File: factor_int.c

package info (click to toggle)
mathomatic 12.6.3-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 960 kB
  • ctags: 569
  • sloc: ansic: 14,962; makefile: 129; sh: 42; python: 33; java: 17
file content (418 lines) | stat: -rw-r--r-- 8,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
 * Mathomatic constant factorizing routines.
 *
 * Copyright (C) 1987-2006 George Gesslein II.
 */

#include "includes.h"

static void	try_factor();
static int	fc_recurse();

/* The following data is used to factor integers: */
static double nn, vv;
static double sq[] = {		/* Additive array that skips over multiples of 2, 3, 5, and 7. */
	10, 2, 4, 2, 4, 6, 2, 6,
	 4, 2, 4, 6, 6, 2, 6, 4,
	 2, 6, 4, 6, 8, 4, 2, 4,
	 2, 4, 8, 6, 4, 6, 2, 4,
	 6, 2, 6, 6, 4, 2, 4, 6,
	 2, 6, 4, 2, 4, 2,10, 2
};	/* sum of all numbers = 210 = (2*3*5*7) */

/*
 * Factor the integer in "start".
 * Store the prime factors in the unique[] array.
 *
 * Return true if successful.
 */
int
factor_one(start)
double	start;
{
	int	i;
	double	d;

	uno = 0;
	nn = start;
	if (nn == 0.0) {
		return false;
	}
	if (fabs(nn) >= MAX_K_INTEGER) {
		/* too large to factor */
		return false;
	}
	if (fmod(nn, 1.0) != 0.0) {
		/* not an integer */
		return false;
	}
	vv = 1.0 + sqrt(fabs(nn));
	try_factor(2.0);
	try_factor(3.0);
	try_factor(5.0);
	try_factor(7.0);
	d = 1.0;
	while (d <= vv) {
		for (i = 0; i < ARR_CNT(sq); i++) {
			d += sq[i];
			try_factor(d);
		}
	}
	if (nn != 1.0) {
		try_factor(nn);
	}
	if (start != multiply_out_unique()) {
		error("Error factoring integers.");
		return false;
	}
	return true;
}

/*
 * See if "arg" is one or more factors of "nn".
 * If so, save it and remove it from "nn".
 */
static void
try_factor(arg)
double	arg;
{
	while (fmod(nn, arg) == 0.0) {
		if (uno > 0 && unique[uno-1] == arg) {
			ucnt[uno-1]++;
		} else {
			unique[uno] = arg;
			ucnt[uno] = 1;
			uno++;
		}
		nn /= arg;
		vv = 1.0 + sqrt(fabs(nn));
		if (nn <= 1.0 && nn >= -1.0)
			break;
	}
}

/*
 * Convert unique[] back into an integer.
 * Return the double integer.
 */
double
multiply_out_unique()
{
	int	i, j;
	double	d;

	d = 1.0;
	for (i = 0; i < uno; i++) {
		for (j = 0; j < ucnt[i]; j++) {
			d *= unique[i];
		}
	}
	return d;
}

/*
 * Display the prime factors in the unique[] array.
 */
display_unique()
{
	int	i;

	fprintf(gfp, "%.0f = ", multiply_out_unique());
	for (i = 0; i < uno;) {
		fprintf(gfp, "%.0f", unique[i]);
		if (ucnt[i] > 1) {
			fprintf(gfp, "^%d", ucnt[i]);
		}
		i++;
		if (i < uno) {
			fprintf(gfp, " * ");
		}
	}
	fprintf(gfp, "\n");
}

/*
 * Factor integers in an expression.
 *
 * Return true if expression was modified.
 */
int
factor_int(equation, np)
token_type	*equation;
int		*np;
{
	int	i, j;
	int	xsize;
	int	level;
	int	modified = false;

	for (i = 0; i < *np; i += 2) {
		if (equation[i].kind == CONSTANT && factor_one(equation[i].token.constant) && uno > 0) {
			if (uno == 1 && ucnt[0] <= 1)
				continue;	/* prime number */
			level = equation[i].level;
			if (uno > 1 && *np > 1)
				level++;
			xsize = -2;
			for (j = 0; j < uno; j++) {
				if (ucnt[j] > 1)
					xsize += 4;
				else
					xsize += 2;
			}
			if (*np + xsize > n_tokens) {
				error_huge();
			}
			for (j = 0; j < uno; j++) {
				if (ucnt[j] > 1)
					xsize = 4;
				else
					xsize = 2;
				if (j == 0)
					xsize -= 2;
				if (xsize > 0) {
					blt(&equation[i+xsize], &equation[i], (*np - i) * sizeof(token_type));
					*np += xsize;
					if (j > 0) {
						i++;
						equation[i].kind = OPERATOR;
						equation[i].level = level;
						equation[i].token.operatr = TIMES;
						i++;
					}
				}
				equation[i].kind = CONSTANT;
				equation[i].level = level;
				equation[i].token.constant = unique[j];
				if (ucnt[j] > 1) {
					equation[i].level = level + 1;
					i++;
					equation[i].kind = OPERATOR;
					equation[i].level = level + 1;
					equation[i].token.operatr = POWER;
					i++;
					equation[i].level = level + 1;
					equation[i].kind = CONSTANT;
					equation[i].token.constant = ucnt[j];
				}
			}
			modified = true;
		}
	}
	return modified;
}

/*
 * Factor integers in an equation space.
 */
factor_int_sub(n)
int	n;	/* equation space number */
{
	factor_int(lhs[n], &n_lhs[n]);
	factor_int(rhs[n], &n_rhs[n]);
}

/*
 * Factor constants in equation side.
 *
 * This routine is often necessary because the expression compare (se_compare())
 * does not return a multiplier (except for +/-1.0).
 * This routine is not used during polynomial operations.
 * It is required for simplification of algebraic fractions, etc.
 *
 * If "level_code" is 0, all additive expressions are normalized
 * by making at least one coefficient unity by factoring out
 * the smallest constant.
 *
 * If "level_code" is 1, any level 1 additive expression is factored
 * nicely for readability, while all deeper levels are normalized.
 *
 * If "level_code" is 2, nothing is normalized unless it increases
 * readability.
 *
 * If "level_code" is 3, nothing is done.
 *
 * Return true if equation side was modified.
 */
int
factor_constants(equation, np, level_code)
token_type	*equation;
int		*np;
int		level_code;
{
	if (level_code > 2)
		return false;
	return fc_recurse(equation, np, 0, 1, level_code);
}

static int
fc_recurse(equation, np, loc, level, level_code)
token_type	*equation;
int		*np, loc, level;
int		level_code;
{
	int	modified = false;
	int	i, j, k;
	int	op;
	int	neg_flag = true;
	double	d, minimum = 1.0;
	int	first = true;
	int	count = 0;

	for (i = loc; i < *np && equation[i].level >= level;) {
		if (equation[i].level > level) {
			modified |= fc_recurse(equation, np, i, level + 1, level_code);
			i++;
			for (; i < *np && equation[i].level > level; i += 2)
				;
			continue;
		}
		i++;
	}
	if (modified)
		return true;
	for (i = loc;;) {
break_cont:
		if (i >= *np || equation[i].level < level)
			break;
		if (equation[i].level == level) {
			switch (equation[i].kind) {
			case CONSTANT:
				if (i == loc && equation[i].token.constant >= 0.0)
					neg_flag = false;
				d = fabs(equation[i].token.constant);
				if (first) {
					minimum = d;
					first = false;
				} else if (minimum > d) {
					minimum = d;
				}
				break;
			case OPERATOR:
				count++;
				switch (equation[i].token.operatr) {
				case PLUS:
					neg_flag = false;
				case MINUS:
					break;
				default:
					return modified;
				}
				break;
			default:
				if (i == loc)
					neg_flag = false;
				if (first) {
					minimum = 1.0;
					first = false;
				} else if (minimum > 1.0) {
					minimum = 1.0;
				}
				break;
			}
		} else {
			op = 0;
			for (j = i + 1; j < *np && equation[j].level > level; j += 2) {
				if (equation[j].level == level + 1) {
					op = equation[j].token.operatr;
				}
			}
			if (op == TIMES || op == DIVIDE) {
				for (k = i; k < j; k++) {
					if (equation[k].level == (level + 1) && equation[k].kind == CONSTANT) {
						if (i == loc && equation[k].token.constant >= 0.0)
							neg_flag = false;
						d = fabs(equation[k].token.constant);
						if (first) {
							minimum = d;
							first = false;
						} else if (d < minimum) {
							minimum = d;
						}
						i = j;
						goto break_cont;
					}
				}
			}
			if (i == loc)
				neg_flag = false;
			if (first) {
				minimum = 1.0;
				first = false;
			} else if (1.0 < minimum)
				minimum = 1.0;
			i = j;
			continue;
		}
		i++;
	}
	if (first || count == 0 || (!neg_flag && minimum == 1.0))
		return modified;
	if (!isfinite(minimum))
		return modified;
	if (level_code > 1 || (level_code && (level == 1))) {
		for (i = loc;;) {
			d = 1.0;
			if (equation[i].kind == CONSTANT) {
				if (equation[i].level == level || ((i + 1) < *np
				    && equation[i].level == (level + 1)
				    && equation[i+1].level == (level + 1)
				    && (equation[i+1].token.operatr == TIMES
				    || equation[i+1].token.operatr == DIVIDE))) {
					d = equation[i].token.constant;
				}
			}
			if ((minimum < 1.0 && fmod(d, 1.0) == 0.0) || (fmod(d / minimum, 1.0) != 0.0)) {
				if (neg_flag) {
					minimum = 1.0;
					break;
				}
				return modified;
			}
			i++;
			for (; i < *np && equation[i].level > level; i += 2)
				;
			if (i >= *np || equation[i].level < level)
				break;
			i++;
		}
	}
	if (neg_flag)
		minimum = -minimum;
	if (*np + ((count + 2) * 2) > n_tokens) {
		error_huge();
	}
	for (i = loc; i < *np && equation[i].level >= level; i++) {
		if (equation[i].kind != OPERATOR) {
			for (j = i;;) {
				equation[j].level++;
				j++;
				if (j >= *np || equation[j].level <= level)
					break;
			}
			blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
			*np += 2;
			equation[j].level = level + 1;
			equation[j].kind = OPERATOR;
			equation[j].token.operatr = DIVIDE;
			j++;
			equation[j].level = level + 1;
			equation[j].kind = CONSTANT;
			equation[j].token.constant = minimum;
			i = j;
		}
	}
	for (i = loc; i < *np && equation[i].level >= level; i++) {
		equation[i].level++;
	}
	blt(&equation[i+2], &equation[i], (*np - i) * sizeof(token_type));
	*np += 2;
	equation[i].level = level;
	equation[i].kind = OPERATOR;
	equation[i].token.operatr = TIMES;
	i++;
	equation[i].level = level;
	equation[i].kind = CONSTANT;
	equation[i].token.constant = minimum;
	return true;
}