1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
NextTest("Test arithmetic");
NextTest("Basic calculations");
Verify(3 + 2 , 5);
Verify(3-7, -4);
Verify(1 = 2 , 0 = -1);
Verify(5 ^ 2 , 25);
Verify(IsZero(0.000),True);
Verify(2/5,Hold(2/5));
Verify(IsZero(N(2/5)-0.4));
Verify(IsRational(2),True);
Verify(IsRational(2/5),True);
Verify(IsRational(-2/5),True);
Verify(IsRational(2.0/5),False);
Verify(IsRational(Pi/2),False);
Verify(Numerator(2/5),2);
Verify(Denominator(2/5),5);
VerifyArithmetic(10,5,8);
VerifyArithmetic(10000000000,5,8);
VerifyArithmetic(10,50,80);
VerifyArithmetic(10000,50,88);
Verify(4!,24);
Verify(BinomialCoefficient(2,1),2);
NextTest("Testing math stuff");
Verify(1*a,a);
Verify(a*1,a);
Verify(0*a,0);
Verify(a*0,0);
Verify(aa-aa,0);
Verify(2+3,5);
Verify(2*3,6);
Verify(2+3*4,14);
Verify(3*4+2,14);
Verify(3*(4+2),18);
Verify((4+2)*3,18);
Verify(15/5,3);
Verify(-2+3,1);
Verify(-2.01+3.01,1.);
Verify(0+a,a);
Verify(a+0,a);
Verify(aa-aa,0);
Testing("IntegerOperations");
Verify(1<<10,1024);
Verify(1024>>10,1);
Verify(Modulo(10,3),1);
Verify(Quotient(10,3),3);
Verify(GcdN(55,10),5);
Verify(Modulo(2,Infinity),2);
Verify(Modulo({0,1,2,3,4,5,6},2),{0,1,0,1,0,1,0});
Verify(Modulo({0,1,2,3,4,5,6},{2,2,2,2,2,2,2}),{0,1,0,1,0,1,0});
Testing("PowerN");
// was broken in the gmp version
Verify(PowerN(19, 0), 1);
Verify(PowerN(1, -1), 1);
Verify(PowerN(1, -2), 1);
Verify(IsZero(PowerN(10, -2)- 0.01));
Verify(PowerN(2, 3), 8);
NumericEqual(PowerN(2, -3), 0.125,BuiltinPrecisionGet());
Testing("Rounding");
Verify(Floor(1.2),1);
Verify(Floor(-1.2),-2);
Verify(Ceil(1.2),2);
Verify(Ceil(-1.2),-1);
Verify(Round(1.49),1);
Verify(Round(1.51),2);
Verify(Round(-1.49),-1);
Verify(Round(-1.51),-2);
Testing("Bases");
Verify(ToBase(16,255),"ff");
Verify(FromBase(2,"100"),4);
// conversion between decimal and binary digits
Verify(BitsToDigits(2000, 10), 602);
Verify(DigitsToBits(602, 10), 2000);
LocalSymbols(f,ft)
[
f(x,y):=(Quotient(x,y)*y+Rem(x,y)-x);
ft(x,y):=
[
Verify(f(x,y),0);
Verify(f(-x,y),0);
Verify(f(x,-y),0);
Verify(f(-x,-y),0);
];
ft(10,4);
ft(2.5,1.2);
];
Testing("Factorization");
Verify(
Eval(Factors(447738843))
, {{3,1},{17,1},{2729,1},{3217,1}}
);
//Exponential notation is now supported in the native arithmetic library too...
Verify(2e3+1,2001.);
Verify(2.0e3+1,2001.);
Verify(2.00e3+1,2001.);
Verify(2.000e3+1,2001.);
Verify(2.0000e3+1,2001.);
Verify(1+2e3,2001.);
Verify(1+2.0e3,2001.);
Verify(1+2.00e3,2001.);
Verify(1+2.000e3,2001.);
Verify(1+2.0000e3,2001.);
NumericEqual(N(Sqrt(1e4))-100,0,BuiltinPrecisionGet());
NumericEqual(N(Sqrt(1.0e4))-100,0,BuiltinPrecisionGet());
Verify(2.0000e3-1,1999.);
[
Local(p);
p:=BuiltinPrecisionGet();
BuiltinPrecisionSet(12);//TODO this will fail if you drop precision to below 12, for some reason.
NumericEqual(RoundToPrecision(10e3*1.2e-3,BuiltinPrecisionGet()),12.,BuiltinPrecisionGet());
BuiltinPrecisionSet(p);
];
Verify((10e3*1.2e-4)-1.2,0);
Verify(IsZero(N(Sin(0.1e1)-Sin(1),30)),True);
[
/* In Dutch they have a saying "dit verdient geen schoonheidsprijs" ;-) We need to sort this out.
* But a passable result, for now.
*/
Local(diff);
diff := N(Sin(10e-1)-Sin(1),30);
//BuiltinPrecisionSet(20);
//Echo("diff = ",diff);
//Echo("diff > -0.00001 = ",diff > -0.00001);
//Echo("diff < 0.00001 = ",diff < 0.00001);
Verify(diff > -0.00001 And diff < 0.00001,True);
];
/* Jonathan reported a problem with Simplify(-Sqrt(8)/2), which returned some
* complex expression containing greatest common divisors of square roots.
* This was fixed by adding some rules dealing with taking the gcd of two objects
* where at least one is a square root.
*/
Verify(-Sqrt(8)/2,-Sqrt(2));
Verify(Sqrt(8)/2,Sqrt(2));
Verify(Gcd(Sqrt(2),Sqrt(2)),Sqrt(2));
Verify(Gcd(-Sqrt(2),-Sqrt(2)),Sqrt(2));
Verify(Gcd(Sqrt(2),-Sqrt(2)),Sqrt(2));
Verify(Gcd(-Sqrt(2),Sqrt(2)),Sqrt(2));
|