	}
	/// Apply wavelet transform
	/** Parameter \a dir may contain:
	 * ‘x‘,‘y‘,‘z‘ for directions,
	 * ‘d‘ for daubechies, ‘D‘ for centered daubechies,
	 * ‘h‘ for haar, ‘H‘ for centered haar,
	 * ‘b‘ for bspline, ‘B‘ for centered bspline,
	 * ‘i‘ for applying inverse transform. */
	inline void Wavelet(const char *how, int k)	{	mgl_data_wavelet(this, how, k);	}

	/// Return an approximated x-value (root) when dat(x) = val
	inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
	{	return mgl_data_solve_1d(this, val, use_spline, i0);		}
	/// Return an approximated value (root) when dat(x) = val
	inline mglData Solve(mreal val, char dir, bool norm=true) const
	{	return mglData(true,mgl_data_solve(this, val, dir, 0, norm));	}
	inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
	{	return mglData(true,mgl_data_solve(this, val, dir, &i0, norm));	}

	/// Copy data from other mglData variable
	inline const mglDataA &operator=(const mglDataA &d)
	{	if(this!=&d)	mgl_data_set(this,&d);	return d;	}
	inline const mglData &operator=(const mglData &d)
	{	if(this!=&d)	mgl_data_set(this,&d);	return d;	}
	inline mreal operator=(mreal val)
	{	mgl_data_fill(this,val,val,'x');	return val;	}
	/// Multiply the data by other one for each element
	inline void operator*=(const mglDataA &d)	{	mgl_data_mul_dat(this,&d);	}
	/// Divide the data by other one for each element
	inline void operator/=(const mglDataA &d)	{	mgl_data_div_dat(this,&d);	}
	/// Add the other data
	inline void operator+=(const mglDataA &d)	{	mgl_data_add_dat(this,&d);	}
	/// Subtract the other data
	inline void operator-=(const mglDataA &d)	{	mgl_data_sub_dat(this,&d);	}
	/// Multiply each element by the number
	inline void operator*=(mreal d)		{	mgl_data_mul_num(this,d);	}
	/// Divide each element by the number
	inline void operator/=(mreal d)		{	mgl_data_div_num(this,d);	}
	/// Add the number
	inline void operator+=(mreal d)		{	mgl_data_add_num(this,d);	}
	/// Subtract the number
	inline void operator-=(mreal d)		{	mgl_data_sub_num(this,d);	}
#ifndef SWIG
	/// Direct access to the data cell
	inline mreal operator[](long i) const	{	return a[i];	}
	inline mreal &operator[](long i)		{	return a[i];	}
	/// Get sub-array of the data with given fixed indexes
	inline mglData operator()(long xx,long yy=-1,long zz=-1) const
	{	return mglData(true,mgl_data_subdata(this,xx,yy,zz));	}
	inline mglData operator()(const mglDataA &xx, const mglDataA &yy, const mglDataA &zz) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,&zz));	}
	inline mglData operator()(const mglDataA &xx, const mglDataA &yy) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,0));	}
	inline mglData operator()(const mglDataA &xx) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,0,0));	}
#endif

#ifndef DEBUG
	/// Get the value in given cell of the data
	mreal v(long i,long j=0,long k=0) const	{	return a[i+nx*(j+ny*k)];	}
	/// Set the value in given cell of the data
	void set_v(mreal val, long i,long j=0,long k=0)	{	a[i+nx*(j+ny*k)]=val;	}
#else
	/// Get the value in given cell of the data with border checking
	mreal v(long i,long j=0,long k=0) const	{	return mgl_data_get_value(this,i,j,k);	}
	/// Set the value in given cell of the data
	void set_v(mreal val, long i,long j=0,long k=0)	{	mgl_data_set_value(this,val,i,j,k);	}
#endif
	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	return mglSpline3(a,nx,ny,nz,x,y,z,dx,dy,dz);	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal y=0,mreal z=0) const
	{	return mglSpline3s(a,nx,ny,nz,x,y,z);	}
	mreal vthr(long i) const {	return a[i];	}
	// add for speeding up !!!
	mreal dvx(long i,long j=0,long k=0) const
	{   long i0 = size_t(i)<size_t(nx-1) ? i+nx*(j+ny*k):nx*(1+j+ny*k)-2;	return a[i0+1]-a[i0];	}
//	{   long i0=i+nx*(j+ny*k);
//		return i>0? (i<nx-1? (a[i0+1]-a[i0-1])/2:a[i0]-a[i0-1]) : a[i0+1]-a[i0];	}
	mreal dvy(long i,long j=0,long k=0) const
	{   long i0 = size_t(j)<size_t(ny-1) ? i+nx*(j+ny*k):i+nx*(ny*(k+1)-2);	return a[i0+nx]-a[i0];	}
//	{   long i0=i+nx*(j+ny*k);
//		return j>0? (j<ny-1? (a[i0+nx]-a[i0-nx])/2:a[i0]-a[i0-nx]) : a[i0+nx]-a[i0];}
	mreal dvz(long i,long j=0,long k=0) const
	{   long n=nx*ny, i0 = size_t(k)<size_t(nz-1) ? i+nx*(j+ny*k):i+nx*(j+ny*(nz-2));	return a[i0+n]-a[i0];	}
//	{   long i0=i+nx*(j+ny*k), n=nx*ny;
//		return k>0? (k<nz-1? (a[i0+n]-a[i0-n])/2:a[i0]-a[i0-n]) : a[i0+n]-a[i0];	}
};
//-----------------------------------------------------------------------------
#ifndef SWIG
inline mglData operator*(const mglDataA &b, const mglDataA &d)
{	mglData a(&b);	a*=d;	return a;	}
inline mglData operator*(mreal b, const mglDataA &d)
{	mglData a(&d);	a*=b;	return a;	}
inline mglData operator*(const mglDataA &d, mreal b)
{	mglData a(&d);	a*=b;	return a;	}
inline mglData operator-(const mglDataA &b, const mglDataA &d)
{	mglData a(&b);	a-=d;	return a;	}
inline mglData operator-(mreal b, const mglDataA &d)
{	mglData a(&d);	a-=b;	return a;	}
inline mglData operator-(const mglDataA &d, mreal b)
{	mglData a(&d);	a-=b;	return a;	}
inline mglData operator+(const mglDataA &b, const mglDataA &d)
{	mglData a(&b);	a+=d;	return a;	}
inline mglData operator+(mreal b, const mglDataA &d)
{	mglData a(&d);	a+=b;	return a;	}
inline mglData operator+(const mglDataA &d, mreal b)
{	mglData a(&d);	a+=b;	return a;	}
inline mglData operator/(const mglDataA &b, const mglDataA &d)
{	mglData a(&b);	a/=d;	return a;	}
inline mglData operator/(const mglDataA &d, mreal b)
{	mglData a(&d);	a/=b;	return a;	}
inline bool operator==(const mglData &b, const mglData &d)
{	if(b.nx!=d.nx || b.ny!=d.ny || b.nz!=d.nz)	return false;
	return !memcmp(b.a,d.a,b.nx*b.ny*b.nz*sizeof(mreal));	}
inline bool operator<(const mglDataA &b, const mglDataA &d)
{	return b.Maximal()<d.Maximal();	}
inline bool operator>(const mglDataA &b, const mglDataA &d)
{	return b.Minimal()>d.Minimal();	}
//-----------------------------------------------------------------------------
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for amplitude and phase
inline mglData mglTransformA(const mglDataA &am, const mglDataA &ph, const char *tr)
{	return mglData(true,mgl_transform_a(&am,&ph,tr));	}
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for real and imaginary parts
inline mglData mglTransform(const mglDataA &re, const mglDataA &im, const char *tr)
{	return mglData(true,mgl_transform(&re,&im,tr));	}
/// Apply Fourier transform for the data and save result into it
inline void mglFourier(mglData &re, mglData &im, const char *dir)
{	mgl_data_fourier(&re,&im,dir);	}
/// Short time Fourier analysis for real and imaginary parts. Output is amplitude of partial Fourier (result will have size {dn, floor(nx/dn), ny} for dir='x'
inline mglData mglSTFA(const mglDataA &re, const mglDataA &im, long dn, char dir='x')
{	return mglData(true, mgl_data_stfa(&re,&im,dn,dir));	}
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglData mglPDE(HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{	return mglData(true, mgl_pde_solve(gr,ham, &ini_re, &ini_im, dz, k0,opt));	}
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO2d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0));	}
inline mglData mglQO2d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy));	}
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO3d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0));	}
inline mglData mglQO3d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz));	}
/// Finds ray with starting point r0, p0 (and prepares ray data for mglQO2d)
inline mglData mglRay(const char *ham, mglPoint r0, mglPoint p0, mreal dt=0.1, mreal tmax=10)
{	return mglData(true, mgl_ray_trace(ham, r0.x, r0.y, r0.z, p0.x, p0.y, p0.z, dt, tmax));	}
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 over time interval [0,tmax] with time step dt. Functions jump are called each steps to handle special conditions (like reflection at boundary).
inline mglData mglODE(const char *func, const char *var, const mglDataA &ini, mreal dt=0.1, mreal tmax=10, const char *jump=NULL)
{	return mglData(true, mgl_ode_solve_str_b(func,var, &ini, dt, tmax, jump));	}
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 of size n*m over time interval [0,tmax] with time step dt
inline mglData mglODEs(const char *func, const char *var, char brd, const mglDataA &ini, mreal dt=0.1, mreal tmax=10)
{	return mglData(true, mgl_ode_solve_set(func,var, brd, &ini, dt, tmax));	}
//-----------------------------------------------------------------------------
/// Get array as solution of tridiagonal system of equations a[i]*x[i-1]+b[i]*x[i]+c[i]*x[i+1]=d[i]
/** String \a how may contain:
 * 'x', 'y', 'z' for solving along x-,y-,z-directions, or
 * 'h' for solving along hexagonal direction at x-y plain (need nx=ny),
 * 'c' for using periodical boundary conditions,
 * 'd' for diffraction/diffuse calculation. */
inline mglData mglTridMat(const mglDataA &A, const mglDataA &B, const mglDataA &C, const mglDataA &D, const char *how)
{	return mglData(true, mgl_data_tridmat(&A, &B, &C, &D, how));	}
//-----------------------------------------------------------------------------
/// Calculate Jacobian determinant for D{x(u,v), y(u,v)} = dx/du*dy/dv-dx/dv*dy/du
inline mglData mglJacobian(const mglDataA &x, const mglDataA &y)
{	return mglData(true, mgl_jacobian_2d(&x, &y));	}
/// Calculate Jacobian determinant for D{x(u,v,w), y(u,v,w), z(u,v,w)}
inline mglData mglJacobian(const mglDataA &x, const mglDataA &y, const mglDataA &z)
{	return mglData(true, mgl_jacobian_3d(&x, &y, &z));	}
/// Do something like Delone triangulation
inline mglData mglTriangulation(const mglDataA &x, const mglDataA &y, const mglDataA &z)
{	return mglData(true,mgl_triangulation_3d(&x,&y,&z));	}
inline mglData mglTriangulation(const mglDataA &x, const mglDataA &y)
{	return mglData(true,mgl_triangulation_2d(&x,&y));	}
/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
/** Noises below lvl amplitude are ignored.
 * Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
inline mglData mglDetect(const mglDataA &d, mreal lvl, mreal dj, mreal di=0, mreal min_len=0)
{	return mglData(true,mgl_data_detect(&d, lvl, dj, di, min_len));	}
//-----------------------------------------------------------------------------
/// Get array which is n-th pairs {x[i],y[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS2d(const mglDataA &A, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_2d(&A,n,skip));	}
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS3d(const mglDataA &A, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_3d(&A,n,skip));	}
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) defined in *.ifs file 'fname' and named as 'name'
inline mglData mglIFSfile(const char *fname, const char *name, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_file(fname,name,n,skip));	}
/// Get array which is n-th pairs {x[i],y[i]} for Flame fractal generated by A with functions F
/** NOTE: A.nx must be >= 7 and F.nx >= 2 and F.nz=A.ny.
 * F[0,i,j] denote function id. F[1,i,j] give function weight, F(2:5,i,j) provide function parameters.
 * Resulting point is {xnew,ynew} = sum_i F[1,i,j]*F[0,i,j]{IFS2d(A[j]){x,y}}. */
inline mglData mglFlame2d(const mglDataA &A, const mglDataA &F, long n, long skip=20)
{	return mglData(true,mgl_data_flame_2d(&A,&F,n,skip));	}
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglData mglSubData(const mglDataA &dat, long xx, long yy=-1, long zz=-1)
{	return mglData(true,mgl_data_subdata(&dat,xx,yy,zz));	}
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy, const mglDataA &zz)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,&zz));	}
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,0));	}
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,0,0));	}
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglData mglGSplineInit(const mglDataA &xdat, const mglDataA &ydat)
{	return mglData(true,mgl_gspline_init(&xdat, &ydat));	}
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline mreal mglGSpline(const mglDataA &coef, mreal dx, mreal *d1=0, mreal *d2=0)
{	return mgl_gspline(&coef, dx, d1,d2);	}
//-----------------------------------------------------------------------------
/// Evaluate formula 'str' for given list of variables 'vars'. 
/** NOTE: you need to delete returned data array!*/
HMDT MGL_EXPORT mglFormulaCalc(const char *str, const std::vector<mglDataA*> &vars);
//-----------------------------------------------------------------------------
extern long mgl_omp_thr;	// threshold for use OpenMP in CalcV(). NOTE: default value is 10000 for 8...12 cores CPU
/// Wrapper class for expression evaluating
class MGL_EXPORT mglExpr
{
	HMEX ex;
	mglExpr(const mglExpr &){ex=0;}	// copying is not allowed
	const mglExpr &operator=(const mglExpr &t){ex=0;	return t;}	// copying is not allowed
public:
	mglExpr(const char *expr)		{	ex = mgl_create_expr(expr);	}
#if MGL_HAVE_RVAL
	mglExpr(mglExpr &&d):ex(d.ex)	{	d.ex=0;	}
#endif
	~mglExpr()	{	mgl_delete_expr(ex);	}
	/// Return value of expression for given x,y,z variables
	inline double Eval(double x, double y=0, double z=0)
	{	return mgl_expr_eval(ex,x,y,z);	}
	/// Return value of expression differentiation over variable dir for given x,y,z variables
	inline double Diff(char dir, double x, double y=0, double z=0)
	{	return mgl_expr_diff(ex,dir, x,y,z);	}
	/// Return value of expression for given variables
	inline double Eval(mreal var[MGL_VS])
	{	return mgl_expr_eval_v(ex,var);	}
	/// Return value of expression differentiation over variable dir for given variables
	inline double Diff(char dir, mreal var[MGL_VS])
	{	return mgl_expr_diff_v(ex,dir, var);	}
	/// Return value of expression for given variables
	inline void CalcV(HMDT res, HCDT vars[MGL_VS])
	{	if(res->GetNN()<mgl_omp_thr)	mgl_expr_eval_dat(ex, res, vars);
		else	mgl_expr_eval_omp(ex, res, vars);	}
};
//-----------------------------------------------------------------------------
/// Class which present equidistantly distributed data
class MGL_EXPORT mglDataV : public mglDataA
{
	long nx;	///< number of points in 1st dimensions ('x' dimension)
	long ny;	///< number of points in 2nd dimensions ('y' dimension)
	long nz;	///< number of points in 3d dimensions ('z' dimension)
	mreal di, dj, dk, a0;
public:
	mglDataV(long xx=1,long yy=1,long zz=1,mreal x1=0,mreal x2=mglNaN,char dir='x'):nx(xx),ny(yy),nz(zz)
	{	Fill(x1,x2,dir);	}
	mglDataV(const mglDataV &d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk),a0(d.a0)	{}
#if MGL_HAVE_RVAL
	mglDataV(mglDataV &&d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk),a0(d.a0)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	d.func=0;	}
#endif
	virtual ~mglDataV()	{}

	/// Get sizes
	long GetNx() const	{	return nx;	}
	long GetNy() const	{	return ny;	}
	long GetNz() const	{	return nz;	}

	/// Create or recreate the array with specified size and fill it by zero
	inline void Create(long mx,long my=1,long mz=1)
	{	di=mx>1?di*(nx-1)/(mx-1):0;	dj=my>1?dj*(ny-1)/(my-1):0;
		dk=mz>1?dk*(nz-1)/(mz-1):0;	nx=mx;	ny=my;	nz=mz;	}
	/// For going throw all elements
	inline void All()	{	di=dj=dk=1;	a0=0;	}
	/// Equidistantly fill the data to range [x1,x2] in direction dir
	inline void Fill(mreal x1,mreal x2=mglNaN,char dir='x')
	{
		di=dj=dk=0;	a0=x1;
		if(mgl_isnum(x2))
		{
			if(dir=='x' && nx>1)	di=(x2-x1)/(nx-1);
			if(dir=='y' && ny>1)	dj=(x2-x1)/(ny-1);
			if(dir=='z' && nz>1)	dk=(x2-x1)/(nz-1);
		}
	}
	mreal Maximal() const
	{	return a0+mgl_max(mgl_max(di*(nx-1),dj*(ny-1)),mgl_max(dk*(nz-1),0));	}
	mreal Minimal() const
	{	return a0+mgl_min(mgl_min(di*(nx-1),dj*(ny-1)),mgl_min(dk*(nz-1),0));	}

	/// Copy data from other mglDataV variable
	inline const mglDataV &operator=(const mglDataV &d)
	{	nx=d.nx;	ny=d.ny;	nz=d.nz;	a0=d.a0;
		di=d.di;	dj=d.dj;	dk=d.dk;	return d;	}
	inline mreal operator=(mreal val)
	{	di=dj=dk=0;	a0=val;	return val;	}
	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	if(dx)	*dx=di;	if(dy)	*dy=dj;	if(dz)	*dz=dk;
		return a0+di*x+dj*y+dk*z;	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal y=0,mreal z=0) const	{	return a0+di*x+dj*y+dk*z;	}
	mreal v(long i,long j=0,long k=0) const		{	return a0+di*i+dj*j+dk*k;	}
	mreal vthr(long ii) const
	{	long i=ii%nx, j=(ii/nx)%ny, k=ii/(nx*ny);	return a0+di*i+dj*j+dk*k;	}
	// add for speeding up !!!
	mreal dvx(long ,long =0,long =0) const	{	return di;	}
	mreal dvy(long ,long =0,long =0) const	{	return dj;	}
	mreal dvz(long ,long =0,long =0) const	{	return dk;	}
};
//-----------------------------------------------------------------------------
/// Class which present FFT frequency as data array
class MGL_EXPORT mglDataW : public mglDataA
{
	long nx;	///< number of points in 1st dimensions ('x' dimension)
	long ny;	///< number of points in 2nd dimensions ('y' dimension)
	long nz;	///< number of points in 3d dimensions ('z' dimension)
	mreal di, dj, dk;
public:

	mglDataW(long xx=1,long yy=1,long zz=1,mreal dp=0,char dir='x'):nx(xx),ny(yy),nz(zz)
	{	Freq(dp,dir);	}
	mglDataW(const mglDataW &d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk)	{}
#if MGL_HAVE_RVAL
	mglDataW(mglDataW &&d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	d.func=0;	}
#endif
	virtual ~mglDataW()	{}

	/// Get sizes
	long GetNx() const	{	return nx;	}
	long GetNy() const	{	return ny;	}
	long GetNz() const	{	return nz;	}

	/// Create or recreate the array with specified size and fill it by zero
	inline void Create(long mx,long my=1,long mz=1)
	{	nx=mx;	ny=my;	nz=mz;	}
	/// For going throw all elements
	inline void All()	{	di=dj=dk=1;	}
	/// Equidistantly fill the data to range [x1,x2] in direction dir
	inline void Freq(mreal dp,char dir='x')
	{
		di=dj=dk=0;
		if(dir=='x')	di=dp;
		if(dir=='y')	dj=dp;
		if(dir=='z')	dk=dp;
	}
	mreal Maximal() const
	{	return mgl_max(mgl_max(di*(nx-1),dj*(ny-1)),mgl_max(dk*(nz-1),0));	}
	mreal Minimal() const
	{	return mgl_min(mgl_min(di*(nx-1),dj*(ny-1)),mgl_min(dk*(nz-1),0));	}

	/// Copy data from other mglDataV variable
	inline const mglDataW &operator=(const mglDataW &d)
	{	nx=d.nx;	ny=d.ny;	nz=d.nz;	di=d.di;	dj=d.dj;	dk=d.dk;	return d;	}
	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	if(dx)	*dx=di;	if(dy)	*dy=dj;	if(dz)	*dz=dk;
		return di*(x<nx/2?x:x-nx)+dj*(y<ny/2?y:y-ny)+dk*(z<nz/2?z:z-nz);	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal y=0,mreal z=0) const
	{	return di*(x<nx/2?x:x-nx)+dj*(y<ny/2?y:y-ny)+dk*(z<nz/2?z:z-nz);	}
	mreal v(long i,long j=0,long k=0) const
	{	return di*(i<nx/2?i:i-nx)+dj*(j<ny/2?j:j-ny)+dk*(k<nz/2?k:k-nz);	}
	mreal vthr(long ii) const
	{	long i=ii%nx, j=(ii/nx)%ny, k=ii/(nx*ny);
		return di*(i<nx/2?i:i-nx)+dj*(j<ny/2?j:j-ny)+dk*(k<nz/2?k:k-nz);	}
	// add for speeding up !!!
	mreal dvx(long ,long =0,long =0) const	{	return di;	}
	mreal dvy(long ,long =0,long =0) const	{	return dj;	}
	mreal dvz(long ,long =0,long =0) const	{	return dk;	}
};
//-----------------------------------------------------------------------------
/// Class which present function as data array
class MGL_EXPORT mglDataF : public mglDataA
{
	long nx;	///< number of points in 1st dimensions ('x' dimension)
	long ny;	///< number of points in 2nd dimensions ('y' dimension)
	long nz;	///< number of points in 3d dimensions ('z' dimension)
	std::string str;	///< function as string
	mglPoint v1, v2;	///< ranges for coordinates
	HMEX ex;			///< parsed variant
	mreal dx,dy,dz;
	inline void setD()
	{
		dx = nx>1?(v2.x-v1.x)/(nx-1):0;
		dy = ny>1?(v2.y-v1.y)/(ny-1):0;
		dz = nz>1?(v2.z-v1.z)/(nz-1):0;
	}
	mreal (*dfunc)(mreal i, mreal j, mreal k, void *par);
	void *par;
public:

	mglDataF(long xx=1,long yy=1,long zz=1):nx(xx),ny(yy),nz(zz), dfunc(0),par(0)
	{	ex=0;	v2.Set(1,1,1);	setD();	}
	mglDataF(const mglDataF &d) : nx(d.nx), ny(d.ny), nz(d.nz), str(d.str), v1(d.v1), v2(d.v2), dx(d.dx),dy(d.dy),dz(d.dz), dfunc(d.dfunc),par(d.par)
	{	ex = mgl_create_expr(str.c_str());	}
#if MGL_HAVE_RVAL
	mglDataF(mglDataF &&d):nx(d.nx),ny(d.ny),nz(d.nz), str(d.str), v1(d.v1),v2(d.v2), ex(d.ex), dx(d.dx),dy(d.dy),dz(d.dz), dfunc(d.dfunc),par(d.par)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	d.ex=0;	d.func=0;	}
#endif
	virtual ~mglDataF()	{	mgl_delete_expr(ex);	}

	/// Get sizes
	long GetNx() const	{	return nx;	}
	long GetNy() const	{	return ny;	}
	long GetNz() const	{	return nz;	}

	/// Create or recreate the array with specified size and fill it by zero
	inline void Create(long mx,long my=1,long mz=1)	{	nx=mx;	ny=my;	nz=mz;	setD();	}
	inline void SetRanges(const mglPoint &p1, const mglPoint &p2)	{	v1=p1;	v2=p2;	setD();	}
	/// Set formula to be used as dfunction
	inline void SetFormula(const char *eq)
	{
		mgl_delete_expr(ex);	dfunc=0;	par=0;
		if(eq && *eq)	{	ex = mgl_create_expr(eq);	str=eq;	}
		else	{	ex=0;	str="";	}
	}
	/// Set function and coordinates range [r1,r2]
	inline void SetFunc(mreal (*f)(mreal,mreal,mreal,void*), void *p=NULL)
	{	mgl_delete_expr(ex);	ex=0;	dfunc=f;	par=p;	}

	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal i,mreal j=0,mreal k=0, mreal *di=0,mreal *dj=0,mreal *dk=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(di)	*di = 0;
		if(dj)	*dj = 0;
		if(dk)	*dk = 0;
		if(dfunc)
		{
			res = dfunc(x,y,z, par);
			if(di)	*di = dfunc(x+dx,y,z, par)-res;
			if(dj)	*dj = dfunc(x,y+dy,z, par)-res;
			if(dk)	*dk = dfunc(x,y,z+dz, par)-res;
		}
		else if(ex)
		{
			if(di)	*di = mgl_expr_diff(ex,'x',x,y,z)*dx;
			if(dj)	*dj = mgl_expr_diff(ex,'y',x,y,z)*dy;
			if(dk)	*dk = mgl_expr_diff(ex,'z',x,y,z)*dz;
			res = mgl_expr_eval(ex,x,y,z);
		}
		return res;
	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal i,mreal j=0,mreal k=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(dfunc)	res = dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x,y,z);
		return res;
	}
	/// Copy data from other mglDataV variable
	inline const mglDataF &operator=(const mglDataF &d)
	{	nx=d.nx;	ny=d.ny;	nz=d.nz;	v1=d.v1;	v2=d.v2;	setD();	mgl_delete_expr(ex);
		str=d.str;	ex = mgl_create_expr(str.c_str());	dfunc=d.dfunc;	par=d.par;	return d;	}
	/// Get the value in given cell of the data without border checking
	mreal v(long i,long j=0,long k=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(dfunc)	res = dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x,y,z);
		return res;
	}
	mreal vthr(long i) const
	{
		mreal res=0, x=v1.x+dx*(i%nx), y=v1.y+dy*((i/nx)%ny), z=v1.z+dz*(i/(nx*ny));
		if(dfunc)	res = dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x,y,z);
		return res;
	}
	// add for speeding up !!!
	mreal dvx(long i,long j=0,long k=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(dfunc)	res = dfunc(x+dx,y,z, par)-dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x+dx,y,z)-mgl_expr_eval(ex,x,y,z);
		return res;
	}
	mreal dvy(long i,long j=0,long k=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(dfunc)	res = dfunc(x,y+dy,z, par)-dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x,y+dy,z)-mgl_expr_eval(ex,x,y,z);
		return res;
	}
	mreal dvz(long i,long j=0,long k=0) const
	{
		mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
		if(dfunc)	res = dfunc(x,y,z+dz, par)-dfunc(x,y,z, par);
		else if(ex)	res = mgl_expr_eval(ex,x,y,z+dz)-mgl_expr_eval(ex,x,y,z);
		return res;
	}
};
//-----------------------------------------------------------------------------
/// Class which present column of another data as data array
class MGL_EXPORT mglDataT : public mglDataA
{
	const mglDataA &dat;
	long ind;
	const mglDataT &operator=(const mglDataT &d)	{	ind=0;	return d;	}
public:
	mglDataT(const mglDataT &d) : dat(d.dat), ind(d.ind)	{	s = d.s;	}
	mglDataT(const mglDataA &d, long col=0) : dat(d), ind(col)	{}
	mglDataT(HCDT d, long col=0) : dat(*d), ind(col)	{}
#if MGL_HAVE_RVAL
	mglDataT(mglDataT &&d):dat(d.dat),ind(d.ind)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	d.func=0;	}
#endif
	virtual ~mglDataT()	{}

	/// Get sizes
	long GetNx() const	{	return dat.GetNy();	}
	long GetNy() const	{	return dat.GetNz();	}
	long GetNz() const	{	return 1;	}

	mreal Maximal() const
	{	return mglSubData(dat,ind).Maximal();	}
	mreal Minimal() const
	{	return mglSubData(dat,ind).Minimal();	}
	inline void SetInd(long i, const wchar_t *name)
	{	ind = i;	s = name;	}
	inline void SetInd(long i, wchar_t name)
	{	ind = i;	s = name;	}

	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal y=0,mreal =0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	if(dz)	*dz=0;	return dat.valueD(ind,x,y,0,dx,dy);	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal y=0,mreal =0) const
	{	return dat.value(ind,x,y);	}
	/// Get the value in given cell of the data without border checking
	mreal v(long i,long j=0,long =0) const
	{	return dat.v(ind,i,j);	}
	mreal vthr(long i) const
	{	return dat.vthr(ind+dat.GetNx()*i);	}
	// add for speeding up !!!
	mreal dvx(long i,long j=0,long =0) const
	{	return	dat.dvy(ind,i,j);	}
	mreal dvy(long i,long j=0,long =0) const
	{	return dat.dvz(ind,i,j);	}
	mreal dvz(long ,long =0,long =0) const
	{	return 0;	}
};
//-----------------------------------------------------------------------------
/// Class which present row of another data as data array
class MGL_EXPORT mglDataR : public mglDataA
{
	const mglDataA &dat;
	long ind;
	const mglDataR &operator=(const mglDataR &d)	{	ind=0;	return d;	}
public:
	mglDataR(const mglDataR &d) : dat(d.dat), ind(d.ind)	{	s = d.s;	}
	mglDataR(const mglDataA &d, long row=0) : dat(d), ind(row)	{}
	mglDataR(HCDT d, long row=0) : dat(*d), ind(row)	{}
#if MGL_HAVE_RVAL
	mglDataR(mglDataR &&d):dat(d.dat),ind(d.ind)
	{	s=d.s;	temp=d.temp;	func=d.func;	o=d.o;	d.func=0;	}
#endif
	virtual ~mglDataR()	{}

	/// Get sizes
	long GetNx() const	{	return dat.GetNx();	}
	long GetNy() const	{	return 1;	}
	long GetNz() const	{	return 1;	}

	mreal Maximal() const
	{	return mglSubData(dat,-1,ind).Maximal();	}
	mreal Minimal() const
	{	return mglSubData(dat,-1,ind).Minimal();	}
	inline void SetInd(long i, const wchar_t *name)
	{	ind = i;	s = name;	}
	inline void SetInd(long i, wchar_t name)
	{	ind = i;	s = name;	}

	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal =0,mreal =0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	if(dy)	*dy=0;	if(dz)	*dz=0;	return dat.valueD(x,ind,0,dx);	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal =0,mreal =0) const
	{	return dat.value(x,ind,0);	}
	/// Get the value in given cell of the data without border checking
	mreal v(long i,long =0,long =0) const
	{	return dat.v(i,ind,0);	}
	mreal vthr(long i) const
	{	return dat.vthr(i+dat.GetNx()*ind);	}
	// add for speeding up !!!
	mreal dvx(long i,long =0,long =0) const
	{	return	dat.dvx(i,ind,0);	}
	mreal dvy(long ,long =0,long =0) const
	{	return 0;	}
	mreal dvz(long ,long =0,long =0) const
	{	return 0;	}
};
//-----------------------------------------------------------------------------
/// Class which present std::vector as data array
class MGL_EXPORT mglDataS : public mglDataA
{
public:
	std::vector<mreal> dat;

	mglDataS(const mglDataS &st) : dat(st.dat)	{}
	mglDataS(const std::vector<mreal> &d) : dat(d)	{}
	mglDataS(size_t s=1)	{	dat.resize(s);	}
	~mglDataS()	{}
	inline void reserve(size_t num)	{	dat.reserve(num);	}
	inline void clear()	{	dat.clear();	}
	inline double operator[](size_t i)	{	return dat[i];	}
	inline void push_back(double t)	{	dat.push_back(t);	}
	inline size_t size() const	{	return dat.size();	}
	const mglDataS &operator=(const mglDataS &st)	{	dat = st.dat;	return st;	}
	const std::vector<mreal> &operator=(const std::vector<mreal> &st)	{	dat = st;	return st;	}

	/// Get the interpolated value and its derivatives in given data cell without border checking
	mreal valueD(mreal x,mreal =0,mreal =0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
	{	return mglSpline3(dat.data(),dat.size(),1,1,x,0,0,dx,dy,dz);	}
	/// Get the interpolated value in given data cell without border checking
	mreal value(mreal x,mreal =0,mreal =0) const
	{	return mglSpline3s(dat.data(),dat.size(),1,1,x,0,0);	}

	mreal v(long i,long =0,long =0) const		{	return dat[i];	}
	mreal vthr(long i) const	{	return dat[i];	}
	long GetNx() const	{	return dat.size();	}
	long GetNy() const	{	return 1;	}
	long GetNz() const	{	return 1;	}
	mreal dvx(long i,long =0,long =0) const
	{	return i>0? (i<long(dat.size()-1)? (dat[i+1]-dat[i-1])/2:dat[i]-dat[i-1]) : dat[i+1]-dat[i];	}
	mreal dvy(long ,long =0,long =0) const	{	return 0;	}
	mreal dvz(long ,long =0,long =0) const	{	return 0;	}
};
//-----------------------------------------------------------------------------
#endif
#endif