1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
|
% extras.red Copyright Codemist Ltd 2004-2009
%
% Additional useful functions to have in a Lisp environment.
%
%
%
%/**************************************************************************
% * Copyright (C) 2009, Codemist Ltd. A C Norman *
% * *
% * Redistribution and use in source and binary forms, with or without *
% * modification, are permitted provided that the following conditions are *
% * met: *
% * *
% * * Redistributions of source code must retain the relevant *
% * copyright notice, this list of conditions and the following *
% * disclaimer. *
% * * Redistributions in binary form must reproduce the above *
% * copyright notice, this list of conditions and the following *
% * disclaimer in the documentation and/or other materials provided *
% * with the distribution. *
% * *
% * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
% * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT *
% * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *
% * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE *
% * COPYRIGHT OWNERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, *
% * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, *
% * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS *
% * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *
% * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
% * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF *
% * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH *
% * DAMAGE. *
% *************************************************************************/
%
%
% CSL does not support user-defined special forms! So
% (df name (u) body)
% will get mapped to a macro as roughly
% (dm name (g)
% `(let* ((u '@(cdr g)))
% (progn @,body)))
%
% For example (df quote (u) (car u))
% map map onto something such that macroexpanding (quote XX) gives
% (let* ((g '(XX)))
% (car g)) [g is a fresh gensym]
symbolic macro procedure df(u, !&optional, env);
begin
scalar g, w;
g := gensym();
w := list('list,
''let!*,
list('list, list('list,
mkquote caaddr u,
list('mkquote, list('cdr, g)))),
list('cons, ''progn, mkquote cdddr u));
return list('dm, cadr u, list(g, '!&optional, gensym()), w);
end;
% The following small function is just used for testing the CSL OEM
% interface code...
symbolic procedure oem!-supervisor();
print eval read();
%
% If you go (setq !*break!-loop!* 'break!-loop) then errors will get this
% function called - and it is rather desirable that it does not itself fail.
% The argument is what was passed to (ERROR ...) if the Lisp-level error
% function was called. When this function exits the system will unwind back
% to the next enclosing ERRORSET. (enable!-backtrace <fg>) can be used to
% switch backtrace display on or off.
%
symbolic procedure break!-loop a;
begin
scalar prompt, ifile, ofile, u, v;
% I use wrs/rds so I am compatible between Standard and Common Lisp here
ifile := rds !*debug!-io!*;
ofile := wrs !*debug!-io!*;
prompt := setpchar "Break loop (:X exits)> ";
top:u := read();
if u = '!:x then go to exit
else if u = '!:q then <<
enable!-backtrace nil;
princ "Backtrace now disabled";
terpri() >>
else if u = '!:v then <<
enable!-backtrace t;
princ "Backtrace now enabled";
terpri() >>
else <<
if null u then v := nil
else v := errorset(u, nil, nil);
if atom v then <<
princ ":Q quietens backtrace"; terpri();
princ ":V enables backtrace"; terpri();
princ ":X exits from break loop"; terpri();
princ "else form for evaluation"; terpri();
>>
else <<
prin "=> ";
prinl car v;
terpri() >> >>;
go to top;
exit:
rds ifile;
wrs ofile;
setpchar prompt;
return nil
end;
% dated!-name manufactures a symbol that is expected to be unique - but
% there will in fact be no strict guarantee of that. The name is made up out
% of a base part provided by the caller, then a chunk that encodes the
% date and time of day that the function was called (accurate to around
% a second, typically). Finally a serial number that starts off as 1 when
% the "extras" module is loaded into a copy of Lisp. Two copies of Lisp
% running at the same time could lead to clashes here. But names of this
% sort seem to be needed for inclusion in files and other places where
% re-readability is vital.
global '(s!:gensym!-serial);
s!:gensym!-serial := 0;
symbolic procedure s!:stamp n;
% Converts an integer (which will in fact be a timestamp, an about
% 2^29 or 2^30 in value) into a sequence of letters and digits by
% converting to base 36 (with the digits ending up in the "wrong"
% order). Used only when generating probably-unique-identifiers to
% use as names for internally generated functions.
if n < 0 then append(s!:stamp(-n), '(!-))
else if n = 0 then nil
else schar("0123456789abcdefghijklmnopqrstuvwxyz", remainder(n, 36)) .
s!:stamp truncate(n ,36);
symbolic procedure dated!-name base;
intern list!-to!-string
append(explodec base,
'!_ . append(reverse s!:stamp datestamp(),
'!_ . explodec(s!:gensym!-serial := s!:gensym!-serial + 1)));
% hashtagged!-name(base, value) manufactures a name based on the
% base together with a hash-value computed from the "value". This
% is expected to be a reliable signature (but clashes are of course
% possible). Eg base may be the name of a function and value its
% definition, then this will invent a name suitable for a parallel
% version of the function where the new name ought not to conflict with
% ones used later if this function gets defined with a different
% definition.
symbolic procedure hashtagged!-name(base, value);
intern list!-to!-string
append(explodec base, '!_ . s!:stamp md60 value);
%
% Sorting
%
remflag('(sort sortip), 'lose);
symbolic procedure sort(l, pred);
% Sort the list l according to the given predicate. If l is a list
% of numbers then the predicate "lessp" will sort the list into
% ascending order. The predicate should be a strict inequality, i.e.
% it should return NIL if the two items compared are equal.
% As implemented here SORT just calls STABLE-SORT, but as a matter of
% style any use where the ordering of incomparable items in the output
% matters ought to use STABLE!-SORT directly, thereby allowing the
% replacement of this code with a faster non-stable method.
% (Note: the previous REDUCE sort function also happened to be stable, so
% this code should give exactly the same results for all calls where
% the predicate is self-consistent and never has both pred(a,b) and
% pred(b,a) true. A previous CSL sort was not stable, but was perhaps
% very slightly faster than this)
stable!-sortip(append(l, nil), pred);
symbolic procedure stable!-sort(l, pred);
% Sorts a list, as SORT, but if two items x and y in the input list
% satisfy neither pred(x,y) nor pred(y,x) [i.e. they are equal so far
% as the given ordering predicate is concerned] this function guarantees
% that they will appear in the output list in the same order that they
% were in the input.
stable!-sortip(append(l, nil), pred);
symbolic procedure sortip(l, pred);
stable!-sortip(l, pred);
symbolic procedure stable!-sortip(l, pred);
% As stable!-sort, but over-writes the input list to make the output.
% It is not intended that people should call this function directly: it
% is present just as the implementation of the main sort procedures defined
% above.
begin
scalar l1, l2, w;
if null l then return l; % Input list of length 0
l1 := l;
l2 := cdr l;
if null l2 then return l; % Input list of length 1
% Now I have dealt with the essential special cases of lists of length 0
% and 1 (which do not need sorting at all). Since it possibly speeds things
% up just a little I will now have some fairly ugly code that makes special
% cases of lists of length 2. I could easily have special code for length
% 3 lists here (and include it, but commented out), but at present my
% measurements suggest that the speed improvement that it gives is minimal
% and the increase in code bulk is large enough to give some pain.
l := cdr l2;
if null l then << % Input list of length 2
if apply2(pred, car l2, car l1) then <<
l := car l1;
rplaca(l1, car l2);
rplaca(l2, l) >>;
return l1 >>;
% Now I will check to see if the list is in fact in order already
% Doing so will have a cost - but sometimes that cost will be repaid
% when I am able to exit especially early. The result of all this
% is that I will have a best case behaviour with linear cost growth for
% inputs that are initially in the correct order, while my average and
% worst-case costs will increase by a constant factor.
l := l1;
while l2 and not apply2(pred, car l2, car l) do <<
% In the input list is NOT already in order then I expect that this
% loop will exit fairly early, and so will not contribute much to the
% total cost. If it exits very late then probably in the next recursion
% down the first half of the list will be found to be already sorted, and
% again I have a chance to win.
l := l2; l2 := cdr l2 >>;
if null l2 then return l1;
l2 := l1;
l := cddr l2;
while l and cdr l do << l2 := cdr l2; l := cddr l >>;
l := l2;
l2 := cdr l2;
rplacd(l, nil);
% The two sub-lists are then sorted.
l1 := stable!-sortip(l1, pred);
l2 := stable!-sortip(l2, pred);
% Now I merge the sorted fragments, giving priority to item from the
% earlier part of the original list.
l := w := list nil;
while l1 and l2 do <<
if apply2(pred, car l2, car l1) then <<
rplacd(w, l2); w := l2; l2 := cdr l2 >>
else << rplacd(w, l1); w := l1; l1 := cdr l1 >> >>;
if l1 then l2 := l1;
rplacd(w, l2);
return cdr l
end;
%
% Code to print potentially re-entrant lists
%
fluid '(!*prinl!-visited!-nodes!* !*prinl!-index!*
!*prinl!-fn!* !*loop!-print!* !*print!-array!*
!*print!-length!* !*print!-level!*);
!*print!-length!* := !*print!-level!* := nil;
!*prinl!-visited!-nodes!* := mkhash(10, 0, 1.5)$
symbolic procedure s!:prinl0(x,!*prinl!-fn!*);
% print x even if it has loops in it
begin
scalar !*prinl!-index!*;
!*prinl!-index!*:=0;
% Clear the hash table AFTER use, so that the junk that goes into it does
% not gobble memory between calls to prinl. This relies on unwind!-protect
% to make sure that it is indeed always cleared. Errors (eg ^C) during the
% clean-up operation could lead to curious displays in the next use of
% prinl. Also of course bugs in the implementation of unwind!-protect...
% clrhash !*prinl!-visited!-nodes!*;
unwind!-protect(<< s!:prinl1(x, 0); s!:prinl2(x, 0) >>,
clrhash !*prinl!-visited!-nodes!*);
return x
end;
symbolic procedure s!:prinl1(x, depth);
% Find all the nodes in x and record them in the hash table.
% The first time a node is met it is inserted with associated value 0.
% If a node is met a second time then it is assigned an unique positive
% integer code that will later be used in its label.
begin
scalar w, length;
if fixp !*print!-level!* and depth > !*print!-level!* then return nil;
length := 0;
top:
if atom x and not simple!-vector!-p x and not gensymp x then return nil
else if w := gethash(x,!*prinl!-visited!-nodes!*) then <<
if w = 0 then <<
!*prinl!-index!* := !*prinl!-index!* + 1;
puthash(x,!*prinl!-visited!-nodes!*, !*prinl!-index!*) >>;
return nil >>
else <<
puthash(x, !*prinl!-visited!-nodes!*, 0);
if simple!-vector!-p x then <<
if !*print!-array!* then <<
length := upbv x;
if fixp !*print!-length!* and !*print!-length!* < length then
length := !*print!-length!*;
for i:=0:length do s!:prinl1(getv(x,i), depth+1) >> >>
else if not atom x then <<
s!:prinl1(car x, depth+1);
if fixp !*print!-length!* and
(length := length+1) > !*print!-length!* then return nil;
x := cdr x;
go to top >> >>
end;
symbolic procedure s!:prinl2(x, depth);
% Scan a structure that was previously processed by s!:prinl1. Thus all
% nodes in x are already in the hash table. Those with value zero
% are only present once in x, while those with strictly positive values
% occur at least twice. After printing a label for such value this resets the
% value negative so that the printing can tell when the visit is for
% a second rather than first time. The output format is intended to
% bear some resemblance to the expectations of Common Lisp.
if fixp !*print!-level!* and depth > !*print!-level!* then
princ "#"
else if atom x and not simple!-vector!-p x and not gensymp x then <<
!#if common!-lisp!-mode
if complex!-arrayp x and not !*print!-array!* then princ "[Array]"
else if structp x and not !*print!-array!* then princ "[Struct]"
else
!#endif
funcall(!*prinl!-fn!*, x) >>
else begin scalar w, length;
w := gethash(x,!*prinl!-visited!-nodes!*);
% w has better be a number here, following s!:prinl1
if not zerop w then <<
if w < 0 then <<
princ "#";
princ (-w);
princ "#";
return nil >>
else <<
puthash(x,!*prinl!-visited!-nodes!*, -w);
princ "#";
princ w;
princ "=" >> >>;
if simple!-vector!-p x then <<
princ "%(";
if !*print!-array!* then <<
length := upbv x;
if fixp !*print!-length!* and !*print!-length!* < length then
length := !*print!-length!*;
for i:=0:length do << s!:prinl2(getv(x,i), depth+1);
if not i=upbv x then princ " " >> >>
else princ "...";
princ ")";
return nil >>
else if atom x then return funcall(!*prinl!-fn!*, x);
princ "(";
length := 0;
loop:
s!:prinl2(car x, depth+1);
x:=cdr x;
if atom x then <<
if simple!-vector!-p x then <<
princ " . %(";
if !*print!-array!* then <<
length := upbv x;
if fixp !*print!-length!* and !*print!-length!* < length then
length := !*print!-length!*;
for i:=0:length do <<s!:prinl2(getv(x,i), depth+1);
if not i=upbv x then princ " ">> >>
else princ "...";
princ ")" >>
else if x then <<
princ " . ";
funcall(!*prinl!-fn!*, x) >>;
return princ ")" >>;
if fixp !*print!-length!* and
(length := length + 1) > !*print!-length!* then
return princ " ...)";
w := gethash(x, !*prinl!-visited!-nodes!*);
if not (w = 0) then if w < 0 then <<
princ " . #";
princ (-w);
return princ "#)" >>
else <<
princ " . ";
s!:prinl2(x, depth+1); % This will set the label
return princ ")" >>
else princ " ";
go to loop
end;
symbolic procedure printl x;
<< prinl x;
terpri();
x >>;
symbolic procedure printcl x;
<< princl x;
terpri();
x >>;
symbolic procedure princl x;
s!:prinl0(x,function princ);
symbolic procedure prinl x;
s!:prinl0(x,function prin);
%
% A small subset of the facilities of the unreasonably baroque Common
% Lisp FORMAT function may be useful.
%
!#if (not common!-lisp!-mode)
% If I am in COMMON Lisp mode then a more complete version of this
% will be installed from elsewhere.
symbolic procedure s!:format(dest, fmt, args);
begin
scalar len, c, a, res, o;
if not null dest then <<
if dest = 't then o := wrs nil
else o := wrs dest >>;
len := upbv fmt;
for i := 0:len do <<
c := schar(fmt, i);
if c = '!~ then <<
i := i + 1;
c := char!-downcase schar(fmt, i);
if c = '!% then
if null dest then res := !$eol!$ . res
else terpri()
else if c = '!~ then
if null dest then res := '!~ . res
else princ '!~
else <<
if null args then a := nil
else <<
a := car args;
args := cdr args >>;
if c = '!a then
if null dest then for each k in explode2 a do res := k . res
else princ a
else if c = '!s then
if null dest then for each k in explode a do res := k . res
else prin a
else
if null dest then for each k in explode a do res := k . res
else prin list('!?!?!?, c, a) >> >>
else <<
if null dest then res := c . res
else princ c >> >>;
if null dest then return list!-to!-string reversip res
else << wrs o; return nil >>
end;
symbolic macro procedure format(u, !&optional, env);
list('s!:format, cadr u, caddr u, 'list . cdddr u);
!#endif
fluid '(bn
bufferi
buffero
indblanks
indentlevel
initialblanks
lmar
pendingrpars
rmar
rparcount
stack);
global '(!*quotes !*pretty!-symmetric thin!*);
!*pretty!-symmetric := t;
!*quotes := t;
thin!* := 5;
% This package prints list structures in an indented format that
% is intended to make them legible. There are a number of special
% cases recognized, but in general the intent of the algorithm
% is that given a list (R1 R2 R3 ...), SUPERPRINT checks if
% the list will fit directly on the current line and if so
% prints it as:
% (R1 R2 R3 ...)
% if not it prints it as:
% (R1
% R2
% R3
% ... )
% where each sublist is similarly treated.
%
% Functions:
% SUPERPRINTM(X,M) print expression X with left margin M
% PRETTYPRINT(X) = <<superprintm(x,posn()); terpri(); terpri()>>;
%
% Flag:
% !*SYMMETRIC If TRUE, print with escape characters,
% otherwise do not (as PRIN1/PRIN2
% distinction). defaults to TRUE;
% !*QUOTES If TRUE, (QUOTE x) gets displayed as 'x.
% default is TRUE;
%
% Variable:
% THIN!* if THIN!* expressions can be fitted onto
% a single line they will be printed that way.
% this is a parameter used to control the
% formatting of long thin lists. default
% value is 5;
symbolic procedure prettyprint x;
<< superprinm(x,posn()); % What REDUCE seems to want. Looks a bit odd to me!
terpri();
nil>>;
symbolic procedure superprintm(x,lmar);
<< superprinm(x,lmar); terpri(); x >>;
% From here down the functions are not intended for direct use.
symbolic procedure superprinm(x,lmar);
begin
scalar stack,bufferi,buffero,bn,initialblanks,rmar,
pendingrpars,indentlevel,indblanks,rparcount,w;
bufferi:=buffero:=list nil; %fifo buffer.
initialblanks:=0;
rparcount:=0;
indblanks:=0;
rmar:=linelength(nil); % right margin.
linelength 500; % To try to be extra cautious
if rmar<25 then error(0,list(rmar,
"Linelength too short for superprinting"));
bn:=0; %characters in buffer.
indentlevel:=0; %no indentation needed, yet.
if lmar+20>=rmar then lmar:=rmar - 21; %no room for specified margin
w:=posn();
if w>lmar then << terpri(); w:=0 >>;
if w<lmar then initialblanks:=lmar - w;
s!:prindent(x,lmar+3); %main recursive print routine.
% traverse routine finished - now tidy up buffers.
s!:overflow 'none; %flush out the buffer.
linelength rmar;
return x
end;
% Access functions for a stack entry.
symbolic macro procedure s!:top(u,!&optional,v);
'(car stack);
symbolic macro procedure s!:depth(u,!&optional,v);
list('car, cadr u);
symbolic macro procedure s!:indenting(u,!&optional,v);
list('cadr, cadr u);
symbolic macro procedure s!:blankcount(u,!&optional,v);
list('caddr, cadr u);
symbolic macro procedure s!:blanklist(u,!&optional,v);
list('cdddr, cadr u);
symbolic macro procedure s!:setindenting(u,!&optional,v);
list('rplaca, list('cdr, cadr u), caddr u);
symbolic macro procedure s!:setblankcount(u,!&optional,v);
list('rplaca, list('cddr, cadr u), caddr u);
symbolic macro procedure s!:setblanklist(u,!&optional,v);
list('rplacd, list('cddr, cadr u), caddr u);
symbolic macro procedure s!:newframe(u,!&optional,v);
list('list, cadr u, nil, 0);
symbolic macro procedure s!:blankp(u,!&optional,v);
list('numberp, list('car, cadr u));
symbolic procedure s!:prindent(x,n);
% Print list x with indentation level n.
if atom x then if simple!-vector!-p x then s!:prvector(x,n)
else for each c in
(if !*pretty!-symmetric
then if stringp x then s!:explodes x else explode x
else explode2 x) do s!:putch c
else if s!:quotep x then <<
s!:putch '!';
s!:prindent(cadr x,n+1) >>
else begin
scalar cx;
if 4*n>3*rmar then << %list is too deep for sanity.
s!:overflow 'all;
n:=truncate(n, 8);
if initialblanks>n then <<
lmar:=lmar - initialblanks+n;
initialblanks:=n >> >>;
stack := (s!:newframe n) . stack;
s!:putch ('lpar . s!:top());
cx:=car x;
s!:prindent(cx,n+1);
if idp cx and not atom cdr x then
cx:=get(cx,'s!:ppformat) else cx:=nil;
if cx=2 and atom cddr x then cx:=nil;
if cx='prog then <<
s!:putch '! ;
s!:prindent(car (x:=cdr x),n+3) >>;
% CX now controls the formatting of what follows:
% nil default action
% <number> first few blanks are non-indenting
% prog display atoms as labels.
x:=cdr x;
scan: if atom x then go to outt;
s!:finishpending(); %about to print a blank.
if cx='prog then <<
s!:putblank();
s!:overflow bufferi; %force format for prog.
if atom car x then << % a label.
lmar:=initialblanks:=max(lmar - 6,0);
s!:prindent(car x,n - 3); % print the label.
x:=cdr x;
if not atom x and atom car x then go to scan;
if lmar+bn>n then s!:putblank()
else for i:=lmar+bn:n - 1 do s!:putch '! ;
if atom x then go to outt>> >>
else if numberp cx then <<
cx:=cx - 1;
if cx=0 then cx:=nil;
s!:putch '! >>
else s!:putblank();
s!:prindent(car x,n+3);
x:=cdr x;
go to scan;
outt: if not null x then <<
s!:finishpending();
s!:putblank();
s!:putch '!.;
s!:putch '! ;
s!:prindent(x,n+5) >>;
s!:putch ('rpar . (n - 3));
if s!:indenting s!:top()='indent and not null s!:blanklist s!:top() then
s!:overflow car s!:blanklist s!:top()
else s!:endlist s!:top();
stack:=cdr stack
end;
symbolic procedure s!:explodes x;
%dummy function just in case another format is needed.
explode x;
symbolic procedure s!:prvector(x,n);
begin
scalar bound;
bound:=upbv x; % length of the vector.
stack:=(s!:newframe n) . stack;
s!:putch ('lsquare . s!:top());
s!:prindent(getv(x,0),n+3);
for i:=1:bound do <<
s!:putch '!,;
s!:putblank();
s!:prindent(getv(x,i),n+3) >>;
s!:putch('rsquare . (n - 3));
s!:endlist s!:top();
stack:=cdr stack
end;
symbolic procedure s!:putblank();
begin
s!:putch s!:top(); %represents a blank character.
s!:setblankcount(s!:top(),s!:blankcount s!:top()+1);
s!:setblanklist(s!:top(),bufferi . s!:blanklist s!:top());
%remember where I was.
indblanks:=indblanks+1
end;
symbolic procedure s!:endlist l;
%Fix up the blanks in a complete list so that they
%will not be turned into indentations.
pendingrpars:=l . pendingrpars;
% When I have printed a ')' I want to mark all of the blanks
% within the parentheses as being unindented, ordinary blank
% characters. It is however possible that I may get a buffer
% overflow while printing a string of )))))))))), and so this
% marking should be delayed until I get round to printing
% a further blank (which will be a candidate for a place to
% split lines). This delay is dealt with by the list
% pendingrpars which holds a list of levels that, when
% convenient, can be tidied up and closed out.
symbolic procedure s!:finishpending();
<< for each stackframe in pendingrpars do <<
if s!:indenting stackframe neq 'indent then
for each b in s!:blanklist stackframe do
<< rplaca(b,'! ); indblanks:=indblanks - 1>>;
% s!:blanklist of stackframe must be non-nil so that overflow
% will not treat the '(' specially.
s!:setblanklist(stackframe,t) >>;
pendingrpars:=nil >>;
symbolic procedure s!:quotep x;
!*quotes and
not atom x and
car x='quote and
not atom cdr x and
null cddr x;
% property s!:ppformat drives the prettyprinter -
% prog : special for prog only
% 1 : (fn a1
% a2
% ... )
% 2 : (fn a1 a2
% a3
% ... ) ;
put('prog,'s!:ppformat,'prog);
put('lambda,'s!:ppformat,1);
put('lambdaq,'s!:ppformat,1);
put('setq,'s!:ppformat,1);
put('set,'s!:ppformat,1);
put('while,'s!:ppformat,1);
put('t,'s!:ppformat,1);
put('de,'s!:ppformat,2);
put('df,'s!:ppformat,2);
put('dm,'s!:ppformat,2);
put('defun,'s!:ppformat,2);
put('defmacro,'s!:ppformat,2);
put('foreach,'s!:ppformat,4); % (foreach x in y do ...) etc.
% Now for the routines that buffer things on a character by character
% basis, and deal with buffer overflow.
symbolic procedure s!:putch c;
begin
if atom c then rparcount:=0
else if s!:blankp c then << rparcount:=0; go to nocheck >>
else if car c='rpar then <<
rparcount:=rparcount+1;
% format for a long string of rpars is:
% )))) ))) ))) ))) ))) ;
if rparcount>4 then << s!:putch '! ; rparcount:=2 >> >>
else rparcount:=0;
while lmar+bn>=rmar do s!:overflow 'more;
nocheck:
bufferi:=cdr rplacd(bufferi,list c);
bn:=bn+1
end;
symbolic procedure s!:overflow flg;
begin
scalar c,blankstoskip;
% The current buffer holds so much information that it will
% not all fit on a line. try to do something about it.
% flg is one of:
% 'none do not force more indentation
% 'more force one level more indentation
% <a pointer into the buffer>
% prints up to and including that character, which
% should be a blank.
if indblanks=0 and initialblanks>3 and flg='more then <<
initialblanks:=initialblanks - 3;
lmar:=lmar - 3;
return 'moved!-left >>;
fblank:
if bn=0 then <<
% No blank found - can do no more for now.
% If flg='more I am in trouble and so have to print
% a continuation mark. in the other cases I can just exit.
if not(flg = 'more) then return 'empty;
if atom car buffero then
% continuation mark not needed if last char printed was
% special (e.g. lpar or rpar).
prin2 "%+"; %continuation marker.
terpri();
lmar:=0;
return 'continued >>
else <<
spaces initialblanks;
initialblanks:=0 >>;
buffero:=cdr buffero;
bn:=bn - 1;
lmar:=lmar+1;
c:=car buffero;
if atom c then <<
prin2 c;
go to fblank >>
else if s!:blankp c then if not atom blankstoskip then <<
prin2 '! ;
indblanks:=indblanks - 1;
% blankstoskip = (stack-frame . skip-count).
if c eq car blankstoskip then <<
rplacd(blankstoskip,cdr blankstoskip - 1);
if cdr blankstoskip=0 then blankstoskip:=t >>;
go to fblank >>
else go to blankfound
else if car c='lpar or car c='lsquare then <<
prin2 get(car c,'s!:ppchar);
if flg='none then go to fblank;
% now I want to flag this level for indentation.
c:=cdr c; %the stack frame.
if not null s!:blanklist c then go to fblank;
if s!:depth c>indentlevel then << %new indentation.
% this level has not emitted any blanks yet.
indentlevel:=s!:depth c;
s!:setindenting(c,'indent) >>;
go to fblank >>
else if car c='rpar or car c='rsquare then <<
if cdr c<indentlevel then indentlevel:=cdr c;
prin2 get(car c,'s!:ppchar);
go to fblank >>
else error(0,list(c,"UNKNOWN TAG IN OVERFLOW"));
blankfound:
if eqcar(s!:blanklist c,buffero) then
s!:setblanklist(c,nil);
% at least one entry on blanklist ought to be valid, so if I
% print the last blank I must kill blanklist totally.
indblanks:=indblanks - 1;
% check if next level represents new indentation.
if s!:depth c>indentlevel then <<
if flg='none then << %just print an ordinary blank.
prin2 '! ;
go to fblank >>;
% here I increase the indentation level by one.
if blankstoskip then blankstoskip:=nil
else <<
indentlevel:=s!:depth c;
s!:setindenting(c,'indent) >> >>;
%otherwise I was indenting at that level anyway.
if s!:blankcount c>(thin!* - 1) then << %long thin list fix-up here.
blankstoskip:=c . ((s!:blankcount c) - 2);
s!:setindenting(c,'thin);
s!:setblankcount(c,1);
indentlevel:=(s!:depth c) - 1;
prin2 '! ;
go to fblank >>;
s!:setblankcount(c,(s!:blankcount c) - 1);
terpri();
lmar:=initialblanks:=s!:depth c;
if buffero eq flg then return 'to!-flg;
if blankstoskip or not (flg='more) then go to fblank;
% keep going unless call was of type 'more'.
return 'more; %try some more.
end;
put('lpar,'s!:ppchar,'!();
put('lsquare,'s!:ppchar,'![);
put('rpar,'s!:ppchar,'!));
put('rsquare,'s!:ppchar,'!]);
% Now some (experimental) support for network access
symbolic procedure fetch!-url(url, !&optional, dest);
begin
scalar a, b, c, d, e, w;
a := open!-url url;
if null a then return nil;
if dest then <<
d := open(dest, 'output);
if null d then <<
close a;
return error(0, "unable to open destination file") >>;
d := wrs d >>;
b := rds a;
w := linelength 500;
while not ((c := readch()) = !$eof!$) do princ c;
linelength e;
rds b;
close a;
if dest then close wrs d
end;
end;
% end of extras.red
|