1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
|
/***************************************************************************
* data.i is part of Math Graphic Library
* Copyright (C) 2007-2012 Alexey Balakin <mathgl.abalakin@gmail.ru> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Library General Public License as *
* published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
//-----------------------------------------------------------------------------
#include <string>
class mglData
{
public:
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
mreal *a; ///< data array
bool link; ///< use external data (i.e. don't free it)
/// Initiate by other mglData variable
mglData(const mglData *d) { a=0; mgl_data_set(this, d); }
mglData(bool, mglData *d) // NOTE: Variable d will be deleted!!!
{ if(d)
{ nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=0;
id=d->id; link=d->link; delete d; }
else { a=0; Create(1); } }
/// Initiate by flat array
mglData(int size, const float *d) { a=0; Set(d,size); }
mglData(int rows, int cols, const float *d) { a=0; Set(d,cols,rows); }
mglData(int size, const double *d) { a=0; Set(d,size); }
mglData(int rows, int cols, const double *d) { a=0; Set(d,cols,rows); }
mglData(const double *d, int size) { a=0; Set(d,size); }
mglData(const double *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglData(const float *d, int size) { a=0; Set(d,size); }
mglData(const float *d, int rows, int cols) { a=0; Set(d,cols,rows); }
/// Read data from file
mglData(const char *fname) { a=0; Read(fname); }
/// Allocate the memory for data array and initialize it zero
mglData(long xx=1,long yy=1,long zz=1) { a=0; Create(xx,yy,zz); }
/// Delete the array
virtual ~mglData() { if(!link && a) delete []a; }
inline mreal GetVal(long i, long j=0, long k=0) const
{ return mgl_data_get_value(this,i,j,k);}
inline void SetVal(mreal f, long i, long j=0, long k=0)
{ mgl_data_set_value(this,f,i,j,k); }
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Link external data array (don't delete it at exit)
inline void Link(mreal *A, long NX, long NY=1, long NZ=1)
{ mgl_data_link(this,A,NX,NY,NZ); }
inline void Link(mglData &d) { Link(d.a,d.nx,d.ny,d.nz); }
/// Allocate memory and copy the data from the gsl_vector
inline void Set(gsl_vector *m) { mgl_data_set_vector(this,m); }
/// Allocate memory and copy the data from the gsl_matrix
inline void Set(gsl_matrix *m) { mgl_data_set_matrix(this,m); }
/// Allocate memory and copy the data from the (float *) array
inline void Set(const float *A,long NX,long NY=1,long NZ=1)
{ mgl_data_set_float(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (double *) array
inline void Set(const double *A,long NX,long NY=1,long NZ=1)
{ mgl_data_set_double(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (float **) array
inline void Set(float const * const *A,long N1,long N2)
{ mgl_data_set_float2(this,A,N1,N2); }
/// Allocate memory and copy the data from the (double **) array
inline void Set(double const * const *A,long N1,long N2)
{ mgl_data_set_double2(this,A,N1,N2); }
/// Allocate memory and copy the data from the (float ***) array
inline void Set(float const * const * const *A,long N1,long N2,long N3)
{ mgl_data_set_float3(this,A,N1,N2,N3); }
/// Allocate memory and copy the data from the (double ***) array
inline void Set(double const * const * const *A,long N1,long N2,long N3)
{ mgl_data_set_double3(this,A,N1,N2,N3); }
/// Allocate memory and scanf the data from the string
inline void Set(const char *str,long NX,long NY=1,long NZ=1)
{ mgl_data_set_values(this,str,NX,NY,NZ); }
/// Import data from abstract type
inline void Set(const mglData &dat) { mgl_data_set(this, &dat); }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ mgl_data_create(this,mx,my,mz); }
/// Rearange data dimensions
inline void Rearrange(long mx, long my=0, long mz=0)
{ mgl_data_rearrange(this,mx,my,mz); }
/// Transpose dimensions of the data (generalization of Transpose)
inline void Transpose(const char *dim="yx")
{ mgl_data_transpose(this,dim); }
/// Extend data dimensions
inline void Extend(long n1, long n2=0)
{ mgl_data_extend(this,n1,n2); }
/// Reduce size of the data
inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
{ mgl_data_squeeze(this,rx,ry,rz,smooth); }
/// Crop the data
inline void Crop(long n1, long n2,char dir='x')
{ mgl_data_crop(this,n1,n2,dir); }
/// Crop the data to be most optimal for FFT (i.e. to closest value of 2^n*3^m*5^l)
inline void Crop(const char *how="235x")
{ mgl_data_crop_opt(this, how); }
/// Insert data rows/columns/slices
inline void Insert(char dir, long at=0, long num=1)
{ mgl_data_insert(this,dir,at,num); }
/// Delete data rows/columns/slices
inline void Delete(char dir, long at=0, long num=1)
{ mgl_data_delete(this,dir,at,num); }
/// Remove rows with duplicate values in column clmn
inline void Clean(long clmn)
{ mgl_data_clean(this,clmn); }
/// Join with another data array
inline void Join(const mglData &d)
{ mgl_data_join(this,&d); }
/// Modify the data by specified formula
inline void Modify(const char *eq,long dim=0)
{ mgl_data_modify(this, eq, dim); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglData &vdat, const mglData &wdat)
{ mgl_data_modify_vw(this,eq,&vdat,&wdat); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglData &vdat)
{ mgl_data_modify_vw(this,eq,&vdat,0); }
/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
inline void Fill(HMGL gr, const char *eq, const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,0,0,opt); }
inline void Fill(HMGL gr, const char *eq, const mglData &vdat, const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,&vdat,0,opt); }
inline void Fill(HMGL gr, const char *eq, const mglData &vdat, const mglData &wdat,const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,&vdat,&wdat,opt); }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Fill(mreal x1,mreal x2=NaN,char dir='x')
{ mgl_data_fill(this,x1,x2,dir); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
inline void RefillGS(const mglData &xdat, const mglData &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_data_refill_gs(this,&xdat,&vdat,x1,x2,sl); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
inline void Refill(const mglData &xdat, const mglData &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_data_refill_x(this,&xdat,&vdat,x1,x2,sl); }
inline void Refill(const mglData &xdat, const mglData &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_data_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl); }
inline void Refill(const mglData &xdat, const mglData &ydat, const mglData &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_data_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl); }
inline void Refill(const mglData &xdat, const mglData &ydat, const mglData &zdat, const mglData &vdat, mglPoint p1, mglPoint p2)
{ mgl_data_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
inline void Refill(HMGL gr, const mglData &xdat, const mglData &vdat, long sl=-1, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglData &xdat, const mglData &ydat, const mglData &vdat, long sl=-1, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglData &xdat, const mglData &ydat, const mglData &zdat, const mglData &vdat, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt); }
/// Set the data by triangulated surface values assuming x,y,z in axis range of gr
inline void Grid(HMGL gr, const mglData &x, const mglData &y, const mglData &z, const char *opt="")
{ mgl_data_grid(gr,this,&x,&y,&z,opt); }
/// Set the data by triangulated surface values assuming x,y,z in range [p1, p2]
inline void Grid(const mglData &xdat, const mglData &ydat, const mglData &vdat, mglPoint p1, mglPoint p2)
{ mgl_data_grid_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y); }
/// Put value to data element(s)
inline void Put(mreal val, long i=-1, long j=-1, long k=-1)
{ mgl_data_put_val(this,val,i,j,k); }
/// Put array to data element(s)
inline void Put(const mglData &dat, long i=-1, long j=-1, long k=-1)
{ mgl_data_put_dat(this,&dat,i,j,k); }
/// Set names for columns (slices)
inline void SetColumnId(const char *ids)
{ mgl_data_set_id(this,ids); }
/// Make new id
inline void NewId() { id.clear(); }
/// Fills data by integer random numbers of uniform distribution in range [lo,hi]
inline void RndInteger(long lo, long hi)
{ mgl_data_rnd_integer(this, lo, hi); }
/// Fills data by random numbers of uniform distribution in range [lo,hi]
inline void RndUniform(mreal lo, mreal hi)
{ mgl_data_rnd_uniform(this, lo, hi); }
/// Fills data by random numbers of Bernoulli distribution
inline void RndBernoulli(mreal p=0.5)
{ mgl_data_rnd_bernoulli(this, p); }
/// Fills data by random numbers of binomial distribution
inline void RndBinomial(long trials, mreal p=0.5)
{ mgl_data_rnd_binomial(this, trials, p); }
/// Fills data by random numbers of Gaussian distribution
inline void RndGaussian(mreal mu=0.0, mreal sigma=1.0)
{ mgl_data_rnd_gaussian(this, mu, sigma); }
/// Fills data by random numbers of exponential distribution
inline void RndExponential(mreal lambda)
{ mgl_data_rnd_exponential(this, lambda); }
/// Fills data by random numbers of discrete distribution according A
inline void RndDiscrete(const mglData &A)
{ mgl_data_rnd_discrete(this, &A); }
/// Shuffles elements or slices of data array
inline void RndShuffle(char dir='a')
{ mgl_shuffle(this, dir); }
/// Fills data by fractional brownian motions along x-direction
inline void RndBrownian(mreal y1, mreal y2, mreal sigma, mreal alpha)
{ mgl_data_brownian(this, y1, y2, sigma, alpha); }
/// Read data from tab-separated text file with auto determining size
inline bool Read(const char *fname)
{ return mgl_data_read(this,fname); }
/// Read data from text file with specifeid size
inline bool Read(const char *fname,long mx,long my=1,long mz=1)
{ return mgl_data_read_dim(this,fname,mx,my,mz); }
/// Save whole data array (for ns=-1) or only ns-th slice to text file
inline void Save(const char *fname,long ns=-1) const
{ mgl_data_save(this,fname,ns); }
/// Export data array (for ns=-1) or only ns-th slice to PNG file according color scheme
inline void Export(const char *fname,const char *scheme,mreal v1=0,mreal v2=0,long ns=-1) const
{ mgl_data_export(this,fname,scheme,v1,v2,ns); }
/// Import data array from PNG file according color scheme
inline void Import(const char *fname,const char *scheme,mreal v1=0,mreal v2=1)
{ mgl_data_import(this,fname,scheme,v1,v2); }
/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
{ return mgl_data_read_range(this,templ,from,to,step,as_slice); }
/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
inline bool ReadAll(const char *templ, bool as_slice=false)
{ return mgl_data_read_all(this, templ, as_slice); }
/// Read data from text file with size specified at beginning of the file
inline bool ReadMat(const char *fname, long dim=2)
{ return mgl_data_read_mat(this,fname,dim); }
/// Read data array from HDF file (parse HDF4 and HDF5 files)
inline int ReadHDF(const char *fname,const char *data)
{ return mgl_data_read_hdf(this,fname,data); }
/// Save data to HDF file
inline void SaveHDF(const char *fname,const char *data,bool rewrite=false) const
{ mgl_data_save_hdf(this,fname,data,rewrite); }
/// Put HDF data names into buf as '\t' separated.
inline static int DatasHDF(const char *fname, char *buf, long size)
{ return mgl_datas_hdf(fname,buf,size); }
/// Scan textual file for template and fill data array
inline int ScanFile(const char *fname, const char *templ)
{ return mgl_data_scan_file(this,fname, templ); }
/// Read data from binary file of type: 0 - double, 1 - float, 2 - long double, 3 - long int, 4 - int, 5 - short int, 6 - char.
/** NOTE: this function may not correctly read binary files written in different CPU kind! */
inline bool ReadBin(const char *fname, int type)
{ return mgl_data_read_bin(this, fname, type); }
/// Get column (or slice) of the data filled by formulas of named columns
inline mglData Column(const char *eq) const
{ return mglData(true,mgl_data_column(this,eq)); }
/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
inline mglData Momentum(char dir, const char *how) const
{ return mglData(true,mgl_data_momentum(this,dir,how)); }
/// Get pulse properties: pulse maximum and its position, pulse duration near maximum and by half height, energy in first pulse.
inline mglData Pulse(char dir) const
{ return mglData(true,mgl_data_pulse(this,dir)); }
/// Get sub-array of the data with given fixed indexes
inline mglData SubData(long xx,long yy=-1,long zz=-1) const
{ return mglData(true,mgl_data_subdata(this,xx,yy,zz)); }
inline mglData SubData(const mglData &xx, const mglData &yy, const mglData &zz) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,&zz)); }
inline mglData SubData(const mglData &xx, const mglData &yy) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,0)); }
inline mglData SubData(const mglData &xx) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,0,0)); }
/// Get data from sections ids, separated by value val along specified direction.
/** If section id is negative then reverse order is used (i.e. -1 give last section). */
inline mglData Section(const mglData &ids, char dir='y', mreal val=NAN) const
{ return mglData(true,mgl_data_section(this,&ids,dir,val)); }
inline mglData Section(long id, char dir='y', mreal val=NAN) const
{ return mglData(true,mgl_data_section_val(this,id,dir,val)); }
/// Get contour lines for dat[i,j]=val. NAN values separate the the curves.
inline mglData Conts(mreal val)
{ return mglData(true,mgl_data_conts(val,this)); }
/// Get trace of the data array
inline mglData Trace() const
{ return mglData(true,mgl_data_trace(this)); }
/// Create n-th points distribution of this data values in range [v1, v2]
inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist(this,n,v1,v2,nsub)); }
/// Create n-th points distribution of this data values in range [v1, v2] with weight w
inline mglData Hist(const mglData &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub)); }
/// Create n-th points distribution of this data values in range [v1, v2] with weight w by using linear interpolation between coordinate.
inline mglData HistL(long n,mreal v1=0,mreal v2=1) const
{ return mglData(true,mgl_data_hist_l(this,NULL,n,v1,v2)); }
/// Create n-th points distribution of this data values in range [v1, v2] by using linear interpolation between coordinate.
inline mglData HistL(const mglData &w, long n,mreal v1=0,mreal v2=1) const
{ return mglData(true,mgl_data_hist_l(this,&w,n,v1,v2)); }
/// Get array which is result of summation in given direction or directions
inline mglData Sum(const char *dir) const
{ return mglData(true,mgl_data_sum(this,dir)); }
/// Get array of positions of first value large val
inline mglData First(const char *dir, mreal val) const
{ return mglData(true,mgl_data_first_dir(this,dir,val)); }
/// Get array of positions of last value large val
inline mglData Last(const char *dir, mreal val) const
{ return mglData(true,mgl_data_last_dir(this,dir,val)); }
/// Get array which is result of maximal values in given direction or directions
inline mglData Max(const char *dir) const
{ return mglData(true,mgl_data_max_dir(this,dir)); }
/// Get array which is result of minimal values in given direction or directions
inline mglData Min(const char *dir) const
{ return mglData(true,mgl_data_min_dir(this,dir)); }
/// Get positions of local maximums and minimums
inline mglData MinMax() const
{ return mglData(true,mgl_data_minmax(this)); }
/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
inline mglData Combine(const mglData &dat) const
{ return mglData(true,mgl_data_combine(this,&dat)); }
/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
inline mglData Resize(long mx,long my=0,long mz=0, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
{ return mglData(true,mgl_data_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2)); }
/// Get array which values is result of interpolation this for coordinates from other arrays
inline mglData Evaluate(const mglData &idat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,0,0,norm)); }
inline mglData Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,&jdat,0,norm)); }
inline mglData Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,&jdat,&kdat,norm)); }
/// Find roots for nonlinear equation defined by textual formula
inline mglData Roots(const char *eq, char var='x') const
{ return mglData(true,mgl_data_roots(eq, this, var)); }
/// Find roots for set of nonlinear equations defined by textual formula
inline mglData MultiRoots(const char *eq, const char *vars) const
{ return mglData(true,mgl_find_roots_txt(eq, vars, this)); }
/// Find correlation with another data arrays
inline mglData Correl(const mglData &dat, const char *dir) const
{ return mglData(true,mgl_data_correl(this,&dat,dir)); }
/// Find auto correlation function
inline mglData AutoCorrel(const char *dir) const
{ return mglData(true,mgl_data_correl(this,this,dir)); }
/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
/** Noises below lvl amplitude are ignored.
* Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
inline mglData Detect(mreal lvl, mreal dj, mreal di=0, mreal min_len=0) const
{ return mglData(true,mgl_data_detect(this,lvl,dj,di,min_len)); }
/// Cumulative summation the data in given direction or directions
inline void CumSum(const char *dir) { mgl_data_cumsum(this,dir); }
/// Integrate (cumulative summation) the data in given direction or directions
inline void Integral(const char *dir) { mgl_data_integral(this,dir); }
/// Differentiate the data in given direction or directions
inline void Diff(const char *dir) { mgl_data_diff(this,dir); }
/// Differentiate the parametrically specified data along direction v1
inline void Diff(const mglData &v1)
{ mgl_data_diff_par(this,&v1,0,0); }
/// Differentiate the parametrically specified data along direction v1 with v2=const
inline void Diff(const mglData &v1, const mglData &v2)
{ mgl_data_diff_par(this,&v1,&v2,0); }
/// Differentiate the parametrically specified data along direction v1 with v2,v3=const
inline void Diff(const mglData &v1, const mglData &v2, const mglData &v3)
{ mgl_data_diff_par(this,&v1,&v2,&v3); }
/// Double-differentiate (like Laplace operator) the data in given direction
inline void Diff2(const char *dir) { mgl_data_diff2(this,dir); }
/// Swap left and right part of the data in given direction (useful for Fourier spectrum)
inline void Swap(const char *dir) { mgl_data_swap(this,dir); }
/// Roll data along direction dir by num slices
inline void Roll(char dir, long num) { mgl_data_roll(this,dir,num); }
/// Mirror the data in given direction (useful for Fourier spectrum)
inline void Mirror(const char *dir) { mgl_data_mirror(this,dir); }
/// Sort rows (or slices) by values of specified column
inline void Sort(long idx, long idy=-1) { mgl_data_sort(this,idx,idy); }
/// Return dilated array of 0 or 1 for data values larger val
inline void Dilate(mreal val=1, long step=1)
{ mgl_data_dilate(this, val, step); }
/// Return eroded array of 0 or 1 for data values larger val
inline void Erode(mreal val=1, long step=1)
{ mgl_data_erode(this, val, step); }
/// Set as the data envelop
inline void Envelop(char dir='x')
{ mgl_data_envelop(this,dir); }
/// Remove phase jump
inline void Sew(const char *dirs="xyz", mreal da=2*Pi)
{ mgl_data_sew(this,dirs,da); }
/// Smooth the data on specified direction or directions
/** String \a dir may contain:
* ‘x’, ‘y’, ‘z’ for 1st, 2nd or 3d dimension;
* ‘dN’ for linear averaging over N points;
* ‘3’ for linear averaging over 3 points;
* ‘5’ for linear averaging over 5 points;
* ‘^’ for finding upper bound;
* ‘_’ for finding lower bound.
* By default quadratic averaging over 5 points is used. */
inline void Smooth(const char *dirs="xyz",mreal delta=0)
{ mgl_data_smooth(this,dirs,delta); }
/// Normalize the data to range [v1,v2]
inline void Norm(mreal v1=0,mreal v2=1,bool sym=false,long dim=0)
{ mgl_data_norm(this,v1,v2,sym,dim); }
/// Normalize the data to range [v1,v2] slice by slice
inline void NormSl(mreal v1=0,mreal v2=1,char dir='z',bool keep_en=true,bool sym=false)
{ mgl_data_norm_slice(this,v1,v2,dir,keep_en,sym); }
/// Limit the data to be inside [-v,v], keeping the original sign
inline void Limit(mreal v)
{ mgl_data_limit(this, v); }
/// Project the periodical data to range [v1,v2] (like mod() function). Separate branches by NAN if sep=true.
inline void Coil(mreal v1, mreal v2, bool sep=true)
{ mgl_data_coil(this, v1, v2, sep); }
/// Keep the data sign/value along line i and j in given direction.
/** Parameter "how" may contain: 'x','y' or 'z' for direction (default is 'y'); 'a' for keeping amplitude instead of sign.*/
inline void Keep(const char *how, long i, long j=0)
{ mgl_data_keep(this, how, i, j); }
/// Replace initial mode by found one for equation u_xx+pot*u=0 in waveguide with boundary defined by \a mask.
/** Parameter \a how may contain (default is "xyz0"):
* ‘x‘ for 1d case with ny*nz variants,
* ‘y‘ for 2d case with nz variants,
* ‘z‘ for 3d case, TODO
* ‘0‘ for zero boundary: u[n] = 0,
* ‘1‘ for free boundary du/dx=0: u[n] = u[n-1],
* ‘2‘ for zero laplace boundary d^2u/dx^2=0: u[n] = 2*u[n-1]-u[n-2],
* ‘s‘ for 2nd order boundary du/dx=k: u[n] = (4*u[n-1]-u[n-2]-2*kdx)/3,
* ‘r‘ for radiation boundary du/dx=ku: u[n]=(4*u[n-1]-u[n-2])/(3+2*kdx),
* ‘c‘ for cyclic boundary ( u[n] = u[0] ignore \a kdx),
* '+' for focusing nonlinearity,
* '-' for defocusing nonlinearity.
* Parameter \a iter set maximal number of iterations (0 is automatic). */
inline void Mode(const mglData &mask, const mglData &pot, const char *how, double kdx=0, long iter=0)
{ mgl_data_mode(this, &mask, &pot, how, kdx, iter); }
inline void Mode(const mglData &mask, const char *how, double kdx=0, long iter=0)
{ mgl_data_mode(this, &mask, NULL, how, kdx, iter); }
/// Apply Hankel transform
inline void Hankel(const char *dir) { mgl_data_hankel(this,dir); }
/// Apply Sin-Fourier transform
inline void SinFFT(const char *dir) { mgl_data_sinfft(this,dir); }
/// Apply Cos-Fourier transform
inline void CosFFT(const char *dir) { mgl_data_cosfft(this,dir); }
/// Fill data by coordinates/momenta samples for Hankel ('h') or Fourier ('f') transform
/** Parameter \a how may contain:
* ‘x‘,‘y‘,‘z‘ for direction (only one will be used),
* ‘k‘ for momenta samples,
* ‘h‘ for Hankel samples,
* ‘f‘ for Cartesian/Fourier samples (default). */
inline void FillSample(const char *how)
{ mgl_data_fill_sample(this,how); }
/// Apply wavelet transform
/** Parameter \a dir may contain:
* ‘x‘,‘y‘,‘z‘ for directions,
* ‘d‘ for daubechies, ‘D‘ for centered daubechies,
* ‘h‘ for haar, ‘H‘ for centered haar,
* ‘b‘ for bspline, ‘B‘ for centered bspline,
* ‘i‘ for applying inverse transform. */
inline void Wavelet(const char *how, int k) { mgl_data_wavelet(this, how, k); }
/// Return an approximated x-value (root) when dat(x) = val
inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
{ return mgl_data_solve_1d(this, val, use_spline, i0); }
/// Return an approximated value (root) when dat(x) = val
inline mglData Solve(mreal val, char dir, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, 0, norm)); }
inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, &i0, norm)); }
/// Interpolate by cubic spline the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Spline(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_spline(this, x,y,z); }
/// Interpolate by cubic spline the data to given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Spline1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_spline(this, x*(nx-1),y*(ny-1),z*(nz-1)); }
/// Interpolate by linear function the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Linear(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear(this,x,y,z); }
/// Interpolate by line the data to given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Linear1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear(this,x*(nx-1),y*(ny-1),z*(nz-1)); }
/// Interpolate by cubic spline the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Spline(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_spline_ext(this, x,y,z, &(dif.x),&(dif.y), &(dif.z)); }
/// Interpolate by cubic spline the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Spline1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ mreal res=mgl_data_spline_ext(this, x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
dif.x*=nx>1?nx-1:1; dif.y*=ny>1?ny-1:1; dif.z*=nz>1?nz-1:1; return res; }
/// Interpolate by linear function the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Linear(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear_ext(this,x,y,z, &(dif.x),&(dif.y), &(dif.z)); }
/// Interpolate by line the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Linear1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ mreal res=mgl_data_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
dif.x*=nx>1?nx-1:1; dif.y*=ny>1?ny-1:1; dif.z*=nz>1?nz-1:1; return res; }
/// Get information about the data (sizes and momentum) to string
inline const char *PrintInfo() const { return mgl_data_info(this); }
/// Print information about the data (sizes and momentum) to FILE (for example, stdout)
inline void PrintInfo(FILE *fp) const
{ if(fp) { fprintf(fp,"%s",mgl_data_info(this)); fflush(fp); } }
/// Get maximal value of the data
inline mreal Maximal() const { return mgl_data_max(this); }
/// Get minimal value of the data
inline mreal Minimal() const { return mgl_data_min(this); }
/// Get maximal value of the data which is less than 0
inline mreal MaximalNeg() const { return mgl_data_neg_max(this); }
/// Get minimal value of the data which is larger than 0
inline mreal MinimalPos() const { return mgl_data_pos_min(this); }
/// Get maximal value of the data and its position
inline mreal Maximal(long &i,long &j,long &k) const
{ return mgl_data_max_int(this,&i,&j,&k); }
/// Get minimal value of the data and its position
inline mreal Minimal(long &i,long &j,long &k) const
{ return mgl_data_min_int(this,&i,&j,&k); }
/// Get maximal value of the data and its approximated position
inline mreal Maximal(mreal &x,mreal &y,mreal &z) const
{ return mgl_data_max_real(this,&x,&y,&z); }
/// Get minimal value of the data and its approximated position
inline mreal Minimal(mreal &x,mreal &y,mreal &z) const
{ return mgl_data_min_real(this,&x,&y,&z); }
/// Get "energy" and find first (median) and second (width) momenta of data
inline mreal Momentum(char dir,mreal &m,mreal &w) const
{ return mgl_data_momentum_val(this,dir,&m,&w,0,0); }
/// Get "energy and find 4 momenta of data: median, width, skewness, kurtosis
inline mreal Momentum(char dir,mreal &m,mreal &w,mreal &s,mreal &k) const
{ return mgl_data_momentum_val(this,dir,&m,&w,&s,&k); }
/// Find position (after specified in i,j,k) of first nonzero value of formula
inline mreal Find(const char *cond, long &i, long &j, long &k) const
{ return mgl_data_first(this,cond,&i,&j,&k); }
/// Find position (before specified in i,j,k) of last nonzero value of formula
inline mreal Last(const char *cond, long &i, long &j, long &k) const
{ return mgl_data_last(this,cond,&i,&j,&k); }
/// Find position of first in direction 'dir' nonzero value of formula
inline long Find(const char *cond, char dir, long i=0, long j=0, long k=0) const
{ return mgl_data_find(this,cond,dir,i,j,k); }
/// Find if any nonzero value of formula
inline bool FindAny(const char *cond) const
{ return mgl_data_find_any(this,cond); }
/// Copy data from other mglData variable
inline const mglData &operator=(const mglData &d)
{ if(this!=&d) mgl_data_set(this,&d); return d; }
inline mreal operator=(mreal val)
{ mgl_data_fill(this,val,val,'x'); return val; }
/// Multiply the data by other one for each element
inline void operator*=(const mglData &d) { mgl_data_mul_dat(this,&d); }
/// Divide the data by other one for each element
inline void operator/=(const mglData &d) { mgl_data_div_dat(this,&d); }
/// Add the other data
inline void operator+=(const mglData &d) { mgl_data_add_dat(this,&d); }
/// Subtract the other data
inline void operator-=(const mglData &d) { mgl_data_sub_dat(this,&d); }
/// Multiply each element by the number
inline void operator*=(mreal d) { mgl_data_mul_num(this,d); }
/// Divide each element by the number
inline void operator/=(mreal d) { mgl_data_div_num(this,d); }
/// Add the number
inline void operator+=(mreal d) { mgl_data_add_num(this,d); }
/// Subtract the number
inline void operator-=(mreal d) { mgl_data_sub_num(this,d); }
};
//-----------------------------------------------------------------------------
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for amplitude and phase
inline mglData mglTransformA(const mglData &am, const mglData &ph, const char *tr)
{ return mglData(true,mgl_transform_a(&am,&ph,tr)); }
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for real and imaginary parts
inline mglData mglTransform(const mglData &re, const mglData &im, const char *tr)
{ return mglData(true,mgl_transform(&re,&im,tr)); }
/// Apply Fourier transform for the data and save result into it
inline void mglFourier(mglData &re, mglData &im, const char *dir)
{ mgl_data_fourier(&re,&im,dir); }
/// Short time Fourier analysis for real and imaginary parts. Output is amplitude of partial Fourier (result will have size {dn, floor(nx/dn), ny} for dir='x'
inline mglData mglSTFA(const mglData &re, const mglData &im, long dn, char dir='x')
{ return mglData(true, mgl_data_stfa(&re,&im,dn,dir)); }
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglData mglPDE(HMGL gr, const char *ham, const mglData &ini_re, const mglData &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{ return mglData(true, mgl_pde_solve(gr,ham, &ini_re, &ini_im, dz, k0,opt)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0)); }
inline mglData mglQO2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO3d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0)); }
inline mglData mglQO3d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz)); }
/// Finds ray with starting point r0, p0 (and prepares ray data for mglQO2d)
inline mglData mglRay(const char *ham, mglPoint r0, mglPoint p0, mreal dt=0.1, mreal tmax=10)
{ return mglData(true, mgl_ray_trace(ham, r0.x, r0.y, r0.z, p0.x, p0.y, p0.z, dt, tmax)); }
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 over time interval [0,tmax] with time step dt
inline mglData mglODE(const char *func, const char *var, const mglData &ini, mreal dt=0.1, mreal tmax=10)
{ return mglData(true, mgl_ode_solve_str(func,var, &ini, dt, tmax)); }
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 of size n*m over time interval [0,tmax] with time step dt
inline mglData mglODEs(const char *func, const char *var, char brd, const mglData &ini, mreal dt=0.1, mreal tmax=10)
{ return mglData(true, mgl_ode_solve_set(func,var, brd, &ini, dt, tmax)); }
//-----------------------------------------------------------------------------
/// Get array as solution of tridiagonal system of equations a[i]*x[i-1]+b[i]*x[i]+c[i]*x[i+1]=d[i]
/** String \a how may contain:
* 'x', 'y', 'z' for solving along x-,y-,z-directions, or
* 'h' for solving along hexagonal direction at x-y plain (need nx=ny),
* 'c' for using periodical boundary conditions,
* 'd' for diffraction/diffuse calculation. */
inline mglData mglTridMat(const mglData &A, const mglData &B, const mglData &C, const mglData &D, const char *how)
{ return mglData(true, mgl_data_tridmat(&A, &B, &C, &D, how)); }
//-----------------------------------------------------------------------------
/// Calculate Jacobian determinant for D{x(u,v), y(u,v)} = dx/du*dy/dv-dx/dv*dy/du
inline mglData mglJacobian(const mglData &x, const mglData &y)
{ return mglData(true, mgl_jacobian_2d(&x, &y)); }
/// Calculate Jacobian determinant for D{x(u,v,w), y(u,v,w), z(u,v,w)}
inline mglData mglJacobian(const mglData &x, const mglData &y, const mglData &z)
{ return mglData(true, mgl_jacobian_3d(&x, &y, &z)); }
/// Do something like Delone triangulation
inline mglData mglTriangulation(const mglData &x, const mglData &y, const mglData &z)
{ return mglData(true,mgl_triangulation_3d(&x,&y,&z)); }
inline mglData mglTriangulation(const mglData &x, const mglData &y)
{ return mglData(true,mgl_triangulation_2d(&x,&y)); }
/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
/** Noises below lvl amplitude are ignored.
* Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
inline mglData mglDetect(const mglData &d, mreal lvl, mreal dj, mreal di=0, mreal min_len=0)
{ return mglData(true,mgl_data_detect(&d, lvl, dj, di, min_len)); }
//-----------------------------------------------------------------------------
/// Get array which is n-th pairs {x[i],y[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS2d(const mglData &A, long n, long skip=20)
{ return mglData(true,mgl_data_ifs_2d(&A,n,skip)); }
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS3d(const mglData &A, long n, long skip=20)
{ return mglData(true,mgl_data_ifs_3d(&A,n,skip)); }
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) defined in *.ifs file 'fname' and named as 'name'
inline mglData mglIFSfile(const char *fname, const char *name, long n, long skip=20)
{ return mglData(true,mgl_data_ifs_file(fname,name,n,skip)); }
/// Get array which is n-th pairs {x[i],y[i]} for Flame fractal generated by A with functions F
/** NOTE: A.nx must be >= 7 and F.nx >= 2 and F.nz=A.ny.
* F[0,i,j] denote function id. F[1,i,j] give function weight, F(2:5,i,j) provide function parameters.
* Resulting point is {xnew,ynew} = sum_i F[1,i,j]*F[0,i,j]{IFS2d(A[j]){x,y}}. */
inline mglData mglFlame2d(const mglData &A, const mglData &F, long n, long skip=20)
{ return mglData(true,mgl_data_flame_2d(&A,&F,n,skip)); }
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglData mglSubData(const mglData &dat, long xx, long yy=-1, long zz=-1)
{ return mglData(true,mgl_data_subdata(&dat,xx,yy,zz)); }
inline mglData mglSubData(const mglData &dat, const mglData &xx, const mglData &yy, const mglData &zz)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,&zz)); }
inline mglData mglSubData(const mglData &dat, const mglData &xx, const mglData &yy)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,0)); }
inline mglData mglSubData(const mglData &dat, const mglData &xx)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,0,0)); }
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglData mglGSplineInit(const mglData &xdat, const mglData &ydat)
{ return mglData(true,mgl_gspline_init(&xdat, &ydat)); }
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline mreal mglGSpline(const mglData &coef, mreal dx, mreal *d1=0, mreal *d2=0)
{ return mgl_gspline(&coef, dx, d1,d2); }
//-----------------------------------------------------------------------------
/// Wrapper class for expression evaluating
class mglExpr
{
HMEX ex;
mglExpr(const mglExpr &){} // copying is not allowed
const mglExpr &operator=(const mglExpr &t){return t;} // copying is not allowed
public:
mglExpr(const char *expr) { ex = mgl_create_expr(expr); }
~mglExpr() { mgl_delete_expr(ex); }
/// Return value of expression for given x,y,z variables
inline double Eval(double x, double y=0, double z=0)
{ return mgl_expr_eval(ex,x,y,z); }
/// Return value of expression differentiation over variable dir for given x,y,z variables
inline double Diff(char dir, double x, double y=0, double z=0)
{ return mgl_expr_diff(ex,dir, x,y,z); }
};
//-----------------------------------------------------------------------------
|