1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*
* Command-line numerical polynomial equation solver using the GNU Scientific Library (GSL).
* GSL is available from: "http://www.gnu.org/software/gsl/".
*
* Copyright (C) 2008-2011 George Gesslein II
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
/*
* To compile:
./compile.roots
* or
gcc -O3 -Wall -o roots roots.c -lgsl -lgslcblas
* This program nicely solves any degree polynomial
* with real coefficients by calling the
* GSL function gsl_poly_complex_solve().
* This file is also useful for testing
* and as an example of using the GSL from C.
* The results are double precision floating point values
* that are sometimes accurate to 14 digits.
* Complex numbers are output if successful.
* Here is an example of it solving a cubic polynomial:
$ roots 1 1 1 1
The 3 approximate floating point solutions of:
+x^3 +x^2 +x +1 = 0
are:
x = +0 +1*i
x = +0 -1*i
x = -1
$
Try this for a large amount of error:
roots -1 -1 1 1
Proof the GSL isn't perfect.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <float.h>
#include <math.h>
#include <errno.h>
#include <gsl/gsl_poly.h>
#include <gsl/gsl_errno.h>
#define EPSILON 0.00000000000005 /* a good value for doubles */
#define HELP 1 /* display helpful text */
void display_root(int i);
char *prog_name = "roots"; /* name of this program */
double *a, *z; /* input and output arrays, respectively */
int precision = DBL_DIG - 1; /* display precision, it is not useful to set this higher than 15 */
void
usage(void)
{
printf("\n%s version 1.0 - numerical polynomial equation solver\n", prog_name);
printf("Uses the GNU Scientific Library (GSL).\n");
printf("\nSolves polynomial = 0 when given all real coefficients of the polynomial.\n");
printf("Double precision floating point math is used, accurate to about 14 digits.\n");
printf("\nUsage: %s highest-power-coefficient ... constant-term\n", prog_name);
printf("\nThe coefficients must be decimal, floating point, real numbers.\n");
printf("For example, if 4 real numbers are given, there will be 3 complex number\n");
printf("results or \"roots\" that are all valid solutions to polynomial = 0.\n");
}
int
main(int argc, char **argv)
{
int i, highest_power;
char *cp, *arg;
gsl_poly_complex_workspace *w;
if (argc <= 1) {
fprintf(stderr, "%s: The polynomial coefficients must be specified on the command line.\n", prog_name);
usage();
exit(2);
}
highest_power = argc - 2;
a = calloc(highest_power + 1, sizeof(double)); /* allocate real double input array */
z = calloc(2 * highest_power, sizeof(double)); /* allocate complex double output array */
/* parse the command line into the coefficient array a[] */
for (i = 0; i < argc - 1; i++) {
arg = argv[argc-i-1];
errno = 0;
a[i] = strtod(arg, &cp);
if (arg == cp || *cp) {
fprintf(stderr, "%s: Argument \"%s\" is not a floating point number.\n", prog_name, arg);
usage();
exit(2);
}
if (errno) {
fprintf(stderr, "%s: Argument \"%s\" is out of range.\n", prog_name, arg);
exit(2);
}
}
#if HELP
/* nicely display the actual polynomial equation we are solving */
printf("The %d approximate floating point solutions of:\n", highest_power);
for (i = highest_power; i >= 0; i--) {
if (a[i]) {
if (i && a[i] == 1.0) {
printf("+x");
} else {
printf("%+.*g", precision, a[i]);
if (i) {
printf("*x");
}
}
if (i > 1) {
printf("^%d", i);
}
printf(" ");
}
}
printf("= 0\nare:\n\n");
#endif
/* solve the polynomial equation */
w = gsl_poly_complex_workspace_alloc(highest_power + 1);
if (gsl_poly_complex_solve(a, highest_power + 1, w, z) != GSL_SUCCESS) {
fprintf(stderr, "%s: GSL approximation failed.\n", prog_name);
exit(1);
}
gsl_poly_complex_workspace_free(w);
/* display all solutions */
for (i = 0; i < highest_power; i++) {
#ifdef EPSILON /* zero out relatively very small values (which are floating point error) */
if (fabs(z[2*i] * EPSILON) > fabs(z[2*i+1]))
z[2*i+1] = 0.0;
else if (fabs(z[2*i+1] * EPSILON) > fabs(z[2*i]))
z[2*i] = 0.0;
#endif
#if HELP
printf("x = ");
#endif
display_root(i);
printf("\n");
}
exit(0);
}
void
display_root(int i)
{
printf("%+.*g", precision, z[2*i]); /* output real part */
if (z[2*i+1])
printf(" %+.*g*i", precision, z[2*i+1]); /* output imaginary part */
}
|