1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/*
* General floating point GCD routine and associated code for Mathomatic.
*
* Copyright (C) 1987-2008 George Gesslein II.
*/
#include "includes.h"
/*
* Return the Greatest Common Divisor (GCD) of doubles "d1" and "d2",
* by using the Euclidean GCD algorithm.
*
* The GCD is defined as the largest positive number that evenly divides both "d1" and "d2".
* Will usually work with non-integers, but there may be some floating point error.
* Always works perfectly with integers up to MAX_K_INTEGER.
*
* Return 0 on failure or if either parameter is 0, otherwise return the positive GCD.
*/
double
gcd(d1, d2)
double d1, d2;
{
int count;
double larger;
double divisor;
double r1;
double d;
if (!isfinite(d1) || !isfinite(d2)) {
return 0.0; /* operands must be finite */
}
d1 = fabs(d1);
d2 = fabs(d2);
if (d1 > d2) {
larger = d1;
divisor = d2;
} else {
larger = d2;
divisor = d1;
}
if (divisor <= 0.0 || larger >= MAX_K_INTEGER) {
return 0.0; /* out of range */
}
d = larger * epsilon;
if (d >= divisor) {
return 0.0; /* result would be too inaccurate */
}
for (count = 1; count < 50; count++) {
r1 = fmod(larger, divisor);
if (r1 <= d || (divisor - r1) <= d) {
if (r1 != 0.0 && divisor <= (100.0 * d))
return 0.0;
return divisor;
}
larger = divisor;
divisor = r1;
}
return 0.0;
}
/*
* Return the verified exact Greatest Common Divisor (GCD) of doubles "d1" and "d2".
*
* Return 0 on failure or if either parameter is 0, otherwise return the positive GCD.
*/
double
gcd_verified(d1, d2)
double d1, d2;
{
double divisor;
divisor = gcd(d1, d2);
if (divisor != 0.0) {
if (gcd(d1 / divisor, d2 / divisor) != 1.0)
return 0.0;
}
return divisor;
}
/*
* Return a floating point double rounded to the nearest integer.
*/
double
my_round(d1)
double d1; /* value to round */
{
if (d1 >= 0.0) {
modf(d1 + 0.5, &d1);
} else {
modf(d1 - 0.5, &d1);
}
return d1;
}
/*
* Convert the passed double "d" to a fully reduced fraction.
* This done by the following simple algorithm:
*
* divisor = gcd(d, 1.0)
* numerator = d / divisor
* denominator = 1.0 / divisor
*
* Return true with integers in numerator and denominator if conversion was successful.
* Otherwise return false with numerator = "d" and denominator = "1.0".
*
* True return indicates "d" is rational and finite, otherwise "d" is probably irrational.
*/
int
f_to_fraction(d, numeratorp, denominatorp)
double d; /* floating point number to convert */
double *numeratorp; /* returned numerator */
double *denominatorp; /* returned denominator */
{
double divisor;
double numerator, denominator;
double k3, k4;
*numeratorp = d;
*denominatorp = 1.0;
if (!isfinite(d)) {
return false;
}
/* see if "d" is an integer, or very close to an integer: */
if (fmod(d, 1.0) == 0.0) {
return true;
}
k3 = fabs(d) * small_epsilon;
k4 = my_round(d);
if (k4 != 0.0 && fabs(k4 - d) <= k3) {
*numeratorp = k4;
return true;
}
/* try to convert non-integer floating point value in "d" to a fraction: */
if ((divisor = gcd(1.0, d)) > epsilon) {
numerator = my_round(d / divisor);
denominator = my_round(1.0 / divisor);
/* don't allow more than 11 digits in the numerator or denominator: */
if (fabs(numerator) >= 1.0e12)
return false;
if (denominator >= 1.0e12 || denominator < 2.0)
return false;
/* make sure the result is a fully reduced fraction: */
divisor = gcd(numerator, denominator);
if (divisor > 1.0) { /* shouldn't happen, but just in case */
numerator /= divisor;
denominator /= divisor;
}
k3 = (numerator / denominator);
k4 = d;
if (fabs(k3 - k4) > (small_epsilon * fabs(k3))) {
return false; /* result is too inaccurate */
}
/* numerator and denominator are integral */
*numeratorp = numerator;
*denominatorp = denominator;
return true;
}
return false;
}
/*
* Convert non-integer constants in an equation side to fractions, when appropriate.
*/
void
make_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j, k;
int level;
double numerator, denominator;
int inc_level;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT) {
level = equation[i].level;
if (i > 0 && equation[i-1].level == level && equation[i-1].token.operatr == DIVIDE)
continue;
if (!f_to_fraction(equation[i].token.constant, &numerator, &denominator))
continue;
if (denominator == 1.0) {
equation[i].token.constant = numerator;
continue;
}
if ((*np + 2) > n_tokens) {
error_huge();
}
inc_level = (*np > 1);
if ((i + 1) < *np && equation[i+1].level == level) {
switch (equation[i+1].token.operatr) {
case TIMES:
for (j = i + 3; j < *np && equation[j].level >= level; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
break;
}
}
if (numerator == 1.0) {
blt(&equation[i], &equation[i+2], (j - (i + 2)) * sizeof(token_type));
j -= 2;
} else {
equation[i].token.constant = numerator;
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
}
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (numerator == 1.0) {
i -= 2;
}
continue;
case DIVIDE:
inc_level = false;
break;
}
}
j = i;
blt(&equation[i+3], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 2;
equation[j].token.constant = numerator;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (inc_level) {
for (k = i; k <= j; k++)
equation[k].level++;
}
}
}
}
|