1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
Testing("Solve");
VerifySolve(Solve(a+x*y==z,x),{x==(z-a)/y});
// check that solving systems of equations works, at least at the
// level of simple back-substitutions
VerifySolve(Solve({a+x*y==z},{x}),{{x==(z-a)/y}});
// check linear systems
VerifySolve(Solve({2*x-2*y+z==(-7),3*x+y+2*z==(-2),5*x+3*y-3*z==(-7)}, {x,y,z}), {x==(-2),y==2,z==1});
VerifySolve(Solve({3*x-2*y+z==1,x-y-z==2,6*x-4*y+2*z==3}, {x,y,z}), {});
VerifySolve(Solve({2*x+3*y==6,4*x+6*y==12}, {x,y}), {x==3-(3*y)/2,y==y});
[
Local(eq,res);
eq:={a-b==c,b==c};
res:=Solve(eq,{a,b});
Verify(eq Where res,{c==c,c==c});
];
VerifySolve(Solve(a+x*y == z, x), { x == (z-a)/y });
VerifySolve(Solve(x^2-3*x+2, x), { x == 1, x == 2 });
VerifySolve(Solve(2^n == 32, n), { n == Ln(32)/Ln(2) });
/* Of course, Ln(32)/Ln(2) = 5 */
VerifySolve(Solve(ArcTan(x^4) == Pi/4, x), { x == 1, x == -1, x == I, x == -I });
VerifySolve(Solve(Exp(x)/(1-Exp(x)) == a, x), {x == Ln(a/(a+1))});
VerifySolve(Solve(Exp(x)/(1-Exp(x)) == a, a), {a == Exp(x)/(1-Exp(x))});
//VerifySolve(Solve(x^5 == 1, x),
// { x == 1, x == Exp(2/5*I*Pi), x == Exp(4/5*I*Pi),
// x == Exp(-2/5*I*Pi), x == Exp(-4/5*I*Pi)});
VerifySolve(Solve(Sqrt(x) == 1, x), { x == 1 });
VerifySolve(Solve(Sqrt(x) == -1, x), { });
VerifySolve(Solve(Sqrt(x) == I, x), { x == -1 });
VerifySolve(Solve(Sqrt(x) == -I, x), { });
VerifySolve(Solve(Sqrt(x) == 0, x), { x == 0 });
/* The following equations have in fact infinitely many solutions */
VerifySolve(Solve(Sin(x), x), { x == 0, x == Pi });
VerifySolve(Solve(Sin(x), x), { x == 0, x == Pi });
VerifySolve(Solve(Cos(a)^2 == 1/2, a),
{ a == Pi/4, a == 3/4*Pi, a == -3/4*Pi, a == -Pi/4 });
/* The solution could have nicer form, but it is correct, apart from periodicity */
VerifySolve(Solve(Sin(a*Pi)^2-Sin(a*Pi)/2 == 1/2, a), {a==Pi/(2*Pi),a==-Pi/(6*Pi),a==(Pi+Pi/6)/Pi});
Verify(IsError(), False);
/* This equation can be solved (the solution is x>0), but the current
* code does not do this. The least we can expect is that no spurious
* solutions are returned. */
VerifySolve(Solve(0^x == 0, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/* This equation could be solved using the Lambert W function */
VerifySolve(Solve(x^x == 1, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/* Another equation which cannot be solved at the moment */
VerifySolve(Solve(BesselJ(1,x), x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/* And another one */
VerifySolve(Solve(Exp(x)+Cos(x) == 3, x), {});
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/* This equation could be solved if we knew that x >= 0 */
VerifySolve(Solve(Sqrt(x) == a, x), { });
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/* Test the type-checking mechanism */
VerifySolve(Solve(2*x == 1, 1), {});
Verify(ClearError("Solve'TypeError"), True);
Verify(IsError(), False);
/* This command is clearly nonsense, but it used to send Yacas in an
* infinite recursion, which should never happen. Note that 'Differentiate(y)x == 0'
* is parsed as 'Differentiate(y)(x==0)'. */
VerifySolve(Solve(Differentiate(y)(x == 0), x), { });
Verify(ClearError("Solve'Fails"), True);
Verify(IsError(), False);
/**********************************************************************/
Testing("PSolve");
/* Linear equations */
Testing(" Linear");
VerifySolve(PSolve(x,x), 0);
VerifySolve(PSolve(x+3*Sin(b)-1,x), 1-3*Sin(b));
VerifySolve(PSolve(2*x-a,x), a/2);
VerifySolve(PSolve(2*x-a,a), 2*x);
/* Quadratic equations */
Testing(" Quadratic");
VerifySolve(PSolve(x^2,x), 0);
VerifySolve(PSolve(4*x^2-1,x), {1/2,-1/2});
VerifySolve(PSolve(x^2+1,x), {I,-I});
VerifySolve(PSolve(x^2-3*x+2,x), {1,2});
/* Cubic equations */
Testing(" Cubic");
VerifySolve(PSolve(x^3,x), 0);
VerifySolve(PSolve(x^3-1,x), {1, Exp(2/3*Pi*I), Exp(-2/3*Pi*I)});
VerifySolve(PSolve(x^3+1,x), {-1, Exp(1/3*Pi*I), Exp(-1/3*Pi*I)});
VerifySolve(PSolve(x^3-3*x^2+2*x,x), {0,2,1});
/* Quartic equations */
Testing(" Quartic");
VerifySolve(PSolve(x^4,x), 0);
VerifySolve(PSolve(16*x^4-1,x), {1/2, -1/2, 1/2*I, -1/2*I});
VerifySolve(PSolve(x^4-x,x), {0, 1, Exp(2/3*Pi*I), Exp(-2/3*Pi*I)});
VerifySolve(PSolve(x^4+x,x), {0, -1, Exp(1/3*Pi*I), Exp(-1/3*Pi*I)});
/* Yacas has difficulties with more complicated equations, like the
* biquadratic x^4 - 3*x^2 + 2. */
/* Added the ability to Solve and Where to handle expressions more complex than just variables.
One can now Solve for say x[1], or Sin(x) (it only uses a simple comparison for now though).
The following test just assures that that will never break.
*/
Verify(Simplify(x[1]-4*x[2]+x[3] Where (Solve({x[1]-4*x[2]+x[3]==0},{x[2]}))),{0});
/*TODO MatrixSolve */
// moved from xSingle_test_solve.mpw
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)-7/(2*(x^2+3*x+2))==0, x), {x==3});
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)==7/(2*(x^2+3*x+2)), x), {x==3});
// moved from xTestSolve.mpw
// Tricky one; the solution should depend on a being 0
// FIXME: the equation leaves the error set to Solve'Fails
//VerifySolve(Solve(a == 0,x),{});
VerifySolve(Solve(0,x),{x==x});
VerifySolve(Solve(x-5,x),{x==5});
VerifySolve(Solve(x-a,x),{x==a});
VerifySolve(Solve(12*x+5==29,x),{x==2});
VerifySolve(Solve(5*x-15==5*(x-3),x),{x==x});
VerifySolve(Solve(5*x-15==5*(x-4),x),{});
VerifySolve(Solve(x^2-4,x),{x==2,x==(-2)});
//VerifySolve(Solve(x^2-a^2,x),{x==a,x==(-a)});
VerifySolve(Solve(2*x^2+9*x==18,x),{x==(-6),x==3/2});
VerifySolve(Solve(5*x^2==25*x,x),{x==0,x==5});
VerifySolve(Solve(2*x/5-x/3==2,x),{x==30});
VerifySolve(Solve(2/x-3/2==7/(2*x),x),{x==(-1)});
VerifySolve(Solve(2/(x-3)-3/(x+3)==12/(x^2-9),x),{});
VerifySolve(Solve(3/(x^2+x-2)-1/(x^2-1)==7/(2*(x^2+3*x+2)),x),{x==3});
VerifySolve(Solve(1+1/x==6/x^2,x),{x==2,x==(-3)});
VerifySolve(Solve(Sqrt(x)-3,x),{x==9});
VerifySolve(Solve(Sqrt(x-3),x),{x==3});
VerifySolve(Solve(Sqrt(x-3)==2,x),{x==7});
//VerifySolve(Solve(Sqrt(2*x)==Sqrt(x+1),x), {x==1});
//VerifySolve(Solve(Sqrt(x)==x,x),{x==1,x==0});
//VerifySolve(Solve(Sqrt(x+2)-2*x==1,x),{x==1/4});
//VerifySolve(Solve(Sqrt(x+2)+2*x==1,x),{x==(5 - Sqrt(41))/8});
//VerifySolve(Solve(Sqrt(9*x^2+4)-3*x==1,x),{x==1/2});
VerifySolve(Solve(Sqrt(x+1)-Sqrt(x)==-2,x),{});
//VerifySolve(Solve(Sqrt(3*x-5)-Sqrt(2*x+3)==-1,x),{x==3});
VerifySolve(Solve(Exp(x)==4,x),{x==Ln(4)});
VerifySolve(Solve(Exp(x)==Abs(a),x),{x==Ln(Abs(a))});
VerifySolve(Solve(Ln(x)==4,x),{x==Exp(4)});
VerifySolve(Solve(Ln(x)==a,x),{x==Exp(a)});
VerifySolve(Solve((x+6)/2-(3*x+36)/4==4,x),{x==-40});
VerifySolve(Solve((x-3)*(x-4)==x^2-2,x),{x==2});
VerifySolve(Solve(a*x-2*b*c==d,x),{x==(2*b*c+d)/a});
VerifySolve(Solve((36-4*x)/(x^2-9)-(2+3*x)/(3-x)==(3*x-2)/(x+3),x),{x==-2});
//VerifySolve(Solve((x^2-1)^(1/3)==2,x),{x==3,x==(-3)});
VerifySolve(Solve(x^4-53*x^2+196==0,x),{x==(-7),x==(-2),x==2,x==7});
VerifySolve(Solve(x^3-8==0,x),{x==2,x==-1+I*Sqrt(3),x==-1-I*Sqrt(3)});
//VerifySolve(Solve(x^(2/3)+x^(1/3)-2==0,x),{x==1,x==(-8)});
//VerifySolve(Solve(Sqrt(x)-(1/4)*x==1,x),{x==4});
//VerifySolve(Solve((1/4)*x-Sqrt(x)==-1,x),{x==4});
VerifySolve(Solve({x-y==1,3*x+2*y==13},{x,y}),{x==3,y==2});
VerifySolve(Solve({x-y-1==0,2*y+3*x-13==0},{x,y}),{x==3,y==2});
|