1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
/*
* Mathomatic floating point constant factorizing routines.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
static void try_factor(double arg);
static int fc_recurse(token_type *equation, int *np, int loc, int level, int level_code);
/* The following data is used to factor integers: */
static double nn, sqrt_value;
static double skip_multiples[] = { /* Additive array that skips over multiples of 2, 3, 5, and 7. */
10, 2, 4, 2, 4, 6, 2, 6,
4, 2, 4, 6, 6, 2, 6, 4,
2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 8, 6, 4, 6, 2, 4,
6, 2, 6, 6, 4, 2, 4, 6,
2, 6, 4, 2, 4, 2,10, 2
}; /* sum of all numbers = 210 = (2*3*5*7) */
/*
* Factor the integer in "value".
* Store the prime factors in the unique[] array.
*
* Return true if successful.
*/
int
factor_one(value)
double value;
{
int i;
double d;
uno = 0;
nn = value;
if (nn == 0.0 || !isfinite(nn)) {
/* zero or not finite */
return false;
}
if (fabs(nn) >= MAX_K_INTEGER) {
/* too large to factor */
return false;
}
if (fmod(nn, 1.0) != 0.0) {
/* not an integer */
return false;
}
sqrt_value = 1.0 + sqrt(fabs(nn));
try_factor(2.0);
try_factor(3.0);
try_factor(5.0);
try_factor(7.0);
d = 1.0;
while (d <= sqrt_value) {
for (i = 0; i < ARR_CNT(skip_multiples); i++) {
d += skip_multiples[i];
try_factor(d);
}
}
if (nn != 1.0) {
if (nn < 0 && nn != -1.0) {
try_factor(fabs(nn));
}
try_factor(nn);
}
if (uno == 0) {
try_factor(1.0);
}
/* Do some floating point arithmetic self-checking. If the following fails, it is due to a floating point bug. */
if (nn != 1.0) {
error_bug("Internal error factoring integers (final nn != 1.0).");
}
if (value != multiply_out_unique()) {
error_bug("Internal error factoring integers (result array value is incorrect).");
}
return true;
}
/*
* See if "arg" is one or more factors of "nn".
* If so, save it and remove it from "nn".
*/
static void
try_factor(arg)
double arg;
{
#if DEBUG
if (fmod(arg, 1.0) != 0.0) {
error_bug("Trying factor that is not an integer!");
}
#endif
while (fmod(nn, arg) == 0.0) {
if (uno > 0 && ucnt[uno-1] > 0 && unique[uno-1] == arg) {
ucnt[uno-1]++;
} else {
while (uno > 0 && ucnt[uno-1] <= 0)
uno--;
unique[uno] = arg;
ucnt[uno++] = 1;
}
nn /= arg;
#if DEBUG
if (fmod(nn, 1.0) != 0.0) {
error_bug("nn turned non-integer in try_factor().");
}
#endif
sqrt_value = 1.0 + sqrt(fabs(nn));
if (fabs(nn) <= 1.5 || fabs(arg) <= 1.5)
break;
}
}
/*
* Convert unique[] back into the single integer it represents,
* which was the value passed in the last call to factor_one(value).
* Nothing is changed and the value is returned.
*/
double
multiply_out_unique(void)
{
int i, j;
double d;
d = 1.0;
for (i = 0; i < uno; i++) {
#if DEBUG
if (ucnt[i] < 0) {
error_bug("Error in ucnt[] being negative.");
}
#endif
for (j = 0; j < ucnt[i]; j++) {
d *= unique[i];
}
}
return d;
}
/*
* Display the integer prime factors in the unique[] array, even if mangled.
* Must have had a successful call to factor_one(value) previously,
* to fill out unique[] with the prime factors of value.
*
* Return true if successful.
*/
int
display_unique(void)
{
int i;
double value;
if (uno <= 0)
return false;
value = multiply_out_unique();
fprintf(gfp, "%.0f = ", value);
for (i = 0; i < uno;) {
if (ucnt[i] > 0) {
fprintf(gfp, "%.0f", unique[i]);
} else {
i++;
continue;
}
if (ucnt[i] > 1) {
fprintf(gfp, "^%d", ucnt[i]);
}
do {
i++;
} while (i < uno && ucnt[i] <= 0);
if (i < uno) {
fprintf(gfp, " * ");
}
}
fprintf(gfp, "\n");
return true;
}
/*
* Determine if the result of factor_one(x) is prime.
*
* Return true if x is a prime number.
*/
int
is_prime(void)
{
double value;
if (uno <= 0) {
#if DEBUG
error_bug("uno == 0 in is_prime().");
#endif
return false;
}
value = multiply_out_unique();
if (value < 2.0)
return false;
if (uno == 1 && ucnt[0] == 1)
return true;
return false;
}
/*
* Factor integers into their prime factors in an equation side.
*
* Return true if the equation side was modified.
*/
int
factor_int(equation, np)
token_type *equation;
int *np;
{
int i, j;
int xsize;
int level;
int modified = false;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT && factor_one(equation[i].token.constant) && uno > 0) {
if (uno == 1 && ucnt[0] <= 1)
continue; /* prime number */
level = equation[i].level;
if (uno > 1 && *np > 1)
level++;
xsize = -2;
for (j = 0; j < uno; j++) {
if (ucnt[j] > 1)
xsize += 4;
else
xsize += 2;
}
if (*np + xsize > n_tokens) {
error_huge();
}
for (j = 0; j < uno; j++) {
if (ucnt[j] > 1)
xsize = 4;
else
xsize = 2;
if (j == 0)
xsize -= 2;
if (xsize > 0) {
blt(&equation[i+xsize], &equation[i], (*np - i) * sizeof(token_type));
*np += xsize;
if (j > 0) {
i++;
equation[i].kind = OPERATOR;
equation[i].level = level;
equation[i].token.operatr = TIMES;
i++;
}
}
equation[i].kind = CONSTANT;
equation[i].level = level;
equation[i].token.constant = unique[j];
if (ucnt[j] > 1) {
equation[i].level = level + 1;
i++;
equation[i].kind = OPERATOR;
equation[i].level = level + 1;
equation[i].token.operatr = POWER;
i++;
equation[i].level = level + 1;
equation[i].kind = CONSTANT;
equation[i].token.constant = ucnt[j];
}
}
modified = true;
}
}
return modified;
}
/*
* Factor integers in an equation space.
*
* Return true if something was factored.
*/
int
factor_int_equation(n)
int n; /* equation space number */
{
int rv = false;
if (empty_equation_space(n))
return rv;
if (factor_int(lhs[n], &n_lhs[n]))
rv = true;
if (factor_int(rhs[n], &n_rhs[n]))
rv = true;
return rv;
}
/*
* List an equation side with optional integer factoring.
*/
int
list_factor(equation, np, factor_flag)
token_type *equation;
int *np;
int factor_flag;
{
if (factor_flag || factor_int_flag) {
factor_int(equation, np);
}
return list_proc(equation, *np, false);
}
/*
* Neatly factor out coefficients in additive expressions in an equation side.
* For example: (2*x + 4*y + 6) becomes 2*(x + 2*y + 3).
*
* This routine is often necessary because the expression compare (se_compare())
* does not return a multiplier (except for +/-1.0).
* Normalization done here is required for simplification of algebraic fractions, etc.
*
* If "level_code" is 0, all additive expressions are normalized
* by making at least one coefficient unity (1) by factoring out
* the absolute value of the constant coefficient closest to zero.
* This makes the absolute value of all other coefficients >= 1.
* If all coefficients are negative, -1 will be factored out, too.
*
* If "level_code" is 1, any level 1 additive expression is factored
* nicely for readability, while all deeper levels are normalized,
* so that algebraic fractions are simplified.
*
* If "level_code" is 2, nothing is normalized unless it increases
* readability.
*
* If "level_code" is 3, nothing is done.
*
* Add 4 to "level_code" to always factor out the GCD of rational coefficients
* to produce all reduced integer coefficients.
*
* Return true if equation side was modified.
*/
int
factor_constants(equation, np, level_code)
token_type *equation; /* pointer to the beginning of equation side */
int *np; /* pointer to length of equation side */
int level_code; /* see above */
{
if (level_code == 3)
return false;
return fc_recurse(equation, np, 0, 1, level_code);
}
static int
fc_recurse(equation, np, loc, level, level_code)
token_type *equation;
int *np, loc, level;
int level_code;
{
int i, j, k, eloc;
int op;
double d, minimum = 1.0, cogcd = 1.0;
int improve_readability, gcd_flag, first = true, neg_flag = true, modified = false;
int op_count = 0, const_count = 0;
for (i = loc; i < *np && equation[i].level >= level;) {
if (equation[i].level > level) {
modified |= fc_recurse(equation, np, i, level + 1, level_code);
i++;
for (; i < *np && equation[i].level > level; i += 2)
;
continue;
}
i++;
}
if (modified)
return true;
improve_readability = ((level_code & 3) > 1 || ((level_code & 3) && (level == 1)));
gcd_flag = ((improve_readability && factor_out_all_numeric_gcds) || (level_code & 4));
for (i = loc; i < *np && equation[i].level >= level;) {
if (equation[i].level == level) {
switch (equation[i].kind) {
case CONSTANT:
const_count++;
d = equation[i].token.constant;
break;
case OPERATOR:
switch (equation[i].token.operatr) {
case PLUS:
neg_flag = false;
case MINUS:
op_count++;
break;
default:
return modified;
}
i++;
continue;
default:
d = 1.0;
break;
}
if (i == loc && d > 0.0)
neg_flag = false;
d = fabs(d);
if (first) {
minimum = d;
cogcd = d;
first = false;
} else {
if (minimum > d)
minimum = d;
if (gcd_flag && cogcd != 0.0)
cogcd = gcd_verified(d, cogcd);
}
} else {
op = 0;
for (j = i + 1; j < *np && equation[j].level > level; j += 2) {
#if DEBUG
if (equation[j].kind != OPERATOR) {
error_bug("Bug in factor_constants().");
}
#endif
if (equation[j].level == level + 1) {
op = equation[j].token.operatr;
}
}
if (op == TIMES || op == DIVIDE) {
for (k = i; k < j; k++) {
if (equation[k].level == (level + 1) && equation[k].kind == CONSTANT) {
if (i == j)
return modified; /* more than one constant */
if (k > i && equation[k-1].token.operatr != TIMES)
return modified;
d = equation[k].token.constant;
if (i == loc && d > 0.0)
neg_flag = false;
d = fabs(d);
if (first) {
minimum = d;
cogcd = d;
first = false;
} else {
if (minimum > d)
minimum = d;
if (gcd_flag && cogcd != 0.0)
cogcd = gcd_verified(d, cogcd);
}
i = j;
}
}
if (i == j)
continue;
}
if (i == loc)
neg_flag = false;
if (first) {
minimum = 1.0;
cogcd = 1.0;
first = false;
} else {
if (minimum > 1.0)
minimum = 1.0;
if (gcd_flag && cogcd != 0.0)
cogcd = gcd_verified(1.0, cogcd);
}
i = j;
continue;
}
i++;
}
eloc = i;
if (gcd_flag && cogcd != 0.0 /* && fmod(cogcd, 1.0) == 0.0 */) {
minimum = cogcd;
}
if (first || op_count == 0 || const_count > 1 || (!neg_flag && minimum == 1.0))
return modified;
if (minimum == 0.0 || !isfinite(minimum))
return modified;
if (improve_readability) {
for (i = loc; i < eloc;) {
d = 1.0;
if (equation[i].kind == CONSTANT) {
if (equation[i].level == level || ((i + 1) < eloc
&& equation[i].level == (level + 1)
&& equation[i+1].level == (level + 1)
&& (equation[i+1].token.operatr == TIMES
|| equation[i+1].token.operatr == DIVIDE))) {
d = equation[i].token.constant;
}
}
#if 0 /* was 1; changed to 0 for optimal results and so 180*(sides-2) simplification works nicely. */
if (!gcd_flag && minimum >= 1.0) {
minimum = 1.0;
break;
}
#endif
#if 1
if ((minimum < 1.0) && (fmod(d, 1.0) == 0.0)) {
minimum = 1.0;
break;
}
#endif
/* Make sure division by the number to factor out results in an integer: */
if (fmod(d, minimum) != 0.0) {
minimum = 1.0; /* result not an integer */
break;
}
i++;
for (; i < *np && equation[i].level > level; i += 2)
;
if (i >= *np || equation[i].level < level)
break;
i++;
}
}
if (neg_flag)
minimum = -minimum;
if (minimum == 1.0)
return modified;
if (*np + ((op_count + 2) * 2) > n_tokens) {
error_huge();
}
for (i = loc; i < *np && equation[i].level >= level; i++) {
if (equation[i].kind != OPERATOR) {
for (j = i;;) {
equation[j].level++;
j++;
if (j >= *np || equation[j].level <= level)
break;
}
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
equation[j].level = level + 1;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level + 1;
equation[j].kind = CONSTANT;
equation[j].token.constant = minimum;
i = j;
}
}
for (i = loc; i < *np && equation[i].level >= level; i++) {
equation[i].level++;
}
blt(&equation[i+2], &equation[i], (*np - i) * sizeof(token_type));
*np += 2;
equation[i].level = level;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
i++;
equation[i].level = level;
equation[i].kind = CONSTANT;
equation[i].token.constant = minimum;
return true;
}
|