1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*
* General floating point GCD routine and associated code for Mathomatic.
* These routines are magically tuned to always give good results,
* even though floating point is used.
* Use of this code in other floating point programs that need a gcd() or
* double-to-fraction convert function is recommended.
* It is heavily tested through extensive use in this computer algebra system.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
/*
* Floating point GCD function.
*
* Returns the Greatest Common Divisor (GCD) of doubles d1 and d2,
* by using the Euclidean GCD algorithm.
*
* The GCD is defined as the largest positive number that evenly divides both d1 and d2.
* This should always works perfectly and exactly with two integers up to MAX_K_INTEGER.
* Will usually work with non-integers, but there may be some floating point error.
*
* Returns 0 on failure, otherwise returns the positive GCD.
*/
double
gcd(d1, d2)
double d1, d2;
{
int count;
double larger, divisor, remainder1, lower_limit;
if (!isfinite(d1) || !isfinite(d2)) {
return 0.0; /* operands must be finite */
}
d1 = fabs(d1);
d2 = fabs(d2);
#if 1 /* true for standard gcd(), otherwise returns 0 (failure) if either parameter is 0 */
if (d1 == 0)
return d2;
if (d2 == 0)
return d1;
#endif
if (d1 > d2) {
larger = d1;
divisor = d2;
} else {
larger = d2;
divisor = d1;
}
lower_limit = larger * epsilon;
if (divisor <= lower_limit || larger >= MAX_K_INTEGER) {
return 0.0; /* out of range, result would be too inaccurate */
}
for (count = 1; count < 50; count++) {
remainder1 = fabs(fmod(larger, divisor));
if (remainder1 <= lower_limit || fabs(divisor - remainder1) <= lower_limit) {
if (remainder1 != 0.0 && divisor <= (100.0 * lower_limit))
return 0.0;
return divisor;
}
larger = divisor;
divisor = remainder1;
}
return 0.0;
}
/*
* Verified floating point GCD function.
*
* Returns the verified exact Greatest Common Divisor (GCD) of doubles d1 and d2.
*
* Returns 0 on failure or inexactness, otherwise returns the verified positive GCD result.
* Result is not necessarily integer unless both d1 and d2 are integer.
*/
double
gcd_verified(d1, d2)
double d1, d2;
{
double divisor, d3, d4;
divisor = gcd(d1, d2);
if (divisor != 0.0) {
d3 = d1 / divisor;
d4 = d2 / divisor;
if (fmod(d3, 1.0) != 0.0 || fmod(d4, 1.0) != 0.0)
return 0.0;
if (gcd(d3, d4) != 1.0)
return 0.0;
}
return divisor;
}
/*
* Floating point round function.
*
* Returns the passed floating point double rounded to the nearest integer.
*/
double
my_round(d1)
double d1; /* value to round */
{
if (d1 >= 0.0) {
modf(d1 + 0.5, &d1);
} else {
modf(d1 - 0.5, &d1);
}
return d1;
}
/*
* Convert the passed double d to an equivalent fully reduced fraction.
* This done by the following simple algorithm:
*
* divisor = gcd(d, 1.0)
* numerator = d / divisor
* denominator = 1.0 / divisor
*
* Returns true with integers in numerator and denominator
* if conversion to a fraction was successful.
* Otherwise returns false with numerator = d and denominator = 1.0
*
* True return indicates d is rational and finite, otherwise d is probably irrational.
*/
int
f_to_fraction(d, numeratorp, denominatorp)
double d; /* floating point number to convert */
double *numeratorp; /* returned numerator */
double *denominatorp; /* returned denominator */
{
double divisor;
double numerator, denominator;
double k3, k4;
*numeratorp = d;
*denominatorp = 1.0;
if (!isfinite(d)) {
return false;
}
/* see if "d" is an integer, or very close to an integer: */
if (fmod(d, 1.0) == 0.0) {
/* d is an integer */
return true;
}
/* more than 15 digits in number means we do nothing (for better accuracy) */
if (fabs(d) >= MAX_K_INTEGER)
return false;
k3 = fabs(d) * small_epsilon;
if (k3 >= .5)
return false; /* fixes "factor number 17!" to give error instead of wrong answer */
k4 = my_round(d);
if (k4 != 0.0 && fabs(k4 - d) <= k3) {
/* very close to an integer, make it so (allows gamma() based factorial function to work properly, etc.) */
*numeratorp = k4;
return true;
}
/* try to convert non-integer floating point value in "d" to a fraction: */
if ((divisor = gcd(1.0, d)) > epsilon) {
numerator = my_round(d / divisor);
denominator = my_round(1.0 / divisor);
/* don't allow more than 11 digits in the numerator or denominator: */
if (fabs(numerator) >= 1.0e12)
return false;
if (denominator >= 1.0e12 || denominator < 2.0)
return false;
/* make sure the result is a fully reduced fraction: */
divisor = gcd(numerator, denominator);
if (divisor > 1.0) { /* just in case result isn't already fully reduced */
numerator /= divisor;
denominator /= divisor;
}
k3 = (numerator / denominator);
if (fabs(k3 - d) > (small_epsilon * fabs(k3))) {
return false; /* result is too inaccurate */
}
if (fmod(numerator, 1.0) != 0.0 || fmod(denominator, 1.0) != 0.0) {
/* Shouldn't happen if everything works. */
#if DEBUG
error_bug("Fraction should have been fully reduced by gcd(), but was not.");
#endif
return false;
}
/* numerator and denominator are guaranteed integral */
*numeratorp = numerator;
*denominatorp = denominator;
return true;
}
return false;
}
/*
* Call make_simple_fractions() or make_mixed_fractions() below,
* depending on the current fractions display mode.
*
* Returns true if any fractions were created.
*/
int
make_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
switch (fractions_display) {
case 2:
return make_mixed_fractions(equation, np);
break;
default:
return make_simple_fractions(equation, np);
break;
}
}
/*
* Convert all non-integer constants in an equation side to simple, fully reduced fractions,
* when exactly equal to a fraction without a very large numerator or denominator.
* Uses f_to_fraction() above, which limits the numerator and denominator to 11 digits each.
* The floating point gcd() function used limits the complexity of fractions further.
*
* Returns true if any fractions were created.
*/
int
make_simple_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j, k;
int level;
double numerator, denominator;
int inc_level, modified = false;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT) {
level = equation[i].level;
if (i > 0 && equation[i-1].level == level && (equation[i-1].token.operatr == DIVIDE /* || equation[i-1].token.operatr == POWER */))
continue;
if (!f_to_fraction(equation[i].token.constant, &numerator, &denominator))
continue;
if (denominator == 1.0) {
equation[i].token.constant = numerator;
continue;
}
if ((*np + 2) > n_tokens) {
error_huge();
}
modified = true;
inc_level = (*np > 1);
if ((i + 1) < *np && equation[i+1].level == level) {
switch (equation[i+1].token.operatr) {
case TIMES:
for (j = i + 3; j < *np && equation[j].level >= level; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
break;
}
}
if (numerator == 1.0) {
blt(&equation[i], &equation[i+2], (j - (i + 2)) * sizeof(token_type));
j -= 2;
} else {
equation[i].token.constant = numerator;
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
}
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (numerator == 1.0) {
i -= 2;
}
continue;
case DIVIDE:
inc_level = false;
break;
}
}
j = i;
blt(&equation[i+3], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 2;
equation[j].token.constant = numerator;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (inc_level) {
for (k = i; k <= j; k++)
equation[k].level++;
}
}
}
return modified;
}
/*
* Convert all non-integer constants in an equation side to mixed, fully reduced fractions,
* when exactly equal to a fraction without a very large numerator or denominator.
* A mixed fraction is an expression like (2 + (1/4)),
* which is equal to the simple fraction 9/4.
* If you only want simple fractions, use make_simple_fractions() above.
*
* Returns true if any fractions were created.
*/
int
make_mixed_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j, k;
int level;
double numerator, denominator, quotient1, remainder1;
int inc_level, modified = false;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT) {
level = equation[i].level;
if (i > 0 && equation[i-1].level == level && (equation[i-1].token.operatr == DIVIDE /* || equation[i-1].token.operatr == POWER */))
continue;
if (!f_to_fraction(equation[i].token.constant, &numerator, &denominator))
continue;
if (denominator == 1.0) {
equation[i].token.constant = numerator;
continue;
}
modified = true;
if (fabs(numerator) > denominator) {
remainder1 = modf(fabs(numerator) / denominator, "ient1);
remainder1 = my_round(remainder1 * denominator);
if (numerator < 0.0) {
if ((*np + 6) > n_tokens) {
error_huge();
}
blt(&equation[i+7], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 6;
equation[i].level = level + 1;
equation[i].token.constant = -1.0;
i++;
equation[i].level = level + 1;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = quotient1;
i++;
equation[i].level = level + 2;
equation[i].kind = OPERATOR;
equation[i].token.operatr = PLUS;
i++;
equation[i].level = level + 3;
equation[i].kind = CONSTANT;
equation[i].token.constant = remainder1;
i++;
equation[i].level = level + 3;
equation[i].kind = OPERATOR;
equation[i].token.operatr = DIVIDE;
i++;
equation[i].level = level + 3;
equation[i].kind = CONSTANT;
equation[i].token.constant = denominator;
} else {
if ((*np + 4) > n_tokens) {
error_huge();
}
blt(&equation[i+5], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 4;
equation[i].level = level + 1;
equation[i].token.constant = quotient1;
i++;
equation[i].level = level + 1;
equation[i].kind = OPERATOR;
equation[i].token.operatr = PLUS;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = remainder1;
i++;
equation[i].level = level + 2;
equation[i].kind = OPERATOR;
equation[i].token.operatr = DIVIDE;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = denominator;
}
} else {
if ((*np + 2) > n_tokens) {
error_huge();
}
inc_level = (*np > 1);
if ((i + 1) < *np && equation[i+1].level == level) {
switch (equation[i+1].token.operatr) {
case TIMES:
for (j = i + 3; j < *np && equation[j].level >= level; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
break;
}
}
if (numerator == 1.0) {
blt(&equation[i], &equation[i+2], (j - (i + 2)) * sizeof(token_type));
j -= 2;
} else {
equation[i].token.constant = numerator;
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
}
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (numerator == 1.0) {
i -= 2;
}
continue;
case DIVIDE:
inc_level = false;
break;
}
}
j = i;
blt(&equation[i+3], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 2;
equation[j].token.constant = numerator;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (inc_level) {
for (k = i; k <= j; k++)
equation[k].level++;
}
}
}
}
if (modified) {
organize(equation, np);
}
return modified;
}
|