1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/*LoadScriptOnce("texform");*/
NextTest("TeXForm()...");
/* it worketh no more...
Testing("Realistic example");
f:=Exp(I*lambda*eta)*w(T*(k+k1+lambda));
g:=Simplify(Subst(lambda,0) f+(k+k1)*(Differentiate(lambda)f)+k*k1*Differentiate(lambda)Differentiate(lambda)f );
Verify(TeXForm(g), ...);
*/
Verify(
TeXForm(Hold(Cos(A-B)*Sqrt(C+D)-(a+b)*c^d+2*I+Complex(a+b,a-b)/Complex(0,1)))
,"$\\cos ( A - B) \\cdot \\sqrt{C + D} - ( a + b) \\cdot c ^{d} + 2 \\cdot \\imath + \\frac{a + b + \\imath \\cdot ( a - b) }{\\imath } $"
);
Verify(
TeXForm(Hold(Exp(A*B)/C/D/(E+F)*G-(-(a+b)-(c-d))-b^(c^d) -(a^b)^c))
,"$\\frac{\\frac{\\frac{\\exp ( A \\cdot B) }{C} }{D} }{E + F} \\cdot G - ( - ( a + b) - ( c - d) ) - b ^{c ^{d}} - ( a ^{b}) ^{c}$"
);
Verify(
TeXForm(Hold(Cos(A-B)*Sin(a)*f(b,c,d*(e+1))*Sqrt(C+D)-(g(a+b)^(c+d))^(c+d)))
,"$\\cos ( A - B) \\cdot \\sin a \\cdot f( b, c, d \\cdot ( e + 1) ) \\cdot \\sqrt{C + D} - ( g( a + b) ^{c + d}) ^{c + d}$"
);
// testing latest features: \\cdot, %, (a/b)^n, BinomialCoefficient(), BesselI, OrthoH
Verify(
TeXForm(3*2^n+Hold(x*10!) + (x/y)^2 + BinomialCoefficient(x,y) + BesselI(n,x) + Maximum(a,b) + OrthoH(n,x))
, "$3\\cdot 2 ^{n} + x\\cdot 10! + ( \\frac{x}{y} ) ^{2} + {x \\choose y} + I _{n}( x) + \\max ( a, b) + H _{n}( x) $"
);
/* this fails because of a bug that Differentiate(x) f(y) does not go to 0 */ /*
Verify(
TeXForm(3*Differentiate(x)f(x,y,z)*Cos(Omega)*Modulo(Sin(a)*4,5/a^b))
,"$3 ( \\frac{\\partial}{\\partial x}f( x, y, z) ) ( \\cos \\Omega ) ( 4 ( \\sin a) ) \\bmod \\frac{5}{a ^{b}} $"
);
*/
Verify(
TeXForm(Hold(Differentiate(x)f(x)))
,"$\\frac{d}{d x}f( x) $");
Verify(
TeXForm(Hold(Not (c<0) And (a+b)*c>= -d^e And (c<=0 Or b+1>0) Or a!=0 And Not (p=q)))
,"$ \\neg c < 0\\wedge ( a + b) \\cdot c\\geq - d ^{e}\\wedge ( c\\leq 0\\vee b + 1 > 0) \\vee a\\neq 0\\wedge \\neg p = q$"
);
Verify(
TeXForm((Differentiate(x)f(x,y,z))*Cos(Omega)*Modulo(Sin(a)*4,5/a^b))
,"$( \\frac{\\partial}{\\partial x}f( x, y, z) ) \\cdot \\cos \\Omega \\cdot ( 4 \\cdot \\sin a) \\bmod \\frac{5}{a ^{b}} $"
);
Verify(
TeXForm(Pi+Exp(1)-Theta-Integrate(x,x1,3/g(Pi))2*theta(x)*Exp(1/x))
,"$\\pi + \\exp ( 1) - \\Theta - \\int _{x_{1}} ^{\\frac{3}{g( \\pi ) } } 2 \\cdot \\theta ( x) \\cdot \\exp ( \\frac{1}{x} ) dx$"
);
Verify(
TeXForm({a[3]*b[5]-c[1][2],{a,b,c,d}})
,"$( a _{3} \\cdot b _{5} - c _{( 1, 2) }, ( a, b, c, d) ) $"
);
Bodied("aa", 200);
Infix("bar", 100);
Verify(
TeXForm(aa(x,y) z + 1 bar y!)
,"$aa( x, y) z + 1\\mathrm{ bar }y!$"
);
Verify(
TeXForm(x^(1/3)+x^(1/2))
, "$\\sqrt[3]{x} + \\sqrt{x}$"
);
/*
Verify(
TeXForm()
,""
);
*/
Verify(
CForm(Hold(Cos(A-B)*Sin(a)*func(b,c,d*(e+Pi))*Sqrt(Abs(C)+D)-(g(a+b)^(c+d))^(c+d)))
,"cos(A - B) * sin(a) * func(b, c, d * ( e + Pi) ) * sqrt(fabs(C) + D) - pow(pow(g(a + b), c + d), c + d)"
);
Verify(
CForm(Hold([i:=0;While(i<10)[i++; a:=a+Floor(i);];]))
, "{
i = 0;
while(i < 10)
{
++(i);
a = a + floor(i);
}
;
;
}
"
);
/* Check that we can still force numbers to be floats in stead of integers if we want to */
Verify(
CForm(Hold([i:=0.;While(i<10.)[i++; a:=a+Floor(i);];]))
, "{
i = 0.;
while(i < 10.)
{
++(i);
a = a + floor(i);
}
;
;
}
"
);
Testing("IsCFormable");
Verify(
IsCFormable(e+Pi*Cos(A-B)/3-Floor(3.14)*2)
, True
);
Verify(
IsCFormable(e+Pi*Cos(A-B)/3-Floor(3.14)*2+bad'func(x+y))
, False
);
Verify(
IsCFormable(e+Pi*Cos(A-B)/3-Floor(3.14)*2+bad'func(x+y), {bad'func})
, True
);
Verify(
IsCFormable([i:=0;While(i<10)[i++; a:=a+i;];])
, True
);
Verify(
IsCFormable([i:=0;While(i<10)[i++; a:=a+i; {};];])
, False
);
|