File: diff.c

package info (click to toggle)
mathomatic 15.1.1-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,368 kB
  • ctags: 783
  • sloc: ansic: 17,612; makefile: 230; sh: 133; python: 96
file content (858 lines) | stat: -rw-r--r-- 22,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
 * Mathomatic symbolic differentiation routines and related commands.
 *
 * Copyright (C) 1987-2010 George Gesslein II.
 
    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
 
    You should have received a copy of the GNU Lesser General Public 
    License along with this library; if not, write to the Free Software 
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 
 */

#include "includes.h"

static int	d_recurse();

/*
 * Compute the derivative of an equation side, with respect to variable "v",
 * using the fast, rule-based transform method.
 * This is done by recursively applying the proper rule of differentiation
 * for each operator encountered.
 *
 * Return true if successful.
 * The result must be simplified by the caller.
 */
int
differentiate(equation, np, v)
token_type	*equation;	/* pointer to source and destination equation side */
int		*np;		/* pointer to the length of the equation side */
long		v;		/* differentiation variable */
{
	int	i;

	organize(equation, np);
/* First put every times and divide on a level by itself. */
	for (i = 1; i < *np; i += 2) {
		switch (equation[i].token.operatr) {
		case TIMES:
		case DIVIDE:
			binary_parenthesize(equation, *np, i);
		}
	}
	return d_recurse(equation, np, 0, 1, v);
}

/*
 * Recursive differentiation routine.
 *
 * Symbolically differentiate expression in "equation"
 * (which is a standard equation side) starting at "loc".
 * The current level of parentheses is "level" and
 * do the differentiation with respect to variable "v".
 *
 * Return true if successful.
 * Return false if it is beyond this program's capabilities or an error was encountered.
 */
static int
d_recurse(equation, np, loc, level, v)
token_type	*equation;
int		*np, loc, level;
long		v;
{
	int		i, j;
	int		n;
	int		op;
	int		oploc, endloc;
	complexs	c;

	if (equation[loc].level < level) {
/* First differentiate if it is a single variable or constant. */
/* If it is the specified variable, change it to the constant 1, */
/* otherwise change it to the constant 0. */
		if (equation[loc].kind == VARIABLE
		    && ((v == MATCH_ANY && (equation[loc].token.variable & VAR_MASK) > SIGN)
		    || equation[loc].token.variable == v)) {
			equation[loc].kind = CONSTANT;
			equation[loc].token.constant = 1.0;
		} else {
			equation[loc].kind = CONSTANT;
			equation[loc].token.constant = 0.0;
		}
		return true;
	}
	for (op = 0, oploc = endloc = loc + 1; endloc < *np && equation[endloc].level >= level; endloc += 2) {
		if (equation[endloc].level == level) {
			switch (op) {
			case 0:
			case PLUS:
			case MINUS:
				break;
			default:
/* Oops.  More than one operator on the same level in this expression. */
				error_bug("Internal error in d_recurse(): differentiating with unparenthesized operators is not allowed.");
				return false;
			}
			op = equation[endloc].token.operatr;
			oploc = endloc;
		}
	}
	switch (op) {
	case 0:
	case PLUS:
	case MINUS:
		break;
	case TIMES:
		goto d_times;
	case DIVIDE:
		goto d_divide;
	case POWER:
		goto d_power;
	default:
/* Differentiate an unsupported operator. */
/* This is possible if the expression doesn't contain the specified variable. */
/* In that case, the expression is replaced with "0", otherwise return false. */
		for (i = loc; i < endloc; i += 2) {
			if (equation[i].kind == VARIABLE
			    && ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN)
			    || equation[i].token.variable == v)) {
				return false;
			}
		}
		blt(&equation[loc+1], &equation[endloc], (*np - endloc) * sizeof(token_type));
		*np -= (endloc - (loc + 1));
		equation[loc].level = level;
		equation[loc].kind = CONSTANT;
		equation[loc].token.constant = 0.0;
		return true;
	}
/* Differentiate PLUS and MINUS operators. */
/* Use addition rule: d(u+v) = d(u) + d(v), */
/* where "d()" is the derivative function */
/* and "u" and "v" are expressions. */
	for (i = loc; i < *np && equation[i].level >= level;) {
		if (equation[i].kind != OPERATOR) {
			if (!d_recurse(equation, np, i, level + 1, v))
				return false;
			i++;
			for (; i < *np && equation[i].level > level; i += 2)
				;
			continue;
		}
		i++;
	}
	return true;
d_times:
/* Differentiate TIMES operator. */
/* Use product rule: d(u*v) = u*d(v) + v*d(u). */
	if (*np + 1 + (endloc - loc) > n_tokens) {
		error_huge();
	}
	for (i = loc; i < endloc; i++)
		equation[i].level++;
	blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type));
	*np += 1 + (endloc - loc);
	equation[endloc].level = level;
	equation[endloc].kind = OPERATOR;
	equation[endloc].token.operatr = PLUS;
	if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 2, v))
		return false;
	return(d_recurse(equation, np, loc, level + 2, v));
d_divide:
/* Differentiate DIVIDE operator. */
/* Use quotient rule: d(u/v) = (v*d(u) - u*d(v))/v^2. */
	if (*np + 3 + (endloc - loc) + (endloc - oploc) > n_tokens) {
		error_huge();
	}
	for (i = loc; i < endloc; i++)
		equation[i].level += 2;
	equation[oploc].token.operatr = TIMES;
	j = 1 + (endloc - loc);
	blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type));
	*np += j;
	equation[endloc].level = level + 1;
	equation[endloc].kind = OPERATOR;
	equation[endloc].token.operatr = MINUS;
	j += endloc;
	blt(&equation[j+2+(endloc-oploc)], &equation[j], (*np - j) * sizeof(token_type));
	*np += 2 + (endloc - oploc);
	equation[j].level = level;
	equation[j].kind = OPERATOR;
	equation[j].token.operatr = DIVIDE;
	blt(&equation[j+1], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
	j += endloc - oploc;
	equation[j].level = level + 1;
	equation[j].kind = OPERATOR;
	equation[j].token.operatr = POWER;
	j++;
	equation[j].level = level + 1;
	equation[j].kind = CONSTANT;
	equation[j].token.constant = 2.0;
	if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 3, v))
		return false;
	return(d_recurse(equation, np, loc, level + 3, v));
d_power:
/* Differentiate POWER operator. */
/* Since we don't have symbolic logarithms, do all we can without them. */
	for (i = oploc; i < endloc; i++) {
		if (equation[i].kind == VARIABLE
		    && ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN)
		    || equation[i].token.variable == v)) {
			if (parse_complex(&equation[loc], oploc - loc, &c)) {
				c = complex_log(c);
				n = (endloc - oploc) + 6;
				if (*np + n > n_tokens) {
					error_huge();
				}
				blt(&equation[endloc+n], &equation[endloc], (*np - endloc) * sizeof(token_type));
				*np += n;
				n = endloc;
				equation[n].level = level;
				equation[n].kind = OPERATOR;
				equation[n].token.operatr = TIMES;
				n++;
				equation[n].level = level + 1;
				equation[n].kind = CONSTANT;
				equation[n].token.constant = c.re;
				n++;
				equation[n].level = level + 1;
				equation[n].kind = OPERATOR;
				equation[n].token.operatr = PLUS;
				n++;
				equation[n].level = level + 2;
				equation[n].kind = CONSTANT;
				equation[n].token.constant = c.im;
				n++;
				equation[n].level = level + 2;
				equation[n].kind = OPERATOR;
				equation[n].token.operatr = TIMES;
				n++;
				equation[n].level = level + 2;
				equation[n].kind = VARIABLE;
				equation[n].token.variable = IMAGINARY;
				n++;
				equation[n].level = level;
				equation[n].kind = OPERATOR;
				equation[n].token.operatr = TIMES;
				n++;
				blt(&equation[n], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
				for (i = loc; i < endloc; i++) {
					equation[i].level++;
				}
				return(d_recurse(equation, np, n, level + 1, v));
			}
			return false;
		}
	}
	blt(scratch, &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
	n = endloc - (oploc + 1);
	scratch[n].level = level;
	scratch[n].kind = OPERATOR;
	scratch[n].token.operatr = TIMES;
	n++;
	if (n + (endloc - loc) + 2 > n_tokens) {
		error_huge();
	}
	blt(&scratch[n], &equation[loc], (endloc - loc) * sizeof(token_type));
	i = n;
	n += oploc + 1 - loc;
	for (; i < n; i++)
		scratch[i].level++;
	n += endloc - (oploc + 1);
	for (; i < n; i++)
		scratch[i].level += 2;
	scratch[n].level = level + 2;
	scratch[n].kind = OPERATOR;
	scratch[n].token.operatr = MINUS;
	n++;
	scratch[n].level = level + 2;
	scratch[n].kind = CONSTANT;
	scratch[n].token.constant = 1.0;
	n++;
	if (n + (oploc - loc) + 1 > n_tokens) {
		error_huge();
	}
	scratch[n].level = level;
	scratch[n].kind = OPERATOR;
	scratch[n].token.operatr = TIMES;
	n++;
	j = n;
	blt(&scratch[n], &equation[loc], (oploc - loc) * sizeof(token_type));
	n += oploc - loc;
	if (*np - (endloc - loc) + n > n_tokens) {
		error_huge();
	}
	blt(&equation[loc+n], &equation[endloc], (*np - endloc) * sizeof(token_type));
	*np += loc + n - endloc;
	blt(&equation[loc], scratch, n * sizeof(token_type));
	return(d_recurse(equation, np, loc + j, level + 1, v));
}

/*
 * The derivative command.
 */
int
derivative_cmd(cp)
char	*cp;
{
	int		i, len;
	long		v = 0;		/* Mathomatic variable */
	long		l1, order = 1;
	token_type	*source, *dest;
	int		n1, *nps, *np;
	int		simplify_flag = true, solved;

	if (current_not_defined()) {
		return false;
	}
	solved = solved_equation(cur_equation);
	if (strcmp_tospace(cp, "nosimplify") == 0) {
		simplify_flag = false;
		cp = skip_param(cp);
	}
	i = next_espace();
	if (n_rhs[cur_equation]) {
		if (!solved) {
			warning(_("Not a solved equation.  Only the RHS will be differentiated."));
		}
		source = rhs[cur_equation];
		nps = &n_rhs[cur_equation];
		dest = rhs[i];
		np = &n_rhs[i];
	} else {
		source = lhs[cur_equation];
		nps = &n_lhs[cur_equation];
		dest = lhs[i];
		np = &n_lhs[i];
	}
/* parse the command line or prompt: */
	if (*cp) {
		if (is_all(cp)) {
			cp = skip_param(cp);
			v = MATCH_ANY;
		} else {
			if (isvarchar(*cp)) {
				cp = parse_var2(&v, cp);
				if (cp == NULL) {
					return false;
				}
			}
		}
		if (*cp) {
			order = decstrtol(cp, &cp);
		}
		if (*cp || order <= 0) {
			error(_("The order must be a positive integer."));
			return false;
		}
	}
	if (no_vars(source, *nps, &v)) {
#if	!SILENT
		error(_("Current expression contains no variables; the derivative would be zero."));
		return false;
#endif
	}
	if (v == 0) {
		if (!prompt_var(&v)) {
			return false;
		}
	}
#if	!SILENT
	if (v != MATCH_ANY && !found_var(source, *nps, v)) {
		error(_("Variable not found; the derivative would be zero."));
		return false;
	}
	if (debug_level >= 0) {
		list_var(v, 0);
		if (n_rhs[cur_equation]) {
			printf(_("Differentiating the RHS with respect to (%s)"), var_str);
		} else {
			printf(_("Differentiating with respect to (%s)"), var_str);
		}
		if (order != 1) {
			printf(_(" %ld times"), order);
		}
		if (simplify_flag) {
			printf(_(" and simplifying...\n"));
		} else {
			printf("...\n");
		}
	}
#endif
	blt(dest, source, *nps * sizeof(token_type));
	n1 = *nps;
/* do the actual differentiating and simplifying: */
	for (l1 = 0; l1 < order; l1++) {
		if (!differentiate(dest, &n1, v)) {
			error(_("Differentiation failed."));
			return false;
		}
		if (simplify_flag) {
			simpa_side(dest, &n1, true, false);
		} else {
			elim_loop(dest, &n1);
		}
	}
	*np = n1;
	if (n_rhs[cur_equation]) {
		blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
		n_lhs[i] = n_lhs[cur_equation];
		if (solved && isvarchar('\'')) {
			len = list_var(lhs[i][0].token.variable, 0);
			for (l1 = 0; l1 < order && len < (MAX_VAR_LEN - 1); l1++) {
				var_str[len++] = '\'';
			}
			var_str[len] = '\0';
			parse_var(&lhs[i][0].token.variable, var_str);
		}
	}
	cur_equation = i;
	return return_result(cur_equation);
}

/*
 * The extrema command.
 */
int
extrema_cmd(cp)
char	*cp;
{
	int		i;
	long		v = 0;		/* Mathomatic variable */
	long		l1, order = 1;
	token_type	want;
	token_type	*source;
	int		n;

	if (current_not_defined()) {
		return false;
	}
	i = next_espace();
	if (n_rhs[cur_equation]) {
		if (!solved_equation(cur_equation)) {
			error(_("The current equation is not solved for a variable."));
			return false;
		}
		source = rhs[cur_equation];
		n = n_rhs[cur_equation];
	} else {
		source = lhs[cur_equation];
		n = n_lhs[cur_equation];
	}
	if (*cp) {
		if (isvarchar(*cp)) {
			cp = parse_var2(&v, cp);
			if (cp == NULL) {
				return false;
			}
		}
		if (*cp) {
			order = decstrtol(cp, &cp);
		}
		if (*cp || order <= 0) {
			error(_("The order must be a positive integer."));
			return false;
		}
	}
	if (no_vars(source, n, &v)) {
		error(_("Current expression contains no variables."));
		return false;
	}
	if (v == 0) {
		if (!prompt_var(&v)) {
			return false;
		}
	}
	if (!found_var(source, n, v)) {
		error(_("Variable not found; the derivative would be zero."));
		return false;
	}
	blt(rhs[i], source, n * sizeof(token_type));
/* take derivatives with respect to the specified variable and simplify: */
	for (l1 = 0; l1 < order; l1++) {
		if (!differentiate(rhs[i], &n, v)) {
			error(_("Differentiation failed."));
			return false;
		}
		simpa_side(rhs[i], &n, true, false);
	}
	if (!found_var(rhs[i], n, v)) {
		error(_("There are no solutions."));
		return false;
	}
	n_rhs[i] = n;
/* set equal to zero: */
	n_lhs[i] = 1;
	lhs[i][0] = zero_token;
	cur_equation = i;
/* lastly, solve for the specified variable and simplify: */
	want.level = 1;
	want.kind = VARIABLE;
	want.token.variable = v;
	if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
		error(_("Solve failed."));
		return false;
	}
	simpa_side(rhs[i], &n_rhs[i], false, false);
	return return_result(cur_equation);
}

/*
 * The taylor command.
 */
int
taylor_cmd(cp)
char	*cp;
{
	long		v = 0;			/* Mathomatic variable */
	int		i, j, k, i1;
	int		level;
	long		l1, n, order = -1L;
	double		d;
	char		*cp_start, *cp1, buf[MAX_CMD_LEN];
	int		our;
	int		our_nlhs, our_nrhs;
	token_type	*ep, *source, *dest;
	int		n1, *nps, *np;
	int		simplify_flag = true;

	cp_start = cp;
	if (current_not_defined()) {
		return false;
	}
	if (strcmp_tospace(cp, "nosimplify") == 0) {
		simplify_flag = false;
		cp = skip_param(cp);
	}
	i = next_espace();
	blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
	n_lhs[i] = n_lhs[cur_equation];
	n_rhs[i] = 0;
        our = alloc_next_espace();
	n_lhs[i] = 0;
        if (our < 0) {
                error(_("Out of free equation spaces."));
		return false;
	}
	if (n_rhs[cur_equation]) {
		source = rhs[cur_equation];
		nps = &n_rhs[cur_equation];
		dest = rhs[i];
		np = &n_rhs[i];
	} else {
		source = lhs[cur_equation];
		nps = &n_lhs[cur_equation];
		dest = lhs[i];
		np = &n_lhs[i];
	}
	if (*cp && isvarchar(*cp)) {
		cp = parse_var2(&v, cp);
		if (cp == NULL) {
			return false;
		}
	}
	if (*cp) {
		order = decstrtol(cp, &cp1);
		if (cp1 != skip_param(cp) || order < 0) {
			error(_("Positive integer required for order."));
			return false;
		}
		cp = cp1;
	}
	no_vars(source, *nps, &v);
	if (v == 0) {
		if (!prompt_var(&v)) {
			return false;
		}
	}
	if (!found_var(source, *nps, v)) {
		warning(_("Variable not found."));
	}
	blt(rhs[our], source, *nps * sizeof(token_type));
	our_nrhs = *nps;
/* Simplify and take the first derivative: */
	uf_simp(rhs[our], &our_nrhs);
	if (!differentiate(rhs[our], &our_nrhs, v)) {
		error(_("Differentiation failed."));
		return false;
	}
	if (*cp) {
		input_column += (cp - cp_start);
		if ((cp = parse_expr(lhs[our], &our_nlhs, cp)) == NULL || our_nlhs <= 0) {
			return false;
		}
	} else {
#if	!SILENT
		list_var(v, 0);
		printf(_("Taylor series expansion around %s = point.\n"), var_str);
#endif
		my_strlcpy(prompt_str, _("Enter point: "), sizeof(prompt_str));
		if (!get_expr(lhs[our], &our_nlhs)) {
			return false;
		}
	}
	if (order < 0) {
		my_strlcpy(prompt_str, _("Enter order (number of derivatives to take): "), sizeof(prompt_str));
		if ((cp1 = get_string(buf, sizeof(buf))) == NULL)
			return false;
		if (*cp1) {
			order = decstrtol(cp1, &cp);
			if (*cp || order < 0) {
				error(_("Positive integer required for order."));
				return false;
			}
		} else {
			order = LONG_MAX - 1L;
#if	!SILENT
			printf(_("Derivatives will be taken until they reach zero...\n"));
#endif
		}
	}
#if	!SILENT
	printf(_("Computing the Taylor series"));
	if (n_rhs[cur_equation]) {
		printf(_(" of the RHS"));
	}
	if (simplify_flag) {
		printf(_(" and simplifying"));
	}
	printf("...\n");
#endif
	n = 0;
	i1 = 0;
	blt(dest, source, *nps * sizeof(token_type));
	n1 = *nps;
loop_again:
	for (k = i1; k < n1; k += 2) {
		if (dest[k].kind == VARIABLE && dest[k].token.variable == v) {
			level = dest[k].level;
			if ((n1 + our_nlhs - 1) > n_tokens)
				error_huge();
			blt(&dest[k+our_nlhs], &dest[k+1], (n1 - (k + 1)) * sizeof(token_type));
			n1 += our_nlhs - 1;
			j = k;
			blt(&dest[k], lhs[our], our_nlhs * sizeof(token_type));
			k += our_nlhs;
			for (; j < k; j++)
				dest[j].level += level;
			k--;
		}
	}
	if ((n1 + our_nlhs + 7) > n_tokens)
		error_huge();
	for (k = i1; k < n1; k++)
		dest[k].level++;
	ep = &dest[n1];
	ep->level = 1;
	ep->kind = OPERATOR;
	ep->token.operatr = TIMES;
	ep++;
	ep->level = 3;
	ep->kind = VARIABLE;
	ep->token.variable = v;
	ep++;
	ep->level = 3;
	ep->kind = OPERATOR;
	ep->token.operatr = MINUS;
	n1 += 3;
	j = n1;
	blt(&dest[n1], lhs[our], our_nlhs * sizeof(token_type));
	n1 += our_nlhs;
	for (; j < n1; j++)
		dest[j].level += 3;
	ep = &dest[n1];
	ep->level = 2;
	ep->kind = OPERATOR;
	ep->token.operatr = POWER;
	ep++;
	ep->level = 2;
	ep->kind = CONSTANT;
	ep->token.constant = n;
	ep++;
	ep->level = 1;
	ep->kind = OPERATOR;
	ep->token.operatr = DIVIDE;
	ep++;
	for (d = 1.0, l1 = 2; l1 <= n; l1++)
		d *= l1;
	ep->level = 1;
	ep->kind = CONSTANT;
	ep->token.constant = d;
	n1 += 4;
	for (; i1 < n1; i1++)
		dest[i1].level++;
	if (simplify_flag) {
		uf_simp(dest, &n1);
	}
	side_debug(1, dest, n1);
	if (exp_contains_infinity(dest, n1)) {
		error(_("Result invalid because it contains infinity or NaN."));
		return false;
	}
	if (n < order) {
		if (n > 0) {
			if (!differentiate(rhs[our], &our_nrhs, v)) {
				error(_("Differentiation failed."));
				return false;
			}
		}
		symb_flag = symblify;
		simpa_side(rhs[our], &our_nrhs, true, true);
		symb_flag = false;
		if (our_nrhs != 1 || rhs[our][0].kind != CONSTANT || rhs[our][0].token.constant != 0.0) {
			i1 = n1;
			if ((i1 + 1 + our_nrhs) > n_tokens)
				error_huge();
			for (j = 0; j < i1; j++)
				dest[j].level++;
			dest[i1].level = 1;
			dest[i1].kind = OPERATOR;
			dest[i1].token.operatr = PLUS;
			i1++;
			blt(&dest[i1], rhs[our], our_nrhs * sizeof(token_type));
			n1 = i1 + our_nrhs;
			n++;
			goto loop_again;
		}
	}
#if	!SILENT
	printf(_("%ld derivative%s applied.\n"), n, (n == 1) ? "" : "s");
#endif
	if (n_rhs[cur_equation]) {
		n_lhs[i] = n_lhs[cur_equation];
	}
	*np = n1;
	cur_equation = i;
	return return_result(cur_equation);
}

/*
 * The limit command.
 */
int
limit_cmd(cp)
char	*cp;
{
	int		i;
	long		v = 0;			/* Mathomatic variable */
	token_type	solved_v, want;
	char		*cp_start;

	cp_start = cp;
	if (current_not_defined()) {
		return false;
	}
	i = next_espace();
	if (n_rhs[cur_equation] == 0) {
/* make expression into an equation: */
		blt(rhs[cur_equation], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
		n_rhs[cur_equation] = n_lhs[cur_equation];
		n_lhs[cur_equation] = 1;
		lhs[cur_equation][0].level = 1;
		lhs[cur_equation][0].kind = VARIABLE;
		parse_var(&lhs[cur_equation][0].token.variable, "answer");
	}
	if (!solved_equation(cur_equation)) {
		error(_("The current equation is not solved for a variable."));
		return false;
	}
	solved_v = lhs[cur_equation][0];
/* parse the command line or prompt: */
	if (*cp) {
		cp = parse_var2(&v, cp);
		if (cp == NULL) {
			return false;
		}
	}
	if (no_vars(rhs[cur_equation], n_rhs[cur_equation], &v)) {
		error(_("Current expression contains no variables."));
		return false;
	}
	if (v == 0) {
		if (!prompt_var(&v)) {
			return false;
		}
	}
	if (!found_var(rhs[cur_equation], n_rhs[cur_equation], v)) {
		error(_("Variable not found."));
		return false;
	}
	if (*cp == '=') {
		cp = skip_space(cp + 1);
	}
	if (*cp) {
		input_column += (cp - cp_start);
		if ((cp = parse_expr(tes, &n_tes, cp)) == NULL || n_tes <= 0) {
			return false;
		}
	} else {
		list_var(v, 0);
		snprintf(prompt_str, sizeof(prompt_str), _("as (%s) goes to: "), var_str);
		if (!get_expr(tes, &n_tes)) {
			return false;
		}
	}
/* copy the current equation to a new equation space, then simplify and work on the copy: */
	copy_espace(cur_equation, i);
	simpa_side(rhs[i], &n_rhs[i], false, false);

/* see if the limit expression is positive infinity: */
	simp_loop(tes, &n_tes);
	if (n_tes == 1 && tes[0].kind == CONSTANT && tes[0].token.constant == INFINITY) {
/* To take the limit to positive infinity, */
/* replace infinity with zero and replace the limit variable with its reciprocal: */
		n_tes = 1;
		tes[0] = zero_token;
		tlhs[0] = one_token;
		tlhs[1].level = 1;
		tlhs[1].kind = OPERATOR;
		tlhs[1].token.operatr = DIVIDE;
		tlhs[2].level = 1;
		tlhs[2].kind = VARIABLE;
		tlhs[2].token.variable = v;
		n_tlhs = 3;
		subst_var_with_exp(rhs[i], &n_rhs[i], tlhs, n_tlhs, v);
	}

/* General limit taking, solve for the limit variable: */
	debug_string(0, "Solving...");
	want.level = 1;
	want.kind = VARIABLE;
	want.token.variable = v;
	if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
		error(_("Can't take the limit because solve failed."));
		return false;
	}
/* replace the limit variable (LHS) with the limit expression: */
	blt(lhs[i], tes, n_tes * sizeof(token_type));
	n_lhs[i] = n_tes;
/* simplify the RHS: */
	symb_flag = symblify;
	simpa_side(rhs[i], &n_rhs[i], false, false);
	symb_flag = false;
	if (exp_contains_nan(rhs[i], n_rhs[i])) {
		error(_("Unable to take limit; result contains NaN (Not a Number)."));
		return false;
	}
/* solve back for the original variable: */
	if (solve_sub(&solved_v, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
		error(_("Can't take the limit because solve failed."));
		return false;
	}
/* simplify before returning the result: */
	simpa_side(rhs[i], &n_rhs[i], false, false);
	if (exp_contains_nan(rhs[i], n_rhs[i])) {
		error(_("Unable to take limit; result contains NaN (Not a Number)."));
		return false;
	}
	return return_result(i);
}