File: solve.mpt

package info (click to toggle)
mathpiper 0.81f%2Bsvn4469%2Bdfsg3-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 36,572 kB
  • sloc: java: 57,479; lisp: 13,721; objc: 1,300; xml: 988; makefile: 114; awk: 95; sh: 38
file content (206 lines) | stat: -rw-r--r-- 7,321 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

Testing("Solve");

VerifySolve(Solve(a+x*y==z,x),{x==(z-a)/y});

// check that solving systems of equations works, at least at the
// level of simple back-substitutions
VerifySolve(Solve({a+x*y==z},{x}),{{x==(z-a)/y}});

// check linear systems
VerifySolve(Solve({2*x-2*y+z==(-7),3*x+y+2*z==(-2),5*x+3*y-3*z==(-7)}, {x,y,z}), {x==(-2),y==2,z==1});
VerifySolve(Solve({3*x-2*y+z==1,x-y-z==2,6*x-4*y+2*z==3}, {x,y,z}), {});
VerifySolve(Solve({2*x+3*y==6,4*x+6*y==12}, {x,y}), {x==3-(3*y)/2,y==y});

[
  Local(eq,res);
  eq:={a-b==c,b==c};
  res:=Solve(eq,{a,b});
  Verify(eq Where res,{c==c,c==c});
];

VerifySolve(Solve(a+x*y == z, x), { x == (z-a)/y });

VerifySolve(Solve(x^2-3*x+2, x), { x == 1, x == 2 });

VerifySolve(Solve(2^n == 32, n), { n == Ln(32)/Ln(2) });  
            /* Of course, Ln(32)/Ln(2) = 5 */

VerifySolve(Solve(ArcTan(x^4) == Pi/4, x), { x == 1, x == -1, x == I, x == -I });

VerifySolve(Solve(Exp(x)/(1-Exp(x)) == a, x), {x == Ln(a/(a+1))});
VerifySolve(Solve(Exp(x)/(1-Exp(x)) == a, a), {a == Exp(x)/(1-Exp(x))});

//VerifySolve(Solve(x^5 == 1, x), 
//            { x == 1, x == Exp(2/5*I*Pi), x == Exp(4/5*I*Pi), 
//              x == Exp(-2/5*I*Pi), x == Exp(-4/5*I*Pi)});

VerifySolve(Solve(Sqrt(x) == 1, x),  { x == 1 });
VerifySolve(Solve(Sqrt(x) == -1, x), { });
VerifySolve(Solve(Sqrt(x) == I, x),  { x == -1 });
VerifySolve(Solve(Sqrt(x) == -I, x), { });
VerifySolve(Solve(Sqrt(x) == 0, x),  { x == 0 });


/* The following equations have in fact infinitely many solutions */

VerifySolve(Solve(Sin(x), x), { x == 0, x == Pi });

VerifySolve(Solve(Sin(x), x), { x == 0, x == Pi });

VerifySolve(Solve(Cos(a)^2 == 1/2, a), 
            { a == Pi/4, a == 3/4*Pi, a == -3/4*Pi, a == -Pi/4 });

/* The solution could have nicer form, but it is correct, apart from periodicity */
VerifySolve(Solve(Sin(a*Pi)^2-Sin(a*Pi)/2 == 1/2, a), {a==Pi/(2*Pi),a==-Pi/(6*Pi),a==(Pi+Pi/6)/Pi});

Verify(IsError(), False);

/* This equation can be solved (the solution is x>0), but the current
 * code does not do this. The least we can expect is that no spurious
 * solutions are returned. */
VerifySolve(Solve(0^x == 0, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/* This equation could be solved using the Lambert W function */
VerifySolve(Solve(x^x == 1, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/* Another equation which cannot be solved at the moment */
VerifySolve(Solve(BesselJ(1,x), x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/* And another one */
VerifySolve(Solve(Exp(x)+Cos(x) == 3, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/* This equation could be solved if we knew that x >= 0 */
VerifySolve(Solve(Sqrt(x) == a, x),  { });
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/* Test the type-checking mechanism */
VerifySolve(Solve(2*x == 1, 1), {});
Verify(ClearError("Solve'TypeError"), True);
Verify(IsError(), False);

/* This command is clearly nonsense, but it used to send Yacas in an
 * infinite recursion, which should never happen.  Note that 'Differentiate(y)x == 0'
 * is parsed as 'Differentiate(y)(x==0)'. */
VerifySolve(Solve(Differentiate(y)(x == 0), x),  { });
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);

/**********************************************************************/

Testing("PSolve");

/* Linear equations */
Testing("     Linear");

VerifySolve(PSolve(x,x), 0);
VerifySolve(PSolve(x+3*Sin(b)-1,x), 1-3*Sin(b));
VerifySolve(PSolve(2*x-a,x), a/2);
VerifySolve(PSolve(2*x-a,a), 2*x);

/* Quadratic equations */
Testing("     Quadratic");

VerifySolve(PSolve(x^2,x), 0);
VerifySolve(PSolve(4*x^2-1,x), {1/2,-1/2});
VerifySolve(PSolve(x^2+1,x), {I,-I});
VerifySolve(PSolve(x^2-3*x+2,x), {1,2});

/* Cubic equations */
Testing("     Cubic");

VerifySolve(PSolve(x^3,x), 0);
VerifySolve(PSolve(x^3-1,x), {1, Exp(2/3*Pi*I), Exp(-2/3*Pi*I)});
VerifySolve(PSolve(x^3+1,x), {-1, Exp(1/3*Pi*I), Exp(-1/3*Pi*I)});
VerifySolve(PSolve(x^3-3*x^2+2*x,x), {0,2,1});

/* Quartic equations */
Testing("     Quartic");

VerifySolve(PSolve(x^4,x), 0);
VerifySolve(PSolve(16*x^4-1,x), {1/2, -1/2, 1/2*I, -1/2*I});
VerifySolve(PSolve(x^4-x,x), {0, 1, Exp(2/3*Pi*I), Exp(-2/3*Pi*I)});
VerifySolve(PSolve(x^4+x,x), {0, -1, Exp(1/3*Pi*I), Exp(-1/3*Pi*I)});

/* Yacas has difficulties with more complicated equations, like the 
 * biquadratic x^4 - 3*x^2 + 2. */

/* Added the ability to Solve and Where to handle expressions more complex than just variables. 
   One can now Solve for say x[1], or Sin(x) (it only uses a simple comparison for now though).  
   The following test just assures that that will never break.
 */
Verify(Simplify(x[1]-4*x[2]+x[3] Where (Solve({x[1]-4*x[2]+x[3]==0},{x[2]}))),{0});


/*TODO MatrixSolve */

// moved from xSingle_test_solve.mpw
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)-7/(2*(x^2+3*x+2))==0, x), {x==3});
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)==7/(2*(x^2+3*x+2)), x), {x==3});

// moved from xTestSolve.mpw

// Tricky one; the solution should depend on a being 0
// FIXME: the equation leaves the error set to Solve'Fails
//VerifySolve(Solve(a == 0,x),{});

VerifySolve(Solve(0,x),{x==x});
VerifySolve(Solve(x-5,x),{x==5});
VerifySolve(Solve(x-a,x),{x==a});
VerifySolve(Solve(12*x+5==29,x),{x==2});
VerifySolve(Solve(5*x-15==5*(x-3),x),{x==x});
VerifySolve(Solve(5*x-15==5*(x-4),x),{});
VerifySolve(Solve(x^2-4,x),{x==2,x==(-2)});

//VerifySolve(Solve(x^2-a^2,x),{x==a,x==(-a)});

VerifySolve(Solve(2*x^2+9*x==18,x),{x==(-6),x==3/2});
VerifySolve(Solve(5*x^2==25*x,x),{x==0,x==5});
VerifySolve(Solve(2*x/5-x/3==2,x),{x==30});
VerifySolve(Solve(2/x-3/2==7/(2*x),x),{x==(-1)});
VerifySolve(Solve(2/(x-3)-3/(x+3)==12/(x^2-9),x),{});
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)==7/(2*(x^2+3*x+2)),x),{x==3});
VerifySolve(Solve(1+1/x==6/x^2,x),{x==2,x==(-3)});
VerifySolve(Solve(Sqrt(x)-3,x),{x==9});
VerifySolve(Solve(Sqrt(x-3),x),{x==3});
VerifySolve(Solve(Sqrt(x-3)==2,x),{x==7});

//VerifySolve(Solve(Sqrt(2*x)==Sqrt(x+1),x), {x==1});
//VerifySolve(Solve(Sqrt(x)==x,x),{x==1,x==0});
//VerifySolve(Solve(Sqrt(x+2)-2*x==1,x),{x==1/4});
//VerifySolve(Solve(Sqrt(x+2)+2*x==1,x),{x==(5 - Sqrt(41))/8});
//VerifySolve(Solve(Sqrt(9*x^2+4)-3*x==1,x),{x==1/2});

VerifySolve(Solve(Sqrt(x+1)-Sqrt(x)==-2,x),{});

//VerifySolve(Solve(Sqrt(3*x-5)-Sqrt(2*x+3)==-1,x),{x==3});

VerifySolve(Solve(Exp(x)==4,x),{x==Ln(4)});
VerifySolve(Solve(Exp(x)==Abs(a),x),{x==Ln(Abs(a))});
VerifySolve(Solve(Ln(x)==4,x),{x==Exp(4)});
VerifySolve(Solve(Ln(x)==a,x),{x==Exp(a)});
VerifySolve(Solve((x+6)/2-(3*x+36)/4==4,x),{x==-40});
VerifySolve(Solve((x-3)*(x-4)==x^2-2,x),{x==2});
VerifySolve(Solve(a*x-2*b*c==d,x),{x==(2*b*c+d)/a});
VerifySolve(Solve((36-4*x)/(x^2-9)-(2+3*x)/(3-x)==(3*x-2)/(x+3),x),{x==-2});

//VerifySolve(Solve((x^2-1)^(1/3)==2,x),{x==3,x==(-3)});

VerifySolve(Solve(x^4-53*x^2+196==0,x),{x==(-7),x==(-2),x==2,x==7});
VerifySolve(Solve(x^3-8==0,x),{x==2,x==-1+I*Sqrt(3),x==-1-I*Sqrt(3)});

//VerifySolve(Solve(x^(2/3)+x^(1/3)-2==0,x),{x==1,x==(-8)});
//VerifySolve(Solve(Sqrt(x)-(1/4)*x==1,x),{x==4});
//VerifySolve(Solve((1/4)*x-Sqrt(x)==-1,x),{x==4});

VerifySolve(Solve({x-y==1,3*x+2*y==13},{x,y}),{x==3,y==2});
VerifySolve(Solve({x-y-1==0,2*y+3*x-13==0},{x,y}),{x==3,y==2});