1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/* Numerical testers - all confirmed with Matlab 6r12.0 */
f():=[]; //[//Echo(CurrentLine()+1);];
BuiltinPrecisionSet(10); //Echo("BIP set to ",10);
NumericEqual(N(Sqrt(2),6), 1.41421,6);f();
NumericEqual(N(N(1+Pi,20)-Pi,20),1,20);f(); // "N" should have "HoldArgument" in some way, so inner "N" is evaluated with outer precision 20
/* Got the first digits of Pi from the following page:
http://www.cecm.sfu.ca/projects/ISC/dataB/isc/C/pi10000.txt
Just checking that Yacas agrees.
First, however, we need to set BuiltinPrecision way higher than 10 !!
*/
BuiltinPrecisionSet(90);//Echo("BIP set to ",90);
NumericEqual(N(Pi,70),3.141592653589793238462643383279502884197169399375105820974944592307816,70);f();
BuiltinPrecisionSet(10);//Echo("BIP set to ",10);
NumericEqual( N(Sec(2),10), -2.402997962, 9);f();
NumericEqual( N(Csc(2),9), 1.09975017,9);f();
NumericEqual( N(Cot(2),9), -0.457657554, 9);f();
NumericEqual( N(Sinh(2),10), 3.626860408,10); f();// matter of discussion whether rounding should be to nearest
NumericEqual( N(ArcSin(2), 9), Complex(1.570796327,1.316957897),9);f();
NumericEqual( N(ArcCos(2),9), Complex(0,-1.316957897),9);f();
NumericEqual( N(ArcTan(2*I), 12), N(Complex(1.5707963267950,0.54930614433405),12),11); f();// calculating to precision+1 because RoundToPrecision rounds... cluttering the last digit with round-off
NumericEqual( N(ArcSinh(2), 10), 1.443635475,9);f();
NumericEqual( N(ArcCosh(2), 10), 1.316957897,9);f();
NumericEqual( N(ArcCosh(-2), 8), Complex(-1.3169579,3.14159265),8);f();
NumericEqual( N(ArcTanh(2), 9), Complex(0.549306144,1.570796327),9);f();
/* Numerical tests - all confirmed with Maple */
BuiltinPrecisionSet(55);//Echo("BIP set to ",55);
// NOTE (hso,100311) BuiltinPrecisionSet MUST specify a value higher
// than any of the precisions to be used in tests below.
// Otherwise, false errors are reported. I have changed
// the value from 50 to 55, to satisfy this requirement.
NumericEqual(
RoundToPrecision(N(Pi), 50)
, 3.14159265358979323846264338327950288419716939937511
, 50);f();
NumericEqual(
RoundToPrecision(N(Sin(2.0)), 49)
, 0.9092974268256816953960198659117448427022549714479
,48);f();
NumericEqual(
RoundToPrecision(N(Sin(2.0)), 50)
, 0.90929742682568169539601986591174484270225497144789
,49);f();
NumericEqual(
RoundToPrecision(N(Sin(2.0)), 51)
, 0.90929742682568169539601986591174484270225497144789
,50);f();
NumericEqual(
RoundToPrecision(N(Cos(20.0)), 49)
, 0.4080820618133919860622678609276449570992995103163
, 48); f();
NumericEqual(
RoundToPrecision(N(Tan(20.0)), 49)
, 2.2371609442247422652871732477303491783724839749188
, 48); f(); // to here. hso
NumericEqual(
RoundToPrecision(N(Exp(10.32),54), 54)
, 30333.2575962246035600343483350109621778376486335450125
,48); f(); // This one rounds off the wrong direction (125 rounded to 12 iso 13). But alas, change was needed because new interpretation means the required precision was actually higher (not number of decimals after point, but total number of digits were meant).
NumericEqual(
RoundToPrecision(N(Ln(10.32/4.07)), 50)
, 0.93044076059891305468974486564632598071134270468002
, 50); f(); // fixed 20101229
NumericEqual(
RoundToPrecision(N(1.3^10.32), 48)
, 14.99323664825717956473936947123246987802978985306
, 48); f();
NumericEqual(
RoundToPrecision(N(Sqrt(5.3),51), 51)
, 2.302172886644267644194841586420201850185830282633675
,51); f(); // increased to 51 digits so round-off is obviously downwards (previous rounding was defendably wrong)
// this failed in gmp due to broken SqrtN()
NumericEqual(
RoundToPrecision(N(Sqrt(25.3)), 50)
, 5.0299105359837166789719353820984438468186649281130
,50);f();
// this failed due to broken RoundToPrecision()
NumericEqual(
RoundToPrecision(PowerN(13, -23), 50)
, 0.23949855470974885180294666343025235387321690490245e-25
, 50);f();
NumericEqual(
RoundToPrecision([Local(x);x:=Newton(x*Exp(x)-4,x,1,10^(-49)); N(x*Exp(x));], 49)
, 4
,49); f();
Verify(Newton(x^2+1,x,1,0.1,-3,3), Fail); f();
NumericEqual(Newton(x^2-1,x,1,0.1,-3,3), 1,BuiltinPrecisionGet()); f();
NumericEqual(
RoundToPrecision(N(ArcSin(0.32)), 49)
, 0.3257294872946301593103199105324500784354180998122808003
,49); f();
NumericEqual(
RoundToPrecision(N(Sin(N(ArcSin(0.1234567)))), 49)
, 0.1234567
,49); f();
/* ArcSin(x) for x close to 1 */
NumericEqual(
RoundToPrecision(N( (1-Sin(N(ArcSin(1-10^(-25)))))*10^25), 25)
, 1
, 25); f();
NumericEqual(
N(ArcSin(N(Sin(1.234567),50)),50)
, N(1.234567,50)
, 49); f(); // calculating to precision+1 because RoundToPrecision rounds... cluttering the last digit with round-off
NumericEqual(
RoundToPrecision(N(ArcCos(0.32)), 49)
, 1.2450668395002664599210017811073013636631665998753
, 49); f();
NumericEqual(
RoundToPrecision(N(ArcTan(0.32)), 49)
, 0.3097029445424561999173808103924156700884366304804
, 49); f();
NumericEqual(
RoundToPrecision(N(Cos(N(ArcCos(0.1234567)))), 49)
, 0.1234567
, 49);f();
NumericEqual(
RoundToPrecision(N(ArcCos(N(Cos(1.234567)))), 49)
, 1.234567
, 49);f();
NumericEqual(
RoundToPrecision(N(Tan(N(ArcTan(20)))), 46) // large roundoff error on Tan() calculation due to subtraction from Pi/2 -- unavoidable loss of precision
, 20
, 46);f();
//KnownFailure(
NumericEqual(
RoundToPrecision(N(Tan(N(ArcTan(500000)))), 38)
, 500000
//)
, 38);f();
BuiltinPrecisionSet(60); //Echo("BIP set to ",60); // obviously, 50 is not enough for the following
//KnownFailure(
NumericEqual(
RoundToPrecision(N((Pi/2-ArcTan(N(Tan(N(Pi/2)-10^(-24)))))*10^24 ), 25)
, 1
//)
, 25);f();
/// special functions
BuiltinPrecisionSet(50); //Echo("BIP set to ",50); // needs a pretty high value for Gamma
TestMathPiper(
Gamma(10.5)
, (654729075*Sqrt(Pi))/1024
);f();
TestMathPiper(
Gamma(9/2)
, (105*Sqrt(Pi))/16
);f();
TestMathPiper(
Gamma(-10.5)
, (-2048*Sqrt(Pi))/13749310575
);f();
TestMathPiper(
Gamma(-7/2)
, (16*Sqrt(Pi))/105
);f();
NumericEqual(RoundToPlace(N( Internal'GammaNum(10.5) ), 13), 1133278.3889487855673, 13);f();
NumericEqual(RoundToPlace(N( Internal'GammaNum(-11.5) ), 20), 0.00000002295758104824, 20);f();
NumericEqual(RoundToPlace(N( Internal'GammaNum(-12.5) ), 20), -0.00000000183660648386, 20);f();
// Check for one example that N(Gamma(x)) returns the same as Internal'GammaNum
NumericEqual(RoundToPlace(N( Gamma(10.5) ), 13), 1133278.3889487855673, 13);f();
NumericEqual( // lost 2 digits b/c of imprecise arithmetic
RoundToPlace(N( Zeta(-11.5) ), 18)
, 0.020396978715942792
,18);f();
TestMathPiper(
Zeta(40)
, (261082718496449122051*Pi^40)/20080431172289638826798401128390556640625
);f();
TestMathPiper(
Zeta(-11)
, 691/32760
);f();
TestMathPiper(
Zeta(-12)
, 0
);f();
NumericEqual(
RoundToPrecision(N(Zeta(40)), 19)
, 1.0000000000009094948
,19);f();
NumericEqual(
RoundToPrecision(N(Zeta(1.5)), 19)
, 2.6123753486854883433
,19);f();
// test correctness of Zeta(3)
NumericEqual(
RoundToPrecision(Internal'ZetaNum(3)-N(Zeta(3)), 20)
, 0
,20);f();
TestMathPiper(
Bernoulli(40)
, -261082718496449122051/13530
);f();
Verify(
ContFracList(355/113)
, {3,7,16}
);f();
Verify(
ContFracList(-24, 4)
, {-24}
);f();
Verify(
ContFracList(-355/113)
, {-4,1,6,16}
);f();
//BuiltinPrecisionSet(7);//Echo("BIP set to ",7);
Verify(
NearRational(N(Pi),3)
, 201/64
);f();
/*
For the NearRational test, perhaps better would be a real test that
checks that the result is correct up to the required number of digits
accuracy.
*/
BuiltinPrecisionSet(10);//Echo("BIP set to ",10);
Verify(
NearRational(N(Pi))
, 355/113,
);f();
// Lambert's W function
BuiltinPrecisionSet(10);
NumericEqual(
N(LambertW(-0.24),BuiltinPrecisionGet())
, -0.3357611648
, BuiltinPrecisionGet());f();
NumericEqual(
N(LambertW(10),BuiltinPrecisionGet())
, 1.7455280027
, BuiltinPrecisionGet());f();
// Bessel Functions
// These results are from GNU bc, matlab seems to suck.
BuiltinPrecisionSet(50);//Echo("BIP set to ",50);
NumericEqual( N(BesselJ(0,.5)), RoundToPrecision(.93846980724081290422840467359971262556892679709682,50),50 );f();
NumericEqual( N(BesselJ(0,.9)), RoundToPrecision(.80752379812254477730240904228745534863542363027564,50),50 );f();
NumericEqual( N(BesselJ(0,.99999)), RoundToPrecision(.76520208704756659155313775543958045290339472808482,50),50 );f();
NumericEqual( N(BesselJ(10,.75)), RoundToPrecision(.000000000014962171311759681469871248362168283485781647202136,50),50 );f();
NumericEqual( N(BesselJ(5,1)), RoundToPrecision(.00024975773021123443137506554098804519815836777698007,50),50 );f();
NumericEqual( N(BesselJ(4,2)), RoundToPrecision(.033995719807568434145759211288531044714832968346313,50),50 );f();
NumericEqual( N(BesselJ(10,3)), RoundToPrecision( .000012928351645715883777534530802580170743420832844164,50),50 );f();
NumericEqual( N(BesselJ(11,11)), RoundToPrecision( .20101400990926940339478738551009382430831534125484,50),50 );f();
NumericEqual( N(BesselJ(-11,11)), RoundToPrecision( -.20101400990926940339478738551009382430831534125484,50),50 );f();
NumericEqual( RoundToPrecision(N(BesselJ(1,10)),50), RoundToPrecision( .043472746168861436669748768025859288306272867118594, 50),50 );f();
NumericEqual( N(BesselJ(10,10)), RoundToPrecision( .20748610663335885769727872351875342803274461128682, 50 ),50 );f();
NumericEqual( RoundToPrecision(N(BesselJ(1,3.6)),50), RoundToPrecision( .095465547177876403845706744226060986019432754908851, 50 ),50) ;f();
BuiltinPrecisionSet(20);//Echo("BIP set to ",20);
Verify( RoundToPrecision(N(Erf(Sqrt(0.8)),20),19),
RoundToPrecision(.79409678926793169113034892342, 19)
);f();
Verify( RoundToPrecision(N(Erf(50*I+20)/10^910,22),19),
RoundToPrecision(1.09317119002909585408+I*0.00475463306931818955275, 19)
);f();
// testing GammaConstNum against Maple
Testing("Gamma constant");
BuiltinPrecisionSet(40);//Echo("BIP set to ",40);
NumericEqual(Internal'gamma()+0, 0.5772156649015328606065120900824024310422,BuiltinPrecisionGet());f();
BuiltinPrecisionSet(20);//Echo("BIP set to ",20);
Verify(gamma,ToAtom("gamma"));f();
NumericEqual(RoundToPrecision(Internal'gamma()+0,19), 0.5772156649015328606,19);f();
NumericEqual(RoundToPrecision(N(1/2+gamma+Pi), 19), 4.2188083184913260991,19);f();
// From GSL 1.0
//NumericEqual( N(PolyLog(2,-0.001),20), -0.00099975011104865108, 20 );
// PolyLog I didn't write PolyLog, but it seems to not always calculate correctly up to the last digit.
Verify( RoundToPrecision(N(PolyLog(2,-0.001)+0.00099975011104865108,20),20),0);f();
// Round-off errors
N([
Local(a,b);
a:= 77617;
b:= 33096;
// this expression gives a wrong answer on any hardware floating-point platform
NumericEqual( 333.75*b^6 + a^2*(11*a^2*b^2-b^6-121*b^4-2)+5.5*b^8 +a/(2*b), -0.827396,6);
],40);f();
|