File: super.c

package info (click to toggle)
mathomatic 16.0.5-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,192 kB
  • sloc: ansic: 22,029; makefile: 340; sh: 319; python: 96; awk: 39
file content (540 lines) | stat: -rw-r--r-- 14,292 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * Group and combine algebraic fractions for Mathomatic.
 *
 * Copyright (C) 1987-2012 George Gesslein II.
 
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY  14882-0224  USA.
 
 */

#include "includes.h"

static int sf_recurse(token_type *equation, int *np, int loc, int level, int start_flag);
static int sf_sub(token_type *equation, int *np, int loc, int i1, int n1, int i2, int n2, int level, int start_flag);

static void
group_recurse(equation, np, loc, level)
token_type	*equation;	/* equation side pointer */
int		*np;		/* pointer to length of equation side */
int		loc;		/* starting location within equation side */
int		level;		/* current level of parentheses within the sub-expression starting at "loc" */
{
	int		i;
	int		len;
	int		di = -1, edi;
	int		group_flag = false;
	int		e1;

	for (i = loc; i < *np && equation[i].level >= level;) {
		if (equation[i].level > level) {
			group_recurse(equation, np, i, level + 1);
			i++;
			for (; i < *np && equation[i].level > level; i += 2)
				;
			continue;
		}
		i++;
	}
	edi = e1 = i;
	for (i = loc + 1; i < e1; i += 2) {
		if (equation[i].level == level) {
			if (equation[i].token.operatr == DIVIDE) {
				if (di < 0) {
					di = i;
					continue;
				}
				group_flag = true;
				for (len = i + 2; len < e1; len += 2) {
					if (equation[len].level == level && equation[len].token.operatr != DIVIDE)
						break;
				}
				len -= i;
				if (edi == e1) {
					i += len;
					edi = i;
					continue;
				}
				blt(scratch, &equation[i], len * sizeof(token_type));
				blt(&equation[di+len], &equation[di], (i - di) * sizeof(token_type));
				blt(&equation[di], scratch, len * sizeof(token_type));
				edi += len;
				i += len - 2;
			} else {
				if (di >= 0 && edi == e1)
					edi = i;
			}
		}
	}
	if (group_flag) {
		for (i = di + 1; i < edi; i++) {
			if (equation[i].level == level && equation[i].kind == OPERATOR) {
#if	DEBUG
				if (equation[i].token.operatr != DIVIDE) {
					error_bug("Bug in group_recurse().");
				}
#endif
				equation[i].token.operatr = TIMES;
			}
			equation[i].level++;
		}
	}
}

/*
 * Group denominators of algebraic fractions together in an equation side.
 * Grouping here means converting "a/b/c/d*e" to "a*e/(b*c*d)" or "a/(b*c*d)*e".
 * Not guaranteed to put the grouped divisors last, reorder() puts divisors last.
 */
void
group_proc(equation, np)
token_type	*equation;	/* equation side pointer */
int		*np;		/* pointer to length of equation side */
{
	group_recurse(equation, np, 0, 1);
}

/*
 * Make equation side ready for display.
 * Basically simplify, then convert non-integer constants in an equation side to fractions,
 * when exactly equal to simple fractions.
 * Also groups algebraic fraction denominators with group_proc() above.
 *
 * Return true if any fractions were created.
 */
int
fractions_and_group(equation, np)
token_type	*equation;
int		*np;
{
	int	rv = false;

	elim_loop(equation, np);
	if (fractions_display) {
		rv = make_fractions(equation, np);
	}
	group_proc(equation, np);
	return rv;
}

/*
 * This function is the guts of the display command.
 * Makes an equation space ready for display.
 *
 * Return true if any fractions were created.
 */
int
make_fractions_and_group(n)
int	n;	/* equation space number */
{
	int	rv = false;

	if (empty_equation_space(n))
		return false;
	if (fractions_and_group(lhs[n], &n_lhs[n]))
		rv = true;
	if (n_rhs[n] > 0) {
		if (fractions_and_group(rhs[n], &n_rhs[n]))
			rv = true;
	}
	return rv;
}

/*
 * Efficiently combine algebraic fractions added together
 * by putting all terms over a common denominator.
 * This means converting "(a/b)+(c/d)+f" directly to "(a*d+c*b+b*d*f)/b/d".
 * The resulting expression is always equivalent to the original expression.
 *
 * If start_flag is 0, only combine denominators to convert complex fractions to simple fractions.
 * Level one addition of fractions will be unchanged.
 * Can make an expression over-complicated.
 *
 * If start_flag is 1, always combine denominators no matter what they are.
 * This can easily make an expression large and complicated,
 * but always results in a single, simple fraction.
 * Used when solving for zero.
 *
 * If start_flag is 2, combine denominators
 * and reduce the result by removing any polynomial GCD between them.
 * Note that this wipes out globals tlhs[] and trhs[].
 * This usually results in the simplest and most correct result.
 *
 * If start_flag is 3: same as start_flag = 2,
 * except absolute value and imaginary denominators are combined, too.
 * This simplifies all algebraic fractions into a single simple fraction.
 * Removing the polynomial GCD usually prevents making a more complicated
 * (or larger) algebraic fraction.
 * Used by the fraction command.
 *
 * Return true if the equation side was modified.
 */
int
super_factor(equation, np, start_flag)
token_type	*equation;	/* pointer to the beginning of the equation side to process */
int		*np;		/* pointer to the length of the equation side */
int		start_flag;
{
	int	rv;

	group_proc(equation, np);
	rv = sf_recurse(equation, np, 0, 1, start_flag);
	organize(equation, np);
	return rv;
}

static int
sf_recurse(equation, np, loc, level, start_flag)
token_type	*equation;
int		*np, loc, level, start_flag;
{
	int	modified = false;
	int	i, j, k;
	int	op;
	int	len1, len2;

	if (!start_flag) {
		for (i = loc + 1; i < *np && equation[i].level >= level; i += 2) {
			if (equation[i].level == level && equation[i].token.operatr == DIVIDE) {
				start_flag = true;
				break;
			}
		}
	}
	op = 0;
	for (i = loc; i < *np && equation[i].level >= level;) {
		if (equation[i].level > level) {
			modified |= sf_recurse(equation, np, i, level + 1, start_flag);
			i++;
			for (; i < *np && equation[i].level > level; i += 2)
				;
			continue;
		} else if (equation[i].kind == OPERATOR) {
			op = equation[i].token.operatr;
		}
		i++;
	}
	if (modified || !start_flag)
		return modified;
	switch (op) {
	case PLUS:
	case MINUS:
		break;
	default:
		return modified;
	}
sf_again:
	i = loc;
	for (k = i + 1; k < *np && equation[k].level > level; k += 2)
		;
	len1 = k - i;
	for (j = i + len1 + 1; j < *np && equation[j-1].level >= level; j += len2 + 1) {
		for (k = j + 1; k < *np && equation[k].level > level; k += 2)
			;
		len2 = k - j;
#if	0
		side_debug(0, &equation[i], len1);
		side_debug(0, &equation[j], len2);
#endif
		if (sf_sub(equation, np, loc, i, len1, j, len2, level + 1, start_flag)) {
#if	0
			int junk;
			printf("start_flag = %d\n", start_flag);
			debug_string(0, "super_factor() successful:");
			for (junk = 1; (loc + junk) < *np && equation[loc+junk].level > level; junk += 2)
				;
			side_debug(0, &equation[loc], junk);
#endif
			modified = true;
			goto sf_again;
		}
	}
	return modified;
}

static int
sf_sub(equation, np, loc, i1, n1, i2, n2, level, start_flag)
token_type	*equation;
int		*np, loc, i1, n1, i2, n2, level, start_flag;
{
	int		i, j, k;
	int		b1, b2;
	int		len;
	int		e1, e2;
	int		op1, op2;
	token_type	*p1, *p2;
	int		np1, np2;
	int		div_flag1 = false, div_flag2 = false;
	int		rv;

	e1 = i1 + n1;
	e2 = i2 + n2;
	op2 = equation[i2-1].token.operatr;
	if (i1 <= loc) {
		op1 = PLUS;
	} else {
		op1 = equation[i1-1].token.operatr;
	}
	for (i = i1 + 1; i < e1; i += 2) {
		if (equation[i].level == level && equation[i].token.operatr == DIVIDE) {
			div_flag1 = true;
			break;
		}
	}
	b1 = i + 1;
	if (div_flag1) {
		for (i += 2; i < e1; i += 2) {
			if (equation[i].level <= level)
				break;
		}
	}
	for (j = i2 + 1; j < e2; j += 2) {
		if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
			div_flag2 = true;
			break;
		}
	}
	b2 = j + 1;
	if (div_flag2) {
		for (j += 2; j < e2; j += 2) {
			if (equation[j].level <= level)
				break;
		}
	}
	if (!div_flag1 && !div_flag2)
		return false;
#if	1
	if (start_flag <= 2 && start_flag != 1) {
#if	0	/* Leave as 0; 1 will not simplify many imaginary number expressions, for example the tangent expansion. */
		if (div_flag1 && found_var(&equation[b1], i - b1, IMAGINARY)) {
			return false;
		}
		if (div_flag2 && found_var(&equation[b2], j - b2, IMAGINARY)) {
			return false;
		}
#endif
		if (div_flag1) {
			if (exp_is_absolute(&equation[b1], i - b1))
				return false;
		}
		if (div_flag2) {
			if (exp_is_absolute(&equation[b2], j - b2))
				return false;
		}
	}
#endif
	if (start_flag >= 2 && div_flag1 && div_flag2) {
#if	DEBUG
		debug_string(1, "Trying to find a polynomial GCD between 2 denominators in sf_sub():");
		side_debug(1, &equation[b1], i - b1);
		side_debug(1, &equation[b2], j - b2);
#endif
		if ((rv = poly2_gcd(&equation[b1], i - b1, &equation[b2], j - b2, 0L, true)) > 0) {
			p1 = tlhs;
			np1 = n_tlhs;
			p2 = trhs;
			np2 = n_trhs;
			goto do_gcd_super;
		}
		if (rv == 0 && poly2_gcd(&equation[b2], j - b2, &equation[b1], i - b1, 0L, true) > 0) {
			p1 = trhs;
			np1 = n_trhs;
			p2 = tlhs;
			np2 = n_tlhs;
			goto do_gcd_super;
		}
#if	DEBUG
		debug_string(1, "Done; polynomial GCD not found.");
#endif
	}
        if (n1 + n2 + (i - b1) + (j - b2) + 8 > n_tokens) {
                error_huge();
        } 
	if (!div_flag1) {
		for (k = i1; k < e1; k++)
			equation[k].level++;
	}
	if (!div_flag2) {
		for (k = i2; k < e2; k++)
			equation[k].level++;
	}
	len = (b1 - i1) - 1;
	blt(scratch, &equation[i1], len * sizeof(token_type));
	if (op1 == MINUS) {
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		scratch[len].level = level;
		scratch[len].kind = CONSTANT;
		scratch[len].token.constant = -1.0;
		len++;
	}
	if (div_flag1) {
		blt(&scratch[len], &equation[i], (e1 - i) * sizeof(token_type));
		len += e1 - i;
	}
	if (div_flag2) {
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		blt(&scratch[len], &equation[b2], (j - b2) * sizeof(token_type));
		len += j - b2;
	}
	for (k = 0; k < len; k++)
		scratch[k].level += 2;
	scratch[len].level = level + 1;
	scratch[len].kind = OPERATOR;
	scratch[len].token.operatr = op2;
	len++;
	k = len;
	blt(&scratch[len], &equation[i2], (b2 - i2 - 1) * sizeof(token_type));
	len += b2 - i2 - 1;
	if (div_flag2) {
		blt(&scratch[len], &equation[j], (e2 - j) * sizeof(token_type));
		len += e2 - j;
	}
	if (div_flag1) {
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		blt(&scratch[len], &equation[b1], (i - b1) * sizeof(token_type));
		len += i - b1;
	}
	for (; k < len; k++)
		scratch[k].level += 2;
	scratch[len].level = level;
	scratch[len].kind = OPERATOR;
	scratch[len].token.operatr = DIVIDE;
	len++;
	k = len;
	if (div_flag1) {
		blt(&scratch[len], &equation[b1], (i - b1) * sizeof(token_type));
		len += i - b1;
	}
	if (div_flag1 && div_flag2) {
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
	}
	if (div_flag2) {
		blt(&scratch[len], &equation[b2], (j - b2) * sizeof(token_type));
		len += j - b2;
	}
	for (; k < len; k++)
		scratch[k].level++;
end_mess:
	if (*np + len - n1 - (n2 + 1) > n_tokens) {
		error_huge();
	}
	if (op1 == MINUS) {
		equation[i1-1].token.operatr = PLUS;
	}
	blt(&equation[i2-1], &equation[e2], (*np - e2) * sizeof(token_type));
	*np -= n2 + 1;
	blt(&equation[i1+len], &equation[e1], (*np - e1) * sizeof(token_type));
	*np += len - n1;
	blt(&equation[i1], scratch, len * sizeof(token_type));
	return true;

do_gcd_super:
#if	DEBUG
	debug_string(1, "Found a polynomial GCD between 2 denominators in sf_sub().");
#endif

	if (5 - i1 + e1 + (2*np2) + b2 - i2 + e2 - j + np1 > n_tokens) {
		error_huge();
	}
	for (k = 0; k < np1; k++) {
		p1[k].level += level;
	}
	for (k = 0; k < np2; k++) {
		p2[k].level += level;
	}
	len = (b1 - i1) - 1;
	blt(scratch, &equation[i1], len * sizeof(token_type));
	if (op1 == MINUS) {
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		scratch[len].level = level;
		scratch[len].kind = CONSTANT;
		scratch[len].token.constant = -1.0;
		len++;
	}
/*	if (div_flag1) { */
		blt(&scratch[len], &equation[i], (e1 - i) * sizeof(token_type));
		len += e1 - i;
/*	} */
/*	if (div_flag2) { */
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		blt(&scratch[len], p2, np2 * sizeof(token_type));
		len += np2;
/*	} */
	for (k = 0; k < len; k++)
		scratch[k].level += 2;
	scratch[len].level = level + 1;
	scratch[len].kind = OPERATOR;
	scratch[len].token.operatr = op2;
	len++;
	k = len;
	blt(&scratch[len], &equation[i2], (b2 - i2 - 1) * sizeof(token_type));
	len += b2 - i2 - 1;
/*	if (div_flag2) { */
		blt(&scratch[len], &equation[j], (e2 - j) * sizeof(token_type));
		len += e2 - j;
/*	} */
/*	if (div_flag1) { */
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
		blt(&scratch[len], p1, np1 * sizeof(token_type));
		len += np1;
/*	} */
	for (; k < len; k++)
		scratch[k].level += 2;
	scratch[len].level = level;
	scratch[len].kind = OPERATOR;
	scratch[len].token.operatr = DIVIDE;
	len++;
	k = len;
/*	if (div_flag1) { */
		blt(&scratch[len], &equation[b1], (i - b1) * sizeof(token_type));
		len += (i - b1);
/*	} */
/*	if (div_flag1 && div_flag2) { */
		scratch[len].level = level;
		scratch[len].kind = OPERATOR;
		scratch[len].token.operatr = TIMES;
		len++;
/*	} */
/*	if (div_flag2) { */
		blt(&scratch[len], p2, np2 * sizeof(token_type));
		len += np2;
/*	} */
	for (; k < len; k++)
		scratch[k].level++;
	goto end_mess;
}