1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
@c ------------------------------------------------------------------
@chapter Other classes
@nav{}
There are few end-user classes: @code{mglGraph} (see @ref{MathGL core}), @code{mglWindow} and @code{mglGLUT} (see @ref{Widget classes}), @code{mglData} (see @ref{Data processing}), @code{mglParse} (see @ref{MGL scripts}). Exactly these classes I recommend to use in most of user programs. All methods in all of these classes are inline and have exact C/Fortran analogue functions. This give compiler independent binary libraries for MathGL.
However, sometimes you may need to extend MathGL by writing yours own plotting functions or handling yours own data structures. In these cases you may need to use low-level API. This chapter describes it.
@fig{classes, Class diagram for MathGL}
The internal structure of MathGL is rather complicated. There are C++ classes @code{mglBase}, @code{mglCanvas}, ... for drawing primitives and positioning the plot (blue ones in the figure). There is a layer of C functions, which include interface for most important methods of these classes. Also most of plotting functions are implemented as C functions. After it, there are ``inline'' front-end classes which are created for user convenience (yellow ones in the figure). Also there are widgets for FLTK, Qt and other libraries (green ones in the figure).
Below I show how this internal classes can be used.
@menu
* mglBase class::
* mglDataA class::
* mglColor class::
* mglPoint class::
@end menu
@c ------------------------------------------------------------------
@external{}
@node mglBase class, mglDataA class, , Other classes
@section Define new kind of plot (mglBase class)
@nav{}
Basically most of new kinds of plot can be created using just MathGL primitives (see @ref{Primitives}). However the usage of @code{mglBase} methods can give you higher speed of drawing and better control of plot settings.
All plotting functions should use a pointer to @code{mglBase} class (or @code{HMGL} type in C functions) due to compatibility issues. Exactly such type of pointers are used in front-end classes (@code{mglGraph, mglWindow}) and in widgets (@code{QMathGL, Fl_MathGL}).
MathGL tries to remember all vertexes and all primitives and plot creation stage, and to use them for making final picture by demand. Basically for making plot, you need to add vertexes by @code{AddPnt()} function, which return index for new vertex, and call one of primitive drawing function (like @code{mark_plot(), arrow_plot(), line_plot(), trig_plot(), quad_plot(), text_plot()}), using vertex indexes as argument(s). @code{AddPnt()} function use 2 mreal numbers for color specification. First one is positioning in textures -- integer part is texture index, fractional part is relative coordinate in the texture. Second number is like a transparency of plot (or second coordinate in the 2D texture).
I don't want to put here detailed description of @code{mglBase} class. It was rather well documented in @code{mgl2/base.h} file. I just show and example of its usage on the base of circle drawing.
First, we should prototype new function @code{circle()} as C function.
@verbatim
#ifdef __cplusplus
extern "C" {
#endif
void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
#ifdef __cplusplus
}
#endif
@end verbatim
This is done for generating compiler independent binary. Because only C-functions have standard naming mechanism, the same for any compilers.
Now, we create a C++ file and put the code of function. I'll write it line by line and try to comment all important points.
@verbatim
void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
{
@end verbatim
First, we need to check all input arguments and send warnings if something is wrong. In our case it is negative value of @var{r} argument. We just send warning, since it is not critical situation -- other plot still can be drawn.
@verbatim
if(r<=0) { gr->SetWarn(mglWarnNeg,"Circle"); return; }
@end verbatim
Next step is creating a group. Group keep some general setting for plot (like options) and useful for export in 3d files.
@verbatim
static int cgid=1; gr->StartGroup("Circle",cgid++);
@end verbatim
Now let apply options. Options are rather useful things, generally, which allow one easily redefine axis range(s), transparency and other settings (see @ref{Command options}).
@verbatim
gr->SaveState(opt);
@end verbatim
I use global setting for determining the number of points in circle approximation. Note, that user can change @code{MeshNum} by options easily.
@verbatim
const int n = gr->MeshNum>1?gr->MeshNum : 41;
@end verbatim
Let try to determine plot specific flags. MathGL functions expect that most of flags will be sent in string. In our case it is symbol @samp{@@} which set to draw filled circle instead of border only (last will be default). Note, you have to handle @code{NULL} as string pointer.
@verbatim
bool fill = mglchr(stl,'@');
@end verbatim
Now, time for coloring. I use palette mechanism because circle have few colors: one for filling and another for border. @code{SetPenPal()} function parse input string and write resulting texture index in @var{pal}. Function return the character for marker, which can be specified in string @var{str}. Marker will be plotted at the center of circle. I'll show on next sample how you can use color schemes (smooth colors) too.
@verbatim
long pal=0;
char mk=gr->SetPenPal(stl,&pal);
@end verbatim
Next step, is determining colors for filling and for border. First one for filling.
@verbatim
mreal c=gr->NextColor(pal), d;
@end verbatim
Second one for border. I use black color (call @code{gr->AddTexture('k')}) if second color is not specified.
@verbatim
mreal k=(gr->GetNumPal(pal)>1)?gr->NextColor(pal):gr->AddTexture('k');
@end verbatim
If user want draw only border (@code{fill=false}) then I use first color for border.
@verbatim
if(!fill) k=c;
@end verbatim
Now we should reserve space for vertexes. This functions need @code{n} for border, @code{n+1} for filling and @code{1} for marker. So, maximal number of vertexes is @code{2*n+2}. Note, that such reservation is not required for normal work but can sufficiently speed up the plotting.
@verbatim
gr->Reserve(2*n+2);
@end verbatim
We've done with setup and ready to start drawing. First, we need to add vertex(es). Let define NAN as normals, since I don't want handle lighting for this plot,
@verbatim
mglPoint q(NAN,NAN);
@end verbatim
and start adding vertexes. First one for central point of filling. I use @code{-1} if I don't need this point. The arguments of @code{AddPnt()} function is: @code{mglPoint(x,y,z)} -- coordinate of vertex, @code{c} -- vertex color, @code{q} -- normal at vertex, @code{-1} -- vertex transparency (@code{-1} for default), @code{3} bitwise flag which show that coordinates will be scaled (@code{0x1}) and will not be cutted (@code{0x2}).
@verbatim
long n0,n1,n2,m1,m2,i;
n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
@end verbatim
Similar for marker, but we use different color @var{k}.
@verbatim
n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
@end verbatim
Draw marker.
@verbatim
if(mk) gr->mark_plot(n2,mk);
@end verbatim
Time for drawing circle itself. I use @code{-1} for @var{m1}, @var{n1} as sign that primitives shouldn't be drawn for first point @code{i=0}.
@verbatim
for(i=0,m1=n1=-1;i<n;i++)
{
@end verbatim
Each function should check @code{Stop} variable and return if it is non-zero. It is done for interrupting drawing for system which don't support multi-threading.
@verbatim
if(gr->Stop) return;
@end verbatim
Let find coordinates of vertex.
@verbatim
mreal t = i*2*M_PI/(n-1.);
mglPoint p(x+r*cos(t), y+r*sin(t), z);
@end verbatim
Save previous vertex and add next one
@verbatim
n2 = n1; n1 = gr->AddPnt(p,c,q,-1,3);
@end verbatim
and copy it for border but with different color. Such copying is much faster than adding new vertex using @code{AddPnt()}.
@verbatim
m2 = m1; m1 = gr->CopyNtoC(n1,k);
@end verbatim
Now draw triangle for filling internal part
@verbatim
if(fill) gr->trig_plot(n0,n1,n2);
@end verbatim
and draw line for border.
@verbatim
gr->line_plot(m1,m2);
}
@end verbatim
Drawing is done. Let close group and return.
@verbatim
gr->EndGroup();
}
@end verbatim
Another sample I want to show is exactly the same function but with smooth coloring using color scheme. So, I'll add comments only in the place of difference.
@verbatim
void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
{
@end verbatim
In this case let allow negative radius too. Formally it is not the problem for plotting (formulas the same) and this allow us to handle all color range.
@verbatim
//if(r<=0) { gr->SetWarn(mglWarnNeg,"Circle"); return; }
static int cgid=1; gr->StartGroup("CircleCS",cgid++);
gr->SaveState(opt);
const int n = gr->MeshNum>1?gr->MeshNum : 41;
bool fill = mglchr(stl,'@');
@end verbatim
Here is main difference. We need to create texture for color scheme specified by user
@verbatim
long ss = gr->AddTexture(stl);
@end verbatim
But we need also get marker and color for it (if filling is enabled). Let suppose that marker and color is specified after @samp{:}. This is standard delimiter which stop color scheme entering. So, just lets find it and use for setting pen.
@verbatim
const char *pen=0;
if(stl) pen = strchr(stl,':');
if(pen) pen++;
@end verbatim
The substring is placed in @var{pen} and it will be used as line style.
@verbatim
long pal=0;
char mk=gr->SetPenPal(pen,&pal);
@end verbatim
Next step, is determining colors for filling and for border. First one for filling.
@verbatim
mreal c=gr->GetC(ss,r);
@end verbatim
Second one for border.
@verbatim
mreal k=gr->NextColor(pal);
@end verbatim
The rest part is the same as in previous function.
@verbatim
if(!fill) k=c;
gr->Reserve(2*n+2);
mglPoint q(NAN,NAN);
long n0,n1,n2,m1,m2,i;
n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
if(mk) gr->mark_plot(n2,mk);
for(i=0,m1=n1=-1;i<n;i++)
{
if(gr->Stop) return;
mreal t = i*2*M_PI/(n-1.);
mglPoint p(x+r*cos(t), y+r*sin(t), z);
n2 = n1; n1 = gr->AddPnt(p,c,q,-1,3);
m2 = m1; m1 = gr->CopyNtoC(n1,k);
if(fill) gr->trig_plot(n0,n1,n2);
gr->line_plot(m1,m2);
}
gr->EndGroup();
}
@end verbatim
The last thing which we can do is derive our own class with new plotting functions. Good idea is to derive it from @code{mglGraph} (if you don't need extended window), or from @code{mglWindow} (if you need to extend window). So, in our case it will be
@verbatim
class MyGraph : public mglGraph
{
public:
inline void Circle(mglPoint p, mreal r, const char *stl="", const char *opt="")
{ circle(p.x,p.y,p.z, r, stl, opt); }
inline void CircleCS(mglPoint p, mreal r, const char *stl="", const char *opt="")
{ circle_cs(p.x,p.y,p.z, r, stl, opt); }
};
@end verbatim
Note, that I use @code{inline} modifier for using the same binary code with different compilers.
So, the complete sample will be
@verbatim
#include <mgl2/mgl.h>
//---------------------------------------------------------
#ifdef __cplusplus
extern "C" {
#endif
void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
#ifdef __cplusplus
}
#endif
//---------------------------------------------------------
class MyGraph : public mglGraph
{
public:
inline void CircleCF(mglPoint p, mreal r, const char *stl="", const char *opt="")
{ circle(p.x,p.y,p.z, r, stl, opt); }
inline void CircleCS(mglPoint p, mreal r, const char *stl="", const char *opt="")
{ circle_cs(p.x,p.y,p.z, r, stl, opt); }
};
//---------------------------------------------------------
void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
{
if(r<=0) { gr->SetWarn(mglWarnNeg,"Circle"); return; }
static int cgid=1; gr->StartGroup("Circle",cgid++);
gr->SaveState(opt);
const int n = gr->MeshNum>1?gr->MeshNum : 41;
bool fill = mglchr(stl,'@');
long pal=0;
char mk=gr->SetPenPal(stl,&pal);
mreal c=gr->NextColor(pal), d;
mreal k=(gr->GetNumPal(pal)>1)?gr->NextColor(pal):gr->AddTexture('k');
if(!fill) k=c;
gr->Reserve(2*n+2);
mglPoint q(NAN,NAN);
long n0,n1,n2,m1,m2,i;
n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
if(mk) gr->mark_plot(n2,mk);
for(i=0,m1=n1=-1;i<n;i++)
{
if(gr->Stop) return;
mreal t = i*2*M_PI/(n-1.);
mglPoint p(x+r*cos(t), y+r*sin(t), z);
n2 = n1; n1 = gr->AddPnt(p,c,q,-1,3);
m2 = m1; m1 = gr->CopyNtoC(n1,k);
if(fill) gr->trig_plot(n0,n1,n2);
gr->line_plot(m1,m2);
}
gr->EndGroup();
}
//---------------------------------------------------------
void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
{
static int cgid=1; gr->StartGroup("CircleCS",cgid++);
gr->SaveState(opt);
const int n = gr->MeshNum>1?gr->MeshNum : 41;
bool fill = mglchr(stl,'@');
long ss = gr->AddTexture(stl);
const char *pen=0;
if(stl) pen = strchr(stl,':');
if(pen) pen++;
long pal=0;
char mk=gr->SetPenPal(pen,&pal);
mreal c=gr->GetC(ss,r);
mreal k=gr->NextColor(pal);
if(!fill) k=c;
gr->Reserve(2*n+2);
mglPoint q(NAN,NAN);
long n0,n1,n2,m1,m2,i;
n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
if(mk) gr->mark_plot(n2,mk);
for(i=0,m1=n1=-1;i<n;i++)
{
if(gr->Stop) return;
mreal t = i*2*M_PI/(n-1.);
mglPoint p(x+r*cos(t), y+r*sin(t), z);
n2 = n1; n1 = gr->AddPnt(p,c,q,-1,3);
m2 = m1; m1 = gr->CopyNtoC(n1,k);
if(fill) gr->trig_plot(n0,n1,n2);
gr->line_plot(m1,m2);
}
gr->EndGroup();
}
//---------------------------------------------------------
int main()
{
MyGraph gr;
gr.Box();
// first let draw circles with fixed colors
for(int i=0;i<10;i++)
gr.CircleCF(mglPoint(2*mgl_rnd()-1, 2*mgl_rnd()-1), mgl_rnd());
// now let draw circles with color scheme
for(int i=0;i<10;i++)
gr.CircleCS(mglPoint(2*mgl_rnd()-1, 2*mgl_rnd()-1), 2*mgl_rnd()-1);
}
@end verbatim
@c ------------------------------------------------------------------
@external{}
@node mglDataA class, mglColor class, mglBase class, Other classes
@section User defined types (mglDataA class)
@nav{}
@code{mglData} class have abstract predecessor class @code{mglDataA}. Exactly the pointers to @code{mglDataA} instances are used in all plotting functions and some of data processing functions. This was done for taking possibility to define yours own class, which will handle yours own data (for example, complex numbers, or differently organized data). And this new class will be almost the same as @code{mglData} for plotting purposes.
However, the most of data processing functions will be slower as if you used @code{mglData} instance. This is more or less understandable -- I don't know how data in yours particular class will be organized, and couldn't optimize the these functions generally.
There are few virtual functions which must be provided in derived classes. This functions give:
@itemize @bullet
@item
the sizes of the data (@code{GetNx}, @code{GetNy}, @code{GetNz}),
@item
give data value and numerical derivatives for selected cell (@code{v}, @code{dvx}, @code{dvy}, @code{dvz}),
@item
give maximal and minimal values (@code{Maximal}, @code{Minimal}) -- you can use provided functions (like @code{mgl_data_max} and @code{mgl_data_min}), but yours own realization can be more efficient,
@item
give access to all element as in single array (@code{vthr}) -- you need this only if you want using MathGL's data processing functions.
@end itemize
Let me, for example define class @code{mglComplex} which will handle complex number and draw its amplitude or phase, depending on flag @var{use_abs}:
@verbatim
#include <complex>
#include <mgl2/mgl.h>
#define dual std::complex<double>
class mglComplex : public mglDataA
{
public:
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
dual *a; ///< data array
bool use_abs; ///< flag to use abs() or arg()
inline mglComplex(long xx=1,long yy=1,long zz=1)
{ a=0; use_abs=true; Create(xx,yy,zz); }
virtual ~mglComplex() { if(a) delete []a; }
/// Get sizes
inline long GetNx() const { return nx; }
inline long GetNy() const { return ny; }
inline long GetNz() const { return nz; }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ nx=mx; ny=my; nz=mz; if(a) delete []a;
a = new dual[nx*ny*nz]; }
/// Get maximal value of the data
inline mreal Maximal() const { return mgl_data_max(this); }
/// Get minimal value of the data
inline mreal Minimal() const { return mgl_data_min(this); }
protected:
inline mreal v(long i,long j=0,long k=0) const
{ return use_abs ? abs(a[i+nx*(j+ny*k)]) : arg(a[i+nx*(j+ny*k)]); }
inline mreal vthr(long i) const
{ return use_abs ? abs(a[i]) : arg(a[i]); }
inline mreal dvx(long i,long j=0,long k=0) const
{ long i0=i+nx*(j+ny*k);
std::complex<double> res=i>0? (i<nx-1? (a[i0+1]-a[i0-1])/2.:a[i0]-a[i0-1]) : a[i0+1]-a[i0];
return use_abs? abs(res) : arg(res); }
inline mreal dvy(long i,long j=0,long k=0) const
{ long i0=i+nx*(j+ny*k);
std::complex<double> res=j>0? (j<ny-1? (a[i0+nx]-a[i0-nx])/2.:a[i0]-a[i0-nx]) : a[i0+nx]-a[i0];
return use_abs? abs(res) : arg(res); }
inline mreal dvz(long i,long j=0,long k=0) const
{ long i0=i+nx*(j+ny*k), n=nx*ny;
std::complex<double> res=k>0? (k<nz-1? (a[i0+n]-a[i0-n])/2.:a[i0]-a[i0-n]) : a[i0+n]-a[i0];
return use_abs? abs(res) : arg(res); }
};
int main()
{
mglComplex dat(20);
for(long i=0;i<20;i++)
dat.a[i] = 3*exp(-0.05*(i-10)*(i-10))*dual(cos(M_PI*i*0.3), sin(M_PI*i*0.3));
mglGraph gr;
gr.SetRange('y', -M_PI, M_PI); gr.Box();
gr.Plot(dat,"r","legend 'abs'");
dat.use_abs=false;
gr.Plot(dat,"b","legend 'arg'");
gr.Legend();
gr.WritePNG("complex.png");
return 0;
}
@end verbatim
@c ------------------------------------------------------------------
@external{}
@node mglColor class, mglPoint class, mglDataA class, Other classes
@section mglColor class
@nav{}
@cindex mglColor
Structure for working with colors. This structure is defined in @code{#include <mgl2/type.h>}.
There are two ways to set the color in MathGL. First one is using of mreal values of red, green and blue channels for precise color definition. The second way is the using of character id. There are a set of characters specifying frequently used colors. Normally capital letter gives more dark color than lowercase one. @xref{Line styles}.
@deftypecv {Parameter} mglColor @code{mreal} {r, g, b, a}
Reg, green and blue component of color.
@end deftypecv
@deftypemethod mglColor @code{} mglColor (@code{mreal} R, @code{mreal} G, @code{mreal} B, @code{mreal} A=@code{1})
Constructor sets the color by mreal values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
@end deftypemethod
@deftypemethod mglColor @code{} mglColor (@code{char} c=@code{'k'}, @code{mreal} bright=@code{1})
Constructor sets the color from character id. The black color is used by default. Parameter @var{br} set additional ``lightness'' of color.
@end deftypemethod
@deftypemethod mglColor @code{void} Set (@code{mreal} R, @code{mreal} G, @code{mreal} B, @code{mreal} A=@code{1})
Sets color from values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
@end deftypemethod
@deftypemethod mglColor @code{void} Set (@code{mglColor} c, @code{mreal} bright=@code{1})
Sets color as ``lighted'' version of color @var{c}.
@end deftypemethod
@deftypemethod mglColor @code{void} Set (@code{char} p, @code{mreal} bright=@code{1})
Sets color from symbolic id.
@end deftypemethod
@deftypemethod mglColor @code{bool} Valid ()
Checks correctness of the color.
@end deftypemethod
@deftypemethod mglColor @code{mreal} Norm ()
Gets maximal of spectral component.
@end deftypemethod
@deftypemethod mglColor @code{bool} operator== (@code{const mglColor &}c)
@deftypemethodx mglColor @code{bool} operator!= (@code{const mglColor &}c)
Compare with another color
@end deftypemethod
@deftypemethod mglColor @code{bool} operator*= (@code{mreal} v)
Multiplies color components by number @var{v}.
@end deftypemethod
@deftypemethod mglColor @code{bool} operator+= (@code{const mglColor &}c)
Adds color @var{c} component by component.
@end deftypemethod
@deftypemethod mglColor @code{bool} operator-= (@code{const mglColor &}c)
Subtracts color @var{c} component by component.
@end deftypemethod
@deftypefn {Library Function} {mglColor} operator+ (@code{const mglColor &}a, @code{const mglColor &}b)
Adds colors by its RGB values.
@end deftypefn
@deftypefn {Library Function} @code{mglColor} operator- (@code{const mglColor &}a, @code{const mglColor &}b)
Subtracts colors by its RGB values.
@end deftypefn
@deftypefn {Library Function} @code{mglColor} operator* (@code{const mglColor &}a, @code{mreal} b)
@deftypefnx {Library Function} @code{mglColor} operator* (@code{mreal} a, @code{const mglColor &}b)
Multiplies color by number.
@end deftypefn
@deftypefn {Library Function} @code{mglColor} operator/ (@code{const mglColor &}a, @code{mreal} b)
Divide color by number.
@end deftypefn
@deftypefn {Library Function} @code{mglColor} operator! (@code{const mglColor &}a)
Return inverted color.
@end deftypefn
@c ------------------------------------------------------------------
@external{}
@node mglPoint class, , mglColor class, Other classes
@section mglPoint class
@nav{}
@cindex mglPoint
Structure describes point in space. This structure is defined in @code{#include <mgl2/type.h>}
@deftypecv {Parameter} mglPoint @code{mreal} {x, y, z, c}
Point coordinates @{x,y,z@} and one extra value @var{c} used for amplitude, transparency and so on. By default all values are zero.
@end deftypecv
@deftypemethod mglPoint @code{} mglPoint (@code{mreal} X=@code{0}, @code{mreal} Y=@code{0}, @code{mreal} Z=@code{0}, @code{mreal} C=@code{0})
Constructor sets the color by mreal values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
@end deftypemethod
@deftypemethod mglPoint @code{bool} IsNAN ()
Returns @code{true} if point contain NAN values.
@end deftypemethod
@deftypemethod mglPoint @code{mreal} norm ()
Returns the norm @math{\sqrt@{x^2+y^2+z^2@}} of vector.
@end deftypemethod
@deftypemethod mglPoint @code{void} Normalize ()
Normalizes vector to be unit vector.
@end deftypemethod
@deftypemethod mglPoint @code{mreal} val (@code{int} i)
Returns point component: @var{x} for @var{i}=0, @var{y} for @var{i}=1, @var{z} for @var{i}=2, @var{c} for @var{i}=3.
@end deftypemethod
@deftypefn {Library Function} @code{mglPoint} operator+ (@code{const mglPoint &}a, @code{const mglPoint &}b)
Point of summation (summation of vectors).
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator- (@code{const mglPoint &}a, @code{const mglPoint &}b)
Point of difference (difference of vectors).
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator* (@code{mreal} a, @code{const mglPoint &}b)
@deftypefnx {Library Function} @code{mglPoint} operator* (@code{const mglPoint &}a, @code{mreal} b)
Multiplies (scale) points by number.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator/ (@code{const mglPoint &}a, @code{mreal} b)
Multiplies (scale) points by number 1/b.
@end deftypefn
@deftypefn {Library Function} @code{mreal} operator* (@code{const mglPoint &}a, @code{const mglPoint &}b)
Scalar product of vectors.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator/ (@code{const mglPoint &}a, @code{const mglPoint &}b)
Return vector of element-by-element product.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator^ (@code{const mglPoint &}a, @code{const mglPoint &}b)
Cross-product of vectors.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator& (@code{const mglPoint &}a, @code{const mglPoint &}b)
The part of @var{a} which is perpendicular to vector @var{b}.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator| (@code{const mglPoint &}a, @code{const mglPoint &}b)
The part of @var{a} which is parallel to vector @var{b}.
@end deftypefn
@deftypefn {Library Function} @code{mglPoint} operator! (@code{const mglPoint &}a)
Return vector perpendicular to vector @var{a}.
@end deftypefn
@deftypefn {Library Function} @code{mreal} mgl_norm (@code{const mglPoint &}a)
Return the norm sqrt(|@var{a}|^2) of vector @var{a}.
@end deftypefn
@deftypefn {Library Function} @code{bool} operator== (@code{const mglPoint &}a, @code{const mglPoint &}b)
Return true if points are the same.
@end deftypefn
@deftypefn {Library Function} @code{bool} operator!= (@code{const mglPoint &}a, @code{const mglPoint &}b)
Return true if points are different.
@end deftypefn
@external{}
|