File: data.i

package info (click to toggle)
mathgl 8.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 248,044 kB
  • sloc: cpp: 87,365; ansic: 3,299; javascript: 3,284; pascal: 1,562; python: 52; sh: 51; makefile: 47; f90: 22
file content (674 lines) | stat: -rw-r--r-- 41,076 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/***************************************************************************
 * data.i is part of Math Graphic Library
 * Copyright (C) 2007-2012 Alexey Balakin <mathgl.abalakin@gmail.ru>       *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU Library General Public License as       *
 *   published by the Free Software Foundation; either version 3 of the    *
 *   License, or (at your option) any later version.                       *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU Library General Public     *
 *   License along with this program; if not, write to the                 *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
//-----------------------------------------------------------------------------
#include <string>
class mglData
{
public:

	long nx;		///< number of points in 1st dimensions ('x' dimension)
	long ny;		///< number of points in 2nd dimensions ('y' dimension)
	long nz;		///< number of points in 3d dimensions ('z' dimension)
	mreal *a;		///< data array
	bool link;		///< use external data (i.e. don't free it)

	/// Initiate by other mglData variable
	mglData(const mglData *d)	{	a=0;	mgl_data_set(this, d);		}
	mglData(bool, mglData *d)	// NOTE: Variable d will be deleted!!!
	{	if(d)
		{	nx=d->nx;	ny=d->ny;	nz=d->nz;	a=d->a;	d->a=0;
			id=d->id;	link=d->link;	delete d;	}
		else	{	a=0;	Create(1);	}	}
	/// Initiate by flat array
	mglData(int size, const float *d)	{	a=0;	Set(d,size);	}
	mglData(int rows, int cols, const float *d)	{	a=0;	Set(d,cols,rows);	}
	mglData(int size, const double *d)	{	a=0;	Set(d,size);	}
	mglData(int rows, int cols, const double *d)	{	a=0;	Set(d,cols,rows);	}
	mglData(const double *d, int size)	{	a=0;	Set(d,size);	}
	mglData(const double *d, int rows, int cols)	{	a=0;	Set(d,cols,rows);	}
	mglData(const float *d, int size)	{	a=0;	Set(d,size);	}
	mglData(const float *d, int rows, int cols)	{	a=0;	Set(d,cols,rows);	}
	/// Read data from file
	mglData(const char *fname)			{	a=0;	Read(fname);	}
	/// Allocate the memory for data array and initialize it zero
	mglData(long xx=1,long yy=1,long zz=1)	{	a=0;	Create(xx,yy,zz);	}
	/// Delete the array
	virtual ~mglData()	{	if(!link && a)	delete []a;	}

	inline mreal GetVal(long i, long j=0, long k=0) const
	{	return mgl_data_get_value(this,i,j,k);}
	inline void SetVal(mreal f, long i, long j=0, long k=0)
	{	mgl_data_set_value(this,f,i,j,k);	}
	/// Get sizes
	long GetNx() const	{	return nx;	}
	long GetNy() const	{	return ny;	}
	long GetNz() const	{	return nz;	}

	/// Link external data array (don't delete it at exit)
	inline void Link(mreal *A, long NX, long NY=1, long NZ=1)
	{	mgl_data_link(this,A,NX,NY,NZ);	}
	inline void Link(mglData &d)	{	Link(d.a,d.nx,d.ny,d.nz);	}
	/// Allocate memory and copy the data from the gsl_vector
	inline void Set(gsl_vector *m)	{	mgl_data_set_vector(this,m);	}
	/// Allocate memory and copy the data from the gsl_matrix
	inline void Set(gsl_matrix *m)	{	mgl_data_set_matrix(this,m);	}

	/// Allocate memory and copy the data from the (float *) array
	inline void Set(const float *A,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_float(this,A,NX,NY,NZ);	}
	/// Allocate memory and copy the data from the (double *) array
	inline void Set(const double *A,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_double(this,A,NX,NY,NZ);	}
	/// Allocate memory and copy the data from the (float **) array
	inline void Set(float const * const *A,long N1,long N2)
	{	mgl_data_set_float2(this,A,N1,N2);	}
	/// Allocate memory and copy the data from the (double **) array
	inline void Set(double const * const *A,long N1,long N2)
	{	mgl_data_set_double2(this,A,N1,N2);	}
	/// Allocate memory and copy the data from the (float ***) array
	inline void Set(float const * const * const *A,long N1,long N2,long N3)
	{	mgl_data_set_float3(this,A,N1,N2,N3);	}
	/// Allocate memory and copy the data from the (double ***) array
	inline void Set(double const * const * const *A,long N1,long N2,long N3)
	{	mgl_data_set_double3(this,A,N1,N2,N3);	}
	/// Allocate memory and scanf the data from the string
	inline void Set(const char *str,long NX,long NY=1,long NZ=1)
	{	mgl_data_set_values(this,str,NX,NY,NZ);	}
	/// Import data from abstract type
	inline void Set(const mglData &dat)	{	mgl_data_set(this, &dat);	}

	/// Create or recreate the array with specified size and fill it by zero
	inline void Create(long mx,long my=1,long mz=1)
	{	mgl_data_create(this,mx,my,mz);	}
	/// Rearange data dimensions
	inline void Rearrange(long mx, long my=0, long mz=0)
	{	mgl_data_rearrange(this,mx,my,mz);	}
	/// Transpose dimensions of the data (generalization of Transpose)
	inline void Transpose(const char *dim="yx")
	{	mgl_data_transpose(this,dim);	}
	/// Extend data dimensions
	inline void Extend(long n1, long n2=0)
	{	mgl_data_extend(this,n1,n2);	}
	/// Reduce size of the data
	inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
	{	mgl_data_squeeze(this,rx,ry,rz,smooth);	}
	/// Crop the data
	inline void Crop(long n1, long n2,char dir='x')
	{	mgl_data_crop(this,n1,n2,dir);	}
	/// Crop the data to be most optimal for FFT (i.e. to closest value of 2^n*3^m*5^l)
	inline void Crop(const char *how="235x")
	{	mgl_data_crop_opt(this, how);	}
	/// Insert data rows/columns/slices
	inline void Insert(char dir, long at=0, long num=1)
	{	mgl_data_insert(this,dir,at,num);	}
	/// Delete data rows/columns/slices
	inline void Delete(char dir, long at=0, long num=1)
	{	mgl_data_delete(this,dir,at,num);	}
	/// Remove rows with duplicate values in column clmn
	inline void Clean(long clmn)
	{	mgl_data_clean(this,clmn);	}
	/// Join with another data array
	inline void Join(const mglData &d)
	{	mgl_data_join(this,&d);	}

	/// Modify the data by specified formula
	inline void Modify(const char *eq,long dim=0)
	{	mgl_data_modify(this, eq, dim);	}
	/// Modify the data by specified formula
	inline void Modify(const char *eq,const mglData &vdat, const mglData &wdat)
	{	mgl_data_modify_vw(this,eq,&vdat,&wdat);	}
	/// Modify the data by specified formula
	inline void Modify(const char *eq,const mglData &vdat)
	{	mgl_data_modify_vw(this,eq,&vdat,0);	}
	/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
	inline void Fill(HMGL gr, const char *eq, const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,0,0,opt);	}
	inline void Fill(HMGL gr, const char *eq, const mglData &vdat, const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,&vdat,0,opt);	}
	inline void Fill(HMGL gr, const char *eq, const mglData &vdat, const mglData &wdat,const char *opt="")
	{	mgl_data_fill_eq(gr,this,eq,&vdat,&wdat,opt);	}
	/// Equidistantly fill the data to range [x1,x2] in direction dir
	inline void Fill(mreal x1,mreal x2=NaN,char dir='x')
	{	mgl_data_fill(this,x1,x2,dir);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
	inline void RefillGS(const mglData &xdat, const mglData &vdat, mreal x1, mreal x2,long sl=-1)
	{	mgl_data_refill_gs(this,&xdat,&vdat,x1,x2,sl);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
	inline void Refill(const mglData &xdat, const mglData &vdat, mreal x1, mreal x2,long sl=-1)
	{	mgl_data_refill_x(this,&xdat,&vdat,x1,x2,sl);	}
	inline void Refill(const mglData &xdat, const mglData &vdat, mglPoint p1, mglPoint p2,long sl=-1)
	{	mgl_data_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl);	}
	inline void Refill(const mglData &xdat, const mglData &ydat, const mglData &vdat, mglPoint p1, mglPoint p2,long sl=-1)
	{	mgl_data_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl);	}
	inline void Refill(const mglData &xdat, const mglData &ydat, const mglData &zdat, const mglData &vdat, mglPoint p1, mglPoint p2)
	{	mgl_data_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z);	}
	/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
	inline void Refill(HMGL gr, const mglData &xdat, const mglData &vdat, long sl=-1, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt);	}
	inline void Refill(HMGL gr, const mglData &xdat, const mglData &ydat, const mglData &vdat, long sl=-1, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt);	}
	inline void Refill(HMGL gr, const mglData &xdat, const mglData &ydat, const mglData &zdat, const mglData &vdat, const char *opt="")
	{	mgl_data_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt);	}
	/// Set the data by triangulated surface values assuming x,y,z in axis range of gr
	inline void Grid(HMGL gr, const mglData &x, const mglData &y, const mglData &z, const char *opt="")
	{	mgl_data_grid(gr,this,&x,&y,&z,opt);	}
	/// Set the data by triangulated surface values assuming x,y,z in range [p1, p2]
	inline void Grid(const mglData &xdat, const mglData &ydat, const mglData &vdat, mglPoint p1, mglPoint p2)
	{	mgl_data_grid_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y);	}
	/// Put value to data element(s)
	inline void Put(mreal val, long i=-1, long j=-1, long k=-1)
	{	mgl_data_put_val(this,val,i,j,k);	}
	/// Put array to data element(s)
	inline void Put(const mglData &dat, long i=-1, long j=-1, long k=-1)
	{	mgl_data_put_dat(this,&dat,i,j,k);	}
	/// Set names for columns (slices)
	inline void SetColumnId(const char *ids)
	{	mgl_data_set_id(this,ids);	}
	/// Make new id
	inline void NewId()	{	id.clear();	}

	/// Fills data by integer random numbers of uniform distribution in range [lo,hi]
	inline void RndInteger(long lo, long hi)
	{	mgl_data_rnd_integer(this, lo, hi);	}
	/// Fills data by random numbers of uniform distribution in range [lo,hi]
	inline void RndUniform(mreal lo, mreal hi)
	{	mgl_data_rnd_uniform(this, lo, hi);	}
	/// Fills data by random numbers of Bernoulli distribution
	inline void RndBernoulli(mreal p=0.5)
	{	mgl_data_rnd_bernoulli(this, p);	}
	/// Fills data by random numbers of binomial distribution
	inline void RndBinomial(long trials, mreal p=0.5)
	{	mgl_data_rnd_binomial(this, trials, p);	}
	/// Fills data by random numbers of Gaussian distribution
	inline void RndGaussian(mreal mu=0.0, mreal sigma=1.0)
	{	mgl_data_rnd_gaussian(this, mu, sigma);	}
	/// Fills data by random numbers of exponential distribution
	inline void RndExponential(mreal lambda)
	{	mgl_data_rnd_exponential(this, lambda);	}
	/// Fills data by random numbers of discrete distribution according A
	inline void RndDiscrete(const mglData &A)
	{	mgl_data_rnd_discrete(this, &A);	}
	/// Shuffles elements or slices of data array
	inline void RndShuffle(char dir='a')
	{	mgl_shuffle(this, dir);	}
	/// Fills data by fractional brownian motions along x-direction
	inline void RndBrownian(mreal y1, mreal y2, mreal sigma, mreal alpha)
	{	mgl_data_brownian(this, y1, y2, sigma, alpha);	}
	
	/// Read data from tab-separated text file with auto determining size
	inline bool Read(const char *fname)
	{	return mgl_data_read(this,fname); }
	/// Read data from text file with specifeid size
	inline bool Read(const char *fname,long mx,long my=1,long mz=1)
	{	return mgl_data_read_dim(this,fname,mx,my,mz);	}
	/// Save whole data array (for ns=-1) or only ns-th slice to text file
	inline void Save(const char *fname,long ns=-1) const
	{	mgl_data_save(this,fname,ns);	}
	/// Export data array (for ns=-1) or only ns-th slice to PNG file according color scheme
	inline void Export(const char *fname,const char *scheme,mreal v1=0,mreal v2=0,long ns=-1) const
	{	mgl_data_export(this,fname,scheme,v1,v2,ns);	}
	/// Import data array from PNG file according color scheme
	inline void Import(const char *fname,const char *scheme,mreal v1=0,mreal v2=1)
	{	mgl_data_import(this,fname,scheme,v1,v2);	}
	/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
	inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
	{	return mgl_data_read_range(this,templ,from,to,step,as_slice);	}
	/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
	inline bool ReadAll(const char *templ, bool as_slice=false)
	{	return mgl_data_read_all(this, templ, as_slice);	}
	/// Read data from text file with size specified at beginning of the file
	inline bool ReadMat(const char *fname, long dim=2)
	{	return mgl_data_read_mat(this,fname,dim);	}
	/// Read data array from HDF file (parse HDF4 and HDF5 files)
	inline int ReadHDF(const char *fname,const char *data)
	{	return mgl_data_read_hdf(this,fname,data);	}
	/// Save data to HDF file
	inline void SaveHDF(const char *fname,const char *data,bool rewrite=false) const
	{	mgl_data_save_hdf(this,fname,data,rewrite);	}
	/// Put HDF data names into buf as '\t' separated.
	inline static int DatasHDF(const char *fname, char *buf, long size)
	{	return mgl_datas_hdf(fname,buf,size);	}
	/// Scan textual file for template and fill data array
	inline int ScanFile(const char *fname, const char *templ)
	{	return mgl_data_scan_file(this,fname, templ);	}
	/// Read data from binary file of type: 0 - double, 1 - float, 2 - long double, 3 - long int, 4 - int, 5 - short int, 6 - char.
	/** NOTE: this function may not correctly read binary files written in different CPU kind! */
	inline bool ReadBin(const char *fname, int type)
	{	return mgl_data_read_bin(this, fname, type);	}


	/// Get column (or slice) of the data filled by formulas of named columns
	inline mglData Column(const char *eq) const
	{	return mglData(true,mgl_data_column(this,eq));	}
	/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
	inline mglData Momentum(char dir, const char *how) const
	{	return mglData(true,mgl_data_momentum(this,dir,how));	}
	/// Get pulse properties: pulse maximum and its position, pulse duration near maximum and by half height, energy in first pulse.
	inline mglData Pulse(char dir) const
	{	return mglData(true,mgl_data_pulse(this,dir));	}
	/// Get sub-array of the data with given fixed indexes
	inline mglData SubData(long xx,long yy=-1,long zz=-1) const
	{	return mglData(true,mgl_data_subdata(this,xx,yy,zz));	}
	inline mglData SubData(const mglData &xx, const mglData &yy, const mglData &zz) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,&zz));	}
	inline mglData SubData(const mglData &xx, const mglData &yy) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,0));	}
	inline mglData SubData(const mglData &xx) const
	{	return mglData(true,mgl_data_subdata_ext(this,&xx,0,0));	}
	/// Get data from sections ids, separated by value val along specified direction.
	/** If section id is negative then reverse order is used (i.e. -1 give last section). */
	inline mglData Section(const mglData &ids, char dir='y', mreal val=NAN) const
	{	return mglData(true,mgl_data_section(this,&ids,dir,val));	}
	inline mglData Section(long id, char dir='y', mreal val=NAN) const
	{	return mglData(true,mgl_data_section_val(this,id,dir,val));	}
	/// Get contour lines for dat[i,j]=val. NAN values separate the the curves.
	inline mglData Conts(mreal val)
	{	return mglData(true,mgl_data_conts(val,this));	}

	/// Get trace of the data array
	inline mglData Trace() const
	{	return mglData(true,mgl_data_trace(this));	}
	/// Create n-th points distribution of this data values in range [v1, v2]
	inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
	{	return mglData(true,mgl_data_hist(this,n,v1,v2,nsub));	}
	/// Create n-th points distribution of this data values in range [v1, v2] with weight w
	inline mglData Hist(const mglData &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
	{	return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub));	}
	/// Create n-th points distribution of this data values in range [v1, v2] with weight w by using linear interpolation between coordinate.
	inline mglData HistL(long n,mreal v1=0,mreal v2=1) const
	{	return mglData(true,mgl_data_hist_l(this,NULL,n,v1,v2));	}
	/// Create n-th points distribution of this data values in range [v1, v2] by using linear interpolation between coordinate.
	inline mglData HistL(const mglData &w, long n,mreal v1=0,mreal v2=1) const
	{	return mglData(true,mgl_data_hist_l(this,&w,n,v1,v2));	}
	/// Get array which is result of summation in given direction or directions
	inline mglData Sum(const char *dir) const
	{	return mglData(true,mgl_data_sum(this,dir));	}
	/// Get array of positions of first value large val
	inline mglData First(const char *dir, mreal val) const
	{	return mglData(true,mgl_data_first_dir(this,dir,val));	}
	/// Get array of positions of last value large val
	inline mglData Last(const char *dir, mreal val) const
	{	return mglData(true,mgl_data_last_dir(this,dir,val));	}

	/// Get array which is result of maximal values in given direction or directions
	inline mglData Max(const char *dir) const
	{	return mglData(true,mgl_data_max_dir(this,dir));	}
	/// Get array which is result of minimal values in given direction or directions
	inline mglData Min(const char *dir) const
	{	return mglData(true,mgl_data_min_dir(this,dir));	}
	/// Get positions of local maximums and minimums
	inline mglData MinMax() const
	{	return mglData(true,mgl_data_minmax(this));	}
	/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
	inline mglData Combine(const mglData &dat) const
	{	return mglData(true,mgl_data_combine(this,&dat));	}
	/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
	inline mglData Resize(long mx,long my=0,long mz=0, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
	{	return mglData(true,mgl_data_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2));	}
	/// Get array which values is result of interpolation this for coordinates from other arrays
	inline mglData Evaluate(const mglData &idat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,0,0,norm));	}
	inline mglData Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,&jdat,0,norm));	}
	inline mglData Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
	{	return mglData(true,mgl_data_evaluate(this,&idat,&jdat,&kdat,norm));	}
	/// Find roots for nonlinear equation defined by textual formula
	inline mglData Roots(const char *eq, char var='x') const
	{	return mglData(true,mgl_data_roots(eq, this, var));	}
	/// Find roots for set of nonlinear equations defined by textual formula
	inline mglData MultiRoots(const char *eq, const char *vars) const
	{	return mglData(true,mgl_find_roots_txt(eq, vars, this));	}
	/// Find correlation with another data arrays
	inline mglData Correl(const mglData &dat, const char *dir) const
	{	return mglData(true,mgl_data_correl(this,&dat,dir));	}
	/// Find auto correlation function
	inline mglData AutoCorrel(const char *dir) const
	{	return mglData(true,mgl_data_correl(this,this,dir));	}
	/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
	/** Noises below lvl amplitude are ignored.
	 * Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
	inline mglData Detect(mreal lvl, mreal dj, mreal di=0, mreal min_len=0) const
	{	return mglData(true,mgl_data_detect(this,lvl,dj,di,min_len));	}

	/// Cumulative summation the data in given direction or directions
	inline void CumSum(const char *dir)	{	mgl_data_cumsum(this,dir);	}
	/// Integrate (cumulative summation) the data in given direction or directions
	inline void Integral(const char *dir)	{	mgl_data_integral(this,dir);	}
	/// Differentiate the data in given direction or directions
	inline void Diff(const char *dir)	{	mgl_data_diff(this,dir);	}
	/// Differentiate the parametrically specified data along direction v1
	inline void Diff(const mglData &v1)
	{	mgl_data_diff_par(this,&v1,0,0);	}
	/// Differentiate the parametrically specified data along direction v1 with v2=const
	inline void Diff(const mglData &v1, const mglData &v2)
	{	mgl_data_diff_par(this,&v1,&v2,0);	}
	/// Differentiate the parametrically specified data along direction v1 with v2,v3=const
	inline void Diff(const mglData &v1, const mglData &v2, const mglData &v3)
	{	mgl_data_diff_par(this,&v1,&v2,&v3);	}
	/// Double-differentiate (like Laplace operator) the data in given direction
	inline void Diff2(const char *dir)	{	mgl_data_diff2(this,dir);	}

	/// Swap left and right part of the data in given direction (useful for Fourier spectrum)
	inline void Swap(const char *dir)		{	mgl_data_swap(this,dir);	}
	/// Roll data along direction dir by num slices
	inline void Roll(char dir, long num)	{	mgl_data_roll(this,dir,num);	}
	/// Mirror the data in given direction (useful for Fourier spectrum)
	inline void Mirror(const char *dir)		{	mgl_data_mirror(this,dir);	}
	/// Sort rows (or slices) by values of specified column
	inline void Sort(long idx, long idy=-1)	{	mgl_data_sort(this,idx,idy);	}
	/// Return dilated array of 0 or 1 for data values larger val
	inline void Dilate(mreal val=1, long step=1)
	{	mgl_data_dilate(this, val, step);	}
	/// Return eroded array of 0 or 1 for data values larger val
	inline void Erode(mreal val=1, long step=1)
	{	mgl_data_erode(this, val, step);	}

	/// Set as the data envelop
	inline void Envelop(char dir='x')
	{	mgl_data_envelop(this,dir);	}
	/// Remove phase jump
	inline void Sew(const char *dirs="xyz", mreal da=2*Pi)
	{	mgl_data_sew(this,dirs,da);	}
	/// Smooth the data on specified direction or directions
	/** String \a dir may contain:
	 *  ‘x’, ‘y’, ‘z’ for 1st, 2nd or 3d dimension;
	 *  ‘dN’ for linear averaging over N points;
	 *  ‘3’ for linear averaging over 3 points;
	 *  ‘5’ for linear averaging over 5 points;
	 *  ‘^’ for finding upper bound;
	 *  ‘_’ for finding lower bound.
	 *  By default quadratic averaging over 5 points is used. */
	inline void Smooth(const char *dirs="xyz",mreal delta=0)
	{	mgl_data_smooth(this,dirs,delta);	}
	/// Normalize the data to range [v1,v2]
	inline void Norm(mreal v1=0,mreal v2=1,bool sym=false,long dim=0)
	{	mgl_data_norm(this,v1,v2,sym,dim);	}
	/// Normalize the data to range [v1,v2] slice by slice
	inline void NormSl(mreal v1=0,mreal v2=1,char dir='z',bool keep_en=true,bool sym=false)
	{	mgl_data_norm_slice(this,v1,v2,dir,keep_en,sym);	}
	/// Limit the data to be inside [-v,v], keeping the original sign
	inline void Limit(mreal v)
	{	mgl_data_limit(this, v);	}
	/// Project the periodical data to range [v1,v2] (like mod() function). Separate branches by NAN if sep=true.
	inline void Coil(mreal v1, mreal v2, bool sep=true)
	{	mgl_data_coil(this, v1, v2, sep);	}
	/// Keep the data sign/value along line i and j in given direction. 
	/** Parameter "how" may contain: 'x','y' or 'z' for direction (default is 'y'); 'a' for keeping amplitude instead of sign.*/
	inline void Keep(const char *how, long i, long j=0)
	{	mgl_data_keep(this, how, i, j);	}

	/// Replace initial mode by found one for equation u_xx+pot*u=0 in waveguide with boundary defined by \a mask.
	/** Parameter \a how may contain (default is "xyz0"):
	* ‘x‘ for 1d case with ny*nz variants,
	* ‘y‘ for 2d case with nz variants,
	* ‘z‘ for 3d case, TODO
	* ‘0‘ for zero boundary: u[n] = 0,
	* ‘1‘ for free boundary du/dx=0: u[n] = u[n-1],
	* ‘2‘ for zero laplace boundary d^2u/dx^2=0: u[n] = 2*u[n-1]-u[n-2],
	* ‘s‘ for 2nd order boundary du/dx=k: u[n] = (4*u[n-1]-u[n-2]-2*kdx)/3,
	* ‘r‘ for radiation boundary du/dx=ku: u[n]=(4*u[n-1]-u[n-2])/(3+2*kdx),
	* ‘c‘ for cyclic boundary ( u[n] = u[0] ignore \a kdx),
	* '+' for focusing nonlinearity,
	* '-' for defocusing nonlinearity.
	* Parameter \a iter set maximal number of iterations (0 is automatic). */
	inline void Mode(const mglData &mask, const mglData &pot, const char *how, double kdx=0, long iter=0)
	{	mgl_data_mode(this, &mask, &pot, how, kdx, iter);	}
	inline void Mode(const mglData &mask, const char *how, double kdx=0, long iter=0)
	{	mgl_data_mode(this, &mask, NULL, how, kdx, iter);	}

	/// Apply Hankel transform
	inline void Hankel(const char *dir)	{	mgl_data_hankel(this,dir);	}
	/// Apply Sin-Fourier transform
	inline void SinFFT(const char *dir)	{	mgl_data_sinfft(this,dir);	}
	/// Apply Cos-Fourier transform
	inline void CosFFT(const char *dir)	{	mgl_data_cosfft(this,dir);	}
	/// Fill data by coordinates/momenta samples for Hankel ('h') or Fourier ('f') transform
	/** Parameter \a how may contain:
	 * ‘x‘,‘y‘,‘z‘ for direction (only one will be used),
	 * ‘k‘ for momenta samples,
	 * ‘h‘ for Hankel samples,
	 * ‘f‘ for Cartesian/Fourier samples (default). */
	inline void FillSample(const char *how)
	{	mgl_data_fill_sample(this,how);	}
	/// Apply wavelet transform
	/** Parameter \a dir may contain:
	 * ‘x‘,‘y‘,‘z‘ for directions,
	 * ‘d‘ for daubechies, ‘D‘ for centered daubechies,
	 * ‘h‘ for haar, ‘H‘ for centered haar,
	 * ‘b‘ for bspline, ‘B‘ for centered bspline,
	 * ‘i‘ for applying inverse transform. */
	inline void Wavelet(const char *how, int k)	{	mgl_data_wavelet(this, how, k);	}

	/// Return an approximated x-value (root) when dat(x) = val
	inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
	{	return mgl_data_solve_1d(this, val, use_spline, i0);		}
	/// Return an approximated value (root) when dat(x) = val
	inline mglData Solve(mreal val, char dir, bool norm=true) const
	{	return mglData(true,mgl_data_solve(this, val, dir, 0, norm));	}
	inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
	{	return mglData(true,mgl_data_solve(this, val, dir, &i0, norm));	}

	/// Interpolate by cubic spline the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
	inline mreal Spline(mreal x,mreal y=0,mreal z=0) const
	{	return mgl_data_spline(this, x,y,z);	}
	/// Interpolate by cubic spline the data to given point x,\a y,\a z which normalized in range [0, 1]
	inline mreal Spline1(mreal x,mreal y=0,mreal z=0) const
	{	return mgl_data_spline(this, x*(nx-1),y*(ny-1),z*(nz-1));	}
	/// Interpolate by linear function the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
	inline mreal Linear(mreal x,mreal y=0,mreal z=0)	const
	{	return mgl_data_linear(this,x,y,z);	}
	/// Interpolate by line the data to given point x,\a y,\a z which normalized in range [0, 1]
	inline mreal Linear1(mreal x,mreal y=0,mreal z=0) const
	{	return mgl_data_linear(this,x*(nx-1),y*(ny-1),z*(nz-1));	}

	/// Interpolate by cubic spline the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
	inline mreal Spline(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
	{	return mgl_data_spline_ext(this, x,y,z, &(dif.x),&(dif.y), &(dif.z));	}
	/// Interpolate by cubic spline the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
	inline mreal Spline1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
	{	mreal res=mgl_data_spline_ext(this, x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
		dif.x*=nx>1?nx-1:1;	dif.y*=ny>1?ny-1:1;	dif.z*=nz>1?nz-1:1;	return res;	}
	/// Interpolate by linear function the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
	inline mreal Linear(mglPoint &dif, mreal x,mreal y=0,mreal z=0)	const
	{	return mgl_data_linear_ext(this,x,y,z, &(dif.x),&(dif.y), &(dif.z));	}
	/// Interpolate by line the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
	inline mreal Linear1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
	{	mreal res=mgl_data_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
		dif.x*=nx>1?nx-1:1;	dif.y*=ny>1?ny-1:1;	dif.z*=nz>1?nz-1:1;	return res;	}

	/// Get information about the data (sizes and momentum) to string
	inline const char *PrintInfo() const	{	return mgl_data_info(this);	}
	/// Print information about the data (sizes and momentum) to FILE (for example, stdout)
	inline void PrintInfo(FILE *fp) const
	{	if(fp)	{	fprintf(fp,"%s",mgl_data_info(this));	fflush(fp);	}	}
	/// Get maximal value of the data
	inline mreal Maximal() const	{	return mgl_data_max(this);	}
	/// Get minimal value of the data
	inline mreal Minimal() const	{	return mgl_data_min(this);	}
	/// Get maximal value of the data which is less than 0
	inline mreal MaximalNeg() const	{	return mgl_data_neg_max(this);	}
	/// Get minimal value of the data which is larger than 0
	inline mreal MinimalPos() const	{	return mgl_data_pos_min(this);	}
	/// Get maximal value of the data and its position
	inline mreal Maximal(long &i,long &j,long &k) const
	{	return mgl_data_max_int(this,&i,&j,&k);	}
	/// Get minimal value of the data and its position
	inline mreal Minimal(long &i,long &j,long &k) const
	{	return mgl_data_min_int(this,&i,&j,&k);	}
	/// Get maximal value of the data and its approximated position
	inline mreal Maximal(mreal &x,mreal &y,mreal &z) const
	{	return mgl_data_max_real(this,&x,&y,&z);	}
	/// Get minimal value of the data and its approximated position
	inline mreal Minimal(mreal &x,mreal &y,mreal &z) const
	{	return mgl_data_min_real(this,&x,&y,&z);	}
	/// Get "energy" and find first (median) and second (width) momenta of data
	inline mreal Momentum(char dir,mreal &m,mreal &w) const
	{	return mgl_data_momentum_val(this,dir,&m,&w,0,0);	}
	/// Get "energy and find 4 momenta of data: median, width, skewness, kurtosis
	inline mreal Momentum(char dir,mreal &m,mreal &w,mreal &s,mreal &k) const
	{	return mgl_data_momentum_val(this,dir,&m,&w,&s,&k);	}
	/// Find position (after specified in i,j,k) of first nonzero value of formula
	inline mreal Find(const char *cond, long &i, long &j, long &k) const
	{	return mgl_data_first(this,cond,&i,&j,&k);	}
	/// Find position (before specified in i,j,k) of last nonzero value of formula
	inline mreal Last(const char *cond, long &i, long &j, long &k) const
	{	return mgl_data_last(this,cond,&i,&j,&k);	}
	/// Find position of first in direction 'dir' nonzero value of formula
	inline long Find(const char *cond, char dir, long i=0, long j=0, long k=0) const
	{	return mgl_data_find(this,cond,dir,i,j,k);	}
	/// Find if any nonzero value of formula
	inline bool FindAny(const char *cond) const
	{	return mgl_data_find_any(this,cond);	}

	/// Copy data from other mglData variable
	inline const mglData &operator=(const mglData &d)
	{	if(this!=&d)	mgl_data_set(this,&d);	return d;	}
	inline mreal operator=(mreal val)
	{	mgl_data_fill(this,val,val,'x');	return val;	}
	/// Multiply the data by other one for each element
	inline void operator*=(const mglData &d)	{	mgl_data_mul_dat(this,&d);	}
	/// Divide the data by other one for each element
	inline void operator/=(const mglData &d)	{	mgl_data_div_dat(this,&d);	}
	/// Add the other data
	inline void operator+=(const mglData &d)	{	mgl_data_add_dat(this,&d);	}
	/// Subtract the other data
	inline void operator-=(const mglData &d)	{	mgl_data_sub_dat(this,&d);	}
	/// Multiply each element by the number
	inline void operator*=(mreal d)		{	mgl_data_mul_num(this,d);	}
	/// Divide each element by the number
	inline void operator/=(mreal d)		{	mgl_data_div_num(this,d);	}
	/// Add the number
	inline void operator+=(mreal d)		{	mgl_data_add_num(this,d);	}
	/// Subtract the number
	inline void operator-=(mreal d)		{	mgl_data_sub_num(this,d);	}
};
//-----------------------------------------------------------------------------
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for amplitude and phase
inline mglData mglTransformA(const mglData &am, const mglData &ph, const char *tr)
{	return mglData(true,mgl_transform_a(&am,&ph,tr));	}
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for real and imaginary parts
inline mglData mglTransform(const mglData &re, const mglData &im, const char *tr)
{	return mglData(true,mgl_transform(&re,&im,tr));	}
/// Apply Fourier transform for the data and save result into it
inline void mglFourier(mglData &re, mglData &im, const char *dir)
{	mgl_data_fourier(&re,&im,dir);	}
/// Short time Fourier analysis for real and imaginary parts. Output is amplitude of partial Fourier (result will have size {dn, floor(nx/dn), ny} for dir='x'
inline mglData mglSTFA(const mglData &re, const mglData &im, long dn, char dir='x')
{	return mglData(true, mgl_data_stfa(&re,&im,dn,dir));	}
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglData mglPDE(HMGL gr, const char *ham, const mglData &ini_re, const mglData &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{	return mglData(true, mgl_pde_solve(gr,ham, &ini_re, &ini_im, dz, k0,opt));	}
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0));	}
inline mglData mglQO2d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy));	}
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO3d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0));	}
inline mglData mglQO3d(const char *ham, const mglData &ini_re, const mglData &ini_im, const mglData &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{	return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz));	}
/// Finds ray with starting point r0, p0 (and prepares ray data for mglQO2d)
inline mglData mglRay(const char *ham, mglPoint r0, mglPoint p0, mreal dt=0.1, mreal tmax=10)
{	return mglData(true, mgl_ray_trace(ham, r0.x, r0.y, r0.z, p0.x, p0.y, p0.z, dt, tmax));	}
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 over time interval [0,tmax] with time step dt
inline mglData mglODE(const char *func, const char *var, const mglData &ini, mreal dt=0.1, mreal tmax=10)
{	return mglData(true, mgl_ode_solve_str(func,var, &ini, dt, tmax));	}
/// Saves result of ODE solving for var complex variables with right part func (separated by ';') and initial conditions x0 of size n*m over time interval [0,tmax] with time step dt
inline mglData mglODEs(const char *func, const char *var, char brd, const mglData &ini, mreal dt=0.1, mreal tmax=10)
{	return mglData(true, mgl_ode_solve_set(func,var, brd, &ini, dt, tmax));	}
//-----------------------------------------------------------------------------
/// Get array as solution of tridiagonal system of equations a[i]*x[i-1]+b[i]*x[i]+c[i]*x[i+1]=d[i]
/** String \a how may contain:
 * 'x', 'y', 'z' for solving along x-,y-,z-directions, or
 * 'h' for solving along hexagonal direction at x-y plain (need nx=ny),
 * 'c' for using periodical boundary conditions,
 * 'd' for diffraction/diffuse calculation. */
inline mglData mglTridMat(const mglData &A, const mglData &B, const mglData &C, const mglData &D, const char *how)
{	return mglData(true, mgl_data_tridmat(&A, &B, &C, &D, how));	}
//-----------------------------------------------------------------------------
/// Calculate Jacobian determinant for D{x(u,v), y(u,v)} = dx/du*dy/dv-dx/dv*dy/du
inline mglData mglJacobian(const mglData &x, const mglData &y)
{	return mglData(true, mgl_jacobian_2d(&x, &y));	}
/// Calculate Jacobian determinant for D{x(u,v,w), y(u,v,w), z(u,v,w)}
inline mglData mglJacobian(const mglData &x, const mglData &y, const mglData &z)
{	return mglData(true, mgl_jacobian_3d(&x, &y, &z));	}
/// Do something like Delone triangulation
inline mglData mglTriangulation(const mglData &x, const mglData &y, const mglData &z)
{	return mglData(true,mgl_triangulation_3d(&x,&y,&z));	}
inline mglData mglTriangulation(const mglData &x, const mglData &y)
{	return mglData(true,mgl_triangulation_2d(&x,&y));	}
/// Get curves, separated by NAN, for maximal values of array d as function of x coordinate.
/** Noises below lvl amplitude are ignored.
 * Parameter dy \in [0,ny] set the "attraction" distance of points to curve. */
inline mglData mglDetect(const mglData &d, mreal lvl, mreal dj, mreal di=0, mreal min_len=0)
{	return mglData(true,mgl_data_detect(&d, lvl, dj, di, min_len));	}
//-----------------------------------------------------------------------------
/// Get array which is n-th pairs {x[i],y[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS2d(const mglData &A, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_2d(&A,n,skip));	}
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS3d(const mglData &A, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_3d(&A,n,skip));	}
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) defined in *.ifs file 'fname' and named as 'name'
inline mglData mglIFSfile(const char *fname, const char *name, long n, long skip=20)
{	return mglData(true,mgl_data_ifs_file(fname,name,n,skip));	}
/// Get array which is n-th pairs {x[i],y[i]} for Flame fractal generated by A with functions F
/** NOTE: A.nx must be >= 7 and F.nx >= 2 and F.nz=A.ny.
 * F[0,i,j] denote function id. F[1,i,j] give function weight, F(2:5,i,j) provide function parameters.
 * Resulting point is {xnew,ynew} = sum_i F[1,i,j]*F[0,i,j]{IFS2d(A[j]){x,y}}. */
inline mglData mglFlame2d(const mglData &A, const mglData &F, long n, long skip=20)
{	return mglData(true,mgl_data_flame_2d(&A,&F,n,skip));	}
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglData mglSubData(const mglData &dat, long xx, long yy=-1, long zz=-1)
{	return mglData(true,mgl_data_subdata(&dat,xx,yy,zz));	}
inline mglData mglSubData(const mglData &dat, const mglData &xx, const mglData &yy, const mglData &zz)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,&zz));	}
inline mglData mglSubData(const mglData &dat, const mglData &xx, const mglData &yy)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,0));	}
inline mglData mglSubData(const mglData &dat, const mglData &xx)
{	return mglData(true,mgl_data_subdata_ext(&dat,&xx,0,0));	}
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglData mglGSplineInit(const mglData &xdat, const mglData &ydat)
{	return mglData(true,mgl_gspline_init(&xdat, &ydat));	}
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline mreal mglGSpline(const mglData &coef, mreal dx, mreal *d1=0, mreal *d2=0)
{	return mgl_gspline(&coef, dx, d1,d2);	}
//-----------------------------------------------------------------------------
/// Wrapper class for expression evaluating
class mglExpr
{
	HMEX ex;
	mglExpr(const mglExpr &){}	// copying is not allowed
	const mglExpr &operator=(const mglExpr &t){return t;}	// copying is not allowed
public:
	mglExpr(const char *expr)		{	ex = mgl_create_expr(expr);	}
	~mglExpr()	{	mgl_delete_expr(ex);	}
	/// Return value of expression for given x,y,z variables
	inline double Eval(double x, double y=0, double z=0)
	{	return mgl_expr_eval(ex,x,y,z);	}
	/// Return value of expression differentiation over variable dir for given x,y,z variables
	inline double Diff(char dir, double x, double y=0, double z=0)
	{	return mgl_expr_diff(ex,dir, x,y,z);	}
};
//-----------------------------------------------------------------------------